Oxygen Redox Reaction in lithium-based electrolytes from salt-in-solvent to solvent-in-salt

Francesca Messaggi^a, Irene Ruggeri^{a,1}, Damiano Genovese^a, Nelsi Zaccheroni^a, Catia Arbizzani^{a,1}, Francesca Soavi^{a,1,*}

^aDepartment of Chemistry, Alma Mater Studiorum-Bologna University, Via F. Selmi 2, 40126, Bologna, Italy

¹ ISE members

*Francesca Soavi, Department of Chemistry "Giacomo Ciamician" Alma Mater Studiorum-Bologna University, Via F. Selmi 2, 40126, Bologna, Italy. Tel.: +39 0512099797; fax: +39 0512099365; e-mail: francesca.soavi@unibo.it

Solvent	Dielectric constant E	Viscosity η (cP)	Oxygen solubility Bunsen coef.	Donor Number DN (kcal/mol)
TEGDME ¹⁻²	7.79	3.6	0.0993	16.6
Ethylene carbonate (EC) ^{1,3,4}	89.60	1.85*	0.0382**	16.4
Dimethyl sulfoxide (DMSO) ^{1, 3, 5}	46.45	1.99	0.0416	29.8
1,2- Dimethoxyethane (DME) ^{1,5}	7.2	0.46	0.2143	20.0
Ionic liquids (ILs) ⁸	10-15	40-800		

Table 1S. Properties of tetraethylene glycol dimethyl ether (TEGDME) compared to other solvents.

* Viscosity at 40°C

** Calculated from mixtures with PC

Figure 1S. CVs at 20 mV s⁻¹ of a glassy carbon electrode (GCE) in O₂-saturated PYR₁₄TFSI with and without LiTFSI at 20 mV s⁻¹.

Figure 2S. CVs at different scan rates of a glassy carbon electrode (GCE) in O₂-saturated TEGDME-LiTFSI (a) 0.1m, (b) 0.5m, (c) 2m, (d) 4m, (e) 5m solutions.

Figure 3S. Logarithm plots of the reduction (a) and oxidation (b) peak currents with the scan rate (v_{scan}) of a GCE in oxygen saturated LiTFSI-TEGDME solutions. The currents are given in mA and the scan rate in mV s⁻¹.

References

 Read, J.; Mutolo, K.; Ervin, M.; Behl, W.; Wolfenstine, J.; Driedger, A.; Fostera, D. Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery. J. Electrochem. Soc., 2003, 150, A1351-A1356.

- (2) Laoire, C. O.; Mukerjee, S.; Plichta E. J.; Hendrickson, M. A.; Abraham, K. M. Rechargeable Lithium/TEGDME-LiPF₆/O₂ Battery. J. Electrochem. Soc., 2011, 158, A302-A308.
- (3) Read, J. Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery. J. *Electrochem. Soc.*, 2006, 153, A96-A100.
- (4) Sekhon, S.S.; Arora, N.; Singh, H. P. Effect of donor number of solvent on the conductivity behavior of nonaqueous proton-conducting polymer gel electrolytes. *Solid State Ionics*, 2003, 160, 301–307.
- Laoire, C. O.; Mukerjee, S.; Abraham, K. M. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. J. Phys. Chem. C, 2010, 114, 9178-9186.
- (6) Fedorov, M. V.; Kornyshev, A. A. Ionic Liquids at Electrified Interfaces. *Chem. Rev.*, 2014, 114, 2978-3036.