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SHARING PROFITS IN THE SHARING ECONOMY\ast 

PAOLO GUASONI\dagger AND GU WANG\ddagger 

Abstract. A monopolist platform (the principal) shares profits with a population of affiliates
(the agents), heterogeneous in skill, by offering them a common nonlinear contract contingent on in-
dividual revenue. The principal cannot discriminate across individual skill but knows its distribution
and aims at maximizing profits. This paper identifies the optimal contract, its implied profits, and
agents' effort as the unique solution to an equation depending on skill distribution and agents' costs
of effort. If skill is Pareto-distributed and agents' costs include linear and power components, then
closed-form solutions highlight two regimes: If linear costs are low, the principal's share of revenues
is insensitive to skill distribution and decreases as agents' costs increase. If linear costs are high, then
the principal's share is insensitive to the agents' costs and increases as inequality in skill increases.
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1. Introduction. The sharing economy, based on peer-to-peer markets, has
quickly disrupted industries, most evidently transportation and accommodation, by
enabling a myriad of individuals to offer these services. It has also created new indus-
tries, such as video-sharing, in which producers of popular content are paid in relation
to the advertising revenue that they generate.

Yet, each industry has also seen the emergence of a dominant platform that con-
nects users with service providers---and collects a substantial fraction of revenues. As
both users and providers have an incentive to use the most popular platform, network
effects cement its dominance and confer it significant market power over affiliates. For
example, the dominant ride-sharing service Uber has a tiered fee structure whereby
it collects between 20 and 30 percent of drivers' fares and years after its launch has
raised its proportional fees in some cities with a mature presence.1

Absent competitive pressure, such a platform seeks the sharing contract that max-
imizes its aggregate profits from the revenues generated by a crowd of affiliates with
different productivity (henceforth, skill). It is akin to a platform-specific government
that, in contrast to a benevolent social planner, devises an income tax schedule merely
to maximize aggregate tax receipts. Such near-monopolistic aspects have drawn pub-
lic concern and legal scrutiny, with the U.S. Supreme Court scheduled to hear a case
involving fees on Apple's App Store, which (like Google's Play Store) levies a 30\% fee
on the revenue generated by developers of mobile applications.2

This paper solves the profit-sharing problem for a monopolist platform, identifying
the contract that maximizes its aggregate profits and the optimal effort that each
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3560 PAOLO GUASONI AND GU WANG

affiliate chooses, in order to maximize income, net of personal costs. At its core, our
problem is closest to the Mirrlees [19] model of optimal taxation, with two related
differences. First, our principal maximizes profits, rather than some welfare measure
that aggregates agents' own utilities. Second, while in Mirrlees's model tax revenues
are an exogenous quantity, profits here are maximized and hence endogenous.

The paper's contribution is threefold: First, we provide a rigorous formulation of
a monopolist platform's optimization problem and obtain its solution through varia-
tional methods. Importantly, we achieve this goal without making strong regularity
assumptions on the class of optimal contracts considered, demonstrating instead that
regularity is necessary for optimality. Second, we introduce the notion of a canoni-
cal contract, a contract that is uniquely constructed to induce a prescribed revenue
function for each skill, and which outperforms all other contracts that induce the
same revenue. Third, we show how to obtain optimal contracts in closed form in rele-
vant settings, and how different combinations of parameter values lead to significantly
different regimes, in which either skill dispersion or personal costs are dominant.

Optimal contracts in our setting share some features with optimal taxation mod-
els: the optimal contract implies that agents with the lowest skill do not participate;
their optimal effort is null. This phenomenon, known as bunching [16, 21], arises
because the principal gains more from taking a larger share of the basic income of
high-skill agents than it loses from forgoing any share of low-skill incomes, thereby
inducing nonparticipation. Furthermore, higher-skilled agents always generate more
revenue than the lower skilled and receive higher income. Also, marginal sharing
rates are always positive for both parties, in that neither the principal nor the agent
receive subsidies. Subsidizing agents to stimulate higher effort costs more than it pro-
duces because agents' personal costs are convex (effort has diminishing returns). Vice
versa, seizing more than marginal revenue is also counterproductive; mere confiscation
always generates as much profit for the principal (and possibly more).

Theorem 4.2, the main result, describes quantitatively the optimal policy for
agents with different skills, which arises from the principal's trade-off between increas-
ing its share of profits and spurring agents to more effort through better incentives.
It also identifies the optimal contract for the principal through the first-order condi-
tion which requires that, at the optimum, the increase in revenue is exactly offset by
agents' behavioral responses. Optimality is summarized by the optimization problem
(4.1), which reduces to the functional equation (4.3) when the cost of effort is suf-
ficiently smooth. Importantly, such an equation admits closed-form solutions under
specific assumptions on skill distribution and cost, which we examine in detail.

We bring to life the results in a tractable setting, focusing on a population of
agents with Pareto-distributed skill (i.e., the number of agents with skill greater than
or equal to t is proportional to t - \alpha ), and on linear-power costs f(y) = by + ay\lambda ,
characterizing explicitly the optimal effort, its income, and the corresponding optimal
contract. With power costs alone, the optimal contract is exactly affine. With linear-
power costs, the principal's share declines as revenue increases, reaching an asymptotic
share equal to the share implied by power costs alone.

The relative magnitude of linear costs is a key driver of the principal's share of
revenues under the optimal contract, which displays two rather different regimes (see
Figure 1). In the low costs regime---when the linear coefficient b in agents' costs is
relatively low---the principal's share is insensitive to the distribution of skill but very
sensitive to the growth rate \lambda of such costs. In the case of b = 0, the share is exactly
1 - 1/\lambda .

Vice versa, in the high costs regime---when b is relatively high---the principal's

D
ow

nl
oa

de
d 

05
/0

8/
21

 to
 8

0.
11

1.
22

3.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARING PROFITS IN THE SHARING ECONOMY 3561

0.2 0.4 0.6 0.8 1.0 1.2 1.4
b

0.1

0.2

0.3

0.4

0.5

0.6

Γ

Fig. 1. Proportion of total revenue (\Gamma ) collected by the principal, against the linear component
(b) of agents' costs (f(y) = by + ay\lambda ), when agents' skill is Pareto distributed (M(t) = (t/t) - \alpha ).
As the linear component increases from zero to \alpha t/(1+\alpha ), the principal's share shifts from 1 - 1/\lambda 
(low-cost regime) to 1/\alpha (high-cost regime), where it remains after further increases. Parameters:
a = 1, t = 1, \alpha = 3, and \lambda = 2. See section 5 for details.

share is insensitive to the growth rate \lambda but is driven by the distribution of skill,
summarized by the Pareto exponent \alpha . Indeed, if b becomes greater than or equal to
a fixed threshold, the principal's share is exactly 1/\alpha , which means that skill inequality
increases the principal's overall share of revenues. The intuition is that the bulk of the
principal's profits stems from high-skill agents, who become increasingly prevalent as
skill inequality increases.

In general, heterogeneity in skill has an ambiguous effect on individual agents.
On one hand, it may benefit an individual agent by shifting the common contract
away from the one that would be optimal for the principal if all agents had the same
skill, potentially leaving a greater share of income to that agent. On the other hand,
agents at the bottom of the skill distribution find themselves essentially ignored by the
principal, who chooses a contract that induces them not to participate. Such agents
clearly suffer from the presence of the higher skilled, without whom the principal
would choose to cater to their own ability.

Overall, the above considerations point to two main environments in which a
monopolist platform has high market power: either relatively homogeneous affiliates
with high linear costs, or affiliates with costs that are negligible for small effort but
that increase quickly as effort increases. An example of the former may be drivers,
whose fuel and maintenance costs are relatively uniform. Vice versa, the latter en-
vironment may encompass those activities that are akin to hobbies when performed
sporadically, such as hosting a guest in a spare room on a monthly basis, but that
require a substantial commitment of resources when conducted systematically, such
as managing several apartments for short-term rentals.

Even though the problem of optimal contract design for a monopolistic platform
with a heterogeneous population of agents does not appear to have been considered
in the literature,3 it falls squarely within the class of problems with adverse selection
stemming from hidden type [2, 7, 1, 5], which is a mainstay of contract theory (see,

3In recent continuous-time models, El Euch et al. [9] find the optimal contract for a trading
platform as principal and one market maker as agent, while Elie, Mastrolia, and Possama\"{\i} [10] tackle
the problem of a principal and infinitely many identical agents.
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3562 PAOLO GUASONI AND GU WANG

e.g., [3, 6]). Indeed, adverse selection is the main aspect considered in the literature
on optimal taxation (cf. [19, 8, 18, 11]). Similar to this literature, in our model agents'
actions are perfectly observable (i.e., moral hazard is absent), which means that the
principal trades off the increased profits of higher fees against their efficiency costs
of reduced effort. In this setting, we strive to keep the class of admissible contracts
as general as possible, so as to make sharp statements on the qualitative properties
implied by optimality. Starting from any upper-semicontinuous positive contract, we
proceed to derive further properties, including regularity and a priori bounds, by
showing that their absence leads to potential improvements.

Finally, we investigate the impact of skill-dependent reservation utility, focusing
for simplicity on a high-low regime in which such utility is higher for agents with
skill above a certain threshold. The methodology developed in the paper extends
to this setting, and we show how the canonical contract requires a careful global
construction in the skill space, which entails several cases. In particular, this setting
highlights the emergence of countervailing effects, whereby the optimal contract may
entail two cohorts of nonparticipating agents: as in the main model, the first cohort
includes agents with very low skill, for whom participation is surpassed by their low
reservation utility. The second cohort includes agents with skill barely above the
threshold for the high reservation utility: such agents also shun the optimal contract,
as it does not offer a sufficient surplus to compensate for the effort. The principal
optimally forgoes the participation of these agents because it would require such a
high compensation for them and for those with similar ability that the costs of such
increased compensation would more than offset the benefits from their participation.

The rest of the paper is organized as follows: Section 2 introduces the model in
detail and describes its assumptions. Section 3 derives a priori properties of optimal
contracts, including regularity, monotonicity, and positivity, thereby enabling the use
of variational tools to characterize optimality. Section 4 contains the main result,
which identifies the optimal contract in terms of the agents' distribution and cost
function. Section 5 examines the implications of the main result in the tractable
setting of Pareto skill and linear-power costs. Section 6 discusses the extension to
high-low reservation utilities, and section 7 concludes. All proofs are in Appendix A.

2. Model. One principal faces a population of agents who differ in productivity,
or skill. The skill of each agent remains hidden to the principal, who only knows its
distribution, described by a density.

Assumption 2.1. The density m : [0,\infty ) \mapsto \rightarrow [0,\infty ) is measurable and satisfies\int \infty 
0

m(t)dt < \infty (i.e., the population is finite). Let M(t) =
\int \infty 
t

m(u)du.

Following the convention of the optimal taxation literature since [19], we define
skill as agent's productivity per unit of effort. Thus, for an agent with skill t, y \in [0,\infty )
units of effort produce revenue of yt, split as net income c(ty) for the agent and profit
ty  - c(ty) for the principal. The contract c satisfies the following assumption.

Assumption 2.2. The contract c : [0,\infty ) \mapsto \rightarrow \BbbR is upper-semicontinuous and non-
negative. C denotes the set of such contracts.

A nonnegative contract is a basic participation (or incentive-compatibility) con-
straint, which implies that the agent has the alternative of nonparticipation, cor-
responding to a zero payoff (i.e., income cannot be negative, which excludes the
confiscation of other pre-existing wealth).

Upper-semicontinuity means that income cannot increase by a finite amount as
effort varies by an infinitesimal amount, effectively excluding penalties that can be
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SHARING PROFITS IN THE SHARING ECONOMY 3563

avoided with negligible changes in effort, and hence would be irrelevant in practice.
(For example, suppose that the principal's share on an income of exactly 1000 is 20\%,
but it falls to 15\% for any income in [999, 1000) \cup (1000, 1001]; then any agent who
would choose 1000 if the share were at 15\% prefers to increase (or overreport) income
by by some \varepsilon (say, 0.001), thereby securing the 15\% rate. Of course, increasing by
\varepsilon /2 is even better, which leads to the nonexistence of an optimal effort.)

Aside from these well-posedness restrictions, the above setting includes contracts
that vary arbitrarily, leaving marginal sharing rates the flexibility to be progressive,
regressive, negative, above or below 100\%, or even to have jumps, provided that at
each jump the income does not drop below its left and right limits.

An agent with skill t who chooses effort y receives the reward

(2.1) c(ty) - f(t, y),

resulting from the net income c(ty) minus the personal cost f(t, y), which satisfies the
following assumption.

Assumption 2.3. The cost f : [0,\infty )\times [0,\infty ) \mapsto \rightarrow [0,\infty ) satisfies the following:
(i) f is strictly increasing and convex in y, and limu\rightarrow \infty fy(t, u) = \infty for every t.
(ii) f is continuously differentiable in y and t.
(iii) f(t, 0) and fy are nonincreasing in t.
Denote by \scrF the set of such cost functions.

A convex increasing f (as a function of y) reflects the increasing marginal personal
costs of effort, and continuous differentiability excludes that such marginal cost has
jumps. The third condition (which is akin to assumption (CS) in [13]) prescribes that,
at the same level of effort, higher skill is associated to both a higher baseline (zero
effort) utility and equal or lower marginal costs. The intuition is that a more skilled
individual is more likely to have more tangible or intangible assets that alleviate the
hardships of increased effort (e.g., lower commuting times, or more flexible hours).
Assumptions 2.1, 2.2, and 2.3 apply to the rest of the paper, without further notice.

