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1 Introduction

There are several reasons why the formulation and study of 4-dimensional higher Chern-
Simons (CS) theory is an interesting and worthwhile endeavour. Some have to do with
physics, other with mathematics.

4-dimensional BF theory is an instance of 4-dimensional CS theory. Though as a
topological quantum field theory (TQFT) it involves no metric and possesses no local
degrees of freedom, it yields however general relativity when the basic fields are suitably
expressed in terms of or related to metric data. This has been done in two independent
ways [1, 2] which differ by the choice of the gauge group. A 4-dimensional gravitational
CS model was worked out in ref. [3] by Kaluza-Klein compactification of a 5-dimensional
(anti) de Sitter gravitational CS model. Specific instances of 4-dimensional CS theory have
appeared as topological sectors of CS modified gravity [4, 5] and string based cosmological
models [6] describing axion-like fields and their coupling to gauge fields.

In refs. [7–10] the three types of solutions of the Yang-Baxter equation, rational,
trigonometric and elliptic, and their properties were obtained from a 4-dimensional CS
model compactified down to 2 dimensions. The model is defined on a 4-fold of the form
ΣˆC, where Σ is a 2-fold and C is a Riemann surface, and involves a background meromor-
phic (1,0)-form on C. So, it is only partially topological, the 4-dimensional diffeomorphism
symmetry being broken to the 2-dimensional one.

There exist two main quite different approaches to the construction of CS type TQFTs:
the algebraic-topological approach and the differential-geometrical approach. These frame-
works are related. It is possible to identify a TQFT defined in the former combinatorial
approach and another TQFT defined in the latter continuum one if the partition func-
tions of these TQFTs can be proven to be equal for appropriate assignments of input data.
This correspondence is well understood in three dimensions. The Turaev-Viro-Barrett-
Westbury model [11, 12] is a combinatorial model of 3-dimensional quantum gravity with
cosmological constant known to be equivalent to 3-dimensional BF theory with cosmo-
logical term [13–15] when their underlying Lie groups are the same and the quantum
group parameter and cosmological constant are properly related. The Reshetikhin-Turaev
model [16] is a 3-dimensional combinatorial TQFT believed to be equivalent 3-dimensional
CS TQFT [17, 18] under similar conditions. The Dijkgraaf-Witten model [19] is another
combinatorial TQFT that can be related to a 3-dimensional Abelian BF theory (being in
fact viewable as a special case of a general Turaev-Viro-Barrett-Westbury construction).
The correspondence is not as well understood in its details in four dimensions. The 4-
dimensional counterpart of the Turaev-Viro-Barrett-Westbury model is the Crane-Yetter-
Broda model [20–22], which is identified with 4-dimensional BF theory with cosmological
term for equal underlying Lie groups and related parameters [23]. Likewise the Yetter
model [24], a 4-dimensional higher analogue of the Dijkgraaf-Witten model, can be related
to a 4-dimensional Abelian BF theory. All 4-dimensional geometrically defined continuum
TQFT mentioned above are again instances of 4-dimensional CS models.

At low energy, topologically ordered phases of matter are described by TQFTs. In
3-dimensional spacetime, many fractional quantum Hall states as well as lattice models
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such as Kitaev’s toric code model can be explained by suitable CS models [25–27]. In this
cases, fractional braiding statistics between quasiparticles emerges through the correlation
functions of a pair of Wilson loops forming a Hopf link. It is expected that fractional
braiding statistics has a 4-dimensional spacetime analog. Since particle-like excitations do
not braid and have only ordinary bosonic/fermionic statistics in this case, fractional statis-
tics can only arise from the braiding of either a point-like and a loop-like or two loop-like
excitations. This has been adequately described through BF type TQFTs [28–30] through
the correlation functions of Wilson loops and surfaces, pointing again to 4-dimensional
CS theory.

Wilson lines [31] are relevant in the study of confinement in quantum chromodynamics,
loop quantum gravity, symmetry breaking in string theory and, as we have just seen,
condensed matter physics. They depend on the topology of the underlying knots and, as
shown in Witten’s foundational work [17], they can be used to study knot topology in
3-dimensional CS theory using basic techniques of quantum field theory. CS correlators of
Wilson line operators provide knot and link invariants. The 4-dimensional counterpart of
Wilson lines, Wilson surfaces, are expected to be relevant in the analysis of non perturbative
features of higher form gauge theory and quantum gravity. They also should be a basic
element of any field theoretic approach to 4-dimensional 2-knot topology [32]. Based on
Witten’s paradigm, it should be possible to study surface knot topology in 4-dimensions
computing correlators of Wilson surfaces in an appropriate 4-dimensional version of CS
theory using again techniques of quantum field theory [33–38].

The holographic principle [39, 40] has emerged as one of the most far reaching theo-
retical ideas in the last two decades. The first known occurrence of holography in quantum
field theory is the correspondence discovered by Witten [17] between 3-dimensional CS
theory with gauge group G as the bulk field theory and the 2-dimensional Wess-Zumino-
Novikov-Witten (WZNW) model [41, 42] with target group G as the boundary field theory,
manifesting itself as an equivalence between the space of quantum states of the CS model
on a 2-fold S and the space of conformal blocks of the WZNWmodel on S. The holographic
principle has also allowed for an effective 3-dimensional CS description of edge states in
the fractional quantum Hall effect [43, 44]. Little is known, to the best of our knowledge
on the holographic features of 4-dimensional CS theory.

1.1 Outline of the paper

The above considerations support our claim that the study of 4-dimensional CS theory is a
worthy undertaking. In this paper, following the differential-geometric approach to TQFT,
we shall formulate a 4-dimensional CS theory as a certain kind of strict higher gauge theory.
In fact, as ordinary CS theory exists only in odd dimensional manifolds, 4-dimensional CS
theory must be necessarily built in the framework of higher gauge theory (see [45] for a
review). Such theory has been already considered in refs. [46–48] also in the semistrict
case on 4-folds without boundary. Here, we shall study it on 4-folds with boundary. As we
shall see, it is precisely in this case that the theory exhibits its most interesting holographic
features. Below, we outline briefly the construction of the 4-dimensional CS model we have
carried out.
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The higher gauge symmetry of our 4-dimensional CS model is encoded by a Lie group
crossed module. Various relevant topics of crossed module theory are discussed in section 2.
Here it is enough to recall that a Lie group crossed module M consists of two Lie groups
E, G together with a Lie group action µ : Gˆ E Ñ E of G on E by automorphisms and an
equivariant target map τ : E Ñ G satisfying a certain identity [49, 50].

On general grounds, in order to construct the kinetic term of the Lagrangian of a
field theory, a non singular bilinear pairing invariant under the symmetries of the theory
is required. In the 4-dimensional CS model, a crossed module M with invariant pairing
x¨, ¨y : g ˆ e Ñ R carries out this task. In fact, invariant pairings in higher gauge theory
play a role similar to that of invariant traces in ordinary one. An invariant pairing selects
further isotropic crossed submodules of M as a distinguished subclass of submodules. These
correspond to standard choices of linear boundary conditions for CS gauge fields and gauge
transformations.

In section 3, we introduce the formal set-up of derived Lie groups and algebras orig-
inally worked out in refs. [51, 52]. This is essentially a superfield formalism providing an
elegant and convenient way of handling certain structural elements of a Lie group crossed
module by organizing them as functions of a formal odd variable ᾱ P Rr´1s. The derived
Lie group DM of a crossed module M consists of superfields of the form Ppᾱq “ eᾱP p,
where p P G, P P er1s, with certain group operations determined by M. Its Lie algebra
Dm, the derived Lie algebra, consists similarly of superfields of the form Upᾱq “ u ` ᾱU ,
where u P g, U P er1s, with the associated Lie bracket.

The relevant fields of the 4-dimensional CS model are based on a 4-fold M . They
are crossed module valued inhomogeneous form fields. More formally, they are maps from
the shifted tangent bundle T r1sM of M into either the derived group DM or the derived
algebra Dm or a shifted version of this. They are thus representable as derived superfields,
functions of a formal odd variable α P Rr1s.

The derived superfield formalism is particularly suited for our 4-dimensional CS model
because of its compactness and capability of presenting it as an ordinary CS theory with
an exotic graded gauge group, the derived group. Indeed, by making evident the close rela-
tionship of higher to ordinary gauge theory, it allows importing many ideas and techniques
of the latter to the former. In particular, the gauge fields and the gauge transformations
of the 4-dimensional CS model can be treated in this fashion in the derived set-up.

In section 4, we present the 4-dimensional CS model as a strict higher gauge theoretic
model using the derived superfield formalism. In this way, if M is the gauge crossed module,
the gauge field of the model is a superfield of the form

Ωpαq “ ω ´ αΩ, (1.1)

where ω P MappT r1sM, gr1sq, Ω P MappT r1sM, er2sq. ω, Ω represent the usual 1- and
2-form components of a gauge 2-connection in higher gauge theory. The 4-dimensional CS
action reads as

CSpΩq “ k

4π

ż

T r1sM
%M

`

Ω, dΩ` 1
3 rΩ,Ωs

˘

, (1.2)

– 4 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

where k is a constant, p¨, ¨q is a certain degree 1 invariant pairing derived by the invariant
pairing x¨, ¨y, d is a special degree 1 nilpotent differential extending the de Rham differential
d and %M is the Berezinian of M . CS is formally identical to the 3-dimensional CS action.
It is 4-dimensional however because of the 1 unit of degree provided by the pairing p¨, ¨q.
CS can be expressed in components as

CSpω,Ωq “
k

2π

ż

T r1sM
%M

@

dω ` 1
2 rω, ωs ´

1
2 9τpΩq, Ω

D

´
k

4π

ż

T r1sBM
%BM xω,Ωy . (1.3)

This can be described as a generalized BF theory with boundary term and cosmological
term determined by the Lie differential 9τ of the target map τ of the crossed module M.

The higher gauge symmetry of the 4-dimensional CS model can also be described in
the derived set-up. Analogously to a gauge field, a gauge transformation is a superfield
expression of the form

Upαq “ eαU u, (1.4)

where u P MappT r1sM,Gq, U P MappT r1sM, er1sq. u, U represent the usual 0- and 1-form
components of a 1-gauge transformation in higher gauge theory. U acts on the higher gauge
field Ω as

ΩU “ Ad U´1pΩq `U´1dU. (1.5)

This gauge transformation action is formally identical to that of ordinary gauge theory, but
it yields when expressed explicitly in components the usual gauge transformation relations
of higher gauge theory.

In spite of the formal resemblance of 4- and 3-dimensional CS theory when the derived
formulation is used, the invariance properties of the higher CS model differ in several
important aspects from those of the ordinary CS one, especially in relation to the effect of
a boundary in the base manifold. Unlike its 3-dimensional counterpart, the 4-dimensional
CS action CS is fully gauge invariant if the 4-fold M has no boundary. When M does have
a boundary, the action is no longer invariant, but the gauge variation is just a boundary
term. The gauge invariance of the 4-dimensional theory depend therefore in a decisive way
on the kind of boundary conditions which are imposed on the gauge fields Ω and gauge
transformations U . These are discussed in section 4.

To quantize higher CS theory, proceeding as in the ordinary case, one should pre-
sumably allow for the broadest gauge symmetry leaving the Boltzmann weight exppiCSq
invariant possibly restricting the value of the CS level k as appropriate. On a 4-fold M

with no boundary, the theory is fully gauge invariant and so there are no restrictions on
either the gauge symmetry or the level. On a 4-fold M with boundary, one should impose
on the relevant higher gauge fields Ω and transformations U the weakest possible boundary
conditions capable of rendering the gauge variation an integer multiple of 2π. These are
also discussed in section 4. Depending also on crossed module M and the invariant pairing
x¨, ¨y, level quantization can occur.

In section 4, a canonical analysis a la Dirac of the 4-dimensional CS model is carried
out. The close relationship of the canonical formulations of 4- and 3-dimensional CS theory
is again especially evident in the derived framework. The results of the ordinary theory
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generalize to the higher one, but in a non trivial way. The Hamiltonian generators of
the gauge symmetry which through their weak vanishing define the physical phase space
of flat gauge fields of the theory are determined. They are first class only if appropriate
boundary conditions are obeyed by the gauge fields and the gauge transformations. It is
found that, depending again on these boundary conditions, there exist generically surface
charges obeying a non trivial Poisson bracket algebra. This is a higher counterpart of
the familiar WZNW current algebra arising in the corresponding canonical analysis of
3-dimensional CS model.

Gauge theories defined on manifolds with boundaries may exhibit emergent boundary
degrees of freedom called edge modes. In fact, boundaries normally break gauge invariance
transforming in this way gauge degrees of freedom into physical ones. In section 4, we
outline a canonical theory of the edge modes of 4-dimensional CS theory and their physical
symmetries, extending the corresponding analysis of the 3-dimensional theory [53–57].

In section 4, we finally show how the covariant Schroedinger quantization of 4-dimen-
sional CS theory can be carried out on the lines of the 3-dimensional case [58]. Among
other things, we obtain the higher analogue of the WZNW Ward identities obeyed by the
wave functionals and an expression of the higher WZNW action, which turns out to be
fully topological.

In section 5, we finally illustrate a few field theoretic models which are interesting
non trivial instances of 4-dimensional CS theory, in particular the toric and the Abelian
projection models.

1.2 Outlook

There remain to ascertain to what extent the 4-dimensional CS theory presented in this
paper is capable to reproduce various ‘disguised’ CS model that have appeared in the
literature and yield new interesting ones.

Our analysis of the edge sector of 4-dimensional CS theory is still incomplete. Although
we have identified the edge fields and the physical edge symmetry group, there remain basic
problems to be solved such as the lack of a Lagrangian and Hamiltonian description of the
dynamics of edge fields and the identification of the edge modes observables. A viable edge
field theory of the 4-dimensional CS model is a topic certainly deserving an in depth study.

In this paper, we have not discussed the incorporation of Wilson surfaces in the theory.
This can be done in the standard framework of strict higher gauge theory along the lines
of refs. [34, 35]. There is however another so far unexplored route to dealing with this
problem. In a series of papers [59–62] (see also ref. [63] for a review) a geometrical action
capable to compute Wilson lines in 3-dimensional CS theory was obtained and studied.
Given the formal similarity of 4- and 3-dimensional CS in the derived formulation, it is
conceivable that a formally analogous geometrical action may be found that is capable of
computing Wilson surfaces in 4-dimensional CS theory. This is a promising line of inquiry
deserving to be pursued.

All the above matters are left for future work [64].
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2 Lie crossed modules and invariant pairings

Lie group and algebra crossed modules constitute the type of algebraic structure on which
the higher CS theory elaborated in this paper rests. In this section, we review this topic,
with no pretence of mathematical rigour or completeness, dwelling only on those points
which are relevant in the following analysis. The theory of crossed modules is best formu-
lated in a categorical framework. However, we shall not insist on the categorical features
of these algebraic structures. See refs. [49, 50] for an exhaustive exposition of this subject.

The subject matter covered in this section is disparate and has been gathered mainly
for later reference. Subsection 2.1 is a review of the theory of Lie group and algebra crossed
modules serving also the purpose of setting the notation used throughout this paper. The
material of subsection 2.2 is required mostly from subsection 4.1 onwards. The material of
subsection 2.3 is used primarily in subsects. 4.2, 4.3, 4.6.

2.1 Lie group and algebra crossed modules

Crossed modules encode the symmetry of higher gauge theory both at the finite and the
infinitesimal level. Our path toward 4-dimensional CS theory must necessarily start with
them. In this subsection, we review the theory of Lie group and algebra crossed modules
and module morphisms. The precise definitions and properties of crossed modules are
collected in appendix A.1.

