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Abstract 
Smart energy services and technologies are key components of energy transition and 
decarbonisation strategies for the built environment. On the one hand, the technical 
potential of the building stock in terms of energy, emissions and cost savings is large 
and exploited only partially at present. On the other hand, the increasing availability of 
data generated by smart meters, smart devices, sensors and building management 
systems can help monitoring, verifying and tracking building energy performance 
improvements in a transparent way. In particular, energy modelling and data analytics 
can provide empirically grounded and tested methods to standardize the way energy 
performance is measured and reported. Further, techno-economic analysis is crucial to 
ensure the feasibility of innovative business models. For these reasons, this paper aims 
to address the role of techno-economic analysis and energy modelling as key enablers 
for next-generation energy services and technologies. In terms of methods, scientific 
literature selection criteria are derived from previous research and are focused on 
limitations and bottlenecks to the achievement of innovative business models, which are 
motivated, at their very basics, by energy, emission and cost savings. Additionally, 
besides these potential savings, smart energy services and technologies can provide 
multiple additional benefits such as improved Indoor Environmental Quality (IEQ) and 
energy flexibility on the demand side, with respect to energy infrastructures. First, the 
research identifies the key elements that are necessary to integrate and to streamline 
techno-economic analysis and energy modelling processes. After that, it highlights 
potential advances in the broad area of energy transitions and decarbonisation of the 
built environment that can be achieved as an evolution of current practices and 
processes. Finally, it envisions the creation of “eco-systems” of interacting models for 
the building sector that share common underlying principles. 
 
Keywords: Smart energy services; Smart energy technologies; Energy transition; 
Energy Performance Contracting; Measurement and Verification; Energy Analytics; 
Decarbonisation; Built Environment. 
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 Smart energy services and technologies as key components of energy transitions. 
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 Techno-economic analysis principles to ensure feasibility of innovative business 
models 

 Necessity of empirically grounded and tested methods to analyse and track 
performance transparently. 

 Possibility to enhance the capabilities of methods and models at the state of the 
art. 

 Potential to create “eco-systems” of interacting models for the building sector. 
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1 Introduction 
Smart energy services and technologies in buildings can contribute to a radical  
efficiency improvement, which is crucial for sustainability transitions that represent 
today a challenge involving changes both in science and society [1]. It is widely 
acknowledged that the reduction of the environmental impact of the construction sector 
and built environment is a crucial component of sustainability strategies and is part of 
the agenda of sustainability transition research [2]. Further, the co-evolution of research 
in built environment and energy sectors is an open issue, considering, for example, the 
dynamic interaction among buildings and energy infrastructures in a context of 
increasing decentralization. Planning and managining sustainability transitions requires 
conceptualizing and explaining how a radical change can take place while satisfying 
fundamental societal needs, for example by means of innovations in processes and 
practices, across different sectors. A possible conceptualisation of construction sector 
[3] proposes three fundamental domains: project, product and service. Each domain has 
different markets, companies, business models and regulation. One of the major goals of 
sustainability transitions research for the built environment is identifying the limitations 
and bottlenecks within these domains as well as at the interface between domains, that 
can compromise performance in different building life cycle phases. In fact, buildings 
are long-terms assets and addressing limitations and bottlenecks from a techno-
economic perspective (using life cycle costing), is crucial to promote business models 
that consider the whole life-cycle and enable a long-term view. From the energy and 
environmental point of view, the use of methods such as life cycle assessment (LCA), 
while being crucial for innovative economic paradigms such as Circular Economy [4], 
is itself a critical issue in built environment research [5]. In fact, there are large 
variations in how the method is currently used in practice [6], making it difficult to use 
for transparent performance comparison and benchmarking. Clearly, this fact 
determines a problem of consistency and credibility of practices and policies. We can 
see how the potential gaps between simulated and measured operational energy and 
carbon emissions represent a debatable issue in which some researchers highlight the 
problem of energy modelling literacy [7], while others underline the importance of 
training and of understanding the use of complex simulation software as an analytical 
tool rather than a predictive one [8]. A similar performance gap problem appears with 
respect to embodied energy and carbon emissions [9], for the reasons quickly reported 
before (i.e. variations in the way LCA is applied in practice). For this reason, a 
particular effort has to be devoted to the identification of influential factors in LCA, in 
order to assess the robustness of results [10] with respect to uncertainty and variability 
in inputs. Despite the inherent difficulties, the technical potential of the building stock 
in terms of energy, emissions and cost savings is large and exploited only partially at 
present. Additionally, the increasing availability of data generated by smart meters, 
smart devices, sensors and building management systems can help monitoring, 
verifying and tracking building energy performance improvements (e.g. operational 
energy demand reduction) in a transparent way. In particular, energy data analytics can 
provide empirically grounded and tested methods to standardize the way energy 
performance is measured and reported, starting from consolidated practices in 
Measurement and Verification (M&V) field, which can evolve further to accomplish 
additional needs. Transparent and reliable energy performance assessment is crucial for 
the development of innovative energy services and technologies in buildings, which can 
contribute to the feasibility of sustainability transitions and decarbonisation paths for the 
building sector. The paper aims to discuss the role of techno-economic analysis and 
energy modelling as key enablers in this direction, identifying some of the critical 
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aspects related to their implementation as part of innovative business models and 
summarizing essential features and insights that emerge from research in this broad 
area.  
 