For each contract c \in C and personal cost f \in \scrF , Lemma A.1 in Appendix A
shows that for any t \geq 0 there exists some yc(t) \in [0,\infty ] that maximizes (2.1). Then
the resulting total profit under the contract c is

(2.2) P (c) =

\int \infty 

0

(tyc(t) - c(tyc(t)))m(t)dt,

and the principal's objective is to choose the contract c \in C that maximizes profits.
Prima facie, one is tempted to solve this optimization problem by focusing on

the first-order condition on revenue s = ty for individuals with skill t maximizing the
objective (2.1), which is

(2.3) c\prime (s) =
1

t
fy

\biggl( 
t,
s

t

\biggr) 
.

The problem with such a condition is that it is moot at the points where c is not
differentiable, it is ambiguous at the points where the revenue s is discontinuous, and
neither case can be excluded. As discussed in section 4, even a quadratic cost function
can lead to discontinuity in the optimal marginal sharing rate c\prime and the corresponding
revenue s, depending on the distribution of skill (see Remark 4.4 after Theorem 4.2).
As a more careful approach is necessary, the next section starts investigating the
a priori properties that optimal contracts must satisfy.
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3. Necessary conditions and canonical contracts. This section proves that,
notwithstanding the flexibility in the choice of contracts, the ones that maximize
profits must be continuously differentiable and entail positive sharing rates for both
the principal and the agents. These a priori restrictions simplify the search for the
optimal contract by narrowing the focus on schedules with these properties. First,
only positive sharing rates are optimal. Second, it is possible to find a canonical
contract that is at least as profitable as any other contract that induces the same
revenue. As such a contract is differentiable by construction, it follows that it is
sufficient to consider such contracts. The next proposition reduces the search for
optimal contracts to those that are right-continuous and free from subsidies.

Proposition 3.1. Define the set of contracts

(3.1) \~C = \{ c \in C : nondecreasing, right-continuous, 0 \leq c(x) \leq x for all x \geq 0\} .

(i) supc\in C P (c) = supc\in \~C P (c); i.e., in order to maximize profits, it suffices to

consider contracts in \~C.
(ii) Given c \in \~C, yc(t) is finite for every t, and limt\rightarrow 0 y

c(0) = 0. Furthermore, if
0 < t1 < t2, then t1y

c(t1) \leq t2y
c(t2).

Proposition 3.1 shows that any revenue profile s(t) = tyc(t), generated by a
contract c \in \~C, henceforth referred to as ``admissible"" revenue, belongs to the set

(3.2) S =
\bigl\{ 
s \geq 0 : s(0) = 0, lim

t\rightarrow 0
s(t)/t = 0, s is nondecreasing

\bigr\} 
.

The next step is to understand the relation between the contract c \in \~C and
its respective revenue s(t) across skill levels. The following definition constructs, for
a given admissible revenue s \in S, a ``canonical"" contract cs, with the additional
property (Proposition 3.3 below) that it maximizes the profits among those contracts
c that induce the same revenue. As a result, the optimization problem can focus only
on such contracts.

Definition 3.2. For s \in S, define the function cs : \BbbR + \rightarrow \BbbR + as cs(x) =\int x

0
csx(z)dz, where csx(z) = 1

tz
fy(tz,

z
tz
), and tz = inf\{ t : s(t) > z\} , with the con-

vention that if \{ t : s(t) > z\} = \emptyset , then tz = \infty .

This definition constructs a contract cs that satisfies a version of the above first-
order condition, in which t is the right-continuous inverse of the increasing function
s(t). Note that, because s(t) converges to 0 as t decreases, for every z > 0, tz > 0,
and csx(z) is well defined, except for z = 0. Also by definition, tz is increasing in z,
and is discontinuous (thus so is csx) only at z, such that s(t) = z for every t \in (t1, t2),
where t1 = inf\{ t : s(t) = z\} and t2 = sup\{ t : s(t) = z\} . In the latter case, csx(z) =
1
t2
fy(t2,

z
t2
). Thus, cs is differentiable and increasing on (0, supt\geq 0 s(t)), and csx is

right-continuous. At z = s(t) for some t, it satisfies the usual optimality condition
that the marginal net income matches the marginal personal cost of the highest skilled
agents who produce z. At those revenue points z where a marginal change in skill may
entail a large change in income, the condition prescribes a marginal net income equal
to marginal cost for the skill tz that would be just enough to exceed such revenue.

The logic of the definition is simple: at any revenue discontinuity point the mar-
ginal profit rate should be as low as required to make the agent's income as high as
consistent with the first-order condition. The next result shows that the contract cs

is optimal among all the contracts that induce the same revenue t \mapsto \rightarrow s(t).

Proposition 3.3. The contract cs defined in Definition 3.2

D
ow

nl
oa

de
d 

05
/0

8/
21

 to
 8

0.
11

1.
22

3.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARING PROFITS IN THE SHARING ECONOMY 3565

(i) induces the revenue s(t) (i.e., s(t) = tyc
s

(t)) up to countably many t, and
(ii) satisfies P (cs) \geq P (c) for any contract c \in \~C that satisfies (i).

Proposition 3.3 implies that the principal only needs to consider canonical con-
tracts cs corresponding to admissible revenue functions s. In terms of such a revenue
function s, the principal's objective becomes

max
s\in S

P (cs) = max
s\in S

\int \infty 

0

(s(t) - cs(s(t)))m(t)dt.(3.3)

Notice that the set of revenues generated by contracts in \~C may be a strict subset of
S, and thus not every cs belongs to \~C; for example, csx may not be integrable. But it
would not affect the maximum profits to consider all cs's, because those that are not
in \~C are still in C and are certainly suboptimal.

The next theorem strengthens Proposition 3.1 by showing not only that any
optimal contract is lower than revenue but also that its marginal increase is also less
than the marginal increase in revenue, at the levels actually being produced.

Theorem 3.4. If the contract c\^s that corresponds to \^s \in S is optimal, then
c\^sx(\^s(t)) \leq 1 for every t such that M(t) > 0.

4. Optimal contracts. This section contains the main result, which identifies
the optimal contract through its implied revenue \^s(t). In addition to the standing
Assumptions 2.1, 2.2, and 2.3, this result relies on the following assumption.

Assumption 4.1. Let f be independent of t (and denote it as f(y)), yfy(y) be
convex, and tm(t)/M(t) be increasing (recall that M(t) =

\int \infty 
t

m(z)dz).

The convexity of yfy(y) is a mild requirement that is satisfied by all examples of
interest.4 Likewise, the condition of an increasing elasticity tm(t)/M(t) stipulates that
the density of skill does not decline too slowly; it is satisfied by power laws (constant
elasticity), by exponential or Gamma tails (affine elasticity), and by Gaussian tails
(quadratic elasticity).5

Theorem 4.2. Let Assumptions 2.1, 2.2, 2.3, and 4.1 hold, and define

(4.1) g(t, s) = (s - f(s/t))m(t) - M(t)
s

t2
fy(s/t), t, s \geq 0.

(i) The revenue \^s(t) defined as

(4.2) \^s(t) =

\Biggl\{ 
0, t = 0,

inf\{ s \geq 0 : s maximizes g(t, \cdot )\} , t > 0,

is finite for every t > 0 and solves (3.3).
(ii) If f is twice differentiable, then for t > 0, \^s(t) = 0 if gs(t, 0) \leq 0. Otherwise,

\^s(t) = inf\{ s : gs(t, s) = 0\} , where

(4.3) gs(t, s) =

\biggl( 
1 - 1

t
fy

\biggl( 
s

t

\biggr) \biggr) 
m(t) - 

\biggl( 
s

t
fyy

\biggl( 
s

t

\biggr) 
+ fy

\biggl( 
s

t

\biggr) \biggr) 
M(t)

t2
.

4The condition is mild but not redundant. For a counterexample, consider f(x) defined as 1 on
[0, 1], as 1/x+ log x on [1, 2], and as 1/2 + log 2 + (x - 2)/4 + (x - 2)2 on [2,\infty ), which is increasing
and convex, while xf \prime (x) is concave on [1, 2].

5For a distribution so leptokurtic that it violates this condition, consider M(t) = 1/ log t for
t \geq 1, which implies that the elasticity is also 1/ log t and hence decreasing. Such a distribution does
not have finite moments of any (positive) order.
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Remark 4.3. Theorem 4.2 resonates with the conclusion in Theorem 3.4, in that
condition (i) implies that if t < \=t = sup\{ t \geq 0 : M(t) > 0\} and \^s(t) > 0, then

\^s(t) maximizes g(t, s)/m(t) = (s  - f( st ))  - 
M(t)
m(t)t

s
t fy(

s
t ) as a function of s. Since

M(t)
m(t)t

s
t fy(

s
t ) is increasing in s, a necessary condition for \^s(t) to be the maximizer is

that s - f( st ) is increasing at \^s(t), which implies that 1 \geq 1
t fy(

\^s(t)
t ) = c\^sx(\^s(t)).

Remark 4.4. A direct consequence of Theorem 4.2 is that the optimal revenue
profile \^s may not be continuous, as now shown. Consider, for example, the quadratic
cost function f(y) = 1

2ay
2 + by: the solution to the equation 0 = gs(t, s) in (4.3)

is \^s(t) = m(t)t2 - bm(t)t - bM(t)
2aM(t)/t+am(t) (for sufficiently large t). Thus, \^s inherits the regularity

properties (or lack thereof) of the density m(t). In particular, if m(t) is discontinuous,
then so is \^s(t). (Note that Assumption 4.1 only requires tm(t)/M(t) to be increasing---
not necessarily continuous.)

The objective g(s, t) in (4.1) embodies the central trade-off that the principal
faces. To better understand it, consider the first term in (4.1), which, aggregated over

the population of agents, is
\int \infty 
0

(s(t)  - f( s(t)t ))m(t)dt =
\int \infty 
0

(s(t) - c(s(t))m(t)dt +\int \infty 
0

(c(s(t))  - f( s(t)t ))m(t)dt. As the two terms on the right-hand side represent,
respectively, the aggregate principal's profits and the aggregate agents' utilities, their
sum is akin to the objective of a hypothetical social planner that seeks to maximize
the total revenue net of agents' personal costs. Such a hypothetical objective would
be realized by the ``altruistic"" contract c(s) = s, which is not merely suboptimal for
the principal; it is the worst possible contract, with a net profit of zero.

Thus, the second term in (4.1) represents the extent to which the principal's
interests depart from those of a social planner disinterested in profits. In view of
the first-order condition in (2.3), this term is (again, aggregated over all agents)\int \infty 
0

M(t) s(t)t2 fy(
s(t)
t )dt =

\int \infty 
0

M(t) s(t)t csx(s(t))dt. Here, csx(s(t))s(t)/t represents the
marginal cost of a change in compensation paid to agents of skill at least t on the rev-
enues that they generate, with the factor 1/t reflecting that such a change is inversely
proportional to skill, for the same revenue. Because a change in compensation at the
revenue level s(t) affects all agents with skill greater than or equal to t, its impact is
proportional to M(t) rather than m(t).

The next section explores the implications of this result in a concrete setting,
where the optimal contracts and their implied sharing rates are found explicitly.

5. Application: Pareto skill with linear-power costs. This section brings
to life the main results with examples in which the assumptions in Theorem 4.2 hold
and the optimal contract admits a closed-form solution. Throughout this section,
agents' skill is assumed to be above the lower bound t and to follow the Pareto
distribution m(t) = \alpha t\alpha t - \alpha  - 1 with \alpha > 1, so that M(t) = (t/t) - \alpha (see, e.g., [19]).
Agents' costs are of linear-power type, i.e., f(y) = ay\lambda + by for positive constants a,
b, and \lambda > 1, such that \lambda /(\lambda  - 1) < \alpha .

Note that such fat-tailed distributions arise in empirical work on income distri-
bution [20, 8] and video-sharing [4]. More broadly, they tend to arise in the provision
of club goods (nonrival but excludable), such as movies, music, e-books, and other
content that can be reproduced at negligible costs.

With explicit results for the optimal contract, its corresponding revenue, and
profits, we show that power costs (without a linear component) lead to an affine
optimal contract, in which principal and agent share each additional unit of revenue
according to fixed proportions that depend on the agents' distribution and their costs.
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Of all revenues generated under the optimal contract, the principal collects 1 - 1/\lambda as
profits, while all agents share the remaining 1/\lambda . Then, we add the linear component,
which leads the principal to set a fee schedule that declines to an asymptotic rate.
When the linear component is large enough, such an optimal schedule implies that
the principal takes a constant share of the total revenue, and that such a share is the
inverse of the Pareto exponent \alpha .

The analysis begins by noting that, in view of (4.3), the optimal revenue \^s(t) for
skill t \geq t has the explicit solution

\^s(t) =

\Biggl\{ 
t(\alpha t - (\alpha +1)b

a\lambda (\alpha +\lambda ) )
1

\lambda  - 1 , t > (1+\alpha )b
\alpha \vee t,

0, t \leq (1+\alpha )b
\alpha \vee t.