Lie group crossed modules. The structure of finite Lie crossed module abstracts and
extends the set-up consisting of a Lie group G and a normal Lie subgroup E of G acted
upon by G by conjugation. A Lie group crossed module M consists indeed of two Lie groups
E, G together with a Lie group action µ : Gˆ E Ñ E of G on E by automorphisms and an
equivariant Lie group map τ : E Ñ G rendering µ compatible with adjoint action of E (cf.
eqs. (A.1), (A.2)). E, G and τ , µ are called the source and target groups and the target and
action structure maps of M, respectively. Below, we shall write M “ pE,G, τ, µq to specify
the crossed module through its data.

A morphism of finite Lie crossed modules is a map of crossed modules preserving
the module structure expressing a relationship of sameness or likeness of the modules
involved. More explicitly, a morphism β : M1 Ñ M of Lie group crossed modules consists
of two Lie group morphisms φ : G1 Ñ G and Φ : E1 Ñ E intertwining in the appropriate
sense the structure maps τ 1, µ1, τ , µ (cf. eqs. (A.3), (A.4)). We shall normally write
β : M1 Ñ M “ pΦ, φq to indicate constituent morphisms of the crossed module morphism.

Taking the direct product of the relevant constituent data in the Lie group category,
it is possible to construct the direct product M1 ˆM2 of two Lie group crossed modules
M1, M2 and the direct product β1 ˆ β2 of two Lie group crossed module morphisms β1,
β2 in straightforward fashion. Complicated crossed modules and module morphisms can
sometimes be analyzed by factorizing them into direct products of simpler modules and
module morphisms.

There exist many examples of Lie group crossed modules and crossed module mor-
phisms. In particular, Lie groups and automorphisms, representations and central exten-
sions of Lie groups can be described as instances of Lie group crossed modules. Lie group

– 7 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

morphisms can be employed to construct morphisms of such crossed modules. There are two
basic model crossed modules to which a broad range of crossed modules entering in the for-
mulation of higher CS theory can be related to. They are defined for any Lie group G. The
first is the inner automorphism crossed module of G, INN G “ pG,G, idG,Ad Gq. The second
is the (finite) coadjoint action crossed module of G, AD∗ G “ pg∗,G, 1G,AdG

∗q, where g is
the Lie algebra of G and its dual space g∗ is viewed as an Abelian group and 1G : g∗ Ñ G is
the trivial Lie group morphism. A crossed module morphism ρ : INN G1 Ñ INN G reduces
to a group morphism χ : G1 Ñ G. A crossed module morphism α : AD∗ G1 Ñ AD∗ G is
specified by a group morphism λ : G1 Ñ G and an intertwiner Λ : g1∗ Ñ g∗ of AdG1

∗ to
AdG

∗ ˝ λ.

Lie algebra crossed modules. The structure of infinitesimal Lie crossed module axiom-
atizes likewise the set-up consisting of a Lie algebra g and a Lie ideal e of g equipped with
the adjoint action of g. It is therefore the differential version of that of finite Lie crossed
module. A Lie algebra crossed module m consists so of two Lie algebras e, g together with
a Lie algebra action m : gˆ eÑ e of g on e by derivations and an equivariant Lie algebra
map t : e Ñ g making m compatible with adjoint action of e (cf. eqs. (A.7), (A.8)). e,
g and t, m are called the source and target algebras and the target and action structure
maps of m, respectively. Below, we shall write m “ pe, g, t,mq to specify the crossed module
through its data.

A morphism of infinitesimal Lie crossed modules is a map of crossed modules preserving
the module structure describing a way such crossed modules are congruent. It is therefore
the differential version of that of morphism of finite Lie crossed module. More explicitly, a
morphism p : m1 Ñ m of Lie algebra crossed modules consists of two Lie algebra morphisms
h : g1 Ñ g and H : e1 Ñ e intertwining in the appropriate sense the structure maps t1, m1, t,
m (cf. eqs. (A.9), (A.10)). We shall use often the notation p : m1 Ñ m “ pH,hq to indicate
constituent morphisms of the crossed module morphism.

Similarly to the Lie group case, taking the direct sum of the relevant constituent data
in the Lie algebra category, it is possible to define the direct sum m1‘m2 of two Lie algebra
crossed modules m1, m2 and direct sum p1‘p2 of two Lie algebra crossed module morphisms
p1, p2 in obvious fashion. These notions answer at the differential level to those of direct
products of finite crossed modules and module morphisms. They allow to analyze crossed
modules and module morphisms by decomposing them as direct sums of more elementary
modules and module morphisms as we shall see in particular in subsection 2.2 below.

Many examples of Lie algebra crossed modules and crossed module morphisms are also
available. They pair with the basic examples of Lie group crossed modules and crossed
module morphisms recalled above. Ordinary Lie algebras and derivations, representations
and central extensions of Lie algebras can be described as instances of Lie algebra crossed
modules and Lie algebra morphisms can be assembled variously to construct morphisms of
such crossed modules. In particular, there are two basic model crossed modules defined for
any Lie algebra g corresponding to the inner automorphism and coadjoint action crossed
modules introduced above. The first is the inner derivation crossed module of g, INN g “

pg, g, idg, ad gq. The second is the (infinitesimal) coadjoint action crossed module of g,
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AD∗ g “ pg∗, g, 0g, adg
∗q, where g∗ is regarded as an Abelian algebra and 0g : g∗ Ñ g is the

vanishing Lie algebra morphism. A crossed module morphism r : INN g1 Ñ INN g reduces
to an algebra morphism x : g1 Ñ g. A crossed module morphism a : AD∗ g1 Ñ AD∗ g
is specified by an algebra morphism l : g1 Ñ g and an intertwiner L : g1∗ Ñ g∗ of adg1

∗

to adg
∗ ˝ l.

Lie differentiation plays the same important role in Lie crossed module theory as it does
in Lie group theory. With any Lie group crossed module M “ pE,G, τ, µq there is associated
the Lie algebra crossed module m “ pe, g, 9τ,9µ9q, where e, g are the Lie algebras of Lie groups
E, G respectively and the dot notation 9 denotes Lie differentiation along the relevant Lie
group (cf. appendix A.2) for more details), much as a Lie algebra is associated with a Lie
group. Similarly, with any Lie group crossed module morphism β : M1 Ñ M “ pΦ, φq there
is associated the Lie algebra crossed module morphism 9β : m1 Ñ m “ p 9Φ, 9φq, just as a Lie
algebra morphism is associated with a Lie group morphism.

As examples, we mention that the Lie algebra crossed modules of the Lie group crossed
modules INN G and AD∗ G we introduced above for any Lie group G are precisely INN g

and AD∗ g, respectively, as expected.

2.2 Crossed modules with invariant pairing

Crossed modules with invariant pairing are an essential ingredient of the construction of
4-dimensional CS actions. Indeed, invariant pairings in higher gauge theory play a role
similar to that of invariant traces in ordinary gauge theory. We introduce and discuss this
topic in this subsection.

On general grounds, in order to construct the kinetic term of the Lagrangian of a
field theory, a non singular bilinear pairing is required. Further, when the field theory is
characterized by certain symmetries, the same symmetries must be enjoyed by the pairing,
which so is in addition invariant.

The field content of 4-dimensional CS gauge theory whose symmetry is described in-
finitesimally by a Lie algebra crossed module m “ pe, g, t,mq comprises a g-valued 1-form
gauge field ω and an e-valued 2-form gauge field Ω. The bilinear pairing entering in the
kinetic term of the gauge fields, thus, must be defined on either g ˆ g or g ˆ e or e ˆ e.
The CS kinetic term, which must be of derivative order 1 in order the field equations to
be equivalent to the flatness conditions for the gauge fields, can take thus three forms

K3 “ xdω, ωy, K4 “ xdω,Ωy, K5 “ xdΩ,Ωy, (2.1)

These are a 3-, 4-, 5-form yielding a 3-, 4- and 5-dimensional CS model respectively. As we
are interested in a 4-dimensional one, it is the second form of the pairing that is relevant
for us. So, the pairing will be a non singular bilinear form x¨, ¨y : gˆ eÑ R.

The infinitesimal higher gauge symmetry described by m is ultimately codified in the
adjoint action of g on itself and the module action m of g on e. The kinetic term will so
have the required invariance properties if the pairing x¨, ¨y obeys

xad zpxq, Xy ` xx,mpz,Xqy “ 0 (2.2)

– 9 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

for z, x P g, X P e. It remains to clarify how the pairing x¨, ¨y behaves with regard to the
module target map t. This boils down to find an appropriate requirement for the difference
xtpXq, Y y ´ xtpY q, Xy with for X,Y P e. The minimal choice avoiding introducing further
structures consists in demanding that

xtpXq, Y y “ xtpY q, Xy. (2.3)

Lie algebra crossed modules with invariant pairing. A Lie algebra crossed module
with invariant pairing is Lie algebra crossed module m “ pe, g, t,mq equipped with a non
singular bilinear form x¨, ¨y : gˆ eÑ R enjoying properties (2.2), (2.3).

A crossed module m with invariant pairing is balanced, which means that dim g “

dim e, because of the non singularity of the pairing. This is not as strong a restriction
as it may appear at first sight. It can be shown that any Lie algebra crossed module m

can always be trivially extended to a balanced crossed module m1, for which depending on
cases one has either e1 “ e‘ p and g1 “ g or e1 “ e and g1 “ g‘ q for suitable Abelian Lie
algebras p, q.

A morphism p : m1 Ñ m “ pH,hq of Lie algebra crossed modules with invariant pairings
x¨, ¨y1, x¨, ¨y is naturally defined as a crossed module morphism that preserves the pairings
(cf. eq. (A.25)). Such a morphism describes a stronger form of sameness or likeness of the
crossed modules concerning not only their algebraic structures but involving also to their
invariant pairings.

We shall now explore the implications of having an invariant pairing structure attached
to the crossed module.

Core and residue of a crossed module with invariant pairing. If m is a Lie algebra
crossed module, then ker t is a central ideal of e and ran t is an ideal of g. Using these
properties, one can show that with m there are canonically associated two further Lie
algebra crossed modules.

The first one, which we shall call the core of m in the following, is the crossed module
Cm “ pe{ ker t, ran t, tC,mCq, where

tCpX ` ker tq “ tpXq, (2.4)
mCpx,X ` ker tq “ mpx,Xq ` ker t (2.5)

for x P ran t, X P e. It can be verified that the structure maps tC and mC are well
defined and satisfy the required properties (A.7), (A.8). The core crossed module Cm is
characterizing by the invertibility of tC.

The second one, which we shall call the residue of m, is the crossed module Rm “

pker t, g{ ran t, tR,mRq, where

tRpXq “ ran t, (2.6)
mRpx` ran t,Xq “ mpx,Xq (2.7)

for x P g, X P ker t. Again, it can be verified that the structure maps tR and mR are well
defined and satisfy the properties (A.7), (A.8). The characterizing property of the residue
crossed module Rm is the vanishing of tR.

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

If m is in addition equipped with an invariant pairing x¨, ¨y, then Cm and Rm are
equipped with induced invariant pairing x¨, ¨yC and x¨, ¨yR. For Cm, we have

xx,X ` ker tyC “ xx,Xy (2.8)

where x P ran t, X P e. It is straightforward to check that x¨, ¨yC is well defined and obeys
conditions (A.23), (A.24). For Rm, we have similarly

xx` ran t,XyR “ xx,Xy (2.9)

where x P g, X P ker t. Again, x¨, ¨yR is well defined and satisfies properties (A.23), (A.24).
In subsection 2.1, we introduced two basic model Lie algebra crossed modules, the

inner derivation crossed module INN g and the infinitesimal coadjoint action crossed module
AD∗ g of a Lie algebra g. They are evidently both balanced and they can both be equipped
with invariant pairings, as we shall show momentarily. They are indeed prototypical crossed
modules with these properties.

The inner derivation crossed module of g is INN g “ pg, g, idg, adgq. INN g carries no
canonical invariant pairing, but any adg invariant symmetric non singular pairing of g can
be used as one. INN g is characterized by the following property. If m “ pe, g, t,mq is a
Lie algebra crossed module with invariant pairing such that t is invertible, then there is
an invariant pairing on INN g such that m is isomorphic to INN g, the isomorphism i of m
onto INN g being given by the pair pt, idgq and the invariant pairing on INN g being related
to that of m by xx, t´1pXqyINN “ xx,Xy.

The infinitesimal coadjoint action crossed module of g we consider next is AD∗ g “
pg∗, g, 0g, adg

∗q. Unlike the inner derivation crossed module discussed above, AD∗ g carries
a natural invariant pairing, the duality pairing of g and g∗. AD∗ g enjoys the following
property. If m “ pe, g, t,mq is a Lie algebra crossed module with invariant pairing with t

vanishing, then m is isomorphic to AD∗ g, the isomorphism j of AD∗ g onto m being given
by the pair pJ, idgq, where J is the linear isomorphism of g∗ onto e such that xx, JpXqy “
xx,XyAD∗ with x¨, ¨yAD∗ the duality pairing of g and g∗.

The decomposition theorem. Consider again a generic Lie algebra crossed module
m “ pe, g, t,mq with invariant pairing, The characterizing property of Cm is tC being a
linear isomorphism. This makes Cm isomorphic to the crossed module INN ran t equipped
with a suitable invariant pairing. Likewise, the characterizing property of Rm is tR vanish-
ing. Rm is in this way isomorphic to the crossed module AD∗pg{ ran tq with the canonical
invariant pairing.

The following decomposition theorem is key to understanding relevant aspects of the
gauge symmetry of 4-dimensional CS theory studied later on. Consider a balanced crossed
module m “ pe, g, t,mq with invariant pairing. Suppose that there exists an ideal h of g
such that ran tX h “ 0 and

g » ran t‘ h. (2.10)

Then, m decomposes as

m » Cm‘ Rm. (2.11)
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in the category of crossed modules with invariant pairing. The proof of the theorem requires
in an essential way the use of the invariant pairing (cf. appendix A.4). By the isomorphisms
noticed earlier, we could write (2.11) as

m » INN ran t‘AD∗pg{ ran tq. (2.12)

This means that in the analysis of the following sections, under weak conditions, we can
assume that the relevant Lie algebra crossed module m with invariant pairing is of the
form INN gc ‘ AD∗ gr for certain Lie algebras gc, gr with the direct summands equipped
respectively with the appropriate and the canonical invariant pairings.

Lie group crossed modules with invariant pairing. The subtlest features of 4-
dimensional CS theory emerge when the underlying higher gauge symmetry is considered
at the finite level through the appropriate Lie group crossed module. Invariant pairings
are naturally defined only on Lie algebra crossed modules. It is possible however to attach
an invariant pairing also to a Lie group crossed module by endowing the associated Lie
algebra crossed module with one. However, upon doing so, it is necessary to strengthen
the invariance condition of the pairing by requiring invariance to hold at the finite and not
only infinitesimal level.

We shall thus define a Lie group crossed module with invariant pairing as a crossed
module M “ pE,G, τ, µq such that the associated Lie algebra crossed module m “ pe, g, 9τ,9µ9q

(cf. appendix A.2) is a crossed module with invariant pairing x¨, ¨y enjoying the property that

xAd apxq, µ9pa,Xqy “ xx,Xy (2.13)

for a P G, x P g, X P e (cf. appendices A.2, A.3) Notice that (2.13) implies (2.2) with
m “ 9µ9 via Lie differentiation with respect to a, while (2.3) holds with t “ 9τ .