 
2 Background and motivation 
Sustainability transitions research is moving rapidly from an emerging field [11], to a 
challenge involving the evolution of science and societal change [1], to an agenda for 
future initiatives [2], with the fundamental goal of accelerating transition processes. In 
brief, sustainability transition research focuses on the conceptualization and explanation 
of how radical shifts in socio-technical systems can occur in a way compatible with 
societal functions. This implies, clearly, considerations on how radical shifts can 
become feasible from a techno-economic perspective. This type of research focuses on 
the “meso”-level of socio-technical systems, thereby differentiating from “macro”-level 
(e.g. macro-level economic and environmental problems) and “micro-level” (e.g. 
individual choices and behaviour) research. The “meso”-level is essentially the regime 
that represents the dominating socio-technical patterns of interaction and learning 
processes. Sustainability transitions research addresses multiple sectors such as 
electricity, heat, built environment, agro-food, transportation, etc. For the research 
regarding energy sector, in particular, the term used is energy transitions and we can 
find examples of this kind of research addressing complementarities in energy systems 
[12] and energy policies [13]. There are also examples of application of this approach 
for the built environment [14]. In the past, several researchers in the fields of sociology 
of technology and evolutionary economics have stressed the importance of niches as 
drivers of innovation. Niches can work as protected (from market selection 
mechanisms) environments for the incubation of new ideas, where new socio-technical 
regimes can emerge and develop. Technological niches are particularly interesting for 
energy research, as they can represent spaces for experimenting the co-evolution of 
technology, user practices, and regulatory structures. Further, technological niches can 
be successfully linked to market niches by means of institutional learning processes 
[15]. Innovative energy services and technologies represent a substantial part of 
business models that could enable energy transitions and decarbonisation in practice, 
initially at the level of niches and then at large scale. However, radical shifts require a 
long-term view of problems while a short-term view is often considered from a business 
perspective. Nonetheless, appropriate financing mechanisms could, in principles, enable 
long-term investments, when successful business models are available. For this reason, 
Life Cycle Costing (LCC) methods have to be used in order to evaluate costs in a long-
term perspective and multi-objective optimization (using Pareto frontier analysis) can be 
used to evaluate simultaneously energy and cost objectives, in order to find the best 
compromise solutions. Streamlining and making this process more transparent and 
robust (with respect to the inherent uncertainties) is an important goal for research. For 
this reason, the paper considers first techno-economic accounting methodologies and 
then techniques for energy modelling and analytics at the state of the art, because they 
represent (together) essential pre-requisites to ensure the feasibility of innovative 
services and technologies. Finally, the outcomes of analytical processes could enable 
multiple feedback loops and, consequently, contribute to the improvement of processes 
and technologies and the emergence of new business opportunities. In the next section, 
the methodological approach followed in this research is described in detail, 
highlighting the relevant steps and features considered for the selection of literature. 
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3 Methods 
Considering the issues outlined in Section 1 and 2, the fundamental research question of 
this study is whether it is possible to create a knowledge framework, in the areas of 
techno-economic analysis and energy modelling of buildings, able to meet the criteria 
specified later in this section. The knowledge framework should attempt to reduce the 
level of fragmentation of the highly diversified body of knowledge available, thereby 
helping in the conceptualization of processes of change (achievable by means of 
innovative energy services and technologies) by identifying opportunities, together with 
limitations and bottlenecks. The research proposed combines qualitative and 
quantitative information and can be identified as a mixed approach [16]. For this reason, 
we consider in the research process concepts from Grounded Theory [17] as a reference, 
where we utilise both qualitative and quantitative data (“all is data” [18]), in order to 
orient our research. Grounded Theory (GT) can be defined as a “a set of integrated 
conceptual hypotheses systematically generated to produce an inductive theory about a 
substantive area” [19] and as “theory that was derived from data, systematically 
gathered and analysed through the research process” [20]. The results of a GT study are 
communicated as “a set of concepts, related to each other in an interrelated whole” [21]. 
The limitations of such approach are in the fact that the resulting knowledge framework 
depends on the researchers’ views and should be contextualized accordingly. 
Nonetheless, by expliciting the selection criteria for literature, as well as their relation to 
studies previously conducted, we can present the research process in a transparent and 
reproducible way. In fact, we pursued a purposive sampling strategy where sources of 
information are chosen based on the researchers’ judgement in a non-probabilistic way. 
The selection of criteria is based on previous research conducted by the authors and 
aims to address fundamental limitations and bottlenecks previously identified. First, the 
problem of integrating energy efficiency measures, demand side management, on-site 
generation and energy storage technologies in the built environment [22]. After that, the 
role of open data and energy modelling standards in fostering multi-disciplinary 
research in the energy sector, from system planning, to design and operation [23]. 
Further, the possibility to link design and operational phase analysis (thereby enabling a 
whole life cycle analytical approach) using transparent and interpretable data-driven 
techniques (e.g. regression-based) [24]. Finally, the identification of key characteristics 
of energy modelling and data analytics that can contribute to the evolution of the 
construction sector at multiple levels [25]. In brief, this paper aims to synthesize the 
outcomes of previous research and analyse how they can be integrated within innovative 
business models for energy services and technologies. Therefore, fundamental criteria 
used for literature selection and their motivation, in relation to previous research, are 
summarized in Table 1. 
 

Table 1: Criteria for literature selection 
Criteria Description Motivation 

Empirical grounding Based on empirical data, and tested on 

a relevant number of cases. 

Ensuring credibility with an evidence-

based approach aimed at building trust 

in the solutions proposed. 

Harmonization Methodologies in which redundancies 

and overlapping features produced by 

different research groups are removed, 

ideally based on protocols and 

Avoiding redundancy and multiplication 

of efforts, simplify and streamline 

implementation, ease the benchmarking 

process when validation cases are 
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standards. available. 

Scalability Capable of analysing problems at 

multiple temporal and spatial scales. 

Enabling consistency and coherency in 

the use of analytics at different temporal 

and spatial scales of analysis. 

Interpretability Able to detect relevant cause-effect 

relationship, ideally combing 

statistical analysis techniques with 

physical understanding of phenomena.  

Enhancing the possibility of 

harmonization and the extraction of 

useful insights by referring to physical 

quantities. Enabling multiple feedback 

loops for continuous improvement of 

processes and technologies. 

Re-configurability Able to be used in multiple stages of 

the building life-cycle, for example 

for design and operation, using the 

same underlying principles. 

Creating a seamless integration in the 

data analysis workflows performed 

during different building life-cycle 

phases. 

 
The analysis of the fundamental information contained in the selected literature and its 
codification has been performed incrementally and iteratively, using Table 1 criteria, 
until “theoretical saturation” was reached. Theoretical saturation can be defined as “the 
phase of qualitative data analysis in which the researcher has continued sampling and 
analyzing data until no new data appear and all concepts of the theory are well-
developed and their linkages to other concepts are clearly described” [26]. In Section 4 
we start our analysis by considering two main issues, namely techno-economic analysis 
principles (Section 4.1) and role of energy modelling and analytics (Section 4.2). 
 
 
4 Rethinking energy services and technologies in buildings 
The achievement of stringent energy efficiency goals is one of the crucial elements in 
energy transition strategies in general, and particularly for the built environment, where 
the energy savings potential is large and exploited only partially at present. One of the 
key issues encountered when proposing energy efficiency measures is ensuring their 
feasibility from a techno-economic perspective, using an appropriate business model.  
Energy Performance Contracting (EPC) models [27] are a relevant part of business 
models routed on energy efficiency, and the role of relevant actors and stakeholders has 
to be understood in order to engage them successfully. In this sense, barriers such lack 
of interest, awareness, knowledge and human and financial capacity [28] have to be 
addressed. Further, it is necessary to consider, from a technical stand-point, the relation 
between energy performance simulation in design phase (project domain) and 
measurement and verification practices (M&V) in the operation phase (service domain) 
[29], following the subdivision of domains reported initially for the construction sector 
[3]. This can be achieved, for example, by creating integrated data analysis workflows, 
from design to operation (i.e. linking design and operation phase performance analysis 
[24]). These workflows can be performed in a semi-automated or automated way using 
methods that represent an evolution of the state of the art of Measurement and 
Verification (M&V) protocols developed by ASHRAE [30], Efficiency Value 
Organization (EVO) [31], Federal Energy Management Program (FEMP) [32], 
frequently indicated with the term M&V 2.0 [33]. The increasing availability of data 
generated by smart meters, smart devices, sensors and building management systems 
can help monitoring, verifying and tracking building energy performance improvements 
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in a transparent way. Large scale data acquisition can potentially take place 
inexpensively today, considering the state-of-the-art of metering technologies (i.e. smart 
meters) [34], even though applications should be conceived according to the principle of 
preserving privacy. Additionally, the use of transparent and standardized methods can 
help transforming data into useful knowledge for the evolution of products and services, 
thereby putting continuous learning and improvement cycles in place. From a 
methodological perspective, Deming cycle or PDCA (Plan-Do-Check-Act) is used as a 
general tool for the control and continuous improvement of products and processes. 
More specifically, PDCA is used in energy management systems, as part of current 
standardization [35], and the improvements achieved by efficiency measures can be 
compared by means of analytics (i.e. information resulting from the systematic analysis 
of data) that can be displayed numerically and graphically [36]. The systematic use of 
energy analytics can become one of the crucial elements for the creation of next 
generation energy services and technologies in buildings. Hereafter, in Section 4.1, we 
discuss the role of a techno-economic analysis framework to ensure the feasibility of 
energy efficiency measures, while in Section 4.2 we illustrate the techniques for energy 
analytics that can be used to analyse the impact of energy efficiency measures. 
 