5.1. Power costs and affine optimal contracts. Without a linear component

in the cost function (b = 0), \^s(t) = ( \alpha 
a\lambda (\alpha +\lambda ) )

1
\lambda  - 1 t

\lambda 
\lambda  - 1 = (t/t)

\lambda 
\lambda  - 1 \^s(t) for t \geq t. From

Definition 3.2, the associated optimal contract c\^s satisfies the condition c\^sx(\^s(t)) =
1
t fy(

\^s(t)
t ) = \alpha 

\alpha +\lambda , and thus, the optimal contract is affine. For agents with skill t > t,

in addition to the flat fee of \^s(t)  - c\^s(\^s(t)), every dollar of revenue above \^s(t) is
shared between the principal and the agent with the proportions of \lambda 

\alpha +\lambda and \alpha 
\alpha +\lambda ,

respectively.
From (A.8) (which holds for any skill distribution),

c\^s(\^s(t)) =\lambda a - 
1

\lambda  - 1

\biggl( 
\alpha 

\lambda (\alpha + \lambda )

\biggr) \lambda 
\lambda  - 1

t
\lambda 

\lambda  - 1  - (\lambda  - 1)a - 
1

\lambda  - 1

\biggl( 
\alpha 

\lambda (\alpha + \lambda )

\biggr) \lambda 
\lambda  - 1

t
\lambda 

\lambda  - 1 .(5.1)

Thus, for agents with skill t \geq t, the principal collects the profit \^s(t)  - c\^s(\^s(t)) =

( \lambda 
\lambda +\alpha (

t
t )

\lambda 
\lambda  - 1 + (\lambda  - 1)\alpha 

\lambda (\lambda +\alpha ) )\^s(t). The fraction of total revenue that is collected by the

principal as profit is (the conditions \lambda > 1 and \lambda /(\lambda  - 1) < \alpha ensure that the total

revenue is finite) \Gamma =

\int \infty 
t (\^s(t) - c\^s(\^s(t)))m(t)dt\int \infty 

t
\^s(t)m(t)dt

= 1 - 1
\lambda .

Though the principal's marginal share is constant, its average share of profit is
declining from 1  - \alpha /(\lambda (\alpha + \lambda )) at t to \lambda /(\alpha + \lambda ) at \infty . Effectively, the contract is
equivalent (in the absence of agents with skill below t) to a two-tiered structure with
higher fees up to t and lower fees above that level. In this setting, the principal's total
share is insensitive to the parameter \alpha that controls the distribution of agents' skill.

5.2. Linear-power costs. With a linear component in the cost function (b > 0),
the marginal cost at any positive effort is at least b. If this marginal cost is sufficiently
large so that (1 + \alpha )b/\alpha > t, the optimal contract selectively allows only agents
with sufficiently high skill to work, while agents with skill below (1 + \alpha )b/\alpha do not
participate. On the other hand, if (1 + \alpha )b/\alpha \leq t, then all agents participate.

For every t \geq \^t := (1+\alpha )b
\alpha \vee t, the principal's marginal rate is c\^sx(\^s(t)) =

1
t fy(

\^s(t)
t ) =

(\alpha t + (\lambda  - 1)b)/((\alpha + \lambda )t), which decreases in t (thus also in \^s(t)) and converges to
\alpha /(\lambda + \alpha ) as skill t becomes large.

The high-cost regime corresponds to b \geq \alpha t/(1+\alpha ), in which case \^t = (1+\alpha )b/\alpha 
and \Gamma simplifies to 1/\alpha , which means that the principal shares more with agents if
they are less unequal in skill. This observation is counterintuitive in part because one
might expect that the more agents differ from one another, the lower the principal's
leverage in using a single contract to induce their desired behavior.

However, as the distribution of skill becomes more heavy-tailed, the principal's fo-
cus progressively shifts on extracting profits from the highest skilled, while neglecting
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completely agents of increasingly higher skill. Indeed, the skill threshold for inertia
\^t = (1 + 1/\alpha ) b also increases with inequality, i.e., decreases with \alpha .

For 0 < b < \alpha t/(1 + \alpha ), the integrals that define the principal's share \Gamma are
evaluated numerically, and Figure 1 displays the effect of b, with a = 1, t = 1,
\lambda = 2, and \alpha = 3. When the linear cost b is absent (b = 0), the principal's share is
\Gamma = 1 - 1/\lambda = 0.5, as in section 5.1. As b increases to \alpha t/(1+\alpha ) = 0.75, \Gamma transitions
from 1  - 1/\lambda to 1/\alpha = 1/3, the value in the high-cost regime, where it remains for
any b \geq \alpha t/(1 + \alpha ).

6. High-low reservation utilities and countervailing effects. The main re-
sult assumes that agents can only choose between the contract offered by the principal
and the alternative of a zero payoff. In particular, such an alternative is the same for
all agents, regardless of their skill. This section investigates how the possibility that
agents of different skill t have a different reservation utility R(t) affects the conclusions
of the main result.

For tractability, the discussion focuses on a high-low regime, whereby agents below
some skill threshold have a certain reservation utility, while agents above that skill
have a higher one. Even such an ostensibly simple setting leads to a rather complex
solution that entails several cases, depending on the relative values of such utilities.6

An agent with skill t and reservation utility R(t) accepts a contract c \in C if
and only if it yields the utility uc(t) = c(tyc(t))  - f(t, yc(t)) \geq R(t). Thus, denote
by \chi (c) = \{ t \geq 0 : uc(t) \geq R(t)\} the set of skills for which the contract c \in C is
acceptable. The principal's goal is to maximize (with the implicit requirement that
the integral exists for the contract c) PR(c) =

\int 
\chi (c)

(tyc(t)  - c(tyc(t)))m(t)dt. Note

that the main result in the previous sections corresponds to the reservation utility
R(t) =  - f(t, 0). While in that case, under the optimal contract, only agents below
a certain skill do not participate, the presence of a skill-dependent reservation utility
R(t) may also lead another layer of agents to shun the optimal contract, as explained
below. This phenomenon is known in the economics literature as the countervailing
effect [15, 17, 14] and has recently arisen also in electricity pricing [1].

To begin the discussion, the next result shows that the necessary conditions for
the optimal contract in section 3 still hold with skill-dependent reservation utility,
allowing the principal to focus on the set \~C of contracts that satisfy the basic a priori
restrictions. Such a result is valid in general, in that it does not require the reservation
utility to take only two values.

Lemma 6.1. supc\in C PR(c) = supc\in \~C PR(c), where \~C is defined as in (3.1).

Let the reservation utility take only the values R0 < R1, where R(t) = R0 for
all t < t1 and R(t) = R1 for t \geq t1. The next lemma shows that countervailing
effects may arise, so that agents with mediocre skills may not participate, depending
on their reservation utility R1. The intuition behind this assumption is that higher-
skilled agents typically have additional opportunities other than the proposed contract
and hence require a higher utility to accept it (cf. Lemma A.9).

If R1 were equal to R0 or slightly higher, then any agent with skill above the min-
imal t0 would participate, including agents with skill above t1, who would continue to
earn a positive surplus from participation. As R1 rises, such surplus declines because
nonparticipation becomes increasingly attractive. If R1 is large enough, nonpartici-

6The setting of n possible values can be tackled with the same arguments as the ones presented
below but would lead to a cumbersome number of cases that does not lend itself to a concise presen-
tation.
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pation becomes optimal for agents with skill t1 and slightly higher, while only agents
with skill above the higher threshold t1 continue to participate. Henceforth, denote
by S2 the set of revenue profiles that are nonzero on the intervals [t0, t1) and [t1,\infty ):

(6.1) S2 = \{ \=s : \BbbR + \mapsto \rightarrow \BbbR +, \=s(t) = s1[t0,t1)\cup [t1,\infty )

for t0, t1 such that t1 \in [t0, t1] and s as in (3.2)\} .

Lemma 6.2. For any c \in \~C, its corresponding constrained revenue sR coincides
with an element of S2 up to finitely many points.

Similar to the result without reservation utility, we now construct a (differentiable)

canonical contract cs
R,R for each sR \in S2, which allows the principal to further narrow

down the candidate optimal contract to a member of this class. For z in the range
of sR (i.e., 0 < z = sR(t) for some t), marginal compensation must match marginal

disutility (i.e., cs
R,R

x (z) = 1
t fy

\bigl( 
t, z

t

\bigr) 
). The difficulty is to understand the value of

marginal compensation cs
R,R

x (z) outside the range of sR; specifying the contract's
payoff for revenues that are not attained by any agent is important precisely to ensure
that no agent has the incentive to generate such revenues.

The next definition summarizes the notation for the quantities that describe the
optimal contract in the general case of R1 > R0.

Definition 6.3. Let sR \in S2 and its corresponding t0, t1 be as in (6.1). Denote
(i) \=s0 = sup

t<t1

sR(t);

(ii) tRz = inf\{ t : sR(t) > z\} ;
(iii) g0(t) =

\int sR(t0)

0
1
t fy(t,

z
t )dz  - f(t0,

sR(t0)
t0

);

(iv) t\ast 0 =

\Biggl\{ 
t0 if g0(t0) \geq R0,

g - 1
0 (R0) otherwise;

(v) g1(t) =
\int sR(t0)

0
1
t\ast 0
fy(t

\ast 
0,

z
t\ast 0
)dz +

\int \=s0
sR(t0)

1
tRz
fy(t

R
z ,

z
tRz
)dz +

\int sR(t1)

\=s0
1
t fy(t,

z
t )dz  - 

f(t1, s
R(t1)/t1);

(vi) t\ast 1 =

\Biggl\{ 
t1 if g1(t1) > R1,

g - 1
1 (R1) otherwise.

The interpretation of these quantities is as follows: \=s0 is the maximum revenue
generated by an agent with the lower reservation utility R0, while tRz is the right-
continuous inverse of the revenue function.

The function g0(t) represents the utility of an agent with skill t0 if the marginal
compensation between 0 and sR(t0) equals the marginal disutility of agents with skill
t. Thus, t\ast 0 is the maximum such t (corresponding to the minimum compensation) for
which agents of skill t0 participate and produce sR(t0): it coincides with t0 when the
reservation utility R0 is small enough and with g - 1

0 (R0) < t0 otherwise.
Similarly, the function g1(t) represents the utility of agents with skill t1 if the

marginal compensation equals the marginal disutility with skill t\ast 0 in [0, sR(t0)], the
marginal disutility with skill tRz in [sR(t0), \=s0], and the marginal disutility with skill
t in [\=s0, s

R(t1)]. Thus, t
\ast 
1 corresponds to the minimum compensation required for the

participation of an agent with skill t1, who produces sR(t1). It coincides with t1 if
the reservation utility R1 is small enough, and with g - 1

1 (R1) < t1 otherwise.

The next definition constructs a canonical contract cs
R,R for each sR \in S2, dis-

tinguishing four cases, which correspond to the relative sizes of R0 and R1. Note
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that, at this stage, the contract does not have to be optimal. The goal is simply to
construct a contract that induces a prescribed revenue function sR under the partic-
ipation constraint.

Definition 6.4. For each sR \in S2, the canonical contract is defined as cs
R,R =

d+
\int x

0
cs

R,R
x (z)dz, where the constant d and the function cs

R,R
x (z) are identified as fol-

lows: cs
R,R

x (z) = 1
tRz
fy(t

R
z ,

z
tRz
) for z \in [sR(t0), \=s0)\cup [sR(t1)\vee \=s0,\infty ), and the following

hold:
(i) If t0 = t1, then cs

R,R
x (z) = 1

t\ast 1
fy(t

\ast 
1,

z
t\ast 1
) for 0 \leq z < sR(t1) and d = 0.

(ii) If t0 < t1 < t1 = \infty , then cs
R,R

x (z) = 1
t\ast 0
fy(t

\ast 
0,

z
t\ast 0
) for z \in [0, sR(t0)) and

d = 0.
(iii) If t0 < t1 \leq t1 < \infty and g1(t1) \geq R1, then d = 0 and

cs
R,R

x (z) =

\Biggl\{ 
1
t\ast 0
fy(t

\ast 
0,

z
t\ast 0
) if 0 \leq z < sR(t0),

1
t\ast 1
fy(t

\ast 
1,

z
t\ast 1
) if \=s0 \leq z < sR(t1).

(iv) If t0 < t1 \leq t1 < \infty and g1(t1) < R1, then

cs
R,R

x (z) =

\Biggl\{ 
1
t0
fy(t0,

z
t0
) if 0 \leq z < sR(t0),

1
t1
fy(t1,

z
t1
) if \=s0 \leq z < sR(t1),

and

d = R1  - 
\int sR(t1)

0

cs
R,R

x (z)dz  - f(t1, s
R(t1)/t1) > 0.

The rationale of the above construction is as follows: for z \in [sR(t0), \=s0) \cup 
[sR(t1),\infty ) (i.e., z = sR(t) for some t \in [t0, t1) \cup [t1,\infty )), the marginal compen-

sation cs
R,R

x (z) matches fy(t
R
z , z/t

R
z ), the marginal disutility of agents who produce

z, which is the same as in Definition 3.2, as this is the range of skills in which the
participation constraint is not binding.