Again, the non singularity of x¨, ¨y implies that M is balanced, dim E “ dim G. Analo-
gously to the Lie algebra case, it can be shown that any Lie group crossed module M can
always be trivially extended to a balanced crossed module M1, with either E1 “ Eˆ P and
G1 “ G or E1 “ E and G1 “ GˆQ for suitable Abelian Lie groups P, Q, depending on cases.

For a Lie group crossed module M “ pE,G, τ, µq with invariant pairing x¨, ¨y, iden-
tity (2.13) implies the relation

xx,9µpy,Aqy “ xy,9µpx,A´1qy, (2.14)

where x, y P g and A P E, under mild assumptions on the Lie group E. Specifically, (2.14)
holds when E is connected and also when E is not connected in the connected component
of the identity of E and in any connected component of E where it holds for at least one
element. Eq. (2.14) holds also when τ is invertible with no restrictions on E. Property (2.14)
in a sense completes (2.13). We shall call the crossed module M fine if (2.14) holds. The
seemingly technical condition plays in fact an important role in the analysis of the gauge
invariance of 4-dimensional CS theory, as we shall see in due course.

If M “ pE,G, τ, µq is a Lie group crossed module with invariant pairing such that a
direct sum decomposition of g of the form (2.10) is available, then the direct sum decompo-
sition (2.11) of the associated Lie algebra crossed module m “ pe, g, 9τ,9µ9q into its core and
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residue Cm, Rm holds. One does not expect a corresponding direct product factorization
of the module M to occur in analogy to what happens in the akin setting of Lie group
theory. It is nevertheless instructive to examine this issue is some detail.

Similarly to the Lie algebra case, it is possible to canonically associate with M two
Lie group crossed modules with invariant pairing, its core and residue crossed modules,
relying on the properties that ker τ is a central normal subgroup of E and ran τ is a normal
subgroup of G, in analogy with the Lie algebra case.

The core of M is the crossed module CM “ pE{ ker τ, ran τ, τC, µCq, where

τCpA ker τq “ τpAq, (2.15)
µCpa,A ker τq “ µpa,Aq ker τ (2.16)

for a P ran τ , A P E. It can be verified that the structure maps τC and µC are well
defined and satisfy the required properties (A.1), (A.2). The core crossed module CM is
characterized by the invertibility of τC. The Lie algebra crossed module associated with
CM is precisely the core Cm of m defined in (2.6), (2.7). The invariant pairing x¨, ¨y of m
provides Cm with the invariant pairing x¨, ¨yC defined by eq. (2.8). x¨, ¨yC in turn satisfies
property (A.27) as a consequence of x¨, ¨y doing so. CM is in this way a crossed module
with invariant pairing. CM is fine, even if M is not, as τC is invertible.

The residue of M is the crossed module RM “ pker τ,G{ ran τ, τR, µRq, where

τRpAq “ ran τ, (2.17)
µRpa ran τ,Aq “ µpa,Aq (2.18)

for a P G, A P ker τ . Again, it can be verified that the structure maps τR and µR are
well defined and satisfy the properties (A.1), (A.2). The residue crossed module RM is
characterized by the vanishing of τR. The Lie algebra crossed module associated with RM
is precisely the residue Rm of m defined in (2.8), (2.9). The invariant pairing x¨, ¨y of m
provides Rm with the invariant pairing x¨, ¨yR defined by eq. (2.9) and x¨, ¨yR obeys (A.27)
since x¨, ¨y does. So, RM too is a crossed module with invariant pairing. RM is not fine in
general, but it is fine if M is.

In subsection 2.1, we introduced two basic model Lie groups crossed modules, the inner
automorphism crossed module INN G and the finite coadjoint action crossed module AD∗ G
of a Lie group G. Since their associated Lie algebra crossed modules are respectively INN g

and AD∗ g, they are both balanced and they can both presumably be equipped with the
invariant pairings of these latter.

The inner automorphism crossed module of G is INN G “ pG,G, idG,Ad Gq. The Lie
algebra crossed module associated with INN G is the inner derivation crossed module of
INN g which we discussed earlier. If g is equipped with a AdG-invariant symmetric non
singular pairing, INN g gets endowed with an invariant pairing obeying (A.27). In this way,
INN G becomes a crossed module with invariant pairing. Since idG is trivially invertible,
INN G is fine. INN G is characterized by the following property. If M “ pE,G, τ, µq is a
crossed module with invariant pairing such that τ is invertible, then there is an invariant
pairing on INN G such that M is isomorphic to INN G. The isomorphism ξ of M onto INN G
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is given by the pair pτ, idGq. Its Lie differential 9ξ is precisely the isomorphism i of m onto
INN g, which we described in the Lie algebra case. Note that if M is a crossed module with
generic τ , then its core CM is isomorphic to INN ran τ .

The finite coadjoint action crossed module of G is AD∗ G “ pg∗,G, 1G,AdG
∗q. The

Lie algebra crossed module associated with AD∗ G is the infinitesimal coadjoint action
crossed module of AD∗ g which we also discussed above. AD∗ G is endowed with a natural
invariant pairing obeying (A.27), since AD∗ g is equipped with the AdG-invariant duality
pairing of g and g∗. AD∗ G is fine, since g∗ is clearly connected. Contrary to what one
may expect, if M “ pE,G, τ, µq is a crossed module with invariant pairing with τ vanishing,
then M is not necessarily isomorphic to AD∗ G. The isomorphism j of INN g onto m we
defined above, given by the pair pJ, idGq with J the linear isomorphism of g∗ onto e such
that xx, JpXqy “ xx,XyAD∗ , does not integrate in general to an isomorphism η of INN G
onto M, because J does not integrate to an isomorphism of g∗ onto E. As a consequence,
when M is a crossed module with generic τ , its residue RM is generally not isomorphic to
AD∗pG{ ran τq.

From the above discussion, it is now not surprising that M fi CM ˆ RM in general
for the reason that the Lie algebra isomorphisms h : g Ñ ran 9τ ‘ pg{ ran 9τq and H : e Ñ
pe{ ker 9τq ‘ ker 9τ underlying the crossed module isomorphism (2.11) (cf. appendix A.4) in
general cannot be lifted to corresponding Lie group isomorphisms φ : G Ñ ran τˆpG{ ran τq
and Φ : E Ñ pE{ ker τq ˆ ker τ unless all Lie groups involved are connected and simply
connected.

2.3 Crossed submodules and isotropy

The concept of crossed submodule of a Lie group crossed module answers to the familiar
concept of subgroup of a Lie group and similarly in the Lie algebra case. In this subsection,
we shall define and study submodules of a given crossed module and their associated nor-
malizer and Weyl crossed modules. When the crossed module is equipped with an invariant
pairing, isotropic crossed submodules can be considered and constitute a distinguished sub-
class of submodules with special features. Before proceeding to detailing the properties of
these substructures, however, we shall explain in simple elementary terms why they are
relevant in the construction of 4-dimensional CS theory.

In 4-dimensional CS theory, the higher gauge field Ω and infinitesimal gauge transfor-
mations Θ are non homogeneous forms on the underlying 4-fold valued in the Lie algebra
crossed module m of the symmetry Lie group crossed module M (cf. subsection 3.3).

When the base manifold has a boundary, as we generally assume in 4-dimensional CS
theory, boundary conditions must be imposed on the gauge field Ω and infinitesimal gauge
transformations Θ ensuring that the variational problem is well-posed on one hand (cf.
subsection 4.1) and that gauge invariance is preserved on the other (cf. subsection 4.2).
The boundary condition on Ω must be such to make the boundary integral yielded by the
variation of the CS action vanish. Since the boundary integrand involves the invariant
pairing x¨, ¨y of the crossed module m, this can be achieved by demanding the field Ω to
be valued on the boundary in a crossed submodule m1 of m isotropic with respect to x¨, ¨y.
Requiring this boundary condition to be gauge invariant forces also the transformations Θ
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to be valued in m1 on the boundary. Such particularly simple choice of boundary conditions,
which we shall generally adopt in the following, is called isotropic linear for evident reasons.

Infinitesimal gauge transformations form a Lie algebra. In particular, the Lie bracket
rΘ,Θ1s is defined for any gauge transformation pair Θ, Θ1. In the canonical formulation of
4-dimensional CS theory (cf. subsection 4.5), the action of the gauge transformations Θ is
generated by Hamiltonian functionals QpΘq of the gauge field Ω (not explicitly shown here).
The functionals QpΘq span under Poisson bracketing a centrally extended representation
of the gauge transformation Lie algebra. Explicitly,

tQpΘq,QpΘ1qu “ QprΘ,Θ1sq ` κ ¨ cpΘ,Θ1q, (2.19)

where c is a certain 2-cocycle of the gauge transformation Lie algebra.
The physical higher gauge field phase space is defined by the constraints

QpΘq « 0, (2.20)

with Θ any gauge transformation, according to naive Dirac theory. However, the QpΘq do
not form a first class set of phase space functionals because of the central term appearing
in the right hand side of (2.19). Furthermore, the vanishing of the QpΘq by itself does not
select the functional submanifold of flat gauge fields Ω, as one would like to in CS theory.

Both the 2-cocycle cpΘ,Θ1q in (2.19) and the obstructing term of QpΘq prevent-
ing (2.20) from singling out the flat gauge field space are given by certain boundary
integrals. The above problems can therefore be solved by imposing suitable boundary
conditions on the gauge field Ω and gauge transformations Θ making those integral expres-
sions vanish. Since the integrands involve the invariant pairing x¨, ¨y of the crossed module
m, this can be achieved by requiring both Ω and the Θ to be valued on the boundary in a
crossed submodule m1 of m isotropic with respect to x¨, ¨y, i.e. by imposing again isotropic
linear boundary conditions. When Ω and the Θ obey these conditions, as we suppose, (2.20)
becomes a set of genuine flatness enforcing first class constraints.

If Θ is a gauge transformation such that

tQpΘq,QpΘ1qu « 0 (2.21)

for any gauge transformation Θ1 obeying the isotropic linear boundary condition, then
QpΘq represents a physical symmetry surface charge. Comparing (2.21) to (2.19), we
see that for this to be the case, Θ must itself obey a boundary condition ensuring that
rΘ,Θ1s satisfies the isotropic linear boundary condition and cpΘ,Θ1q “ 0 for any such Θ1.
This condition consists so in requiring Θ to be valued on the boundary in the orthogonal
normalizer crossed module ONm1 of m1, that is the maximal crossed submodule of m that
normalizes m1 in the appropriate sense and is orthogonal to m1 with respect to the invariant
pairing x¨, ¨y. However, as QpΘq is weakly invariant under the shift Θ Ñ Θ ` Θ1 with Θ1
obeying the isotropic linear boundary condition by virtue of (2.20), Θ is effectively valued
on the orthogonal Weyl crossed module OWm1 “ ONm1{m1 of m. The boundary condition
is therefore called orthogonal Weyl linear.
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Having motivated the consideration of crossed submodules, in particular isotropic ones,
in 4-dimensional CS theory, we now proceed to describe these structures in more precise
terms. Albeit the above discussion has been carried out mostly at the infinitesimal level,
we shall examine first the finite case.

Lie group crossed submodules and their normalizer and Weyl modules. The
notion of crossed submodule of a finite Lie crossed module is analogous to that of subgroup
of a Lie group. A crossed submodule M1 of a Lie group crossed module M is indeed a
substructure of M which is itself a Lie group crossed module. More formally, given two Lie
group crossed modules M “ pE,G, τ, µq, M1 “ pE1,G1, τ 1, µ1q, M1 is a submodule of M if E1,
G1 are Lie subgroups of E, G and τ 1, µ1 are the restrictions of τ , µ to E1, G1ˆE1, respectively.

The concept of normalizer crossed module of a submodule of a finite Lie crossed module
corresponds in turn to that of normalizer group of a subgroup of a Lie group. The normal-
izer NM1 of a crossed submodule M1 of a Lie group crossed module M is the largest crossed
submodule of M normalizing M1 (cf. appendix A.1). NM1 can be described rather explicitly
as follows. Let M “ pE,G, τ, µq, M1 “ pE1,G1, τ 1, µ1q. The normalizer of G1 in G, NG1, is the
set of all elements a P G such that aba´1, a´1ba P G1 for b P G1. Similarly, the µ-normalizer
of E1 in G, µNE1, is the set of all elements a P G such that µpa,Bq, µpa´1, Bq P E1 for
B P E1. The µ-transporter of G1 into E1 in E, µTG1 E1 is the set of all elements A P E such
that µpb, AqA´1, A´1µpb, Aq P E1 for b P G1. NG1 and µNE1 turn out to be Lie subgroups of
G and likewise µTG1 E1 a Lie subgroup of E. Then, NM1 “ pµTG1 E1,NG1 X µNE1, τ 1N, µ1Nq,
where τ 1N, µ1N are the restrictions of τ , µ to µTG1 E1, NG1 X µNE1 ˆ µTG1 E1, respectively.
It can be verified that the structure maps τ 1N, µ1N are well defined and satisfy the required
properties (A.1), (A.2). NM1 is so a Lie group crossed module. By construction, NM1 is a
crossed submodule of M containing M1 as a crossed submodule and normalizing it and is
maximal with these properties.

The Weyl crossed module of a submodule of a finite Lie crossed module is much like
the Weyl group of a subgroup of a Lie group. For a crossed submodule M1 of a Lie
group crossed module M, this is just the quotient WM1 “ NM1{M1 removing from the
normalizer crossed module NM1 of M1 the trivially normalizing submodule M1. Specifically,
let again M “ pE,G, τ, µq, M1 “ pE1,G1, τ 1, µ1q. It can be shown that G1, E1 are normal Lie
subgroups of NG1 X µNE1, µTG1 E1, respectively. We have then WM1 “ pµTG1 E1{E1,NG1 X
µNE1{G1, τ 1W, µ1Wq, where the structure maps τ 1W, µ1W, are given by

τ 1WpAE1q “ τpAqG1, (2.22)
µ1WpaG1, AE1q “ µpa,AqE1 (2.23)

for a P NG1 X µNE1, A P µTG1 E1. It can be verified that the structure maps τ 1W, µ1W are
well defined and obey relations (A.1), (A.2). WM1 is therefore a Lie group crossed module
as required.

There are plenty of examples of crossed submodules of Lie group crossed modules,
in particular of the model ones described in subsection 2.1. They are illustrated next,
but before doing so we introduce some notation. Let G be a fixed Lie group H, K be Lie
subgroups of G. We denote by rH,Ks the commutator subgroup of H, K in G. We denote

– 16 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

further by TH K the transporter of H into K, the largest subgroup L of G such that rH, Ls
is contained in K. This coincides with the Ad-transporter Ad TH K, the µ-transporter for
the action structure map µ “ Ad as defined two paragraphs above.

Let G be a Lie group, H be a subgroup of G and K be a normal subgroup
of H. Then, INNH K “ pK,H, idH |K,AdH |HˆKq is a Lie group crossed module,
called inner H-automorphism crossed module of K, and is a crossed submodule of
INN G “ pG,G, idG,Ad Gq, the inner automorphism crossed module of G. The normal-
izer crossed module of INNH K is a crossed module of the same kind, viz NINNH K “

INNNHXNK TH K. It is easily verified that TH K is a normal subgroup of NH X

NK as required. The Weyl crossed module of INNH K is therefore WINNH K “

pTK,H,NK,H, idNK,H |TK,H ,AdNK,H |NK,HˆTK,Hq, where TK,H “ TH K{K, NK,H “ NH X NK{H.
(Here, idNK,H |TK,H , AdNK,H |NK,HˆTK,H denote abusively the natural map TK,H Ñ NK,H and
the maps induced by AdNK,H upon composition with it, respectively.)