4.1 Techno-economic analysis framework 
In the last decades, there has been a steady evolution of paradigms for energy efficiency 
and renewable energy integration in buildings. Concepts such as Net Zero Energy 
Building (NZEB) [37], Zero Energy Building (ZEB) of Nearly Zero Energy Building 
(nZEB) [38], Passive House [39], Plus or Positive Energy Building [40] are used by 
practictioners in new buildings’ design and renovation processes. Deep renovations 
[41], in particular, are radical and therefore expensive, and we are assisting today at 
lower retrofit rates (i.e. 0.4-1.2% depending on the country) compared to what would be 
necessary to achieve long-term decarbonisation targets at the EU level [42]. In order to 
evaluate appropriately the benefits of deep renovations of buildings, a whole life cycle 
perspective on performance and costs has to be adopted (buildings are long-term assets), 
because of the significant investments needed and the increase of market value, which 
can be determined by the improvement of energy rating. Indeed, recent studies 
highlighted a changing landscape in property valuation [43] determined by energy rating. 
For this reason, the real estate market impact of energy rating [44] has to be considered as 
well in the design process, because the willingness to pay for more efficient buildings [45] 
can open up the space for business opportunities. More in general, deep renovations can 
contribute to the overall improvement of building characteristics, including Indoor 
Environmental Quality (IEQ). In fact, the definition of comfort requirement for low energy 
buildings [46] and their standardization in relation to energy performance assessment [47] 
is crucial to evaluate the trade-offs between energy performance and comfort conditions 
[48] (i.e. to find an appropriate balance between comfort and health requirements with 
respect to energy savings).  
In recent years, there has been a development of research around the concept of cost-
optimal analysis [49] for effective and transparent techno-economic performance 
benchmarking of building solutions. The general principles of cost-optimal analysis are 
described, for example, in the EU Commission Delegated Regulation No 244/2012 [50] 
and have relevant policy implications. First of all, cost-optimal analysis is based on the 
concept of Pareto frontier analysis (i.e. the identification of optimal solution with respect to 
multiple objectives, in this case primary energy and overall cost). The use of Pareto 
frontier analysis enables the visual identification of the gap among the normative 
performance limits (for code compliance), the cost-optimal investment levels, the NZEB 
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level, and the maximum performance technically achievable [49]. In this way, three 
points can be determined that constitute the boundaries of evaluation [51], namely 
minimum requirements for code compliance, maximum performance achievable and 
cost-optimal level. The latter represents the set of technological solutions that can 
achieve a better performance in terms of primary energy and overall project cost 
compared to minimum requirements. Indeed, the possibility to classify technological 
solutions with respect to the energy performance thresholds (e.g. nZEB, low energy, 
new building, major renovation, etc.) [52] and to cluster them into groups is a great 
advantage when comparing multiple design options [53] at once. Additionally, cost-
optimal levels can be identified graphical in a “relative” way by subtracting the baseline 
cost (i.e. baseline cost become the origin of the y axis) and working on cost differences 
[54]. From the point of view of technical standardization and harmonization (considered 
among the constraints in Section 3) cost-optimal analysis method uses a cost accounting 
scheme that can be found in standard EN 15459-1:2017 [55] and that can framed within 
the more general Life Cycle Cost (LCC) approach of ISO 15686-5:2017 [56], which can 
be summarized in the following table, considering the basic subdivision between 
investment, replacement and running costs in the cash-flow analysis during project 
duration. 
 

Table 2: Cost accounting in Life Cycle Cost (LCC) analysis for buildings 
Type of cost Process Cost-accounting (cash-

flow analysis) 
Investment cost Design Initial cost 
 Construction Initial cost 
 Refurbishment Initial cost 
 Site management Initial cost 
Periodic Costs Replacement cost of 

technologies 
Periodic replacement cost 

Running Costs Energy services Annual cost 
 Maintenance Annual cost 
End of Life 
Costs 

Dismantling and 
disposal, recycling or 
reuse  
 

End of life cost 

 
In the previous table non-construction cost (e.g. cost of land, fees and enabling costs, 
externalities) were not indicated as the may not be relevant in the analytical process; 
however, they are considered in Whole Life Cycle Costs (WLCC) analysis. Given the 
focus on efficiency, energy savings and cost savings during building operation are the 
fundamental motivation for higher efficiency (and generally more costly) design solutions 
in buildings; this is particularly relevant in deep renovations. However, operation and 
maintenance costs are much more uncertain than initial investment costs, which can be 
verified by means of data-driven methods [57], considering lumped building 
characteristics [58]. In fact, empirical studies on building energy “performance gap” 
have underlined the problem of energy modelling literacy [7] and the need for 
awareness and training for the use of complex simulation tools [59]. Effects such as 
“rebound” (i.e. building consumes more than expected, for example in a high efficiency 
building) [60] or “pre-bound” [61] (i.e. building consumes less than expected, for 
example in low efficiency building) are frequently encountered in practice and 
evaluation methodologies have to account for these potential discrepancies [62] and be 
“calibrated” accordingly. These discrepancies can clearly compromise business 
opportunities and performance tracking appears crucial to ensure the effectiveness of 
energy efficiency measures and related cost savings, which justify the creation of a 
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business models built on top of them. Large scale investigations are necessary to 
document the actual energy, cost and emission savings of energy efficiency measures 
together with the potential co-benefits and, for this reason, scalability of techniques for 
energy analytics is one the topics considered in Section 4.2. Hereafter, in Section 4.1.1, 
we illustrate the state of the art of Energy Performance Contracting (EPC) models, to 
identify their key components, while in Section 4.1.2 we highlight potential innovations 
in business models for energy services.  
 