On the remaining range z \in [0, sR(t0)]\cup [\=s0, s
R(t1)), the principal needs to choose

the marginal compensation cs
R,R

x (z) carefully, so that cs
R,R indeed induces sR even

without a participation constraint for agents with skills t \in [t0, t1)\cup [t1,\infty ), and they

(and only they) participate under the constraint; i.e., their utility under cs
R,R achieves

the required levels R0 and R1, respectively. In this sense, the marginal compensation
must be chosen as to reflect the shadow price of the participation constraint. This
construction leads to the following four cases, illustrated in Figure 2.

In Case (i), no agents with skill below t1 participate. Thus, the marginal compen-
sation between 0 and sR(t1) needs to guarantee that agents with skill t1 participate
and that no one with lower skills does. To ensure such an outcome, the principal starts
by considering 1

t1
fy(t1,

z
t1
), which is the smallest compensation that would induce a

t1-agent (i.e., an agent with skill t1) to produce sR(t1) while preventing anyone with
lower skill from participating, in the baseline case without reservation utility. If the
corresponding utility for the t1-agent satisfies g1(t1) \geq R1 (notice that in this case
sR(t0) = \=s0 = 0), then the participation constraint is slack, and the marginal com-
pensation considered is correct. Otherwise, the constraint is binding; hence a higher
compensation is required. Such higher compensation is 1

t\ast 1
fy(t

\ast 
1,

z
t\ast 1
), which guarantees
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Case (i)

t1 t1
t

sR(t)

sR(t1)
z

cS
R

(z)

Case (ii)

t0 t1
t

sR(t)

sR(t0) s0
t

sR(t)

Cases (iii) and (iv)

t0 t1 t1
t

sR(t)

sR(t0) s0 sR(t1)
t

sR(t)

Fig. 2. Construction of canonical contracts.

exactly the utility g1(t
\ast 
1) = R1 for t1-agents.

7

In Case (ii), only agents with skill t \in [t0, t1) participate, and t\ast 0 plays a similar
role as t\ast 1 in Case (i) by guaranteeing that they produce sR(t) and that the utility of a
t0-agent is exactly R0. As Lemma 6.5 below implies, if sR is indeed induced by some

c \in \~C, then the utility for agents with skill t \geq t1 is below R1 under cs
R,R, and they

do not participate.
In Case (iii), agents with skill t \in [t0, t1)\cup [t1,\infty ) participate and t\ast 0 plays the same

role as in Case (ii). Since agents with skills t \in [t1, t1) do not participate, the principal

has flexibility in choosing the marginal compensation cs
R,R

x (z) for \=s0 \leq z \leq sR(t1),
leading to potentially different utilities for t1-agents. g1(t) represents such a utility

7Observe that, as g1 is decreasing and g1(0) = \infty , t\ast 1 \leq t1, and in particular it exists (similarly
for t\ast 0). Though the contract induces all agents with skill max(t1, t\ast 1) \leq t < t1 to participate in
the baseline case without reservation utility, it is not the case with reservation utility R1, as the
corresponding utility is strictly increasing in skill at t1 by Lemma A.9.
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if the principal uses as compensation cs
R,R

x (z) = fy(t, z/t), the marginal disutility
of a t-agent. By definition, t\ast 1 is the highest skill for which g1(t

\ast 
1) \geq R1, and with

reservation utility R1, only agents with skills t \geq t1 participate.
In Case (iv), g1(t1) < R1, which means that even with the largest allowable

marginal compensation 1
t1
fy(t1,

z
t1
) for \=s0 \leq z \leq sR(t1),

8 a t1-agent still does not
achieve the required utility R1. In order to ensure their participation (and thus that
of all agents with higher skills), the principal needs to provide an additional subsidy.
To avoid changing the behavior of agents with skill t \in [t0, t1), such a subsidy entails
a lump sum d, which, in view of Proposition 6.6, is the cheapest compensation scheme
to induce sR under the participation constraint.

Furthermore, with a lump sum d > 0, the marginal compensation for z \in 
[0, sR(t0)) also has to be modified. If t\ast 0 < t0 and the principal continues to pay
marginally at 1

t\ast 0
fy(t

\ast 
0,

z
t\ast 0
), which guarantees that t0-agents achieve exactly utility R0,

then the lump sum induces agents with skill sufficiently close to t to participate,
contradicting sR. Thus, the marginal compensation must be equal to 1

t0
fy(t0,

z
t0
),

the marginal disutility of t0-agents, which guarantees that even in the baseline case
without reservation utility, agents with skill t \leq t0 produce nothing. Finally, with all
the marginal compensation decided, the lump sum d is determined by guaranteeing
exactly the utility R1 for t1-agents.

The next lemma identifies more properties of the constrained revenue sR that is
actually induced by some c \in \~C.

Lemma 6.5. Let c \in \~C and sR be its constrained revenue.
(i) If t0 < t1 < t1 < \infty , then g1(t1) \leq R1.

(ii) If t0 < t1 < t1 = \infty , then cs
R,R(\=s0) - limt\rightarrow \infty f

\bigl( 
t, \=s0

t

\bigr) 
\leq R1.

The next result shows that the principal can search for the optimal contract
among all cs,R's with s \in \^S2, a subset of S2, which satisfies more constraints, including
those in Lemma 6.5, because they generate more profits than any contracts in \~C that
induce the same constrained revenue. The profits maximization problem can then be
formulated as a calculus of variation problem over \^S2.

Proposition 6.6.
(i) Let c \in \~C and its constrained revenue be sR. Then, the constrained revenue

induced by the canonical contract cs
R,R coincides with sR, and PR(c) \leq PR(cs

R,R).

(ii) Set h(u, t) = sR(t)  - 
\int t

u
( s

R(v)
v2 fy(v,

sR(v)
v )  - ft(v,

sR(v)
v ))dv  - f(t, sR(t)

t ), and
the maximum constrained profit maxc\in C PR(c) equals

max
sR\in \^S2

\int t1

t0

h(t0, t)m(t)dt+

\int \infty 

t1

h(t1, t)m(t)dt - R0(M(t0) - M(t1)) - \~R1M(t1),

where \^S2 is the collection of s \in S2 which satisfies (a) the two properties in Lemma
6.5, and (b) if t0 < t1 < t1 < \infty , then g1(t1) \geq R1, where

\~R1 =

\Biggl\{ 
R1 if t1 > t1,

R0 +
\int t1
t0
( s

R(v)
v2 fy(v,

sR(v)
v ) - ft(v,

sR(v)
v ))dv if t1 = t1.

Remark 6.7. (i) If the reservation utility is constant (R0 = R1) and t0 < t1, then
t1 = t1. The canonical contracts are as in Case (iii) of Definition 6.4.

8With larger compensation, the agents with skills less than and sufficiently close to t1 are better
off producing sR(t1) instead of sR(t), contradicting the definition of sR.
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(ii) If R takes n > 2 values (R0, R1, . . . , Rn - 1), for each constrained revenue sR,
the canonical contracts can be constructed similarly to Definition 6.4, by matching
marginal compensation with the appropriate marginal disutility at the revenue lev-
els which are actually being produced, which guarantees that the induced revenue
coincides with sR without reservation utility.

Then, in the gaps [ti, ti) of s
R, where ti = min\{ t > 0 : R(t) = Ri, 0 \leq i \leq n - 1\} 

(with t0 = 0 and tn = \infty ) and ti = min\{ ti \leq t < ti+1 : sR(t) > 0\} (equal to ti+1 if this
set is empty), i.e., where the participation constraint is binding, apply the smallest
marginal compensation so that Ri is achieved at ti.

This procedure is carried out from i = 0 to i = n  - 1, and, if for some i, Ri

cannot be obtained at ti by applying the largest possible marginal compensation
(which guarantees sR as the induced revenue), then the marginal compensations at
all lower gaps [tj , tj) for 0 \leq j < i should be revised to 1

tj
f(tj ,

z
tj
), and a lump sum

compensation needs to be added to guarantee Ri at ti, which also ensures Rj at tj for
0 \leq j < i (as demonstrated in Case (iv) of Definition 6.4). Note, however, that if this
case indeed happens, as shown in Proposition 6.6, the corresponding sR is suboptimal
and can be actually excluded from the admissible set.

7. Conclusion. As peer-to-peer markets have emerged in several service sectors
over the last decade, so have near-monopolistic platforms that connect users with
service providers in exchange for a significant fraction of revenues.

This paper finds the optimal contract for a monopolist principal who offers a
common nonlinear contract to a population of agents that differ in skill. The optimal
contract always entails positive sharing rates without subsidies and implies nonpar-
ticipation for those agents with the lowest skill.

Affine contracts (with constant sharing rates) are optimal when the skill is Pareto-
distributed and individual costs are of power type. When costs include a linear com-
ponent, the principal's share of revenues is characterized by a low-cost regime, in
which its main determinant is the growth rate of agents' costs, and by a high-cost
regime, in which the main determinant of the principal's share is the dispersion of
agents' skill.

Appendix A. Proofs. The next lemma shows that Assumptions 2.2 and 2.3
guarantee the existence of a (possibly infinite) optimal effort. When multiple opti-
mizers exist, one can choose the one requiring the minimum effort.

Lemma A.1. Given a contract c \in C, for any t \geq 0 there exists some yc(t) \in 
[0,\infty ] that maximizes (2.1), and such that yc(t) = min\{ y \geq 0 : y maximizes (2.1)\} .

Proof. Let \{ yi\} \infty i=1 be a maximizing sequence for skill t. If any such sequence is
unbounded, then yc = \infty by definition. Otherwise, up to a subsequence limi\rightarrow \infty yi =
\^y < \infty with limi\rightarrow \infty uc(t, yi) = supy\geq 0 u

c(t, y). By the continuity of f and the
upper-semicontinuity of c, \^y is a maximizer because uc(t, \^y) = c(t\^y)  - f(t, \^y) \geq 
lim supi\rightarrow \infty c(tyi) - limi\rightarrow \infty f(t, yi) \geq supy u

c(t, y) \geq uc(t, \^y). Finally, yc(t) = inf\{ y :
uc(t, y) = supy\geq 0 u

c(t, y)\} is finite as the set is not empty, and is also a maximizer, as
the limit of a maximizing sequence, by the same argument.

Remark A.2. Note that an optimal infinite effort at this point cannot be ruled
out, as the contract c could be arbitrarily generous. Such contracts are obviously
suboptimal for the principal, and section 3 identifies restrictions for optimality, under
which the optimal effort is necessarily finite also for the agent.
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However, if yc(t) < \infty , its optimality implies that, for any y \geq 0,

(A.1)

\int yc(t)

y

fy(t, u)du = f (t, yc(t)) - f (t, y) \leq c(tyc(t)) - c(ty),

which means that any change in effort implies more cost than income increase.

Proof of Proposition 3.1. The result proceeds through several steps: (i) is proved
through Lemmas A.3 and A.4, while (ii) is proved through Lemma A.5 below.

The next lemma shows that negative sharing rates for the agent can be excluded,
as their profits are the same as those obtained by capping such rates at zero. More
formally, any contract c does not generate more profit than its increasing envelope.

Lemma A.3. For any contract c \in C, let c\ast (x) = sup0\leq y\leq x c(y). Then c\ast \in C,

yc(t) = yc
\ast 
(t) for any t \geq 0, and P (c) = P (c\ast ).

Proof. If c \in C, then c\ast \in C, because c\ast is increasing and right-continuous and
hence upper-semicontinuous. For any x such that c(x) < c\ast (x), choose x\ast so that
x\ast < x, c(x\ast ) > c(x), and c\ast (x\ast ) = c\ast (x). Then, for any t > 0, c(x\ast )  - f(t, x\ast /t) >
c(x)  - f(t, x/t). Thus, under contract c, t-agents do not choose y = x/t. For the
same reason, they do not choose y = x/t under c\ast . For agents with 0 skill, the
optimal choice is always y = 0. Thus, under both c and c\ast , t-agents would only
consider an effort y's such that c(ty) = c\ast (ty), and therefore, yc(t) = yc

\ast 
(t). Hence,

P (c) = P (c\ast ).

As the previous lemma excludes negative sharing rates for the agent, the next one
shows that negative rates for the principal do not maximize profits. Equivalently, for
any optimal contract, the agent's income must be lower than the total revenue.

Lemma A.4. For any nondecreasing c \in C, the contract \~c(x) = min(c(x), x) \in C
and P (\~c) \geq P (c).

Proof. To prove that \~c(x) \in C, it suffices to show that \~c is upper-semicontinuous.
Consider a sequence \{ xi\} \infty i=1 that converges to x. Since c is upper-semicontinuous,
lim supi\rightarrow \infty \~c(xi) = lim supi\rightarrow \infty min(c(xi), xi) \leq lim supi\rightarrow \infty c(xi) \wedge lim supi\rightarrow \infty xi \leq 
min (c(x), x) = \~c(x). Thus, \~c is also upper-semicontinuous.

To see that P (\~c) \geq P (c), first note that yc(t) = y\~c(t) for all t \in A = \{ t : yc(t) <
\infty , c(tyc(t)) \leq tyc(t)\} . Indeed, for any y \geq 0,

(A.2) \~c(tyc(t)) - f(t, yc(t)) = c(tyc(t)) - f(t, yc(t)) \geq c(ty) - f(t, y) \geq \~c(ty) - f(t, y),

where the first inequality follows from (A.1) and is strict for y < yc(t).
Conversely, y\~c(t) may differ from yc(t) for t \in B = \{ t : yc(t) < \infty , c(tyc(t)) >

tyc(t)\} . Yet, any such difference must satisfy ty\~c(t) - \~c(ty\~c(t)) \geq 0 > tyc(t) - c(tyc(t)),
which means that for the principal the contract \~c is superior to c within B.