Let G be a Lie group and H, K be subgroups of G with H Ď NK. Then, ADH
∗K “

pk0,H, 1H|k0 ,AdH
∗|Hˆk0q, k0 Ď g∗ being the annihilator of k, is a Lie group crossed mod-

ule, called the finite coadjoint H-action crossed module of K, and is a crossed submod-
ule of AD∗ G “ pg∗,G, 1G,Ad G

∗q, the finite coadjoint action crossed module of G. If
H, K are connected, the normalizer crossed module of ADH

∗K is a crossed module of
the same kind, as NADH

∗K “ ADNHXNK
∗rH,Ks. Again, it can be straightforwardly

verified that NH X NK Ď NrH,Ks as required. Above, connectedness is assumed only
for the sake of simplicity. The Weyl crossed module of ADH

∗K then is WADH
∗K “

ptK,H,NK,H, 1NK,H |tK,H ,AdNK,H
∗|NK,HˆtK,Hq, where tK,H “ rh, ks

0{k0, NK,H “ NHXNK{H.

Lie algebra crossed submodules and their normalizer and Weyl modules. As
it might be expected, there are infinitesimal counterparts of the Lie group theoretic no-
tions introduced above. Albeit it is not difficult to guess them, we report them below for
completeness.

The concept of crossed submodule of a infinitesimal Lie crossed module is inspired by
that of subalgebra of a Lie algebra. A crossed submodule m1 of a Lie algebra crossed module
m is indeed a substructure of m which is itself a Lie algebra crossed module. Specifically,
given two Lie algebra crossed modules m “ pe, g, t,mq, m1 “ pe1, g1, t1,m1q, m1 is a submodule
of m if e1, g1 are Lie subalgebras of e, g and t1, m1 are the restrictions of t, m to e1, g1 ˆ e1,
respectively.

The notion of normalizer crossed module of a submodule of a infinitesimal Lie crossed
module correlates with that of normalizer algebra of a subalgebra of a Lie algebra as
expected. The normalizer Nm1 of a crossed submodule m1 of a Lie algebra crossed module
m is the largest crossed submodule of m normalizing m1 (cf. appendix A.1). Explicitly,
Nm1 can be specified as follows. Let m “ pe, g, t,mq, m1 “ pe1, g1, t1,m1q. The normalizer
of g1 in g, Ng1, is the set of all elements u P g such that ru, vs P g1 for v P g1. Similarly,
the m-normalizer of e1 in g, mNe1, is the set of all elements u P g such that mpu, V q P e1

for V P e1. The m-transporter of g1 into e1 in e, mTg1 e
1 is the set of all elements U P e

such that mpv, Uq P e1 for v P g1. Ng1 and mNe1 turn out to be Lie subalgebras of g and
likewise mTg1 e

1 a Lie subalgebra of e. Then, Nm1 “ pmTg1 e
1,Ng1XmNe1, t1N,m

1
Nq, where
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t1N, m1N are the restrictions of t, m to mTg1 e
1, Ng1 X mNe1 ˆ mTg1 e

1, respectively. It
can be verified that the structure maps t1N, m1N are well defined and satisfy the required
properties (A.7), (A.8). Nm1 so turns out to be a Lie algebra crossed module. By the way
we have designed it, Nm1 is a crossed submodule of m containing m1 as a crossed submodule
and normalizing it and is maximal with these properties.

The Weyl crossed module of a submodule of a infinitesimal Lie crossed module is
now conceived similarly to the Weyl algebra of a subalgebra of a Lie algebra. For a
crossed submodule m1 of a Lie algebra crossed module m, this is just the quotient Wm1 “

Nm1{m1 removing from the normalizer crossed module Nm1 of m1 the trivially normalizing
submodule m1. Concretely, let again m “ pe, g, t,mq, m1 “ pe1, g1, t1,m1q. It can be shown
that g1, e1 are Lie ideals of Ng1 X mNe1, mTg1 e

1, respectively. We have then Wm1 “

pmTg1 e
1{e1,Ng1 XmNe1{g1, t1W,m

1
Wq, where the structure maps t1W, m1W, are given by

t1WpU ` e1q “ tpUq ` g1, (2.24)
m1Wpu` g1, U ` e1q “ mpu, Uq ` e1 (2.25)

for u P Ng1 X mNe1, U P mTg1 e
1. It can be verified that the structure maps t1W, m1W

are well defined and obey relations (A.1), (A.2). Wm1 is therefore a Lie algebra crossed
module as required.

We present next a class of examples of crossed submodules of the model Lie algebra
crossed modules of subsection 2.1, matching those introduced above in the finite case, after
recalling a few basic notions of Lie theory. Let g be a Lie algebra and h, k be Lie subalgebras
of g. We denote by rh, ks the commutator subalgebra of h, k in g. We denote further by Th k

the transporter of h into k, that is the largest subalgebra l of g such that rh, ls is contained
in k. This is just the ad-transporter ad Th k, the µ-transporter for the action structure map
µ “ ad as defined earlier.

Let g be a Lie algebra, h be a subalgebra of g and k be an ideal of h. Then,
INNh k “ pk, h, idh |k, adh |hˆkq turns out to be a Lie algebra crossed module, called the inner
h-derivation crossed module of k, and is a crossed submodule of INN g “ pg, g, idg, ad gq,
the inner derivation crossed module of g. The normalizer crossed module of INNh k is
a crossed module of the same kind as it, since we have NINNh k “ INNNhXNk Th k, Th k

being an ideal of Nh X Nk. The Weyl crossed module of INNh k is hence WINNh k “

ptk,h, nk,h, idnk,h |tk,h , adnk,h |nk,hˆtk,hq, where tk,h “ Th k{k, nk,h “ Nh X Nk{h. (Here, idnk,h |tk,h ,
adnk,h |nk,hˆtk,h denote abusively as before the natural map tk,h Ñ nk,h and the map induced
by adnk,h upon composition with it, respectively.)

Next, let g be a Lie algebra and h, k be subalgebras of g such that h Ď Nk. Then,
ADh

∗k “ pk0, h, 0h|k0 , adh
∗|hˆk0q, k0 Ď g∗ being again the annihilator of k, is a Lie algebra

crossed module, the infinitesimal coadjoint h-action crossed module of k, and is a crossed
submodule of AD∗ g “ pg∗, g, 0g, ad g

∗q, the infinitesimal coadjoint action crossed module
of g. The normalizer crossed module of ADh

∗k is again a crossed module of the same kind,
NADh

∗k “ ADNhXNk
∗rh, ks, where one has Nh X Nk Ď Nrh, ks. The Weyl crossed module

of ADh
∗k is in this way found to be WADh

∗k “ ptk,h, nk,h, 0nk,h |tk,h , adnk,h
∗|nk,hˆtk,hq, where

tk,h “ rh, ks
0{k0, nk,h “ NhXNk{h.
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The above constructions are of course designed to be compatible with Lie differentia-
tion. If M, M1 are Lie group crossed modules with associated Lie algebra crossed modules
m, m1 and M1 is a crossed submodule of M, then m1 is a crossed submodule of m. Further,
the Lie algebra crossed modules of the normalizer and Weyl crossed modules NM1 and
WM1 of M1 are precisely the normalizer and Weyl crossed modules Nm1 and Wm1 of m1.

Reconsider the model examples INNH K Ď INN G, ADH
∗K Ă AD∗ G of crossed sub-

modules described earlier in this subsection defined for a Lie group G and subgroups H,
K of G satisfying the stated conditions. Then, the Lie algebra crossed module of INNH K,
ADH

∗K are INNh k, ADh
∗k, respectively, as it might be expected.

The orthogonal case. We now consider the case where an ambient Lie algebra crossed
module is equipped with an invariant pairing (cf. subsection 2.2). This allows us to consider
isotropic crossed submodules.

Let m “ pe, g, t,mq be a Lie algebra crossed module with invariant pairing x¨, ¨y (cf.
subsection 2.2) and let m1 “ pe1, g1, t1,m1q be a crossed submodule of m. m1 is said to be
isotropic if e1 Ď g1K, where K denotes orthogonal complement with respect to x¨, ¨y. m1 is
said to be Lagrangian if it is maximally isotropic, i.e. if e1 “ g1K. When m1 is isotropic,
dim g1 ` dim e1 ď dim g “ dim e, the bound being saturated when m1 is Lagrangian.

When m1 is an isotropic submodule, it is possible to define the orthogonal normalizer
ONm1 of m1 refining the normalizer Nm1. ONm1 is the orthogonal complement of m1 in
Nm1 with respect to the pairing x¨, ¨y in the appropriate sense. More formally, ONm1 “

pmTg1 e
1 X g1K,Ng1 XmNe1 X e1K, tON,mONq, where tON, mON are the restrictions of t, m

to mTg1 e
1 X g1K, Ng1 X mNe1 X e1K ˆ mTg1 e

1 X g1K, respectively. ONm1 turns out to be
a crossed submodule of Nm1 and so m itself. Further, ONm1 contains m1 as a submodule.
The orthogonal Weyl crossed module is the quotient module OWm1 “ ONm1{m1. ONm1

reduces to m1 and OWm1 vanishes when m1 is Lagrangian.
Suppose that M is a Lie group crossed module with invariant pairing x¨, ¨y (cf. subsec-

tion 2.2) and that M1 is a Lie group crossed submodule of M and that m, m1 are the Lie
algebra crossed modules of M, M1, respectively. M1 is said to be an isotropic submodule
of M if m1 is an isotropic submodule of m in the sense defined above and similarly in the
Lagrangian case.

When M1 is an isotropic crossed submodule of M, it is possible under certain conditions
to define an orthogonal normalizer ONM1 of M1 refining the normalizer NM1 introduced
above. ONM1 is a crossed submodule of NM1 having ONm1 as associated Lie algebra crossed
module and containing M1 as a crossed submodule. Because of its defining properties, ONM1

normalizes M1 and so the orthogonal Weyl crossed module OWM1 “ ONM1{M1 of M1 can
be defined. We shall not investigate here the precise conditions ensuring the existence of
ONM1. In the following we shall tacitly assume that they are satisfied. For instance, if G1,
E1 are connected a choice of ONM1 exists.

We now examine whether the model crossed submodules introduced above turn out to
be isotropic in the presence of an invariant pairing.

Let g be a Lie algebra equipped with an invariant symmetric non singular bilinear form
x¨, ¨y. With this extra datum, the inner derivation crossed module INN g “ pg, g, idg, ad gq
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of g is a Lie algebra crossed module with invariant pairing (cf. subsection 2.2). Let h be
a subalgebra of g and k be an ideal of h such that k Ď hK. Then, the inner h-derivation
crossed module INNh k “ pk, h, idh |k, adh |hˆkq of k which we defined above is an isotropic
submodule of INN g. The orthogonal normalizer crossed module of INNh k is ONINNh k “

INNNhXNkXkKpTh kX hKq and is once more of the same kind. The orthogonal Weyl crossed
module of INNh k is OWINNh k “ potk,h, onk,h, idonk,h |otk,h , adonk,h |onk,hˆotk,hq, where otk,h “

Th kX hK{k, onk,h “ NhXNkX kK{h. We remark here that under the stated hypotheses the
subalgebra h is isotropic in g. We also note that INNh k is Lagrangian precisely when k “ hK.

Next, let g be a Lie algebra. Then, the duality pairing x¨, ¨y of g, g∗ renders the
infinitesimal coadjoint action crossed module AD∗ g “ pg∗, g, 0g, ad g

∗q of g a Lie algebra
crossed module with invariant pairing (cf. subsection 2.2). Let h, k be subalgebras of g with
h Ď k. Then, h Ď Nk and the infinitesimal coadjoint h-action crossed module ADh

∗k “

pk0, h, 0h|k0 , adh
∗|hˆk0q of k which we defined above is an isotropic submodule of AD∗ g. The

orthogonal normalizer crossed module of ADh
∗k is ONADh

∗k “ ADNhXk
∗prh, ks ` hq, and

so is of the same kind too. The orthogonal Weyl crossed module of ADh
∗k is OWADh

∗k “

potk,h, onk,h, 0onk,h |otk,h , adonk,h
∗|onk,hˆotk,hq with otk,h “ prh, ks ` hq0{k0, onk,h “ Nh X k{h. We

note that ADh
∗k is Lagrangian precisely when k “ h.

3 Higher gauge theory in the derived formulation

In this section, we formulate higher gauge theory in a novel derived formal framework
worked out in refs. [51, 52], that we shall adopt in the construction of 4- dimensional
CS theory. The framework has the distinguished merit of showing that the relationship
of higher to ordinary gauge theory is much closer than it was hitherto thought. It also
provides an elegant graded geometric set-up for the manipulation of crossed module valued
non homogeneous forms. There are two versions of the derived set up, the ordinary and
the internal.1 The former, suitable for the conventional formulation of 4-dimensional CS
theory studied in this paper, is illustrated in this section. The latter, required in the
Batalin-Vilkovisky (BV) [65, 66] formulation, will be presented elsewhere.

3.1 Derived Lie groups and algebras

The derived Lie group of a Lie group crossed module and the corresponding infinitesimal
notion of derived Lie algebra of a Lie algebra crossed module were originally introduced
in refs. [51, 52]. In the 4-dimensional CS theory we present, they pay a role analogous to
that of the gauge group of ordinary gauge theory.

Before proceeding to the illustration of this topic a few introductory comments are
useful. The formal set-up of derived Lie groups and algebras is an elegant and convenient
way of handling certain structural elements of the Lie group and algebra crossed modules

1We recall briefly the difference between ordinary and internal maps. Consider a pair X, Y of graded
manifolds and a map ϕ from X to Y . When expressed in terms of local body and soul coordinates xa and
ξr of X, the components of one such function with respect to local body and soul coordinates yi and ηh

of Y are polynomials in the ξr with coefficients which are smooth functions of the xa. If ϕ is an ordinary
map, these coefficient have degree 0 If instead ϕ is internal, the may have non zero degree.

– 20 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

entering in the formulation of higher gauge theory. In practice, it is a kind of superfield
formalism not dissimilar to the analogous formalisms broadly used in supersymmetric field
theories. It is particularly suited for applications to 4-dimensional CS theory because of
its compactness and capability of presenting it as an ordinary CS theory with an exotic
graded gauge group or algebra.

It must be made clear that the derived Lie group of a Lie group crossed module does not
fully encode this latter, but it only describes an approximation of it in the sense of synthetic
geometry. In fact, the target map of the crossed module is not involved in the definition of
the derived group, nor could it be because, roughly speaking, the approximation is such to
push the range of the target map away out of reach. Similar considerations apply to the
derived Lie algebra of a Lie algebra crossed module. The reader is referred to ref. [51] for
a more precise formal elaboration of this point.

The deep reasons why the derived set-up allows for such a natural formulation of
4-dimensional CS theory are still not completely clear.