4.1.1 State of the art of Energy Performance Contracting (EPC) 
In this paragraph we will illustrate the main types of Energy Performance Contracting 
models which are different types of agreements between energy customers and Energy 
Services Companies (ESCOs), or energy services providers more in general. The basic 
principles of an EPC are shown in Figure 1. In brief, the volume of guaranteed operational 
cost savings, determined by operational energy savings, has to be higher than the volume 
of investments (initial investment) in energy efficiency measures, which has to be repaid 
before the end of contract. As such, the cost components considered in EPC business 
models are a subset of the ones indicated in Table 2 for LCC analysis and cost-optimal 
analysis process. Further, as already specified, tracking energy and cost savings during the 
whole project duration is crucial to ensure the feasibility and robustness of business 
models. 

 

Figure 1: Energy Performance Contracting – Operational energy and cost savings 
 
There are different Energy Performance Contracting models at the state-of-the-art, whose 
main characteristics are synthesized in Table 4. 
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Table 3: Fundamental types of EPC with their typical field of applications and 
characteristics 

Type of contract Typical field of 

application 

Responsibilities Distribution of savings Risks 

Guaranteed savings 

(GS) 

Built 

environment/Industry 

Design and installation 

of systems, guarantee of 

a certain level of energy 

savings. 

Energy savings 

guaranteed by the ESCO 

to the client should be 

sufficient to cover debt 

service payments. 

ESCO assumes 

performance risk, 

client assumes credit 

risk. ESCO can work 

as a facilitator to 

access credit. 

Shared savings 

(SS) 

Built 

environment/Industry 

ESCO is responsible for 

design, financing and 

implementation of the 

project. 

The cost savings are split 

with respect to a fixed 

percentage for a fixed 

period of time, defined by 

the contract. 

ESCO assumes both 

performance and 

credit risk (“zero risk” 

model for client). 

Chauffage Built 

environment/Industry 

ESCO is responsible for 

the operation and 

maintenance of the 

system (complete 

outsourcing of energy 

services).  

Client is guaranteed an 

immediate saving relative 

to its energy bill, 

expressed in percentage 

for a period of time 

defined by the contract.  

ESCO assumes both 

performance and 

credit risk. 

Build-Own-

Operate-Transfer 

(BOOT) 

Industry/Power 

generation plants 

ESCO assumes the 

responsibility of design, 

installation, financing, 

operation and 

maintenance of an 

equipment owned by the 

ESCO for a defined 

period of time and then 

transferred to the client. 

ESCO initially, then client 

after a period of time 

defined by the contract. 

ESCO initially, then 

client after the period 

defined by the 

contract. 

Lease Industry In capital lease, the 

client owns the 

equipment. In operating 

lease, the ESCO owns 

the equipment and the 

client pays a rent. 

Client/ESCO depending 

on capital or operating 

lease choice respectively. 

Client in the case of 

capital lease, ESCO in 

the case of operating 

lease. 

 
In Guaranteed Savings (GS) model the ESCO assumes the responsibility of design and 
installation and guarantees a certain level of energy savings. For this reason, the energy 
customer (client) doesn’t assume any performance risk. In turn, ESCO doesn’t assume the 
credit risk, so the client has to be capable of obtaining financing for the project; however 
the ESCO can work as a facilitator. Energy savings guaranteed by the ESCO should be 
sufficient to cover debt service payments. In Shared Savings (SS) model the ESCO signs a 
financing and performance contract with the energy customer (client) and is responsible 
for design, financing and implementation of the project. The ESCO verifies the energy 
savings during the contract length. The cost savings (determined by energy savings) are 
split with respect to a fixed percentage for a fixed period of time. The percentage and 
period depend on the project characteristics (length of contract, risks, etc.). This model is 
almost “zero risk” for the client, because the ESCO assumes both the performance and 
credit risk. In Chauffage model the ESCO takes up the initiative to provide energy 
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performance improvements and the energy customer is guaranteed an immediate saving 
relative to its energy bill, expressed in percentage. This model represents a form of 
complete outsourcing of energy services, in which the ESCO is responsible for the 
operation and maintenance of the energy system. In Build-Own-Operate-Transfer (BOOT) 
model the ESCO assumes the responsibility of design, installation, financing, operation 
and maintenance of an equipment that is owned by the ESCO for a defined period of time 
and then transferred to the client. BOOT are generally long-term contracts in which clients 
are charged for the service delivered. The service charge includes capital and operating 
cost recovery and project profit. Finally, in lease model payments tend to be lower than 
loan payments. This model is commonly used for industrial equipment and the incomes 
from cost savings are used to cover the lease payment. There are two variations, capital 
lease and operating lease. In a capital lease, the client owns and depreciates the equipment. 
In an operating lease, the ESCO owns the equipment and the client pays a rent. In the last 
case the risk of owning the equipment is transferred from the client to the ESCO. 
The most common EPC models used in built environment applications are Guaranteed 
Savings (GS), Shared Savings (SS), and the Chauffage model. For this three models a 
graphical representation is proposed respectively in Figures 2, 3 and 4, which indicate the 
relation between actors (i.e. client, ESCO, bank) and energy (and cost) savings. In this 
way, the basic constitutive elements of business models focused on energy efficiency are 
represented visually, linking them ideally to the components in Figure 1 (and consequently 
to the basic accounting scheme of LCC based cost-optimal analysis in Table 2) and 
highlighting, in particular, the relation between ESCO, client and bank with respect to the 
distribution of savings and the payments and financing mechanism. It is worth noting that 
an important difference between GS and SS models is that in the first case the performance 
guaranteed is the level of energy saved, while in the second it is the cost of energy saved. 
While these models differentiate in the way they share energy and cost savings, they keep 
the fundamental basic mechanism described in Figure 1. Indeed, these two fundamental 
dimensions (energy and cost savings) are also the ones accounted in cost-optimal analysis 
[49], both for new buildings and refurbished buildings [63]. 
 

 
Figure 2: Guaranteed Savings (GS) model for EPC 
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Figure 3: Shared Savings (SS) model for EPC 