Let D be the set of skills t for which any maximizing sequence \{ yi(t)\} \infty i=1 diverges
to \infty under c. For any t \in D, since f is convex and limu\rightarrow \infty fy(t, u) = \infty , it follows
that f(t, yi(t)) \geq f(t, 0)  - c(0) + tyi(t) for sufficiently large i. In view of c(tyi(t))  - 
f(t, yi(t)) \geq c(0)  - f(t, 0) (also for sufficiently large i), this means that c(tyi(t)) \geq 
tyi(t). As a result, lim supi\rightarrow \infty (tyi(t) - c(tyi(t))) \leq 0 \leq ty\~c(t) - \~c(ty\~c(t)).
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In summary, the total profits under \~c and c satisfy

(A.3) P (\~c) =

\int 
A

\bigl( 
ty\~c(t) - \~c(ty\~c(t))

\bigr) 
m(t)dt+

\int 
B

\bigl( 
ty\~c(t) - \~c(ty\~c(t))

\bigr) 
m(t)dt

+

\int 
D

\bigl( 
ty\~c(t) - \~c(ty\~c(t))

\bigr) 
m(t)dt \geq 

\int 
A

(tyc(t) - c(tyc(t)))m(t)dt

+

\int 
B

(tyc(t) - c(tyc(t)))m(t)dt+

\int 
C

lim sup
i\rightarrow \infty 

\bigl( 
tyi(t) - c(tyi(t))

\bigr) 
m(t)dt \geq P (c).

The following lemma summarizes the intuitively natural but mathematically non-
trivial property that higher skill commands higher revenue and hence higher income.

Lemma A.5. Given c \in \~C, yc(t) is finite for every t, and limt\rightarrow 0 y
c(0) = 0.

Furthermore, if 0 < t1 < t2, then t1y
c(t1) \leq t2y

c(t2).

Proof. Since f is convex in y and limy\rightarrow \infty fy(t, y) = \infty , for any t > 0 there
exists \=y(t) such that f(t, y)  - f(t, 0) > ty for all y \geq \=y(t). Thus, for any y > \=y(t),
uc(t, y) = c(ty)  - f(t, y) \leq ty  - f(t, y) <  - f(t, 0) = uc(t, 0). Therefore, for t-agents
the revenue ty is not optimal, and Lemma A.1 implies that yc(t) is finite.

For any 0 < t1 < t2, (A.1) implies f(t1, y
c(t1)) - f(t1, t2y

c(t2)/t1) \leq c(t1y
c(t1)) - 

c(t2y
c(t2)). Suppose 0 \leq t2y

c(t2) < t1y
c(t1). Because t2 > t1,

yc(t2) = t2y
c(t2)/t2 \leq t2y

c(t2)/t1,

t1y
c(t1)

t2
 - yc(t2) =

t1y
c(t1) - t2y

c(t2)

t2
<

t1y
c(t1) - t2y

c(t2)

t1
= yc(t1) - 

t2y
c(t2)

t1
.

Then, since f is strictly increasing and convex in y and fy is nonincreasing in t,

f(t2,
t1y

c(t1)

t2
) - f (t2, y

c(t2)) =

\int t1yc(t1)
t2

yc(t2)

fy(t2, u)du \leq 
\int t1yc(t1)

t2

yc(t2)

fy(t1, u)du

<

\int yc(t1)

t2yc(t2)
t1

fy(t1, u)du = f (t1, y
c(t1)) - f

\biggl( 
t1,

t2y
c(t2)

t1

\biggr) 
\leq c(t1y

c(t1)) - c(t2y
c(t2)),

which implies that c(t2y
c(t2))  - f(t2, y

c(t2)) < c(t1y
c(t1))  - f (t2, t1y

c(t1)/t2). This
contradicts the optimality of yc(t2) and implies that t2y

c(t2) \geq t1y
c(t1).

For limt\rightarrow 0 y
c(t) at t = 0, first consider the limit of sc(t) = tyc(t). Suppose there

exists \epsilon > 0, such that for every t > 0, sc(t) > \epsilon . Assumption 2.3 implies that
f(t, sc(t)/t) \geq f(t, \epsilon /t), which increases to infinity as t \rightarrow 0. On the other hand, since
both sc(t) and c(x) are increasing, c(sc(t)) is bounded in a neighborhood of t = 0.
Thus, there must exist a sufficiently small t > 0, such that f(t, sc(t)/t) is sufficiently
large and uc(t) = c(sc(t))  - f(t, sc(t)/t) < c(0)  - f(t, 0), where the right-hand side
is bounded from below because f(t, 0) is decreasing in t. But this contradicts the
optimality of yc(t), whence limt\rightarrow 0 s

c(t) = 0.
Now suppose that there exists \epsilon > 0, such that for every t > 0, yc(t) > \epsilon ;

then uc(t) = c(sc(t))  - f (t, yc(t)) < c(sc(t))  - f(t, \epsilon ). Because sc(t) \rightarrow 0 as t \rightarrow 0,
limt\rightarrow 0 u

c(t) \leq c(0) - f(0, \epsilon ) < c(0) - f(0, 0). On the other hand, from the optimality
of yc(t) > 0, uc(t) > c(0) - f(t, 0) for every t, and limt\rightarrow 0 u

c(t) \geq c(0) - f(0, 0). This
contradiction shows that limt\rightarrow 0 y

c(t) = 0.

Proof of Proposition 3.3. (i) Since s in increasing, by construction, for u \geq s(t),
tu \geq t, and for u < s(t), tu < t. Also, since fy is decreasing in t and increasing
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in y, 1
t fy(t,

x
t ) is decreasing in t. Thus, for any x > s(t), f(t, x

t )  - f(t, s(t)
t ) \geq \int x

s(t)
1
tu
fy(tu,

u
tu
)du =

\int x

s(t)
csx(u)du = cs(x) - cs(s(t)), and the first inequality is strict

if x < s(t) and s is continuous at t, which implies that s(t) is optimal for t-agents. If
s has a jump at t, then this agent is indifferent between s(t) and s(t - ) \leq x < s(t).
However, s has only countably many discontinuous points.

(ii) For any c \in \~C, let s(t) be the induced revenue. If cs < c at some x \geq 
0, consider min(cs, c) \in \~C: for any t > 0, if min(cs, c)(s(t)) = cs(s(t)), then for
any y \geq 0, umin(cs,c)(t, s(t)/t) \geq ucs(t, y) \geq umin(cs,c)(t, y), which follows from the
optimality of s(t) and implies that s(t) is optimal for min(cs, c). The same holds if
min(cs, c)(s(t)) = c(s(t)). Thus, min(cs, c) induces the same revenue and generates
at least as much profit as c. Therefore, without loss of generality, assume c \leq cs in
the following, which implies that c(0) = 0.

Suppose P (c) > P (cs); then there must exist t\ast > 0 such that c(s(t\ast )) < cs(s(t\ast )).
However, with c(0) = cs(0) = 0, it contradicts Lemma A.6 below.

Lemma A.6. For any s \in S, the corresponding canonical contract cs, and any
c \in \~C which induces the revenue s, c(s(\=t)  - c(s(t)) \geq cs(s(\=t))  - cs(s(t)) for every
\=t > t \geq 0, such that M(\=t) > 0.

Proof. Let the collection of all discontinuous points of s between t and \=t be T =
\{ t1, . . . , tK\} , where K could be \infty . For each ti \in T , let \=xi = inf\{ s(t), t > ti\} , and
xi = sup\{ s(t), t < ti\} , so that s(ti) \in Di = [xi, \=xi]. Let D =

\bigcup K
i=1 Di.

For every 1 \leq i \leq K, since s(t) is increasing, there exists a decreasing sequence
\{ tij\} \infty j=1 converging to ti and such that s(tij) converges to \=xi. Thus, from the opti-

mality of s(tij), c(s(tij)) - c(xi) \geq f(tij ,
s(tij)
tij

) - f(tij ,
xi

tij
) =

\int s(tij)

xi

1
tij

fy(tij ,
u
tij

)du.

Because c is right-continuous and fy is continuous, Fatou's lemma implies that

c(\=xi) - c(xi) \geq lim
j\rightarrow \infty 

\int s(tij)

xi

1

tij
fy(tij ,

u

tij
)du \geq 

\int \=xi

xi

csx(u)du.(A.4)

Furthermore, from the definition of xi's and \=xi's, if ti < tj , then \=xi \leq xj , because
otherwise, since s(t) is nondecreasing, s(t) \geq \=xi > xj \geq s(t) for every t \in (ti, tj).
Thus the only intersections between Di and Dj are their boundary points.

Because c is increasing, it is differentiable almost everywhere, and for any interval

[a, b],
\int b

a
cx(u)du \leq c(b)  - c(a), where cx is its derivative. For every positive integer

n, let

fn(u) =

\Biggl\{ 
csx(u), u \in 

\bigcup n
i=1 Di,

cx(u), u \in [t, \=t] \setminus 
\bigcup n

i=1 Di.

Then fn is nonnegative and converges to

f(u) =

\Biggl\{ 
csx(u), u \in D,

cx(u), u \in [t, \=t] \setminus D.

Since [s(t), s(\=t)]\setminus D1 = C11

\bigcup 
C12, where C11 = [s(t), x1) is disjoint with C12 =

(\=x1, s(\=t)], c(s(\=t)) - c(s(t)) \geq 
\int 
C11

cx(u)du+
\int 
D1

csx(u)du+
\int 
C12

cx(u)du =
\int s(\=t)

s(t)
f1(u)du,

following (A.4). Similarly, since D1 and D2 only intersect at their end points (with-
out loss of generality, assume \=x1 \leq x2), [s(t), s(\=t)]\setminus (D1

\bigcup 
D2) = C21

\bigcup 
C22

\bigcup 
C23,

where C21 = [s(t), x1), C22 = (\=x1, x2), and C23 = (\=x2, s(\=t)] are pairwise disjoint, and
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c(s(\=t)) - c(s(t)) \geq 
\int 
C21
cx(u)du+

\int 
D1
csx(u)du+

\int 
C22
cx(u)du+

\int 
D2
csx(u)du+

\int 
C23
cx(u)du =\int s(\=t)

s(t)
f2(u)du. The same argument holds for every n and implies c(s(t))  - c(s(\=t)) \geq \int s(\=t)

s(t)
fn(u)du. Then by Fatou's lemma,

(A.5) c(s(\=t)) - c(s(t)) \geq lim inf
n\rightarrow \infty 

\int s(\=t)

s(t)

fn(u)du \geq 
\int s(\=t)

s(t)

f(u)du.

Finally, for u \in [s(t), s(\=t)]\setminus D, because there exists t \geq 0 such that s(t) = u, by the

optimality of y = u/t for t-agents, for any h > 0, (A.1) implies that c(u) - c(u - h)
h \geq 

1
t
f(t,u/t) - f(t,(u - h)/t)

h/t . Thus, for almost every u \in [s(t), s(\=t)]\setminus D, cx(u) \geq 1
t fy

\bigl( 
t, u

t

\bigr) 
=

csx(u), which implies that f \geq csx. Together with (A.5), this implies that c(s(\=t))  - 
c(s(t)) \geq 

\int s(\=t)

s(t)
f(u)du \geq 

\int s(\=t)

s(t)
csx(u)du = cs(s(\=t)) - cs(s(t)).

Lemma A.7. For a differentiable contract c \in \~C and its induced revenue s, let
\=t = sup\{ t : M(t) > 0\} and s(\=t) = limt\rightarrow \=t s(t). If there exist 0 \leq t1 < t2 \leq \=t and a
constant a such that infs(t1)\leq z<s(t2) cx(z) \geq a, and in the case of t2 < \=t, cx(s(t2)) \leq a,

then \~c =
\int x

0
\~cx(z)dz, where

\~cx(z) =

\Biggl\{ 
cx(z), z < s(t1) or x \geq s(t2),

a, s(t1) \leq z < s(t2),

induces the revenue \~s such that \~s(t) = s(t) if t \leq t1 or t \geq t2, and s(t1) \leq \~s(t) \leq s(t)
if t1 < t < t2.

Proof. If s(t2) = 0, the monotonicity of s implies that s(t1) = s(t2), and by
definition c = \~c. In the following, assume that s(t2) > 0 and s(t2) > s(t1). We prove
the case of t2 < \=t, and the case of t2 = \=t follows similarly.

For any t > 0, the optimality of s(t) implies that for any x,

(A.6) c(s(t)) - c(x) \geq f

\biggl( 
t,
s(t)

t

\biggr) 
 - f

\Bigl( 
t,
x

t

\Bigr) 
,

and the inequality is strict if x < s(t).
For t \leq t1, (A.6) still holds for x \leq s(t1) if c is replaced by \~c, because c = \~c at

both x and s(t) \leq s(t1). On the other hand, for x > s(t1), since \~cx(u) \leq cx(u) for
every u \geq s(t1), c(x) - c(s(t)) \geq \~c(x) - \~c(s(t)), which indicates that \~c(s(t)) - \~c(x) \geq 
c(s(t)) - c(x) \geq f(t, s(t)

t ) - f
\bigl( 
t, x

t

\bigr) 
. Thus \~s(t) = s(t).