Consider a Lie group crossed module M “ pE,G, τ, µq. The derived Lie group DM of
M consists of the internal maps from Rr´1s to the semidirect product E ¸µ G of the Lie
groups E and G with respect to the G-action µ of the form

Ppᾱq “ eᾱP p (3.1)

with ᾱ P Rr´1s, where p P G, P P er1s with the following operations. For any P,Q P DM
with Ppᾱq “ eᾱP p, Qpᾱq “ eᾱQ q, one has

PQpᾱq “ eᾱpP`µ9pp,Qqq pq, (3.2)

P´1pᾱq “ e´ᾱµ9pp´1,P q p´1. (3.3)

DM is a graded Lie group. The graded Lie group isomorphism

DM » er1s ¸µ9 G (3.4)

holds, where er1s is regarded as a G-module through the G-action µ9 and er1s ¸µ9 G denotes
the associated semidirect product Lie group. The operator D has nice functorial properties.
A morphism β : M1 Ñ M of Lie group crossed modules induces through its constituent Lie
group morphisms Φ : E1 Ñ E, φ : G1 Ñ G a Lie group morphism Dβ : DM1 Ñ DM. Further,
if M1, M2 are Lie group crossed modules, then DpM1 ˆM2q “ DM1 ˆDM2.

The notion of derived Lie group has an infinitesimal counterpart. Consider a Lie
algebra crossed module m “ pe, g, t,mq. The derived Lie algebra Dm of m consists of the
internal maps from Rr´1s to the semidirect product e¸m g of the Lie algebras e and g with
respect to the g-action m of the form

Upᾱq “ u` ᾱU, (3.5)

with ᾱ P Rr´1s, where u P g, U P er1s with the obvious linear structure and the following
Lie bracket. For any U,V P Dm such that Upᾱq “ u` ᾱU , Vpᾱq “ v ` ᾱV , one has

rU,Vspᾱq “ ru, vs ` ᾱpmpu, V q ´mpv, Uqq. (3.6)
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Dm is a graded Lie algebra. The graded Lie algebra isomorphism

Dm » er1s ¸m g (3.7)

holds, where er1s is regarded as a g-module through the g-action µ9 and er1s ¸µ9 g denotes
the associated semidirect product Lie algebra. As in the finite case above, the operator D
has functorial properties. A morphism p : m1 Ñ m of Lie algebra crossed modules induces
via its underlying Lie algebra morphisms H : e1 Ñ e, h : g1 Ñ g, a Lie algebra morphism
Dp : Dm1 Ñ Dm. Further, if m1, m2 are Lie algebra crossed modules, Dpm1 ‘ m2q “

Dm1 ‘Dm2.
In the above constructions e behaves as if it were an Abelian Lie algebra, albeit in

general it is not. This can be understood in two interrelated ways. First, if e were not
regarded as Abelian, the expression (3.2) of the group product of DM and (3.6) of the
bracket of Dm would have to incorporate extra terms belonging to the spaces erns with
n ě 2 incompatible with their being valued in DM and Dm, respectively. Second, the
elements of er1s always multiply the degree 1 parameter ᾱ. Thus, the Lie bracket of any
pair of elements of er1s necessarily multiplies ᾱ2 and so is effectively zeroed out.

The derived set-up introduced above is fully compatible with Lie differentiation. If
M “ pE,G, τ, µq is a Lie group crossed module and m “ pe, g, 9τ,9µ9q is its associated Lie
algebra crossed module (cf. subsection 2.1), then Dm is the Lie algebra of DM. Further, if
β : M1 Ñ M is a Lie group crossed module morphism and 9β : m1 Ñ m is the corresponding
Lie algebra crossed module morphism, then 9Dβ “ D 9β.

The derived set-up is also consistent with the submodule structure of the underlying
crossed module (cf. subsection 2.3). If M is a Lie group crossed module and M1 is a crossed
submodule of M, then DM1 is Lie subgroup of DM. Further, if the Lie group E1 of M1

is connected, then the normalizer and Weyl crossed modules NM1 and WM1 of M1 satisfy
DNM1 “ NDM1 and DWM1 “ WDM1, where NDM1 and WDM1 “ NDM1{DM1 are the
normalizer and Weyl Lie groups of DM1. The reason why E1 is required to be connected
is that NDM1 normalizes only the Lie algebra e1 and so only the connected component of
1E in E1 upon Lie integration. Likewise, if m is a Lie algebra crossed module and m1 is a
crossed submodule of m, then Dm1 is Lie subalgebra of Dm. Further, the normalizer and
Weyl crossed modules Nm1 and Wm1 of m1 have the property that DNm1 “ NDm1 and
DWm1 “ WDm1, where NDm1 and WDm1 “ NDm1{Dm1 are the normalizer and Weyl Lie
algebras of Dm1.

Suppose that m is a Lie algebra crossed module with invariant pairing x¨, ¨y (cf. sub-
section 2.2. Then, Dm is equipped with an induced symmetric non singular bilinear form
p¨, ¨q : DmˆDmÑ Rr´1s defined by

pU,Vq “ xu,σV y ` xv,σUy (3.8)

for any U,V P Dm, where σ : er1s Ñ Rr´1s b e is the natural 2-fold suspension map.
σ serves the purpose of identifying Dm with the internal map space Mapp∗,Dmq, where
∗ is the singleton, since Mapp∗, vrpsq is isomorphic to Rr´ps b v for any vector space v.
The identification in turn is necessary for the right hand side of (3.8) to make sense. The
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pairing p¨, ¨q is invariant as

prW,Us,Vq ` pU, rW,Vsq “ 0 (3.9)

for U,V,W P Dm.
Let m1 be a crossed submodule of m. Then, p¨, ¨q restricts to a symmetric bilinear form

p¨, ¨q1 : Dm1ˆDm1 Ñ Rr´1s, which however is not non singular any longer in general. m1 is
an isotropic crossed submodule of m (cf. subsection 2.3) precisely when Dm1 is an isotropic
subalgebra of Dm. In that case, dim Dm1 ď 1

2 dim Dm “ dim g “ dim e, the bound being
saturated when m1 is Lagrangian.

If m1 is an isotropic crossed submodule of m, the orthogonal normalizer and Weyl
crossed modules ONm1 and OWm1 of m1 turn out to be DONm1 “ ONDm1 and DOWm1 “

OWDm1 respectively, where ONDm1 “ NDm1 X Dm1K and OWDm1 “ ONDm1{Dm1 are
the orthogonal normalizer and Weyl Lie algebras of Dm1, Dm1K denoting the orthogonal
complement of Dm1.

3.2 Derived superfield formulation

In this subsection, we shall survey the main spaces of Lie group and algebra crossed mod-
ule valued fields using a derived superfield formulation. This allows for a very compact
geometrically transparent formulation of 4-dimensional CS theory studied in later sections.

We assume that the fields propagate on a general manifold X. Later, we shall add
the restriction that X is orientable and compact, possibly with boundary. To include also
differential forms, using however a convenient graded geometric description, the fields will
be maps from the shifted tangent bundle T r1sX of X into some graded target manifold T .
Below, we denote by MappT r1sX,T q the space of ordinary maps from T r1sX into T . The
broader space of internal maps from T r1sX to T required to incorporate ghost-like fields
in a BV set-up can also be considered, though we shall not do so in this paper.

The fields we shall consider will be valued either in the derived Lie group DM of a Lie
group crossed module M “ pE,G, τ, µq or in the derived Lie algebra Dm of the associated Lie
algebra crossed module m “ pe, g, 9τ,9µ9q (cf. subsects. 2.1) and 3.1). A more comprehensive
treatment of this kind of fields is provided in ref. [51].

We consider first DM-valued fields. Fields of this kind are elements of the mapping
space MappT r1sX,DMq. If U P MappT r1sX,DMq, then

Upαq “ eαU u (3.10)

with α P Rr1s, where u P MappT r1sX,Gq, U P MappT r1sX, er1sq. u, U are the com-
ponents of U. MappT r1sX,DMq has a Lie group structure induced by that of DM: if
U P MappT r1sX,DMq, V P MappT r1sX,DMq, then

UVpαq “ eαpU`µ9pu,V qq uv, U´1pαq “ e´αµ9pu´1,Uqq u´1. (3.11)

Next, we consider first Dm-valued fields. Fields of this kind are elements of the mapping
space MappT r1sX,Dmq. If Φ P MappT r1sX,Dmq, then

Φpαq “ φ` αΦ (3.12)
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with α P Rr1s, where φ P MappT r1sX, gq, Φ P MappT r1sX, er1sq. Again, φ, Φ are the
components of Φ. MappT r1sX,Dmq has a Lie algebra structure induced by that of Dm: if
Φ P MappT r1sX,Dmq, Ψ P MappT r1sX,Dmq, then

rΦ,Ψspαq “ rφ, ψs ` αp9µ9pφ, Ψq ´ 9µ9pψ,Φqq . (3.13)

MappT r1sX,Dmq is the virtual Lie algebra of MappT r1sX,DMq. (For an explanation of
this terminology, see ref. [51]).

As it turns out, the Dm-valued fields introduced above are not enough for our proposes.
One also needs to incorporate fields that are valued in the degree shifted linear spaces Dmrps

with p an integer. If Φ P MappT r1sX,Dmrpsq, then

Φpαq “ φ` p´1qpαΦ (3.14)

with components φ P MappT r1sX, grpsq, Φ P MappT r1sX, erp ` 1sq. There is a bi-
linear bracket that associates with a pair of fields Φ P MappT r1sX,Dmrpsq, Ψ P

MappT r1sX,Dmrqsq a field rΦ,Ψs P MappT r1sX,Dmrp` qsq given by

rΦ,Ψspαq “ rφ, ψs ` p´1qp`qαp9µ9pφ, Ψq ´ p´1qpq9µ9pψ,Φqq (3.15)

Setting ZDm “
À8

p“´8Dmrps, MappT r1sX,ZDmq is a graded Lie algebra. This contains
the Lie algebra MappT r1sX,Dmq as its degree 0 subalgebra.

An adjoint action of MappT r1sX,DMq on the Lie algebra MappT r1sX,Dmq and
more generally on the graded Lie algebra MappT r1sX,ZDmq is defined. For U P

MappT r1sX,DMq, Φ P MappT r1sX,Dmrpsq, one has

Ad UpΦqpαq “ Adupφq ` p´1qpαpµ9pu, Φq ´ 9µ9pAdupφq, Uqq, (3.16)
Ad U´1pΦqpαq “ Adu´1pφq ` p´1qpαµ9pu´1, Φ` 9µ9pφ,Uqq. (3.17)

The adjoint action preserves Lie brackets as in ordinary Lie theory. Indeed, for U P

MappT r1sX,DMq, Φ P MappT r1sX,Dmrpsq, Ψ P MappT r1sX,Dmrqsq,

rAd UpΦq,Ad UpΨqs “ Ad UprΦ,Ψsq. (3.18)

As is well-known, in the graded geometric formulation we adopt, the nilpotent de
Rham differential d is a degree 1 homological vector field on T r1sX, d2 “ 0. d induces
a natural degree 1 derived differential d on the graded vector space MappT r1sX,Zmq.
Concisely, d “ d ` 9τd{dα. In more ore explicit terms, for Φ P MappT r1sX,Dmrpsq, the
field dΦ P MappT r1sX,Dmrp` 1sq reads as

dΦpαq “ dφ` p´1qp 9τpΦq ` p´1qp`1αdΦ. (3.19)

It can be straightforwardly verified that

drΦ,Ψs “ rdΦ,Ψs ` p´1qprΦ, dΨs (3.20)

for Φ P MappT r1sX,Dmrpsq, Ψ P MappT r1sX,Dmrqsq and that

d2 “ 0. (3.21)

In this way, MappT r1sX,ZDmq becomes a differential graded Lie algebra.
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On several occasions, the pull-back dUU´1,U´1dU P MappT r1sX,Dmr1sq of the
Maurer-Cartan forms of DM by a DM field U P MappT r1sX,DMq will enter our con-
siderations. For these, there exist explicit expressions,

dUU´1pαq “ duu´1 ` 9τpUq ´ α
`

dU ` 1
2 rU,U s ´ 9µ9pduu´1 ` 9τpUq, Uq

˘

, (3.22)
U´1dUpαq “ Adu´1`duu´1 ` 9τpUq

˘

´ αµ9
`

u´1, dU ` 1
2 rU,U s

˘

. (3.23)

By the relation d “ d` 9τd{dα, (3.22), (3.23) follow from (3.10) and the variational identi-
ties δ eαX e´αX “ exppα adXq´1

α adX δpαXq, e´αX δ eαX “ 1´expp´α adXq
α adX δpαXq with δ “ 9τd{dα,

owing to the nilpotence of α.
Next, we assume that the Lie group crossed module M is equipped with an invariant

pairing x¨, ¨y. A pairing on the graded Lie algebra MappT r1sX,Zmq is induced in this way:
for Φ P MappT r1sX,Dmrpsq, Ψ P MappT r1sX,Dmrqsq

pΦ,Ψq “ xφ, Ψy ` p´1qpqxψ,Φy. (3.24)

Note that pΦ,Ψq P MappT r1sX,Rrp` q`1sq. The field pairing p¨, ¨q therefore has degree 1.
p¨, ¨q is bilinear. More generally, when scalars with non trivial grading are involved, the left
and right brackets p and q behave as if they had respectively degree 0 and 1. For instance,
pcΦ,Ψq “ cpΦ,Ψq whilst pΦ,Ψcq “ p´1qkpΦ,Ψqc if the scalar c has degree k. p¨, ¨q is further
graded symmetric,

pΦ,Ψq “ p´1qpqpΨ,Φq. (3.25)

p¨, ¨q is also non singular.
The field pairing p¨, ¨q has several other properties which make it a very natural ingre-

dient in the field theoretic constructions of later sections. First, p¨, ¨q is DM invariant. If
Φ P MappT r1sX,Dmrpsq, Ψ P MappT r1sX,Dmrqsq, we have

pAd UpΦq,Ad UpΨqq “ pΦ,Ψq (3.26)

for U P MappT r1sX,DMq. By Lie differentiation, p¨, ¨q enjoys also Dm invariance. This
latter, however, admits a graded extension, because of which

prΞ,Φs,Ψq ` p´1qprpΦ, rΞ,Ψsq “ 0, (3.27)

for Ξ P MappT r1sM,Dmrrsq.
Second, p¨, ¨q is compatible with the derived differential d, i.e. the de Rham vector field

d differentiates p¨, ¨q through d,

dpΦ,Ψq “ pdΦ,Ψq ` p´1qppΦ, dΨq. (3.28)

Let M, M1 be Lie group crossed modules with associated Lie algebra crossed modules
m, m1. Suppose that M1 is a submodule of M and that, consequently, m1 is a submodule of m
(cf. subsection 2.3). As DM1 is a Lie subgroup of DM, MappT r1sX,DM1q is a Lie subgroup
of MappT r1sX,DMq. Similarly, as Dm1 is a Lie subalgebra of Dm, MappT r1sX,Dmq is
a Lie subalgebra of MappT r1sX,Dmq. What is more, MappT r1sX,ZDm1q is a differential
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graded Lie subalgebra of MappT r1sX,ZDmq, since it is invariant under the action of d as
is evident from (3.19). If M is also equipped with invariant pairing x¨, ¨y with respect to
which M1 is isotropic (cf. subsection 2.3), then m1 is isotropic and thus the Lie algebra
MappT r1sX,ZDm1q is isotropic, that is pΦ,Ψq “ 0 for Φ P MappT r1sX,Dm1rpsq, Ψ P

MappT r1sX,Dm1rqsq.

3.3 Higher gauge theory in the derived formulation

In this subsection, we present a formulation of higher gauge theory based on the derived
superfield formalism of subsection 3.2. The framework we are going to devise has the virtue
of showing the close relationship of higher to ordinary gauge theory and allows so to import
many ideas and techniques of the latter to the former. The benefits of this approach will
become evident in section 4 below, where 4-dimensional CS theory is worked out.