 
Figure 4: Chauffage model for EPC 

 
4.1.2 Innovative business models for energy services 

When business development perspective comes in, the goods to be traded, their price 
dynamics and the market are the elements to analyse [64]. Data flow in the energy 
networks is one of these goods already available and owned by the Distribution System 
Operator (DSO) [65]. Instantaneous electric and volumetric gas flow rate meter readings 
[66] are not generally used to provide insights to single customers. In some cases, for 
example above a specific threshold value of the client’s power demand, more data are 
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available. For instance, in the electricity market in Italy, customer over 20 kW of power 
demand can obtain 15-minutes resolution demand and production data as well, if on-site 
generation (e.g. a grid-connected PV plant) is present. Therefore, the lower the electric 
power threshold for the customer, the lower the data resolution available. Indeed, looking 
at residential end-users in Italy whose electricity meter allows from 3 to 6 kW of power, 
consumption data are given on a monthly base, split into tariff intervals when available. 
Considering this level of data granularity, recommendations to the clients to actively play 
with the market are limited to moving their time of use and the requested power to the 
cheapest tariff interval where loads can be concentrated [67]. Going back to larger 
consumers, higher data resolution means higher definition of time of use data and a larger 
set of variables to be considered for the definition of energy and cost saving strategies. 
From just moving the load, there is the chance to move the energy production time to the 
one when grid supply is more expensive [68] or even to use storage [69] to reduce or 
increase demand in the grid in peak and off-peak hours, respectively. Market dynamics 
practically affect production and distribution, regulation affects energy prices to the clients 
and clients can act based on the latter input [70]. But, when several customers constitute a 
group, how their aggregated power demand can be effectively managed becomes an open 
question and a diffuse demand response approach may be the answer [71]. The size of the 
group can put it in a position similar the one of large user by means of other subjects such 
as the aggregator [72] or the Business Responsible Party (BRP) [73], if required. When 
customers can have access to the balancing market or even ancillary services, other data 
flows are needed to make informed choices [74] and this is the reason why real time data 
are gaining more and more consideration [75]. Smart electricity meters and building 
automation composed by smart plugs, smart appliances and IoT devices gives a wider 
perspective on the information available for playing within the conventional electricity 
market [76] and for participating to other markets, allowing actions on individual loads if 
benefits can be achieved [77]. Moreover, time of information can match time of use 
enabling further choices [78]. At the same time, distributors have to face congestion, 
frequency stability or even black-outs as consequence of new power on the Grid from 
Distributed Generation [79]. Therefore, a room for flexibility and secondary services is 
important [80]. As a matter fo fact, a number of prosumers can interact each other in terms 
of energy and data flows [81] taking a step forward towards sharing economy models [82]. 
Trading based on peer to peer platforms [83] can be adopted as a solution where, rather 
than exchanging money or energy, goods regulated by law and identified for taxation, the 
value exchange involves virtual coin and/or virtual power, harnessing the potential of 
blockchain technology [84] to create energy communities [85]. Imposed payments such as 
the ones for distribution fees can be progressively eliminated and this explains the 
bottlenecks [86] for the transition to advanced solution combining IoT, blockchain, new 
energy market models and automation [87]. On the other hand, increasing the smartness of 
customers’ equipment can contemporary lead to a more efficient and cost saving 
management from the point of view of the DSO and a lower bill for the customers as an 
incentive to leave the control of part of their energy use [88].  
 
4.2 The role of energy analytics and modelling 
As introduced before, stringent energy efficiency goals are crucial in energy transitions 
and in the related potential innovative businesses. Two fundamental factors determine 
energy savings, the increase of performance (expressed as the rate of energy use) and the 
reduction of operation time (expressed as hours of operation of a certain equipment or 
system), as shown in Figure 5. In this Figure we depict the results of the application of an 
energy efficiency measure, for example in a building retrofit. The area of the large box 
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represents the total energy used in the baseline case (before retrofit). Reduction in the rate 
of energy use (dependent on an increase of performance after retrofit, e.g. increased 
efficiency of the technology introduced) or reduction in operation time (dependent on a 
decrease of operating hours, e.g. by means of an efficient management strategy) lead to 
reduced total energy use, which is represented by the smaller box. The difference between 
the two boxes (i.e. the shaded area) represents the energy savings. These savings are the 
ones that enable the fundamental mechanism at the basis of Energy Performance 
Contracting (EPC) represented in Figure 1 (i.e. energy and cost savings).  

 
Figure 5: Operational energy savings dependency on performance (rate of energy use) 

and operation time 
 
This example represent clearly a simplification of a process that is actually taking place 
dynamically and is influenced by multiple factors [89]; nonetheless, it can be used as a 
way to illustrate the fundamental principles and to justify the need for energy performance 
data “normalization” (e.g. with respect to influencing factors such as weather or user 
behaviour) when addressing energy savings. In fact, from an analytical perspective, it is 
important to increase the transparency of the methods used for quantifying and exposing 
energy savings, adopting coherent statistical rules. Today, integrated data analysis 
workflows for Measurement and Verification (M&V) enable the semi-automated and 
automated comparison of the performance of multiple statistical/machine learning (data-
driven) models [33]. Moving forward in this direction, we can think about integrating the 
data analysis workflows, from building design to operation phase analysis [24] in a simple, 
transparent and scalable way [90]. For example, it is possible to analyse building 
performance (from a statistical perspective) at multiple scales for optimization purpose 
[91] and to use calibration techniques as a mean to connect design and operation phase 
analysis [92], acknowledging the inherent uncertainties of the evaluation method in each 
stage of the building life cycle [93]. 



 15 

Large scale applications of these principles can comprise models suitable for the 
analysis of building stock decarbonisation [94]. Additionally, besides energy, emissions 
and cost savings, smart energy services and technologies can provide multiple additional 
benefits such an adequate level of Indoor Environmental Quality (IEQ) [46] and energy 
flexibility (in the interaction with infrastructures) on the demand side [95], among others. 
Clearly, an appropriate “compromise” between IEQ levels and energy consumption [48] 
should be reached to ensure adequate quality of services while enabling savings. 
Further, appropriate control strategies are necessary for unlocking building flexibility 
potential, as shown in recent research [96]. For this reason, additional performance 
indicators will have to be included in M&V to track the performance of innovative 
energy technologies, interacting with the electric grid dynamically, and this will be an 
important research area to be developed in the future. Following these arguments, in the 
next two sections we illustrate, respectively, modelling approaches that can be used at 
the state of the art for energy modelling and analytics (Section 4.2.1) and how to extend 
their capabilities (Section 4.2.2) while satisfying the constraints described in methods 
(Section 3). 
 