For t \geq t2, (A.6) still holds for x \geq s(t2) if c is replaced by \~c, because the two
contracts coincide marginally at every x \geq s(t2). Thus, any x \geq s(t2) other than s(t)
is not optimal for t-agents under \~c. Together with Lemma A.5, this implies that the
optimal revenue under \~c at t2 is constrained to s(t1) \leq x \leq s(t2). The optimality of

s(t2) under c implies that cx(s(t2)) =
1
t2
f(t2,

s(t2)
t2

) \leq a. Furthermore, for any s(t1) <

x < s(t2), \~c(s(t2))  - \~c(x) =
\int s(t2)

x
\~cx(u)du =

\int s(t2)

x
adu >

\int s(t2)

x
1
t2
fy(t2,

u
t2
)du =

f(t2, s(t2)) - f(t2, x), where the inequality follows from the strict convexity of f(t2, \cdot )
and implies that x is not optimal. Thus \~s(t2) = s(t2). From Lemma A.5, the choice for
agents with skill t > t2 is further constrained to x \geq s(t2), which implies \~s(t) = s(t).

Finally, for t1 < t < t2, because \~s(t1) = s(t1) and \~s(t2) = s(t2), Lemma A.5
implies that the choice for t-agents is constrained to [s(t1), s(t2)]. For any s(t) <
x < s(t2), because \~c grows more slowly than c from s(t) to x, (A.6) implies that
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3578 PAOLO GUASONI AND GU WANG

\~c(s(t))  - \~c(x) \geq c(s(t))  - c(x) \geq f(t, s(t)/t)  - f(t, x/t), and thus x is not optimal
under \~c for agents with skill t. Therefore, \~s(t) \leq s(t).

Proof of Theorem 3.4. Let \=t = sup\{ t : M(t) > 0\} , and suppose there exists t1 < \=t
such that c\^sx(\^s(t1)) = 1 + \epsilon for some \epsilon > 0. Let t2 = inf\{ t1 < t < \=t : c\^sx(\^s(t)) \leq 1\} ,
with the convention that t2 = \=t if this set is empty. Since c\^sx is right-continuous and
only has negative jumps, from the definition of t2, t2 > t1, and if t2 < \=t, c\^sx (\^s(t2)) \leq 1.
Let s(\=t) = limt\rightarrow \=t s(t); then Lemma A.7 implies that there exists a contract \~c, with

\~cx(z) =

\Biggl\{ 
c\^sx(z), z < s(t1) or x \geq s(t2),

1, s(t1) \leq z < s(t2),

and the corresponding revenue \~s satisfies \~s(t) = \^s(t) if t \leq t1 or t \geq t2, and \^s(t1) <
\~s(t) \leq \^s(t) if t1 < t < t2. Thus

P (\~c) - P
\bigl( 
c\^s
\bigr) 
=

\int 
t\leq t1,t\geq t2

\bigl( 
c\^s(\^s(t)) - \~c(\^s(t))

\bigr) 
m(t)dt

+

\int t2

t1

\bigl( 
\~s(t) - \~c(\~s(t)) - \^s(t) + c\^s (\^s(t))

\bigr) 
m(t)dt

=

\int 
t\geq t2

\bigl( 
c\^s(\^s(t)) - \~c(\^s(t))

\bigr) 
m(t)dt+

\int t2

t1

\bigl( 
\~s(t) - \~c(\~s(t)) - \^s(t) + c\^s (\^s(t))

\bigr) 
m(t)dt,

(A.7)

where the last equation follows from the fact that \~c(x) = c\^s(x) for x \leq s(t1).

If t > t2, then \^s(t) \geq \^s(t2) and c\^s(\^s(t)) - \~c(\^s(t)) =
\int \^s(t2)

\^s(t1)

\bigl( 
c\^sx(z) - 1

\bigr) 
dz > 0. Thus

the first term in (A.7) is positive.
If t1 \leq t \leq t2, Lemmas A.5 and A.7 imply that \^s(t1) \leq \~s(t) \leq \^s(t) \leq \^s(t2).

Furthermore, since \~cx(z) = 1 for every \^s(t1) < z < \^s(t2), \~s(t) - \~c(\~s(t)) = \^s(t) - \~c(\^s(t)).
Thus, by the definition of t2, \~s(t)  - \~c(\~s(t))  - \^s(t) + c\^s (\^s(t)) =  - \~c(\^s(t)) + c\^s (\^s(t)) =

c\^s (\^s(t)) - c\^s (\^s(t1)) - \~c(\^s(t)) + \~c(\^s(t1)) =
\int \^s(t)

\^s(t1)

\bigl( 
c\^sx(z) - 1

\bigr) 
\geq 0. This implies that the

second term in (A.7) is nonnegative, and P (\~c) > P
\bigl( 
c\^s
\bigr) 
.

Thus, from Proposition 3.3, for c\~s defined in Definition 3.2 corresponding to \~s,
P
\bigl( 
c\~s
\bigr) 
> P

\bigl( 
c\^s
\bigr) 
, which contradicts the optimality of \^s and shows that c\^sx (\^s(t1)) \leq 1.

The next lemma represents ucs(s(t)), or, equivalently, cs(s(t)) as an integral with
respect to t. Such a representation is key to the identification of the optimal contract
in the main result Theorem 4.2.

Lemma A.8. Let cs be the canonical contract in Definition 3.2 for some admis-
sible revenue s \in S, and let y(t) = s(t)/t. Then the corresponding utility ucs(t) =

cs(ty(t))  - f(t, y(t)) satisfies ducs (t)
dt = y(t)

t fy(t, y(t))  - ft(t, y(t)) almost everywhere,

and ucs(t) - ucs(0) =
\int t

0
(y(v)v fy(v, y(v)) - ft(v, y(v)))dv.

Proof. Let t0 = inf\{ t : s(t) > 0\} . For 0 \leq t < t0, u
cs(t) = cs(0)  - f(t, 0) =
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 - f(t, 0) and is differentiable, with ucs

t (t) =  - ft(t, 0). For t > t0 and h > 0,

ucs(t+ h) - ucs(t)

h

=
cs((t+ h)y(t+ h)) - cs(ty(t)) - f(t, (t+ h)y(t+ h)/t) + f(t, y(t))

h

+
f(t, (t+ h)y(t+ h)/t) - f(t+ h, y(t+ h))

h

\leq f (t, (t+ h)y(t+ h)/t) - f(t+ h, y(t+ h))

h

=
f(t, (t+h)y(t+h)

t ) - f(t, y(t+ h))

hy(t+ h)/t

y(t+ h)

t
+

f(t, y(t+ h)) - f(t+ h, y(t+ h))

h
,

following from the optimality of y(t). Similarly, the optimality of y(t+h) implies that

ucs(t+ h) - ucs(t)

h
\geq f(t, y(t)) - f (t+ h, ty(t)/(t+ h))

h

=
f(t, y(t)) - f(t+ h, y(t))

h
+

f (t+ h, y(t)) - f (t+ h, ty(t)/(t+ h))

hy(t)/(t+ h)

y(t)

t+ h
,

and for h < 0 the reverse inequalities hold.
Because f(0, t) and fy are nonincreasing in t by Assumption 2.3(iii), it follows

that f(t1, y) \geq f(t2, y) for any y \geq 0 if t1 \leq t2, and ft \leq 0. Thus u is an increasing
function by (10). Furthermore, the following hold.

(i) If s is continuous at t, because fy, ft is continuous, both the lower and upper

bounds converge as h goes to 0, and ducs (t)
dt = y(t)

t fy(t, y(t)) - ft(t, y(t)).

(ii) If s is discontinuous at t, since y(t) is finite, lim suph\uparrow 0
ucs (t+h) - ucs (t)

h =
y(t)
t fy(t, y(t))  - ft(t, y(t)) < \infty and lim suph\downarrow 0

ucs (t+h) - ucs (t)
h \leq y(t)

t fy(t, y(t+))  - 
ft(t, y(t+)) < \infty , which implies that u is continuous at t.

Finally, since s \in S, y(t) converges to 0 as t decreases from Lemma A.5. Therefore,
limt\rightarrow 0 u

cs(t) = limt\rightarrow 0 (c
s(s(t)) - f(t, y(t))) = cs(0)  - f(0, 0) = ucs(0), and u is

continuous at t = 0.
Thus u is continuous at every t \geq 0 and is differentiable except for countably many

points (where s is discontinuous). Furthermore, since u is increasing, its derivative

is integrable. Then, Theorem 6.27 in [12] yields ucs(t)  - ucs(0) =
\int t

0
ducs (v)

dv dv =\int t

0
(y(v)v fy(v, y(v)) - ft(v, y(v)))dv.

Proof of Theorem 4.2. Without loss of generality, assume that m(t) > 0 and
M(t) > 0 for every t \geq 0; otherwise t is not relevant for the optimal contract.

(i) First, from Lemma A.8, for every cs, the individual utility function with gross

income s is ucs(t) =
\int t

0
s(v)
v2 fy(

s(v)
v )dv + ucs(0). Because ucs(0) =  - f(0),

(A.8) cs(s(t)) =

\int t

0

s(v)

v2
fy

\biggl( 
s(v)

v

\biggr) 
dv + f

\biggl( 
s(t)

t

\biggr) 
 - f(0).

Then, by Fubini's theorem, the problem of profits maximization can be written as
maxs\in S P (cs) = maxs\in S

\int \infty 
0

(s(t) - cs(s(t)))m(t)dt = maxs\in S

\int \infty 
0

g (t, s(t)) dt+ f(0).
Because yfy and f are convex, g(t, s) is concave in s. Furthermore, since fy(\infty ) =

\infty , for every t > 0, g(t,\infty ) =  - \infty < g(t, 0) =  - f(0)m(t), which implies that the
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maximizer of g(t, s) is finite. Let \^s(t) = inf\{ s \geq 0 : s is a maximizer of g(t, \cdot )\} , which,
by the continuity of g, is also a maximizer g(t, \cdot ).

Now, because \^s(0) = 0, in order to prove that \^s solves (3.3), it suffices to show
that \^s is nondecreasing and that \^s(t)/t converges to 0 as t decreases to 0.

Suppose for some t2 > t1 > 0 such that M(t2) > 0, 0 \leq \^s(t2) < \^s(t1). Then,
\^s(t2)/t2 < \^s(t1)/t1 and \epsilon /t2 < \epsilon /t1 for any \epsilon > 0. Since yfy is convex and f is strictly
convex in y, and M(t)/(m(t)t) is decreasing in t, for a sufficiently small \epsilon > 0,

f

\biggl( 
\^s(t2) + \epsilon 

t2

\biggr) 
 - f

\biggl( 
\^s(t2)

t2

\biggr) 
+

\biggl( 
\^s(t2) + \epsilon 

t2
fy

\biggl( 
\^s(t2) + \epsilon 

t2

\biggr) 
 - \^s(t2)

t2
fy

\biggl( 
\^s(t2)

t2

\biggr) \biggr) 
M(t2)

m(t2)t2

< f

\biggl( 
\^s(t1)

t1

\biggr) 
 - f

\biggl( 
\^s(t1) - \epsilon 

t1

\biggr) 
+

\biggl( 
\^s(t1)

t1
fy

\biggl( 
\^s(t1)

t1

\biggr) 
 - \^s(t1) - \epsilon 

t1
fy

\biggl( 
\^s(t1) - \epsilon 

t1

\biggr) \biggr) 
M(t1)

m(t1)t1
.

On the other hand, since \^s(t1) is the smallest maximizer of g(t1, \cdot ), g(t1, \^s(t1)) >
g(t1, \^s(t1) - \epsilon ), which implies that

f

\biggl( 
\^s(t1)

t1

\biggr) 
 - f

\biggl( 
\^s(t1) - \epsilon 

t1

\biggr) 
+

\biggl( 
\^s(t1)

t1
fy

\biggl( 
\^s(t1)

t1

\biggr) 
 - \^s(t1) - \epsilon 

t1
fy

\biggl( 
\^s(t1) + \epsilon 

t1

\biggr) \biggr) 
M(t1)

m(t1)t1
< \epsilon ,

and g(t2, \^s(t2)) - g(t2, \^s(t2) + \epsilon )

= - \epsilon + f

\biggl( 
\^s(t2) + \epsilon 

t2

\biggr) 
 - f

\biggl( 
\^s(t2)

t2

\biggr) 
+

\biggl( 
\^s(t2) + \epsilon 

t2
fy

\biggl( 
\^s(t2) + \epsilon 

t2

\biggr) 
 - \^s(t2)

t2
fy

\biggl( 
\^s(t2)

t2

\biggr) \biggr) 
M(t2)

m(t2)t2

< - \epsilon + f

\biggl( 
\^s(t1)

t1

\biggr) 
 - f

\biggl( 
\^s(t1) - \epsilon 

t1

\biggr) 
+

\biggl( 
\^s(t1)

t1
fy

\biggl( 
\^s(t1)

t1

\biggr) 
 - \^s(t1) - \epsilon 

t1
fy

\biggl( 
\^s(t1) - \epsilon 

t1

\biggr) \biggr) 
M(t1)

m(t1)t1
,

which is less than 0, contradicting the optimality of \^s(t2), and therefore \^s(t2) \geq \^s(t1).
Furthermore, similar to the proof of Lemma A.5, \^s(t) \rightarrow 0 as t \rightarrow 0. Otherwise if

\^s(t) \geq \epsilon > 0 for every t, then g(t, \^s(t)) decreases to  - \infty , which contradicts that \^s(t) is
the maximizer for g(t, \cdot ) with sufficiently small t. Then suppose \^y(t) = \^s(t)/t \geq \epsilon > 0
for every t, since M(t)/(m(t)t) decreases in t, and f is strictly increasing and convex;

lim
t\rightarrow 0

g(t, \^s(t)) = lim
t\rightarrow 0

\biggl( 
(\^s(t) - f(\^y(t)))m(t) - M(t)

\^y(t)

t
fy(\^y(t))

\biggr) 
\leq lim

t\rightarrow 0

\biggl( 
(\^s(t) - f(\epsilon ))m(t) - M(t)

\epsilon 

t
fy(\epsilon )

\biggr) 
<  - f(\epsilon )m(0) <  - f(0)m(0).