In higher gauge theory, one should specify to begin with a Lie group crossed module
M and a higher principal M-bundle P on some base manifold X. In this general setting,
higher gauge fields and gauge transformations consist in collections of local Lie valued
map and form data organized respectively as non Abelian differential cocycles and cocycle
morphisms [67, 68]. For the scope of the present paper, this level of generality is not
necessary. It is enough that P be the trivial M-bundle for which gauge fields and gauge
transformations turn out to be maps and forms globally defined on X. We shall however
come back to this topic in greater detail in subsection 3.5 below.

The basic field of higher gauge theory is the gauge field, which in the derived framework
is a map Ω P MappT r1sX,Dmr1sq. In components, this reads as

Ωpαq “ ω ´ αΩ, (3.29)

where ω P MappT r1sX, gr1sq, Ω P MappT r1sX, er2sq (cf. eq. (3.14)). ω, Ω are nothing but
the familiar 1- and 2-form gauge fields of higher gauge theory.

The higher gauge field Ω is characterized by its curvature Φ defined by

Φ “ dΩ` 1
2 rΩ,Ωs, (3.30)

where the Lie bracket r¨, ¨s and the differential d are defined by (3.15) and (3.19), respec-
tively. The expression of Φ is otherwise formally identical to that of the curvature of a
gauge field in ordinary gauge theory. By construction, Φ P MappT r1sX,Dmr2sq. Expressed
in components, Φ reads as

Φpαq “ φ` αΦ, (3.31)

where φ P MappT r1sX, gr2sq, Φ P MappT r1sX, er3sq. φ, Φ are just the usual higher gauge
theoretic 2- and 3-form curvatures. They are expressible in terms of ω, Ω through the
familiar relations

φ “ dω ` 1
2 rω, ωs ´ 9τpΩq, (3.32)

Φ “ dΩ ` 9µ9pω,Ωq. (3.33)
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The higher curvature Φ satisfies the higher Bianchi identity

dΦ` rΩ,Φs “ 0 (3.34)

which follows from (3.30) in the usual way. This turns into a pair of Bianchi identities for
the curvature components φ, Φ, viz

dφ` rω, φs ` 9τpΦq “ 0, (3.35)
dΦ` 9µ9pω,Φq ´ 9µ9pφ,Ωq “ 0. (3.36)

A higher gauge transformation is codified in a derived Lie group valued map U P

MappT r1sX,DMq. U acts on the higher gauge field Ω as

ΩU “ Ad U´1pΩq `U´1dU (3.37)

where the adjoint action and pulled-back Maurer-Cartan form of U in the right hand side
are defined in eqs. (3.17) and (3.23), respectively. Again, in the derived formulation the
higher gauge transformation action is formally identical to that of ordinary gauge theory.
The higher curvature transforms as

ΦU “ Ad U´1pΦq, (3.38)

as expected. The gauge transformation U can be expressed in components as

Upαq “ eαU u (3.39)

with u P MappT r1sX,Gq, U P MappT r1sX, er1sq according to (3.10). In terms of these, using
systematically relations (3.17), (3.23), it is possible to write down the gauge transform of
the higher gauge field components ω, Ω,

ωu,U “ Adu´1`ω ` duu´1 ` 9τpUq
˘

, (3.40)
Ωu,U “ µ9

`

u´1, Ω ` 9µ9pω,Uq ` dU ` 1
2 rU,U s

˘

, (3.41)

as well as those of the higher curvature components φ, Φ,

φu,U “ Adu´1pφq , (3.42)
Φu,U “ µ9

`

u´1, Φ` 9µ9pφ,Uq
˘

. (3.43)

These relations are the well-known gauge transformation expressions of the 1- and 2-form
gauge fields and the 2- and 3-form curvatures of higher gauge theory.

An infinitesimal higher gauge transformation is a derived Lie algebra valued map Θ P

MappT r1sX,Dmq. The Θ variation of the higher gauge field Ω is

δΘΩ “ dΘ ` rΩ,Θs, (3.44)

where as before the Lie bracket r¨, ¨s and the differential d are given by (3.15) and (3.19),
respectively. In the derived formulation, the infinitesimal higher gauge transformation
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action is again formally identical to that of ordinary gauge theory, in particular it still is
the linearized form of its finite counterpart. As expected, so, the Θ variation of the higher
curvature reads as

δΘΦ “ rΦ,Θs. (3.45)

The gauge transformation Θ can be expressed in components as

Θpαq “ θ ` αΘ (3.46)

with θ P MappT r1sX, gq, Θ P MappT r1sX, er1sq according to (3.10). In terms of these,
exploiting relations (3.17), (3.23), we can write down the infinitesimal gauge transform of
the higher gauge field components ω, Ω,

δθ,Θω “ dθ ` rω, θs ` 9τpΘq, (3.47)
δθ,ΘΩ “ dΘ ` 9µ9pω,Θq ´ 9µ9pθ,Ωq , (3.48)

as well as those of the higher curvature components φ, Φ,

δθ,Θφ “ rφ, θs, (3.49)
δθ,ΘΦ “ 9µ9pφ,Θq ´ 9µ9pθ, Φq . (3.50)

Again, these are the infinitesimal gauge variation expressions of the 1- and 2-form gauge
fields and the 2- and 3-form curvatures in higher gauge theory.

A gauge transformation U is special if its components u, U have the form

u “ τpAq, (3.51)
U “ ´dAA´1 ´ 9µpω,Aq (3.52)

where A P MappT r1sX,Eq. Note the dependence on the underlying gauge field Ω. Its
action on the higher gauge field components ω, Ω is particularly simple,

ωu,U “ ω. (3.53)
Ωu,U “ Ω ` 9µpφ,A´1q. (3.54)

Therefore, ω is invariant. Ω is not except for when the curvature component φ vanishes.
The requirement φ “ 0 is known in higher gauge theory as vanishing fake curvature con-
dition. A special gauge transformation is one related to the trivial gauge transformation 1
by a gauge for gauge transformation. The latter is codified in the group valued map A.

A special infinitesimal gauge transformation Θ has components θ, Θ given by

θ “ 9τpΞq, (3.55)
Θ “ ´dΞ ´ 9µ9pω,Ξq (3.56)

where Ξ P MappT r1sX, eq. In keeping with (3.53), (3.54), the corresponding variations of
the higher gauge field components ω, Ω are

δθ,Θω “ 0, (3.57)
δθ,ΘΩ “ 9́µ9pφ,Ξq , (3.58)

with Ω invariant for φ “ 0.
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We introduce some notations that will be used frequently in the following. The
field space of higher gauge theory consists of the higher gauge field manifold CMpXq “

MappT r1sX,Dmr1sq. The higher gauge transformations constitute an infinite dimensional
Lie group GMpXq “ MappT r1sX,DMq acting on CMpXq according to (3.37). Similarly
the infinitesimal higher gauge transformations make up an infinite dimensional Lie algebra
GMpXq “ MappT r1sX,Dmq acting variationally on CMpXq through (3.44). The special
gauge transformations form a subgroup GMpX,ωq of GMpXq depending on an assigned
gauge field Ω through its component ω with associated Lie algebra GMpX,ωq.

3.4 The derived functional framework of higher gauge theory

In field theoretic analysis, one deals with functionals of the relevant higher gauge field on
some compact manifold X. These are given as integrals on the shifted tangent bundle
T r1sX of X of certain functions of FunpT r1sXq constructed using the gauge field. Integra-
tion is carried out using the Berezinian %X of X.

In higher gauge theory, the relevant field manifold is the higher gauge field space
CMpXq “ MappT r1sX,Dmr1sq introduced in subsection 3.3. The field functionals we will
consider belong to the graded algebra O∗MpXq “ FunpT r1sCMpXqq. O∗MpXq is a com-
plex, its differential being the canonical homological vector field δ of T r1sCMpXq. In more
conventional terms, the field functionals algebra O∗MpXq envisaged here is that of non
homogeneous differential forms on the space CMpXq and δ is the corresponding de Rham
differential. Below, we shall set F MpXq “ O0

MpXq for convenience.
The graded algebra F∗pXq “ FunpT r1sXq is also involved in the considerations be-

low via the spaces MappT r1sX,Dmrpsq. It must be kept in mind here that the grad-
ing of O∗MpXq is distinct from that of F∗pXq. We adopt the convention by which
ΦΨ “ p´1qpq`jkΨΦ for Φ P FppXq b Oj

MpXq, Ψ P FqpXq b Ok
MpXq.

The differential of the higher gauge field Ω P CMpXq can be formally viewed as a special
element δΩ P MappT r1sX,Dmr1sq bO1

MpXq. If F P FMpXq is a given field functional, its
differential δF can be written as

δF “

ż

T r1sX
%X

ˆ

δΩ, δF
δΩ

˙

(3.59)

where δF {δΩ P MappT rdX ´ 2sX,Dmr1sq bFMpXq with dX “ dimX, because of the non
singularity of the field pairing p¨, ¨q. This relation defines the functional derivative δF {δΩ.
We can write relation (3.59) formally as

δF “

ż

T r1sX
%X

ˆ

δΩ, δ
δΩ

˙

F . (3.60)

This relation defines in turn δ{δΩ as a formally DmrdX´2s valued functional differentiation
operator. It is simple to check that δ{δΩ obeys the Leibniz property.

Let VMpXq “ VectpCMpXqq denote the Lie algebra of the functional vector fields of
CMpXq. A vector field V P VMpXq can then be expressed as

V “

ż

T r1sX
%X

ˆ

V, δ
δΩ

˙

, (3.61)
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where V P MappT r1sX,Dmr1sqbFMpXq. The contraction operator associated with V , ιV ,
is characterized by the property that

ιV

ż

T r1sX
%XpδΩ,Ξq “

ż

T r1sX
%XpV,Ξq. (3.62)

for Ξ P MappT r1sX,DmrdX ´ 2sq.
On account of (3.29), the differential δΩ of the higher gauge field Ω introduced above

has the component expression

δΩpαq “ δω ´ αδΩ (3.63)

Correspondingly, the functional differentiation operator δ{δΩ defined through rela-
tion (3.59) can be written in components as

δ

δΩpαq “
δ

δΩ
` p´1qdXα δ

δω
(3.64)

where δ{δΩ, δ{δω are grdX ´ 2s, erdX ´ 1s valued functional differentiation operators,
respectively. Using these expressions and employing relations (3.24), (3.59), (3.61), it is
possible to obtain component expressions of the functional derivative δF {δΩ of a functional
F P FMpXq as well as that of a vector field V P VMpXq.

Above, we did not define the precise content of the functional algebra O∗MpXq. Doing
so is a technical task beyond the scope of this paper and moreover is not required by the
formal developments of later sections. There are however variations of the derived func-
tional framework expounded above based on modifications of that content, which we shall
refer to in the formulation of 4-dimensional CS theory presented in the next section. First,
one could replace the smooth function space F∗pXq “ FunpT r1sXq by its distributional
extension F 1∗pXq “ Fun1pT r1sXq. This would lead to a larger functional algebra O 1∗MpXq

of functionals whose integral expressions allow for distributions in addition to smooth func-
tions. Second, one could add the field theoretic constraint of locality, obtaining the local
versions O∗MlocpXq and O 1∗MlocpXq of the previous two functional algebras. Let us recall
how these are defined. By pointwise local smooth functional ψ we mean an element of
F∗pXq b O∗MpXq that can be expressed at each point of T r1sX as a polynomial in the
higher gauge field Ω and its differential δΩ and a finite number of derivatives of Ω but
none of δΩ. Similarly, by pointwise local distributional functional ψ we mean an element
of F 1∗pXq b O 1∗MpXq that can be expressed as ψ “

ř

i ψiδXi , where the ψi are pointwise
local smooth functionals and the δXi are Dirac distributions supported on certain subman-
ifolds Xi of X. An element Ψ P O∗MlocpXq is one that can be expressed as an integral
over T r1sX of some pointwise local functional ψ. Likewise, an element Ψ P O 1∗MlocpXq is
one that can be expressed as an integral over T r1sX of some pointwise local distributional
functional ψ.

3.5 Derived description of non trivial higher principal bundles

In this subsection, we shall show that the derived set-up can be used to describe higher
gauge theory on a non trivial higher principal M-bundle P for any Lie group crossed
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module M “ pE,G, τ, µq. Albeit we shall not encounter this situation, it is still important
to examine this issue in order to ascertain whether the derived formulation is capable to
efficiently handle this more general case.

In what follows, we shall describe higher gauge fields and gauge transformations by
certain local data and their global definedness through matching data. For this reason, we
pick an open covering tOiu of the base manifold X of the bundle P . For conciseness, we
shall denote by Oij “ Oi X Oj , Oijk “ Oi X Oj X Ok, etc. the non empty intersections of
the covering’s opens.

At a most basic level, a higher gauge field Ω is a collection tΩiu of local maps Ωi P

MappT r1sOi,Dmr1sq. Ωi can expanded in components

Ωipαq “ ωi ´ αΩi, (3.65)

in keeping with (3.14), where ωi P MappT r1sOi, gr1sq, Ωi P MappT r1sOi, er2sq.
In order the local gauge field data Ωi to describe a globally defined entity, the data

must match on any double intersection Oij in a way governed by a collection F of local
matching data tFiju, where Fij P MappT r1sOij ,DMq. In accordance with (3.10), Fij has
the component structure

Fijpαq “ eαFij fij , (3.66)

where fij P MappT r1sOij ,Gq, Fij P MappT r1sOij , er1sq. The matching of gauge field data
Ωi then read as

Ωi “
FijΩj “ Ad FijpΩjq ´ dFijFij´1. (3.67)

Note the formal analogy of these relations to the corresponding one of ordinary gauge
theory. Using (3.65), (3.66), eq. (3.67) takes the component form

ωi “ Ad fijpωjq ´ dfijfij´1 ´ 9τpFijq, (3.68)
Ωi “ µ9pfij , Ωjq ´ dFij ´

1
2 rFij , Fijs ´ 9µ9pωi, Fijq. (3.69)

We recover in this way the well-known gluing relations of higher gauge field components
in higher gauge theory [67, 68].