4.2.1 State of the art of energy modelling and analytics 
We can start by analysing harmonized methods that can help filling the knowledge gap 
by means of evidence of the actual impact of efficient technologies, e.g. building fabric 
[97] or innovative controls [98] among others, and that are based on robust and 
empirically grounded techniques to benchmark energy efficiency measures with a 
uniform approach [99], which can be extended up to demand response analysis [100] 
(i.e. addressing dynamic energy demand profiles). The term "harmonized" refers to 
methodologies in which redundancies and overlapping features produced by different 
research groups are removed; harmonized methods can help documenting performance 
transparently and detecting the impact of influencing factors. Of course, appropriate spatial 
and temporal resolution of data is necessary to track building performance at multiple 
scales, and energy metering data constitute the basic information layer. Major research 
initiatives in this direction have been taking place in recent years, such as the Uniform 
Methods Project (UMP) [99] and other subsequent projects such as Caltrack [101], whose 
goal was harmonising the methods for quantifying energy savings for different efficiency 
measures, both in residential and commercial buildings. Multiple measures (technologies) 
are included (HVAC, HP/chillers, CHP, lighting, envelope, variable-frequency drives, 
etc.). Harmonised methods are not merely applicable to the built environment, but are also 
fundamental for research and policy, in general, because they can ensure robust evidence 
regarding the impact of efficiency measures, by means of reliable statistics. For this reason, 
Measurement and Verification (M&V) protocols developed by (EVO) [31] and (FEMP) 
[32] have been used recently also as the basis for projects aimed at de-risking investment 
in energy efficiency, such as the Investor Confidence Project (ICP) [102].  
From a technical perspective, harmonized methods are based on regression and time series 
analysis and have been developed initially for M&V and Monitoring and Targeting (M&T) 
purposes, using calibration principles from statistical methods. Therefore, they represent 
empirically grounded and validated approaches that can be used effectively to provide and 
track evidence of energy efficiency savings (and also related carbon and cost savings). 
Additionally, the methods reported in the projects previously mentioned represent an 
extension of techniques that can be found already in technical standards such as ASHRAE 
14:2014 [30], ISO 50006:2014 [36], ISO 16346:2013 [103] and technical guidelines and 
protocols previously mentioned like EVO [31] and FEMP [32], where specific thresholds 
(expressed as statistical KPIs) are given for the acceptability of models as calibrated [104], 
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basically representing their “goodness of fit”. Finally, open software for M&V 2.0 (term 
used to indicate machine learning implementations of M&V methods) is available from 
RMV2.0 [105], Caltrack [101], recent research articles [106], as well as from other 
sources. Further software developments in this area, ideally, can be pursed following open 
science principles (i.e. transparency and reproducibility of results, among others). In 
general, these methods are based on energy interval data (dependent variable) and on 
weather data (independent variables), along with other independent variables (e.g. dummy 
variables to model different occupancy and operational regimes) that can be extracted from 
contextual information. Instead of using energy data directly, it is possible to transform 
them to derive the average power over the amount of operating hours in the interval 
considered, this is called energy signature method [103]. The most important independent 
variable for weather normalization of energy consumption is outdoor air temperature, 
which can be used for screening analysis of energy performance [107] and for the 
detection of anomalies in consumption [108]. These methods are affine to variable-base 
degree days methods, where the base temperature (for degree-days calculations) can be 
related to building characteristics [109] or determined for specific areas and groups of 
buildings [110]. A comprehensive review on temperature response methods can be found 
in Fazeli et al. [111]. Conceptual simplicity is one of their advantages, compared to other 
meta-modelling techniques [112] which can be used for calibration [113], and can even 
automate the process of model selection [106] by means of specific algorithmic 
implementations [114]. From an analytical perspective, it is important to be able to link 
both design and operation phase analysis using a robust (with respect to uncertainties) 
approach [93], based on incremental calibration [92] and periodic recalibration, in order to 
provide a continuity in the use of energy performance analysis techniques across different 
life cycle phases [24]. In this way, it becomes possible to generate reliable boundaries for 
performance measured or estimated [90] and use them against benchmarks, enabling a 
continuous improvement process (i.e. PDCA, reported before). Far from being simply 
tools for weather normalization (i.e. to eliminate outdoor air temperature dependence), 
harmonized methods can help addressing also the dynamic dimension of loads (e.g. 
demand response) [100], ideally clustering operational conditions for typical daily profiles 
patterns [115] and recurrent operating schedules (e.g. depending on the type of end-use) 
[116], with an approach substantially similar to the one used for demand side management 
in small and medium sized industries [117]. 
Additionally, the prospect of evaluating with harmonized methods thermal, electrical and 
fuel requirements can open new possibilities for “soft-linking” of energy models in multi-
commodity systems applications [118] from planning and design [119] to operational 
optimization [120], with the potential of large scale optimization using, for example, 
Proximal Message Passing technique [121]. In this sense, harmonized methods can 
supplement (in terms of general principles) open science oriented approaches in energy 
research [122] because of their transparency. For example, they can help tackling relevant 
issues such as projections about energy consumption evolution due to climate change 
[123], by means of “morphed” weather data file [124] in multiple scenarios [125], and 
definition of load profiles (that can also evolve in time due to efficiency measures and 
behavioural change, as well as climate change) for decentralized energy systems in 
buildings [126] and communities such as villages [127] and neighbourhoods [128], where 
design solutions in planning phase and optimal dispatch strategies (in operation) 
potentially can be studied in an integrated way [129]. 
In brief, harmonized methods can be used to address in a robust and transparent way two 
fundamental dimensions in energy modelling research: quantifying the impact of energy 
efficiency measures and reconstructing dynamic behaviour (by means time series 
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modelling), for example load profiles. Hereafter, in Table 3, we present a comparison of 
the fundamental features of regression-based modelling approaches that can fulfill the 
constraints presented in Section 3. First of all, the literature selected and analysed 
represent in large part empirically grounded studies where authors used operation phase 
data. The analysis, in all cases, is conducted using regression-based (interpretable) 
approaches that are substantially compatible with the principles outlined before in this 
section, regarding harmonisation and standardization. In terms of temporal scalability, 
the papers are classified with respect to monthly, daily and hourly data. In some cases 
sub-hourly data are used as well but we classify them as hourly data because this is the 
maximum resolution contemplated by thresholds for model calibration proposed in 
standards and protocols (at the state of the art) [104] and this resolution is sufficient to 
capture the essence of building dynamic energy behaviour. In terms of spatial 
scalability, we consider building sub-systems (building fabric and technical systems), 
whole building, building stock, and community and city scale. For the latter, design 
corresponds substantially to planning; operation phase data are used as a basis to create 
reliable projections for the future. Further, whole building energy balance is used in 
most of the cases, while in some cases (e.g. for building fabric performance assessment) 
the zone or room level energy balance is considered. Finally, with the term approximate 
physical interpretation we indicate the possibility to use regression coefficients to 
estimate physical quantities, for example the Heat Loss Coefficient (HLC) 
corresponding to the slope of temperature based regression models and balance-point 
corresponding to the (average) external temperature condition in which energy demand 
equals to zero. Overall, Table 4 indicates how harmonized/standardized regression-
based approaches can span multiple temporal and spatial scales of analysis and how 
they can, potentially, integrate design and operation phase performance analysis within 
the same analytical workflow (i.e. satisfying re-configurability constraint reported in 
Section 3). In synthesis, the possibility to employ advanced harmonized analytical 
techniques could, in principles, contribute to the development of innovative business 
models built upon Energy Performance Contracting (EPC) [29], where dynamic 
operational conditions are clustered [116] and multiple regression models are combined 
together [137] to investigate performance, integrating data at multiple spatial and temporal 
resolutions, while retaining an approximated physical interpretation which can enhance the 
feedback process. Further, the graphical representation of regression-based methods can be 
combined with other visualization strategies used for energy (and exergy) flows at multiple 
scales, from building systems and sub-system [159], to networks in multi-energy systems 
[160]. In the next section we will look at possible ways to extend the inherent capabilities 
of these modelling approaches by means of physical-statistical formulations, which can 
provide additional insights in a continuous improvement perspective (i.e. PDCA). 
 