On the other hand, \^s(t) being the smallest maximizer of g(t, \cdot ) on [0,\infty ] implies that
limt\rightarrow 0 g(t, \^s(t)) \geq limt\rightarrow 0 g(t, 0) = limt\rightarrow 0  - f (0)m(t) =  - f(0)m(0). This contradic-
tion implies that \^y(t) converges to 0.

(ii) Since f is twice differentiable, g is differentiable in s. Then g(t, s) being
concave in s implies that for any t > 0, if gs(t, 0) > 0, then all maximizers of g(t, \cdot )
are solutions to gs =

\bigl( 
1 - 1

t fy
\bigl( 
s
t

\bigr) \bigr) 
m(t)  - 

\bigl( 
s
t fyy

\bigl( 
s
t

\bigr) 
+ fy

\bigl( 
s
t

\bigr) \bigr) M(t)
t2 = 0. By the

continuity of g, \^s(t) = inf\{ s : gs(t, s) = 0\} is the smallest maximizer.
If gs(t, 0) \leq 0, then for any s \geq 0, gs(t, s) \leq 0, and \^s(t) = 0 maximizes g(t, \cdot ).

According to part (i), \^s(t) is the solution to (3.3).

Proof of Lemma 6.1. Proposition 3.1 implies that, without reservation utility, for
any c \in C, the agents only choose to produce where c coincides with its nondecreasing
envelope c\ast ; hence their behavior under the constraint on reservation utility R is also
the same under these two contracts. Similarly, with \~c = min(c, x), agents who choose
to produce at x where c = \~c make the same choice under the latter without the
constraint and thus behave in the same way with the constraint. Otherwise they
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may choose differently under c and \~c under the constraint, with the former providing
nonpositive profits and the latter nonnegative profits. Thus \~c generates larger profits.

Lemma A.9. Let c \in \~C. The corresponding utility uc is right-continuous and
nondecreasing in t and is strictly increasing if yc(t) > 0.

Proof. Suppose that the utility from the optimal effort satisfies uc(t2) < uc(t1) for
t1 < t2. Assumption 2.3 implies that c(t2y

c(t2))  - f (t2, y
c(t2)) = uc(t2) < uc(t1) =

c(t1y
c(t1))  - f (t1, y

c(t1)) \leq c(t1y
c(t1))  - f (t2, t1y

c(t1)/t2), which contradicts the
optimality of s(t2) for agents with skill t2. Thus, uc is nondecreasing in t for every
c \in \~C. uc is strictly increasing at t where yc(t) > 0, following a similar argument.

To establish right-continuity, suppose by contradiction that uc is not right-
continuous at some t. Since c is right-continuous in revenue, and f is continuous
in both arguments, s(t) < infv>t s(v) = \=s. Let infv>t u

c(v)  - uc(t) = \epsilon . Then by
the continuity of f , there exists t\prime greater than and sufficiently close to t, such that
c(\=s)  - f(t\prime , \=s/t\prime )  - (c(\=s)  - f(t, \=s/t)) < \epsilon /2. On the other hand, because s(v) con-
verges to \=s for v \downarrow t, t\prime can also be chosen to be sufficiently close to t, such that
c(\=s)  - f(t\prime , \=s/t\prime ) > uc(t\prime )  - \epsilon /2. Thus c(\=s)  - f (t, \=s/t) > uc(t\prime )  - \epsilon > uc(t), which
contradicts the optimality of yc(t) = s(t)/t for agents with skill t.

Proof of Lemma 6.2. For any contract c \in \~C and its unconstrained revenue s \in S,
the agents' utility uc is increasing and right-continuous by Lemma A.9. Thus, with
the constraint that the reservation utility R is a two-step function, the constrained
revenue sR satisfies

sR(t) =

\left\{         
0 if t < t0,

s(t) if t0 \leq t < t1,

0 if t1 \leq t < t1,

s(t) if t1 \leq t,

where t0 = min\{ t : uc(t) \geq R0\} and t1 = min\{ t : uc(t) \geq R1\} . The minimum exists
by the right-continuity of uc.

Proof of Lemma 6.5. (i) Let g1(t1) > R1, and denote the unconstrained revenue

induced by c and cs
R,R as s and \~s, respectively. Then Lemma A.10 implies that s and

\~s coincide at t \in [t0, t1)\cup [t1,\infty ). Since g1(t1) > R1, t
\ast 
1 = t1, and by the construction

of cs
R,R and Proposition 3.1(ii), \~s(t) = \=s0 for t1 \leq t < t1. Similarly, \=s0 \leq s(t) \leq sR(t1)

for t1 \leq t < t1. Since by construction ucs
R,R

(t0) = R0, c(s
R(t0)) \geq cs

R,R(sR(t0)), and

Lemma A.6 and the continuity of cs
R,R imply that c(\=s0) \geq cs

R,R(\=s0). Thus, from the

optimality of s(t), uc(t) \geq c(\=s0) - f(t, \=s0/t) \geq cs
R,R(\=s0) - f(t, \=s0/t) = ucs

R,R

(t). Since

in this case ucs
R,R

(t1) > R1, and under cs
R,R t1-agents are indifferent between \=s0 and

sR(t1), there exists t \in [t1, t1) and sufficiently close to t1 such that ucs
R,R

(t) > R1.
Then uc(t) > R1, which contradicts that sR is the constrained revenue under c.

(ii) Similar to (i), under cs
R,R, \~s(t) = \=s0 for every t \geq t1, and uc(t) \geq ucs

R,R

(t) =

cs
R,R(\=s0)  - f (t, \=s0/t). Since t1 = \infty , uc(t) < R1 for every t \geq t1, which implies

that cs
R,R(\=s0) - f (t, \=s0/t) < R1, and since f(t, \=s0/t) is decreasing in t, it follows that

cs
R,R(\=s0) - limt\rightarrow \infty f(t, \=s0/t) \leq R1.

Proof of Proposition 6.6. (i) Lemma A.10 implies that cs
R,R induces the same

revenue sR at t \in [0, t1) \cup [t1,\infty ), without the participation constraint. It suffices to

show that \chi (cs
R,R) = [t0, t1) \cup [t1,\infty ).
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In Case (i) of Definition 6.4, if t1 < \infty , then ucs
R,R

(t1) = R1, and Lemma A.9

implies that \chi (cs
R,R) = [t1,\infty ). Thus the constrained revenue under cs

R,R coincides

with sR. Similarly, in Case (ii), ucs
R,R

(t0) = R0, and according to Lemma 6.5(ii),

ucs
R,R

(t) < R1 for t \geq t1. Thus \chi (cs
R,R) = [t0, t1). For Case (iv), by definition

ucs
R,R

(t1) = R1. On the other hand,

ucs
R,R

(t0) = d+

\int sR(t0)

0

1

t0
fy

\biggl( 
t0,

z

t0

\biggr) 
dz  - f

\biggl( 
t0,

sR(t0)

t0

\biggr) 
= R1 - 

\int sR(t1)

0

cs
R,R

x (z)dz+f

\biggl( 
t1,

sR(t1)

t1

\biggr) 
+

\int sR(t0)

0

1

t0
fy

\biggl( 
t0,

z

t0

\biggr) 
dz - f

\biggl( 
t0,

sR(t0)

t0

\biggr) 
>

\int sR(t0)

0

1

t\ast 0
fy

\biggl( 
t\ast 0,

z

t\ast 0

\biggr) 
dz +

\int \=s0

sR(t0)

1

tRz
fy

\biggl( 
tRz ,

z

tRz

\biggr) 
dz +

\int sR(t1)

\=s0

1

t1
fy

\biggl( 
t1,

z

t1

\biggr) 
dz

 - 
\int sR(t1)

sR(t0)

cs
R,R

x (z)dz  - f

\biggl( 
t0,

sR(t0)

t0

\biggr) 
=

\int sR(t0)

0

1

t\ast 0
fy

\biggl( 
t\ast 0,

z

t\ast 0

\biggr) 
dz  - f

\biggl( 
t0,

sR(t0)

t0

\biggr) 
,

which equals R0, and based on the marginal compensation, the optimal effort for

agents with skill t < t0 is 0. Thus, similar to Cases (ii) and (iii), \chi (cs
R,R) = [t0, t1) \cup 

[t1,\infty ). For Case (iii), if t1 > t1, u
cs

R,R

(t1) = R1, then the argument is the same as

above, and the constrained revenue under cs
R,R coincides with sR. Otherwise t1 = t1

and ucs
R,R

(t1) \geq R1. Thus \chi (c
sR,R) = [t0, t1) \cup [t1,\infty ).

For the comparison between PR(c) and PR(cs
R,R), it suffices to show that for

every t \in [t0, t1)\cup [t1,\infty ), c(sR(t)) \geq cs
R,R(sR(t)). In Case (i) of Definition 6.4, since

ucs
R,R

(t1) = R1, the constraint implies that c(sR(t1)) \geq cs
R,R(sR(t1)). Lemma A.6

implies that for any t \in [t1,\infty ), c(sR(t)) \geq cs
R,R(sR(t)). Case (ii) follows from a

similar argument, replacing t1 with t0.

In Case (iii), since ucs
R,R

(t0) = R0, t0 \leq t < t1 follows from arguments sim-

ilar to those above. If t1 = t1, the continuity of cs
R,R and Lemma A.6 imply

that cs
R,R(sR(t1))  - cs

R,R(sR(t0)) \geq c(sR(t1))  - c(sR(t0)), whence cs
R,R(sR(t1)) \geq 

c(sR(t1)). If t1 > t1, the definition of cs
R,R and Lemma 6.5 imply that ucs

R,R

(t1) =

R1, and thus c(sR(t1)) \geq cs
R,R(sR(t1)). Then Lemma A.6 implies that for every

t \geq t1, c(s
R(t)) \geq cs

R,R(sR(t)).

In Case (iv), since ucs
R,R

(t1) = R1, the argument for t \geq t1 is the same as for

t0 \leq t < t1 in Case (iii). For t0 \leq t < t1, notice that c(sR(t1)) \geq cs
R,R(sR(t1)).

Furthermore, c(sR(t1)) - c(\=s0) \leq f(t1,
sR(t1)

t1
) - f(t1,

\=s0
t1
) = cs

R,R(sR(t1)) - cs
R,R(\=s0);

otherwise there would exist some t sufficiently close to t1, such that c(sR(t1))  - 
c(sR(t)) > f(t,

sR(t1)
t )  - f(t, sR(t)

t ), which contradicts the optimality of sR(t) under

c. Thus c(\=s0) \geq cs
R,R(\=s0). Finally, c must be left-continuous at \=s0; otherwise there

would exist t less than and sufficiently close to t1, such that the t-agent prefers to
produce \=s0 to sR(t) due to the jump in c, which contradicts the optimality of sR(t).

Then Lemma A.11 implies that c(sR(t)) \geq cs
R,R(sR(t)) for every t0 \leq t \leq t1.

(ii) From (i), it is sufficient for the principal to focus on cs
R,R, where sR is

the constrained revenue generated by some c \in \~C. According to Lemma 6.5, such
sRs must satisfy the first two properties in the definition of \^S2. Also, Case (iv) in
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Definition 6.4 means that in order to induce sR, the most economic contract for the

principal is cs
R,R /\in \~C, and thus is suboptimal. Therefore, the principal can focus

on \^S2, which excludes this case, and maxc\in C PR(c) = maxsR\in \^S2

\int 
[t0,t1)\cup [t1,\infty )

(sR(t) - 
cs

R,R(sR(t)))m(t)dt.

For sR \in \^S2, Lemma A.8 implies that for every t \in (t0, t1) \cup (t1,\infty ), ducs (t)
dt =

sR(t)
t2 fy(t,

sR(t)
t )  - ft(t,

sR(t)
t ). Since ucs

R,R

(t0) = R0, for t \in [t0, t1), c
sR,R(sR(t)) =

f(t, sR(t)
t ) + R0 +

\int t

t0
( s

R(v)
v2 fy(v,

sR(v)
v )  - ft(v,

sR(v)
v ))dv. If t1 > t1, u

cs
R,R

(t1) = R1,

and if t1 = t1, u
cs

R,R

(t1) = R0 +
\int t1
t0
( s

R(v)
v2 fy(v,

sR(v)
v )  - ft(v,

sR(v)
v ))dv. Thus for

t \in [t1,\infty ), cs
R,R(sR(t)) = f(t, sR(t)

t ) +
\int t

t1
( s

R(v)
v2 fy(v,

sR(v)
v ) - ft(v,

sR(v)
v ))dv + \~R1,\int 

[t0,t1]\cup [t1,\infty )

\Bigl( 
sR(t) - cs

R,R(sR(t))
\Bigr) 
m(t)dt

=

\int t1

t0

h(t0, t)m(t)dt+

\int \infty 

t1

h(t1, t)m(t)dt - R0(M(t0) - M(t1)) - \~R1M(t1).