Consistency of the matching of local gauge field data Ωi on the triple intersections
Oijk does not require simply that Fik “ FijFjk, as is the case in ordinary gauge theory,
but more generally that

Fik “ HijkFijFjk, (3.70)

where Hijk P MappT r1sOijk,DMq such that

HijkΩi “ Ad HijkpΩiq ´ dHijkHijk
´1 “ Ωi. (3.71)

Again, these identities read more explicit in components. Let

Hijkpαq “ eαHijk hijk, (3.72)
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where hijk P MappT r1sOijk,Gq, Hijk P MappT r1sOijk, er1sq. Using (3.66), (3.72), rela-
tions (3.70) take the form

fik “ hijkfijfjk, (3.73)
Fik “ Hijk ` µ9phijk, Fij ` µ9pfij , Fjkqq. (3.74)

Using (3.72) once more, conditions (3.71) become

hijk,Hijkωi “ Adhijkpωiq ´ dhijkhijk´1 ´ 9τpHijkq “ ωi, (3.75)
hijk,HijkΩi “ µ9phijk, Ωiq ´ dHijk ´

1
2 rHijk, Hijks ´ 9µ9pωi, Hijkq “ Ωi. (3.76)

In refs. [67, 68], it is shown that the higher gauge field Ω being fake flat,

dωi `
1
2 rωi, ωis ´ 9τpΩiq “ 0, (3.77)

is a necessary and sufficient condition for the well-definedness of higher holonomies. It can
be checked that this requirement is compatible with the matching relations (3.68), (3.69). In
this case, the data hijk, Hijk obeying (3.75), (3.76) are of the special gauge transformation
form of eqs. (3.51), (3.52),

hijk “ τpTijkq, (3.78)
Hijk “ 9́µpωi, Tijkq ´ dTijkTijk

´1, (3.79)

where Tijk P MappT r1sOijk,Eq. Relations (3.73), (3.74) then get

fik “ τpTijkqfijfjk, (3.80)
Fik “ AdTijk pFij ` µ9pfij , Fjkqq ´ 9µpωi, Tijkq ´ dTijkTijk

´1. (3.81)

The collection H “ tHijku of Lie valued data must itself satisfy a set of consistency
conditions on the quadruple intersections Oijkl,

HiklHijk “ HijlFijHjklFij´1. (3.82)

On account of (3.66), (3.72), the component form of (3.82) read as

hiklhijk “ hijlfijhjklfij
´1, (3.83)

Hikl ` µ9phikl, Hijkq “ Hijl ` µ9phijlfij , Hjklq ` µ9phijl, Fijq ´ µ9phiklhijk, Fijq. (3.84)

A straightforward calculation shows that when the data hijk, Hijk have the special
form (3.78), (3.79) of refs. [67, 68], conditions (3.83), (3.84) reduce into

τpTiklTijkq “ τpTijlµpfij , Tjklqq, (3.85)
9µpωi, TiklTijkq “ 9µpωi, Tijlµpfij , Tjklqq. (3.86)

Both of these are fulfilled if
TiklTijk “ Tijlµpfij , Tjklq. (3.87)
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The collection of Lie valued data f “ tfiju, T “ tTijku obeying (3.80), (3.87) defines
a non Abelian cocycle [69]. It describes the background higher principal M-bundle P on
X supporting the higher gauge fields.

The collection of Lie valued data ω “ tωiu, Ω “ tΩiu, f “ tfiju, F “ tFiju, T “

tTijku obeying (3.68), (3.69), (3.80), (3.81), (3.87), constitutes a non Abelian differential
cocycle [70]. It encodes a higher gauge field as a globally defined 2-connection of the
bundle P .

At a basic level, a higher gauge transformation U is a collection tUiu of Lie valued
mappings Ui P MappT r1sOi,DMq. In components, these maps read as

Uipαq “ eαUi ui, (3.88)

by (3.10), where ui P MappT r1sOi,Gq, Ui P MappT r1sOi, er1sq. U acts on a higher gauge
field Ω yielding a gauge field UΩ locally given by

UΩi “
UiΩi “ Ad UipΩiq ´ dUiUi

´1. (3.89)

Note that this gauge transformation action is related to the one defined in (3.37) by UΩ “
ΩU´1 . We use here the left form of the action to comply with the most common convention.
In components, (3.89) reads

u,Uωi “ Aduipωiq ´ duiui´1 ´ 9τpUiq, (3.90)
u,UΩi “ µ9pui, Ωiq ´ dUi ´

1
2 rUi, Uis ´ 9µ9pu,Uωi, Uiq, (3.91)

the local component form of higher gauge transformation of refs. [67, 68].
The local data of a higher gauge transformation U must satisfy certain matching

relations implied by the gauge transform UΩ of a higher gauge field Ω being itself a gauge
field. In this regard, one must keep in mind that the matching data collection F depends
on the underlying gauge field Ω, as F is constrained by relations (3.70) in which the data
collection H depending on Ω via condition (3.71) appears. So, the matching data collections
UF, UH of the transformed gauge field UΩ are generally different from the corresponding
collections F, H of the given gauge field Ω. The fact that UΩ obeys the same kind of
matching relations as Ω, viz (3.67), entails that the local data Ui satisfy relations of the form

Ui “ Aij
UFijUjFij´1 (3.92)

on the double intersections Oij , where Aij P MappT r1sOij ,DMq such that
AijUΩi “ Ad Aijp

UΩiq ´ dAijAij
´1 “ UΩi. (3.93)

Again, these identities read more explicit in components. Let

Aijpαq “ eαAij aij , (3.94)

where aij P MappT r1sOij ,Gq, Aij P MappT r1sOij , er1sq. Using (3.66), (3.88), (3.94), condi-
tions (3.93) lead to

ui “ aij
u,Ufijujfij

´1, (3.95)
Ui “ µ9paij

u,Ufij , Ujq `Aij ´ µ9pui, Fijq ` µ9paij ,
u,UFijq. (3.96)

– 33 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
5

Using (3.94) again, conditions (3.93) get

aij ,Aiju,Uωi “ Ad aijp u,Uωiq ´ daijaij´1 ´ 9τpAijq “
u,Uωi, (3.97)

aij ,Aiju,UΩi “ µ9paij ,
u,UΩiq ´ dAij ´

1
2 rAij , Aijs ´ 9µ9p u,Uωi, Aijq “

u,UΩi. (3.98)

In the formulation of refs. [67, 68] in which the gauge field Ω is assumed to be fake
flat, the data aij , Aij obeying (3.97), (3.98) are of special gauge transformation type of
eqs. (3.51), (3.52))

aij “ τpBijq, (3.99)
Aij “ 9́µp u,Uωi, Bijq ´ dBijBij

´1. (3.100)

The matching relations (3.95), (3.96) then read as

ui “ τpBijq
u,Ufijujfij

´1, (3.101)
Ui “ AdBijpµ9p u,Ufij , Ujq `

u,UFijq ´ µ9pui, Fijq ´ 9µp u,Uωi, Bijq ´ dBijBij
´1. (3.102)

Relations (3.92) can be used to express the gauge transformed matching data UFij
in terms of the original data Fij and the gauge transformation data Ui. Similarly, rela-
tions (3.95), (3.96) allow to write the gauge transformed matching data components u,Ufij ,
u,UFij through the matching data components fij , Fij and the gauge transformation data
components ui, Ui. This is a simple exercise that we leave to the reader.

The collection A “ tAiju of Lie valued data must itself satisfy a set of consistency
conditions on the triple intersections Oijk,

Aik “ UiHijkUi
´1Aij

UFijAjk
UFij´1UHijk

´1. (3.103)

By (3.66), (3.72), (3.88), (3.94), the component form of (3.103) read as

aik “ uihijkui
´1aij

u,Ufijajk
u,Ufij

´1u,Uhijk
´1, (3.104)

Aik “ Ui ´ µ9puihijkui
´1, Uiq ` µ9puihijkui

´1aij ,
u,UFijq (3.105)

´ µ9puihijkui
´1aij

u,Ufijajk
u,Ufij

´1, u,UFijq ` µ9puihijkui
´1, Aijq

` µ9puihijkui
´1aij

u,Ufij , Ajkq ` µ9pui, Hijkq

´ µ9puihijkui
´1aij

u,Ufijajk
u,Ufij

´1u,Uhijk
´1, u,UHijkq.

These relations are rather messy, but it is still possible to find a simple solutions in the
framework of refs. [67, 68]. So, we assume again that the underlying gauge field Ω is fake
flat and that the data hijk, Hijk and aij , Aij obeying (3.75), (3.76) and (3.97), (3.98) are
of special gauge transformation type (3.78), (3.79) and (3.99), (3.100), respectively. Then,
a straightforward calculation shows that conditions (3.104), (3.105) reduce to

τpBikq “ τpµpui, TijkqBijµp
u,Ufij , Bjkq

u,UTijk
´1q, (3.106)

9µpu,Uωi, Bikq ` dBikBik
´1 “ 9µpu,Uωi, µpui, TijkqBijµp

u,Ufij , Bjkq
u,UTijk

´1q (3.107)
` dpµpui, TijkqBijµp

u,Ufij , Bjkq
u,UTijk

´1q

ˆ pµpui, TijkqBijµp
u,Ufij , Bjkq

u,UTijk
´1q´1
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Both of these are fulfilled if

Bik “ µpui, TijkqBijµp
u,Ufij , Bjkq

u,UTijk
´1 (3.108)

This is almost the property such data are required to have in the formulation of refs. [67, 68].
We shall come back to this point momentarily.

Relations (3.103) combined with the (3.86) can be used to express the gauge trans-
formed matching data UHijk in terms of the original data Hijk and the gauge transforma-
tion data Ui. Similarly, relations (3.104), (3.105) together with the (3.95), (3.96) allow to
write the gauge transformed matching data components u,Uhijk, u,UHijk through the given
matching data components hijk, Hijk, and the gauge transformation data components ui,
Ui. This is again left to the reader.

The collection of Lie valued data u “ tuiu, U “ tUiu, B “ tBiju obey-
ing (3.101), (3.102), (3.108) is an equivalence of the non Abelian differential cocycle pair
ω “ tωiu, Ω “ tΩiu, f “ tfiju, F “ tFiju, T “ tTijku, u,Uω “ tu,Uωiu, u,UΩ “ tu,UΩiu,
u,Uf “ tu,Ufiju, u,UF “ tu,UFiju, u,UT “ tu,UTijku [70].

As we have seen above, the collection of Lie valued data f “ tfiju, T “ tTijku obey-
ing (3.80), (3.87) define a non Abelian cocycle describing the background higher principal
M-bundle structure for the gauge fields. It is natural to require that such data be gauge
invariant

u,Ufij “ fij , (3.109)
u,UTijk “ Tijk. (3.110)

This is in keeping with the analogous requirement imposed on the matching data fij in ordi-
nary principal bundle theory. It ensures that the M-bundle structure constitutes the back-
ground for the gauge transformations too. With (3.109), (3.110) holding, conditions (3.108)
take the form they have in the framework of refs. [67, 68].

In conclusion, the derived set-up can be used to describe rather compactly a higher
principal M-bundle and the gauge fields and gauge transformations it supports. It further
renders manifest the formal analogy of higher to ordinary principal bundles, gauge fields
and gauge transformations. However, to make certain implicit constraints explicit, it is
unavoidable to resort to a component analysis.

We end this subsection with a discussion shedding light upon a basic difference exist-
ing between the nature of higher gauge field and gauge transformations in a non trivial
higher principal bundle background and of their ordinary counterparts. This diversity is
responsible for making the construction of 4-dimensional CS theory in such a background
problematic. (More on this in subsection 4.4.)

For a full global description of the higher gauge field Ω, its local data Ωi are not suffi-
cient. The data Ωi match through certain data Fij obeying consistency conditions involving
further data Hijk depending in turn on the Ωi (cf. eqs. (3.67), (3.70), (3.71), (3.82)). Thus,
it is not possible to organize all these data in a hierarchy and consider in particular the
Fij as those encoding a fixed higher principal bundle structure independent and preexist-
ing any gauge field superimposed to it, as is the case in ordinary gauge theory. Only the
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components fij and hijk of Fij , Hijk can be assumed to be independent from the gauge
field data Ωi and therefore be ascribed to a fixed bundle background. The components Fij
and Hijk conversely cannot and might be considered as part of the data of a 2-connection
on the same footing as the components ωi, Ωi of the Ωi.

Similarly, for a full global description of a higher gauge transformation U, its local data
Ui are not enough. The data Ui match through the data Fij associated with some assigned
gauge field data Ωi and further data Aij obeying compatibility conditions involving the Ωi,
Ui and also Hijk (cf. eqs. (3.92), (3.94), (3.103)). Again, it is not possible to organize all
these data in a hierarchy and consider in particular the Ui as those representing a gauge
transformation standing independently from the gauge fields it acts on, as in ordinary
gauge theory. Only the components aij of Aij can be assumed to be independent from the
gauge field and gauge transformation data Ωi and Ui. The components Aij instead cannot
and might considered part of the data defining an equivalence of two 2-connections on a
par as the components ui, Ui of the Ui.

To allow for the well-definedness of higher holonomies, the gauge field components ωi,
Ωi are required to obey the vanishing fake curvature condition (3.77). The components hijk,
Hijk and aij , Aij then have the structure shown in (3.78), (3.79) and (3.106), (3.107) with
conditions (3.87) and (3.108) satisfied. Conditions (3.109), (3.110) are further imposed.
However, again, the matching data are or obey condition depending on the gauge field data.

As a concluding remark we notice that the subtleties of the global description of higher
gauge fields and transformations discussed above do not show up for Abelian INN Up1q-
bundles, corresponding essentially to bundle gerbes [71], since in this case the matching
data fij , Fij , hijk, Hijk, aij , Aij turn out to be independent from the gauge field and
transformation data ωi, Ωi, ui, Ui.

4 4-dimensional Chern-Simons theory

In this section, we introduce and study the 4-dimensional higher CS model, which is the
main topic of this paper, focusing in particular on its gauge symmetries. We illustrate
further its Hamiltonian formulation.

As we shall see, 4-dimensional CS theory exhibits its most interesting features when
the underlying 4-fold has a boundary. This fact highlights its rich holographic properties,
which we shall describe in great detail.

As already anticipated in section 2, we shall work in a graded geometric setting where
forms are ordinary maps from the shifted tangent bundle T r1sX of a relevant manifold X
to some target graded manifold. Integration will be implemented through the Berezinian
%X of X.

The basic algebraic structures of the model are a Lie group crossed module M “

pE,G, τ, µq and the associated Lie algebra crossed module m “ pe, g, 9τ,9µ9q (cf. subsec-
tion 2.1). We assume that M is equipped with an invariant pairing x¨, ¨y and that M is
fine and that the conditions sufficient for the direct sum decomposition (2.11) to hold are
verified (cf. subsection 2.2), though some of our results do not hinge on this restriction.
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All the fields occurring in the theory are valued either in the derived Lie group DM of M
or in the derived Lie algebra Dm of m (cf. subsection 3.1). The derived superfield formalism
of subsection 3.2 is employed throughout. The field pairing p¨, ¨q induced by x¨, ¨y (cf.
eq. (3.24)) is used systematically in the construction. The higher gauge theoretic framework
of subsect 3.3 conjoined with the derived functional framework of subsection 3.4 allow for
a particularly geometrically intuitive formulation highlighting the close relationship of the
higher CS theory to the ordinary one.

4.1 4-d Chern-Simons theory

In this subsection, we present the 4-dimensional higher CS model, which is the main topic
of this paper. In component form, this model first appeared in [46] and was further studied
in [47, 48] on 4-folds without boundary.

Below, we assume that M is an oriented, compact 4-fold, possibly with boundary. No
further restrictions are imposed.

The action of 4-dimensional CS theory is

CSpΩq “ k

4π

ż

T r1sM
%M

`

Ω, dΩ` 1
3 rΩ,Ωs

˘

, (4.1)

where Ω P CMpMq is a higher gauge field (cf. subsection 3.3) and k is a constant, the CS
level. Formally, the expression of the higher CS action put forth here is identical to that
of familiar CS theory with the pairing p¨, ¨q in place of the usual Lie algebraic invariant
quadratic form. However, since the latter has degree 1 rather than 0, the Lagrangian has
degree 4 instead than 3. It is precisely for this reason that the present higher CS theory
works in 4 dimensions.

Expressed through the components ω, Ω of the higher gauge field Ω, the 4-dimensional
CS action CS reads as

CSpω,Ωq “
k

2π

ż

T r1sM
%M

@

dω ` 1
2 rω, ωs ´

1
2 9τpΩq, Ω

D

´
k

4π

ż

T r1sBM
%BM xω,Ωy . (4.2)

The boundary contribution, absent in (4.1), is yielded by an integration by parts. So,
higher CS theory can be described as a generalized BF theory with boundary term and
cosmological term determined by the Lie differential 9τ of the target map τ . This way of
regarding it is however somewhat reductive. 4-dimensional CS theory is characterized by
a higher gauge symmetry which places it safely in the realm of higher gauge theory. We
shall analyze this matter in greater detail in subsection 4.2 below.