Table 4: Regression-based approaches for energy analytics 1 
References Temporal scale Spatial scale Life cycle phase 

Physical 
interpretation 

 Monthly Daily Hourly 
Building 
fabric 

Technical 
systems 

Whole 
building 

Building 
stock  

Community 
and city scale  

Design Operation  

Lammers et al. 2011 [130] ✔     ✔    ✔  
Hallinan et al, 2011 [131] ✔     ✔ ✔ ✔  ✔  
Hallinan et al, 2011, [132] ✔   ✔ ✔ ✔ ✔ ✔  ✔ ✔ 
Danov et al., 2011 [133]  ✔  ✔  ✔    ✔ ✔ 

Masuda and Claridge, 2012 [134]  ✔  ✔  ✔    ✔ ✔ 
Bynum et al., 2012  [135]  ✔ ✔  ✔ ✔    ✔ ✔ 

Masuda and Claridge, 2014 [107]  ✔ ✔  ✔ ✔ ✔   ✔ ✔ 
Paulus, 2017 [106] ✔ ✔ ✔   ✔    ✔  

Paulus et al., 2015 [114]  ✔ ✔  ✔ ✔    ✔  
Lin and  Claridge, 2015 [108]  ✔   ✔ ✔    ✔ ✔ 

Hitchin and Knight, 2016 [136]  ✔   ✔ ✔    ✔ ✔ 
Jalori and Reddy, 2015 [137] ✔ ✔ ✔   ✔    ✔  

Abushakra and Paulus, 2016 [138]   ✔   ✔    ✔  
Bauwens and Roels, 2014 [139]  ✔  ✔      ✔ ✔ 

Erkoreka et al., 2016 [140]  ✔ ✔ ✔      ✔ ✔ 
Giraldo-Soto et al., 2018 [141]  ✔ ✔ ✔      ✔ ✔ 

Uriarte et al., 2019 [142]  ✔ ✔ ✔      ✔ ✔ 
Busato et al. 2012 [143] ✔    ✔ ✔   ✔ ✔ ✔ 
Busato et al., 2013 [144]  ✔  ✔  ✔ ✔   ✔ ✔ ✔ 
Krese et al., 2018 [145]   ✔   ✔    ✔ ✔ 

Sjögren et al., 2009 [146] ✔ ✔  ✔ ✔ ✔    ✔ ✔ 
Vesterberg et al., 2014 [147] ✔ ✔  ✔ ✔ ✔    ✔ ✔ 

Meng and Mourshed, 2017 [109]   ✔ ✔   ✔ ✔   ✔ ✔ 
Meng et al., 2020 [148]  ✔ ✔   ✔ ✔   ✔  

Oh et al., 2020 [34]   ✔   ✔ ✔   ✔  
Westermann et al., 2020 [149]   ✔  ✔ ✔ ✔   ✔  

Pasichnyi et al., 2019 [150]   ✔  ✔ ✔  ✔ ✔ ✔ ✔ 
Qomi et al., 2016 [151] ✔  ✔ ✔  ✔  ✔ ✔ ✔ ✔ 

Afshari et al., 2017 [152]   ✔   ✔  ✔ ✔ ✔  
Afshari et al., 2017 [153]   ✔ ✔  ✔  ✔ ✔ ✔ ✔ 
Allard et al., 2018 [93] ✔ ✔    ✔   ✔ ✔ ✔ 

Tronchin et al., 2018 [92] ✔  ✔ ✔ ✔ ✔   ✔ ✔  
Manfren and Nastasi, 2020 [90] ✔  ✔ ✔ ✔ ✔   ✔ ✔  

Catalina et al., 2008 [154] ✔  ✔ ✔  ✔   ✔  ✔ 

Hygh et al., 2012, [155]   ✔ ✔  ✔   ✔   
Asadi et al., 2014 [156]   ✔ ✔ ✔ ✔   ✔   

Al Gharably et al., 2016 [157]   ✔ ✔  ✔   ✔   
Ipbüker et al., 2016 [158]   ✔ ✔  ✔   ✔   



 
4.2.2 Future research directions for energy modelling 

In this section some possibile extensions of the methods and models presented in the 
previous section are discussed. First, scalability (temporal and spatial) and 
interpretability constitute, in our opinion, two essential constraints that are specifically 
indicated as part of the review methods, described in Section 3. We have to consider the 
fact that interpretable (e.g. regression-based) data-driven models can be formulated using a 
physical-statistical interpretation of model coefficients (i.e. moving from a “black-box” 
to a “grey-box” formulation, starting from the simplification of zone level energy 
balance [139]) suitable for multi-scale analysis [91] and, more specifically, as an 
analytical tool that can support the decarbonisation process [94] where metered whole 
building energy consumption and outdoor air temperature constitute the basic 
information [161] and can be complemented by measurements of thermo-physical 
properties [162] and other contextual information. Despite the variety of possible model 
formulations, we believe that data-driven approaches should be using building energy 
modelling definitions and quantities coherent with the ones proposed in current 
technical standardization [163], to enhance comparability of results and consistency 
with policy objectives, for which standardization plays a fundamental role. In this sense, 
we can find methods for the identification of thermophysical properties of building 
construction components and thermal zones such as QUB [164], which enables fast in 
situ measurements [165], and ISABELE [166]. In both cases, the definitions used in 
models are in line with current technical standardization; physical parameters are 
expressed with lumped quantities (thus minimising the amount of parameters needed), 
and model formulation represents substantially a reduction of a detailed physical 
"white-box" model. “White-box” models are detailed models based on physical laws 
used mostly for simulations in the design phase (and validated in compliance with 
energy simulation test standards such as ISO 52016-1:2017 [167] and ASHRAE 
140:2017 [168]). We can find a point of contact between “white-box” detailed 
modelling and “grey-box”lumped parameter modelling, in multi-level building energy 
model calibration where “macro-parameters” (aggregated, lumped quantities) are used 
to validate more detailed models [169]. In fact, a potential advantage of “grey-box” 
models is that they can be formulated (and verified) from basic energy analysis 
principles derived from thermodynamics [170] and represented schematically as thermal 
networks [171], with definitions compatible with technical standardization such as ISO 
13790:2008 [172] and ISO 52016-1:2017 [173]. Further, “grey-box” models can then be 
converted to “black-box” models (i.e. statistical and machine learning models) for 
specific applications [174]. “Black box” models are computationally efficient but they 
need to be trained on data before being used. Therefore, “grey-box” models can be 
considered as a intermediate step between “white-box” and “black-box” models and we 
can find in recent years several examples of application, from experimental test-
facilities of building technologies [175], to integration within Building Information 
Modelling (BIM) workflows [176] and also to integrated room automation [177]. 
Additionally, regression-based (described in Section 4.2.1) and “grey-box” models’ 
capabilities can be extended in a Bayesian framework. Bayesian analysis is suitable, for 
example, to “reconstruct” building stock [178] “micro-level” models from “macro-
level” data [179] and use them for prediction with uncertainty quantitification [180]. 
Along the same line, Bayesian analysis can used as well to test the robustness of “grey-
box” models’ estimates with respect to variable operational conditions [181] using 
Monte Carlo simulation methods [182], to reproduce uncertain operational conditions 
realistically. What appears to be important for future research in this area is increasing 
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the transparency of the modelling process by means of harmonized methodologies 
(using standardized rules and interpretable models, as discussed before, to verify and 
track performance efficiently) and enhancing their level of automation without 
increasing unnecessarily the complexity of implementation. Indeed, with respect to 
automation, modelling transparency is essential for Model Predictive Control (MPC) 
formulations [183], which can enhance energy efficiency further compared to the state 
of the art [184]. Building Automation and Control Systems (BACS) [185] and energy 
and environmental monitoring systems [186] are necessary to control and collect data 
on performance (starting from energy metering, of course, which constitutes the basic 
level of information), considering the inherent uncertainty of measurements [187]. 
Finally, surrogate physical-statistical models (i.e. “grey-box” models), in general, can 
be implemented in cyber-physical systems for IoT applications [188] and work as 
systems of models [189]. Essentially they can act as "digital twins," that is to say digital 
reproductions of the dynamic behaviour of their physical counterparts, which can 
operate in a coordinated way, following common underlying modelling principles. 
 