Lemma A.10. Up to countably many points, cs
R,R induces the same revenue as

sR at t \in [t0, t1) \cup [t1,\infty ) and M(t) > 0, without participation constraint.

Proof. The proof is similar to that of Proposition 3.3, by comparing the marginal
compensation and marginal disutility, and we omit the details here.

Lemma A.11. If a contract c \in \~C induces the constrained revenue sR, then for

any t0 \leq t < \=t < t1, c(s
R(\=t)) - c(sR(t)) = cs

R,R(sR(\=t)) - cs
R,R(sR(t)).

Proof. If cs
R,R

x is not integrable, Lemma A.6 implies that c also explodes, which
contradicts that c \in \~C. Thus, without loss of generality, in the following assume that

cs
R,R

x is integrable. Also, without loss of generality, assume t > t0, and the conclusion
for t0 follows from the right-continuity of c.

Let the collection of all discontinuity points of sR between t and \=t be T =
\{ t1, . . . , tK\} , where K could be \infty . For each ti \in T , let \=xi = inf\{ sR(t), t > ti\} 
and xi = sup\{ sR(t), t < ti\} , so that sR(ti) \in Di = [xi, \=xi]. Let D =

\bigcup K
i=1 Di.

The proof of Lemma A.6 shows that Di's only intersect at their end points, and

c(\=xi)  - c(xi) \geq 
\int \=xi

xi

1
ti
fy(ti,

z
ti
)dz = cs

R,R(\=xi)  - cs
R,R(xi) for every i. On the other

hand, if c(\=xi) - c(xi) >
\int \=xi

xi

1
ti
fy(ti,

u
ti
)du, since f is continuous, there must exist t < ti,

so that sR(t) is sufficiently close to xi, and c(\=xi) - c(sR(t)) >
\int \=xi

sR(t)
1
t fy

\bigl( 
t, u

t

\bigr) 
du, which

contradicts the optimality of sR(t) and implies that c(\=xi) - c(xi) =
\int \=xi

xi
cs

R,R
x (u)du.

Furthermore, for every n, rearrange t1, . . . , tn in ascending order, relabeling them
as tn1

< \cdot \cdot \cdot < tnn
. Let \=xn0

= sR(t) and xnn+1
= sR(\=t); then c(sR(\=t))  - c(sR(t)) =

limn\rightarrow \infty 
\sum n+1

i=1

\bigl( 
(c(xni

) - c(\=xni - 1
)) + (c(\=xni

) - c(xni
))
\bigr) 
.

Define a function \~c on [sR(t), sR(\=t)], with \~c(x) = c(x) for every x \in [sR(t), sR(\=t)]\setminus 
\cup \infty 
i=1[xi, \=xi). For any x \in [xi, \=xi), for some i, let \~c(x) = \~c(\=xi)  - 

\int \=xi

x
1
ti
fy(ti,

z
ti
)dz, so

that \~c(xi) = c(xi) and \~c is nondecreasing. Thus, \~c(sR(\=t))  - \~c(sR(t)) = c(sR(\=t))  - 
c(sR(t)) = limn\rightarrow \infty 

\sum n+1
i=1

\bigl( 
(\~c(xni

) - \~c(\=xni - 1
)) + (\~c(\=xni

) - \~c(xni
))
\bigr) 
. Focusing on \~c,

since it is nondecreasing, it is differentiable almost everywhere. For each z \in (xi, \=xi),

for some i, \~cx(z) =
1
ti
fy(ti,

z
ti
) = cs

R,R
x (z). For z \in [sR(t), sR(\=t)] \setminus D, z = sR(t) for

some t, and there are two cases to discuss.
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If sR is strictly increasing at t, then for any h > 0, if z  - h = sR(t\prime ) for some

t\prime , then the optimality of sR(t) under c implies that \~c(z) - \~c(z - h)
h = c(z) - c(z - h)

h \geq 
1
t

f(t, zt ) - f(t, z - h
t )

h
t

. Otherwise z  - h \in Di for some i, and the definition of \~c implies

\~c(z) - \~c(z  - h)

h
=

c(z) - c(\=xi) + \~c(\=xi) - \~c(z  - h)

h

\geq 
f(t, z

t ) - f(t, \=xi

t ) + f(ti,
\=xi

ti
) - f(ti,

z - h
ti

)

h
\geq 1

t

f(t, z
t ) - f(t, z - h

t )

h/t
,

where the second inequality follows from the fact that fy is nonincreasing in t. Let h
go to 0, and it follows that \~cx(z - ) \geq 1

t fy
\bigl( 
t, z

t

\bigr) 
.

For the upper bound, if z  - h = sR(t\prime ) for some t\prime , then from the optimality of

z  - h for t\prime -agents, c\prime (z) - c\prime (z - h)
h \leq 1

t\prime 
f(t\prime ,z/t\prime ) - f(t\prime ,(z - h)/t\prime )

h/t\prime . If z  - h \in Di, then

\~c(z) - \~c(z  - h)

h
=

c(z) - c(sR(ti)) + \~c(sR(ti)) - \~c(z  - h)

h

\leq 
f
\Bigl( 
ti,

z
ti

\Bigr) 
 - f

\Bigl( 
ti,

sR(ti)
ti

\Bigr) 
+ f

\Bigl( 
ti,

sR(ti)
ti

\Bigr) 
 - f

\Bigl( 
ti,

z - h
ti

\Bigr) 
h

=
f
\Bigl( 
ti,

z
ti

\Bigr) 
 - f

\Bigl( 
ti,

z - h
ti

\Bigr) 
h

,

where the inequality follows from the optimality of sR(ti) under c, and from that
both sR(ti) and z  - h \in Di. Since, as h decreases to 0, both t\prime and ti converge
to t, \~cx(z - ) \leq 1

t fy
\bigl( 
t, z

t

\bigr) 
, and thus equality holds. A similar argument shows that

\~cx(z+) = 1
t fy

\bigl( 
t, z

t

\bigr) 
, and therefore \~c is differentiable at z, with \~cx(z) = cs

R,R
x (z).

Finally, if z /\in D and sR is not strictly increasing at z, then t\ast > t\ast , where
t\ast = inf\{ t : sR(t) > z\} and t\ast = sup\{ t : sR(t) < z\} . Following the same argument as
above, for every t\ast < t < t\ast , 1

t fy
\bigl( 
t, z

t

\bigr) 
\leq \~cx(z - ) \leq 1

t\ast 
fy(t\ast ,

z
t\ast 
), which implies that

\~cx(z - ) = 1
t\ast 
fy(t\ast ,

z
t\ast 
). Similarly, \~cx(z+) = 1

t\ast fy
\bigl( 
t\ast , z

t\ast 

\bigr) 
. Thus, \~c is not differentiable

at z, and the latter belongs to a set of Lebesgue measure 0.
In terms of the continuity of \~c, it is continuous at each \=xi by construction, because

c is right-continuous, and also at every z \in [sR(t), sR(\=t)] \setminus D, because its right and
left derivatives exist and are finite. Furthermore, for each xi, it suffices to check the
case that xi \not = \=xj for any j \not = i. By construction, \~c is right-continuous at xi. Suppose
there exists some i such that limx\uparrow xi

\~c(x) < \~c(xi); then limx\uparrow xi
c(x) < c(xi) = \~c(xi).

Choose \~x sufficiently close to xi, so that f(ti,
xi

ti
) - f(ti,

\~x
ti
) < (c(xi) - limx\uparrow xi

c(x))/2.

Since f is continuous, there exists \~t < ti such that for every \~t \leq t < ti and every
\~x \leq u < xi, f (t, xi/t) - f (t, u/t) < c(xi) - limx\uparrow xi

c(x) \leq c(xi) - c(u), which implies

that sR(t) /\in [\~u, xi). This is a contradiction to the definition of xi.

To summarize, \~c is continuous on [sR(t), sR(\=t)], and \~cx = cs
R,R

x almost everywhere,
which is integrable. From Theorem 6.27 in [12], c(sR(\=t))  - c(sR(t)) = \~c(sR(\=t))  - 
\~c(sR(t)) =

\int sR(\=t)

sR(t)
cs

R,R
x (z)dz = cs

R,R(sR(\=t)) - cs
R,R(sR(t)).

Acknowledgments. For helpful comments, we thank Jak\v sa Cvitanic, Kasper
Larsen, and seminar participants at Rutgers University, Bachelier Colloquium in
Metabief, Tianfu workshop in Financial Mathematics at SWUFE, and the Mathe-
matical Economics and Finance conference at the University of Manchester. We are
especially grateful to two anonymous referees, whose stimulating observations led to
significant improvements in the paper.

D
ow

nl
oa

de
d 

05
/0

8/
21

 to
 8

0.
11

1.
22

3.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARING PROFITS IN THE SHARING ECONOMY 3585

REFERENCES

[1] C. Alasseur, I. Ekeland, R. \'Elie, N. Hern\'andez Santib\'a\~nez, and D. Possama\"{\i}, An adverse
selection approach to power pricing, SIAM J. Control Optim., 58 (2020), pp. 686--713,
https://doi.org/10.1137/19M1260578.

[2] D. P. Baron and B. Holmstr\"om, The investment banking contract for new issues under
asymmetric information: Delegation and the incentive problem, J. Finance, 35 (1980),
pp. 1115--1138.

[3] P. Bolton and M. Dewatripont, Contract Theory, MIT Press, Cambridge, MA, 2005.
[4] X. Cheng, C. Dale, and J. Liu, Statistics and social network of YouTube videos, in Proceed-

ings of the 16th International Workshop on Quality of Service, IEEE, Washington, DC,
2008, pp. 229--238.

[5] J. Cvitanic and J. Hugonnier, Optimal Fund Menus, CEPR Discussion Paper DP13127,
Centre for Economic Policy Research, London, UK, 2018.

[6] J. Cvitanic and J. Zhang, Contract Theory in Continuous-Time Models, Springer, Berlin,
2013.

[7] M. N. Darrough and N. M. Stoughton, Moral hazard and adverse selection: The question
of financial structure, J. Finance, 41 (1986), pp. 501--513.

[8] P. Diamond and E. Saez, The case for a progressive tax: From basic research to policy
recommendations, J. Econom. Perspectives, 25 (2011), pp. 165--90.

[9] O. El Euch, T. Mastrolia, M. Rosenbaum, and N. Touzi, Optimal Make-Take Fees for
Market Making Regulation, Tech. report, 2018, https://doi.org/10.2139/ssrn.3174933.

[10] R. Elie, T. Mastrolia, and D. Possama\"{\i}, A tale of a principal and many, many agents,
Math. Oper. Res., 44 (2019), pp. 377--766, https://doi.org/10.1287/moor.2018.0931.

[11] M. Golosov, A. Tsyvinski, and I. Werning, New dynamic public finance: A user's guide,
in NBER Macroeconomics Annual 2006, NBER Macroenonomics Annual 21, MIT Press,
Cambridge, MA, 2007, pp. 317--388.

[12] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math. 4,
AMS, Providence, RI, 1994.

[13] R. Guesnerie and J.-J. Laffont, A complete solution to a class of principal-agent problems
with an application to the control of a self-managed firm, J. Public Econom., 25 (1984),
pp. 329--369.

[14] B. Jullien, Participation constraints in adverse selection models, J. Econom. Theory, 93
(2000), pp. 1--47.

[15] T. R. Lewis and D. E. Sappington, Countervailing incentives in agency problems, J. Econom.
Theory, 49 (1989), pp. 294--313.

[16] S. Lollivier and J.-C. Rochet, Bunching and second-order conditions: A note on optimal
tax theory, J. Econom. Theory, 31 (1983), pp. 392--400.

[17] G. Maggi and A. Rodriguez-Clare, On countervailing incentives, J. Econom. Theory, 66
(1995), pp. 238--263.

[18] N. G. Mankiw, M. Weinzierl, and D. Yagan, Optimal taxation in theory and practice, J.
Econom. Perspectives, 23 (2009), pp. 147--74.

[19] J. A. Mirrlees, An exploration in the theory of optimum income taxation, Rev. Econom.
Stud., 38 (1971), pp. 175--208.

[20] E. Saez, Using elasticities to derive optimal income tax rates, Rev. Econom. Stud., 68 (2001),
pp. 205--229.

[21] J. A. Weymark, Bunching properties of optimal nonlinear income taxes, Soc. Choice Welf., 3
(1986), pp. 213--232.

D
ow

nl
oa

de
d 

05
/0

8/
21

 to
 8

0.
11

1.
22

3.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1260578
https://doi.org/10.2139/ssrn.3174933
https://doi.org/10.1287/moor.2018.0931

	Introduction
	Model
	Necessary conditions and canonical contracts
	Optimal contracts
	Application: Pareto skill with linear-power costs
	Power costs and affine optimal contracts
	Linear-power costs

	High-low reservation utilities and countervailing effects
	Conclusion
	Appendix A. Proofs
	Acknowledgments
	References