 
5 Recommendations and further work 
In Section 4.2.2 we described how it is possible to create a modelling framework that 
satisfies the criteria specified in Section 3 and that can support the business models 
described in Section 4.1. One of the fundamental objectives of a modelling framework 
is reducing the level of fragmentation and increasing the transparency in the way 
methods and models are used in practice and, eventually, combined together in an 
analytical workflow. The research community in the energy field has stressed in recent 
years the fundamental importance of open energy data and models [190], together with 
the transparency of modelling techniques [191]. Therefore, we can envisage an 
evolution towards systems of model [189] designed to address key problems in energy 
transitions, eventually taking advantage of “soft-linking” approaches, e.g. between 
energy and power systems models [192], to evaluate the potential of flexibility already 
at the planning level [193]. Rather than being designed for separate applications, 
potentially models can be conceived and work like “ecosystems” [189] of 
interconnected applications, based on open data and modelling standards [23], 
overcoming the current limitations [190] and, in particular, increasing modelling 
transparency [191]. Further they can be integrated within innovative business models to 
determine techno-economically feasible pathways in energy transitions, thereby 
enabling a radical change to happen in practice. Models, in our opinion, have to share a 
set of common features (e.g. empirically grounding, harmonization/standardization, 
scalability, interpretability, re-configurability, described in Section 3) in order to work 
effectively in “ecosystems” and this the fundamental reason why we introduced these 
features as constraints in the research process. One of the main advantages of 
regression-based techniques is their conceptual simplicity and robustness, connected to 
interpretability. Furthermore, in a decentralised energy systems perspective, the 
complexity of issues to be addressed for optimal building design and operation 
increases, as end-users are not simply "consumers" anymore but "prosumers" 
(producers/consumers) [194] or "prosumagers" (prosumer/aggregators) that can exploit 
the peer-to-peer trading and storage opportunities [195] to create innovative business 
models [196]. Additionally, decentralization determines the need to examine in more 
detail the co-evolution of built environment and energy infrastructures [22] and to 
investigate potential of “soft-linking” approaches, from energy planning to operation 
[193]. Advances in data interoperability (technical, informational and organizational) [197] 
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and data availability at multiple levels can represent an additional enabling factor in this 
direction. Infrastructures and technologies such as the Internet of Things (IoT), 
characterized by distributed intelligence [198], enabled in turn by effective Machine-to-
Machine (M2M) communication [199] and computing [200], are essential for disruptive 
innovations in the built environment [188], in end-user energy delivery [201], and in 
energy infrastructures [202], where peer-to-peer automated exchange mechanisms using 
Blockchain technologies [203] could represent a major breakthrough. In this rapidly 
evolving landscape, research aimed at radical changes in energy systems and built 
environment needs to address the issues reported above in order to ensure coherency and 
consistency of actions towards energy efficiency and carbon reduction goals. Harmonized 
methods and models to track performance in buildings (at multiple scales) can help 
extracting insights for continuous improvement, becoming a core element for the 
evolution of the energy sector. Further dimensions can be include in the modelling 
process by exploiting contextual information; it this way it becomes possible to create 
applications tailored for specific needs that are sharing, however, similar underlying 
principles, as discussed in the previous section. 
 
 
6 Conclusion 
Smart energy services and technologies are key components of energy transition 
strategies because they can dramatically increase the energy efficiency and renewable 
energy penetration levels in the built environment. The development of strategies for 
energy transitions and decarbonisation requires the conceptualization of how radical 
changes can take place while fulfilling fundamental societal needs. A possible 
conceptualization of the construction sector comprises three domains: project, product, 
service. By leveraging the multiple feedback loops generated by data analytics from 
smart energy services and technologies, all of these domains have the potential to 
evolve significantly. Furthermore, in order to enable radical shifts, processes and 
practices in the built environment must co-evolve with those in energy infrastructures, 
recognizing the fundamental complementarities. For this reason, in this paper we 
considered techno-economic analysis and energy modelling as key enablers for next-
generation energy services and technologies in buildings. After defining the key 
elements of life cycle costing approaches in building projects in Section 4.1 (using LCC 
cost-optimal analysis as the reference method), we discussed concepts at the state of the 
art for Energy Performance Contracting in Section 4.1.1, highlighting critical 
dimensions such as the relations among the actors involved, the way energy and cost 
savings are shared, and the payment and financing mechanisms. Then, we presented in 
Section 4.1.2 possible innovations regarding energy services enabled by data analytics, 
in particular peer-to-peer energy trading for prosumers, prosumagers and energy 
communities, which can extend the reach and impact of innovative energy services. 
After that, we illustrated the state of the art of energy modelling techniques that can 
fulfill the criteria reported in Section 3, considered as limiting factors for future 
developments. In Section 4.2.1 we summarized the basic structure of a “unified” 
framework of analysis, highlighting the temporal and spatial scalability of regression-
based approaches, which could enable seamless integration of the data analysis 
workflows (during different building life-cycle phases) and multiple feedback loops, 
thanks to their interpretability. This framework can evolve further by means of 
standardized “grey-box” physical-statistical models that can be implemented in 
monitoring and automation systems, as indicated in Section 4.2.2. In general, we 
stressed the importance of linking multiple domains of knowledge in built environment 
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research, using techno-economic analysis and energy modelling as focal elements. 
Possible further research efforts involve the creation of “ecosystems” of interacting 
applications, based on open data and modelling standards, which can provide multiple 
benefits both for prosumers/prosumagers and energy communities, as well as for energy 
infrastructures. As a conclusion, in this paper we illustrated some of the key concepts that 
are relevant for the implementation of innovative processes and practices in the building 
sector today. These concepts are transparently and explicitly linked to consolidated results 
from previous research and can be used to promote and orient future research initiatives 
in the broad area of energy transitions and decarbonisation of the built environment. 
This can help accelerating the process of radical change, required to achieve long-term 
sustainability goals, by pursuing a continuous improvement logic. 
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