The variation of the 4-dimensional CS action CS under a variation of the higher gauge
field Ω is given by

δCS “
k

2π

ż

T r1sM
%M pδΩ,Φq `

k

4π

ż

T r1sBM
%BM pδΩ,Ωq , (4.3)

where Φ is the higher gauge curvature defined in eq. (3.30). (Here and below, the variational
operator δ is defined as in subsection 3.4.) If a suitable boundary condition is imposed on
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Ω which makes the boundary term in (4.3) vanish, rendering CS differentiable in the sense
of refs. [73, 74], the field equations read

Φ “ 0. (4.4)

These can be written in terms of the components ω, Ω using relations (3.32), (3.33). In
this way, as in ordinary CS theory, the higher CS field equations enforce the flatness of Ω.

If no boundary condition is imposed, the 4-dimensional CS action CS belongs to the
distributional extension F 1

MlocpMq of the local smooth functional space F MlocpMq, as the
variation δCS of CS given in (4.3) contains a boundary term

Γ “ ´
k

4π

ż

T r1sBM
%BM pδΩ,Ωq , (4.5)

that cannot be turned into a legitimate bulk one using Stokes’ theorem (cf. subsection 3.4).
Imposing an appropriate boundary condition eliminates the offending boundary contribu-
tion and makes CS belong to F MlocpMq with a well defined variational problem leading to
the field equations (4.4).

The choice of the appropriate boundary condition to be prescribed to the higher gauge
field Ω depends on the type of physics the higher CS theory is meant to describe. To
analyze this matter in full generality within the scope of local field theory, we proceed as
follows.

First, to have available the broadest possible range of boundary conditions, we allow
for the addition to the action CS of a local boundary term ∆CS independent from any
boundary background field. The resulting modified CS action is then

CS1 “ CS `∆CS. (4.6)

The inclusion of ∆CS provides the variation δCS1 of CS1 with a boundary contribution
that is added to the problematic boundary contribution Γ yielded by δCS. Note that the
two boundary contributions cannot cancel out since the former is δ-exact in O 1∗MlocpMq

while the latter is not.
Second, we impose a local boundary condition on the higher gauge field Ω. The most

general such condition is specified by a local functional submanifold L of the boundary
higher gauge field space CMpBMq, that is one defined by means of local constraints in
CMpBMq, and takes the form

Ω|T r1sBM P L. (4.7)

The boundary condition must by such to completely cancel the boundary contribution to
the variation δCS1 of CS1.

The above two step procedure ensures that CS1 does indeed belong to local smooth
field functional space F MlocpMq, making the associated variational problem well defined,
as we now show. The assumed qualifications of the boundary term ∆CS guarantee the
existence of a boundary local smooth functional ∆CSB P F MlocpBMq independent from
any boundary background field such that ∆CSpΩq “ ∆CSBpΩBq|ΩB“Ω|T r1sBM . (Here and
below we denote boundary fields and field functionals thereof by a subscript B for clarity.)
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The boundary contribution to the variation δCS of CS in (4.3), Γ , is similarly related to
the boundary local functional 1-form ΓB P O1

MlocpBMq,

ΓB “ ´
k

4π

ż

T r1sBM
%BM pδBΩB,ΩBq , (4.8)

as Γ pΩq “ ΓBpΩBq|ΩB“Ω|T r1sBM . Hence, the total boundary contribution to δCS1 is going to
vanish if ∆CS and L are such that

ΓB ´ δB∆CSB “ 0 in L. (4.9)

This can be achieved by suitably adjusting either ∆CSB or L or both.
A functional submanifold L of CMpBMq will be called admissible if it can be employed

to define a viable boundary condition. The boundary term ∆CS as well as the associated
modified action CS1 are fixed once a choice of one such submanifold L is made. We shall
denote them as ∆CSL and CS1L when it is necessary to indicate such dependence. The
problem of classifying the possible choices of boundary conditions reduces in this way to
that of classifying the admissible submanifolds.

In the spirit of the covariant canonical approach (see e. g. ref. [72] for a standard
review), the boundary functional 1-form ΓB given in eq. (4.8) provides the expression of
the appropriate symplectic potential of the higher CS model field space CMpBMq. The
associated symplectic form ΥB P O2

MlocpBMq thus is

ΥB “ δBΓB “
k

4π

ż

T r1sBM
%BM pδBΩB, δBΩBq . (4.10)

The admissible submanifolds L of CMpBMq which describe the higher CS theory boundary
conditions then constitute a distinguish subset of isotropic submanifolds with respect to
ΥB, that is the submanifolds L such that

ΥB “ 0 in L (4.11)

In terms of the gauge field components ω, Ω the symplectic form reads

ΥB “
k

2π

ż

T r1sBM
%BM xδBωB, δBΩBy . (4.12)

The local boundary condition classification problem is therefore similar enough to that of
the description of isotropic submanifolds in ordinary Hamiltonian mechanics. We shall not
tackle this issue in full generality and for the time being content ourselves with a basic
class of such conditions.

With any isotropic submodule M1 of the Lie group crossed module M, (cf. subsec-
tion 2.3), there is associated the submanifold CM1pBMq of CMpBMq. By virtue of the
isotropy M1, CM1pBMq is a local submanifold of CMpBMq such that ΓB “ 0 on CM1pBMq,
hence an admissible submanifold of CMpBMq with ∆CSCM1 pBMq

“ 0 and CS1CM1 pBMq
“ CS.

CM1pBMq thus defines a special choice of boundary condition for 4-dimensional CS theory.
In the following we shall refer mostly to this kind of boundary condition, which we shall
call isotropic linear of type M1 for reference. The most permissive isotropic linear bound-
ary condition is that for which M1 is Lagrangian. This will be called Lagrangian linear
of type M1.
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4.2 Gauge invariance of the 4-d Chern-Simons model

In this subsection, we analyze in some detail the gauge symmetry of the 4-dimensional
CS model introduced in subsection 4.1. In spite of the formal resemblance of higher to
ordinary CS theory when the derived formulation is used, the invariance properties of the
4-dimensional CS model differ in several important aspects from those of the 3-dimensional
one, especially in relation to the effect of a boundary in the base manifold.

For a higher gauge transformation U P GMpMq (cf. subsection 3.3), the 4-dimensional
CS action (4.1) varies as

CSpΩUq “ CSpΩq ` ApΩ; Uq (4.13)

for Ω P CMpMq, where ApΩ; Uq is given by

ApΩ; Uq “ ´ k

24π

ż

T r1sM
%M

`

dUU´1, rdUU´1, dUU´1s
˘

`
k

4π

ż

T r1sBM
%BM

`

Ω, dUU´1˘ (4.14)

The gauge variation term ApΩ; Uq is formally identical to that of ordinary CS theory: a
bulk WZNW-like term plus a boundary term.

The real nature of the gauge variation term (4.14) emerges when it is expressed through
the components ω, Ω of the higher gauge field Ω and u, U of the higher gauge transformation
U. Using (3.22), it can be verified that the bulk term is exact and hence reduces to a
boundary term, yielding the expression

Apω,Ω;u, Uq

“
k

4π

ż

T r1sBM
%BM

”

@

9τpUq, dU ` 1
3 rU,U s

D

´
@

duu´1 ` 9τpUq, dU ` 1
2 rU,U s

D

`
@

ω, dU ` 1
2 rU,U s ´ 9µ9pduu´1 ` 9τpUq, Uq

D

´
@

duu´1 ` 9τpUq, Ω
D

ı

. (4.15)

In particular, A “ 0 identically if BM “ {0. In this sense, in the higher theory, the gauge
non invariance of the CS action is ‘holographic’ in nature. This property distinguishes
4-dimensional CS theory from its 3-dimensional counterpart.

When a boundary term ∆CS is added to the basic higher CS action CS, a modi-
fied action CS1 is obtained (cf. eq. (4.6)). ∆CS is generally non invariant under gauge
transformation. One hence has

∆CSpΩUq “ ∆CSpΩq `∆ApΩ,Uq (4.16)

where ∆A is a boundary gauge variation. The modified gauge variation A1, the variation
of the modified action CS1, is therefore given by

A1 “ A`∆A. (4.17)

Depending on the form of ∆CS, A1 may differ considerably from A.
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The gauge invariance properties of 4-dimensional CS theory depend to a large extent
on the kind of boundary condition one imposes on the higher gauge fields Ω to render the
CS variational problem well-defined.

As we have explained in subsection 4.1, in 4-dimensional CS theory a choice of bound-
ary condition is specified by an admissible submanifold L of CMpBMq. The boundary
condition requires that Ω satisfies Ω|T r1sBM P L. With the boundary condition, further,
there is associated a boundary term ∆CSL that is to be added to the basic CS action CS
yielding the appropriate variationally well-behaved modified CS action CS1L (cf. eq. (4.6)).

When a certain boundary condition is prescribed for the higher gauge fields Ω a cor-
responding boundary condition must be imposed to the higher gauge transformations U:
they must preserve L. The boundary condition can therefore be expressed as the require-
ment that

U|T r1sBM P IL (4.18)

where IL is the invariance subgroup of L in GMpBMq, the subgroup formed by the boundary
gauge transformations UB P GMpBMq such that LUB “ L.

Since the modified action CS1L results from adding the boundary term ∆CSL to the
basic CS action CS according to (4.6), the boundary gauge variation ∆AL is added to
the basic gauge variation term A to yield the modified gauge variation term A1L given
by (4.17). As we shall see momentarily, the expression A1L may take a simpler form when
the boundary conditions obeyed by both the gauge fields and transformations are taken
into account.

For the isotropic linear boundary condition of type M1 (cf. subsection 4.1), where M1

is an isotropic crossed submodule of M, more detailed information can be provided. In this
case, the condition is specified by the admissible submanifold CM1pBMq of CMpBMq. The
precise content of the invariance subgroup ICM1 pBMq

of CM1pBMq is not straightforward to
describe in simple terms, but it is not difficult to identify a broad distinguished subgroup
IN
CM1 pBMq

of ICM1 pBMq
. IN

CM1 pBMq
consists of the boundary gauge transformations UB P

GNM1pBMq satisfying

dBuBuB
´1 ` 9τpUBq “ 0 mod MappT r1sBM, g1r1sq, (4.19)

dBUB `
1
2 rUB, UBs “ 0 mod MappT r1sBM, e1r1sq, (4.20)

where NM1 is the normalizer crossed module of M1 (cf. subsection 2.3). IN
CM1 pBMq

being contained in ICM1 pBMq
follows from (3.40), (3.41) and the defining properties of

GNM1pBMq. It can be further shown that IN
CM1 pBMq

contains GM1pBMq as a subgroup and
that IN

CM1 pBMq
“ ICM1 pBMq

if the groups G1, E1 are connected.
Since the boundary term ∆CSCM1 pBMq

“ 0 identically for the isotropic linear boundary
condition, the modified action CS1CM1 pBMq

and the associated gauge variation term A1CM1 pBMq

are equal to their basic counterparts CS and A, respectively. If U is a higher gauge trans-
formation obeying the boundary condition U|T r1sBM P IN

CM1 pBMq
, the gauge variation (4.15)

takes the CS form

Apω,Ω;u, Uq “ k

4π

ż

T r1sBM
%BM

@

9τpUq, dU ` 1
3 rU,U s

D

, (4.21)
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by the isotropy of M1. Apω,Ω;u, Uq is so independent from the higher gauge field compo-
nents ω, Ω. Note that Apω,Ω;u, Uq “ 0 when U|T r1sBM P GM1pBMq.

4.3 Level quantization

To quantize 4-dimensional CS theory, one should allow for the widest gauge symmetry
leaving the Boltzmann exponential exppiCSq invariant possibly restricting the value of
the CS level k. In ordinary CS theory, this permits the incorporation of large gauge
transformation in the symmetry, when the CS level is suitably quantized. One wonders if
something similar happens in our higher setting.

By (4.15), when the boundary BM of M is empty, the higher CS theory enjoys full
higher gauge symmetry and there is no problem. When BM is non empty, one should
impose on the relevant higher gauge fields Ω and transformations U the weakest possible
boundary conditions capable to render the gauge variation term A an integer multiple of 2π.
Given the varied form such conditions can take, here we can only examine basic examples.

If an isotropic linear boundary condition of type M1 is implemented, where M1 is an
isotropic crossed submodule of M, the higher gauge fields Ω P CMpMq and gauge trans-
formations U P GMpMq must satisfy Ω|T r1sBM P CM1pBMq and U|T r1sBM P ICM1 pBMq

(cf.
subsects. 4.1, 4.2). We identified a subgroup IN

CM1 pBMq
of ICM1 pBMq

essentially exhausting
it formed by the boundary gauge transformations UB P GNM1pBMq obeying (4.19), (4.20).
For the gauge transformations U such that U|T r1sBM P IN

CM1 pBMq
, the gauge variations A

has the simple CS form (4.21). This however neither vanishes nor enjoys any quantization
property a priori. We are thus forced to consider a more restrictive boundary condition
for the U. An option is replacing the invariance subgroup IN

CM1 pBMq
by its orthogonal

subgroup ION
CM1 pBMq

, where ONM1 is the orthogonal normalizer crossed module of M1

(cf. subsection 2.3). ION
CM1 pBMq

is constituted by the boundary gauge transformations
UB P GONM1pBMq satisfying (4.19), (4.20). For the gauge transformations U such that
U|T r1sBM P ION

CM1 pBMq
, the gauge variation A takes the form

Apω,Ω;u, Uq “ ´ k

24π

ż

T r1sBM
%BM x 9τpUq, rU,U sy . (4.22)

This can be roughly viewed as a kind of winding number of a Lie group valued map,
since by (4.19) 9τpUq can be identified with duu´1 on the boundary T r1sBM up to a term
belonging to MappT r1sBM, g1r1sq.

As explained in subsection 2.2, under weak assumptions the Lie algebra crossed module
with invariant pairing m is isomorphic to the direct sum of the Lie algebra crossed module
INN ran 9τ with a suitable invariant pairing and AD∗pg{ ran 9τq with canonical invariant
pairing. Having this in mind, we are going to find out which form the expression (4.22) of
the gauge variation A takes in the cases where the Lie group crossed module M is either
INN G with a suitable invariant pairing or AD∗ G with the canonical duality pairing, where
G is a Lie group, and M1 is an isotropic crossed submodule of these for which the orthogonal
normalizer crossed module ONM1 exists, such as the submodules INNH K or ADH

∗K studied
in subsection 2.3 with H, K suitable connected Lie subgroups of G.
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We consider first the case where M “ INN G and M1 “ INNH K. We have then E “
G and 9τpXq “ X for X P g. The less restrictive boundary conditions on the gauge
transformation U are those for which the gauge variation A is an integer times 2π. The
weakest conditions one can envisage are as follows. The boundary gauge transformations
UB P ION

CINNH KpBMq such that there is a boundary gauge transformation VB P GINNH KpBMq

obeying
dBvBvB

´1 ` VB “ ´AduB´1pdBuBuB
´1 ` UBq (4.23)

form a distinguished subgroup ION∗
CINNH KpBMq of ION

CINNH KpBMq. For a transformation
UB P ION

CINNH KpBMq, one has

´
1

24π

ż

T r1sBM
%BM xUB, rUB, UBsy

“

ż

T r1sBM
%BM

1
24π

@

dBũBũB
´1, rdBũBũB

´1, dBũBũB
´1s

D

(4.24)

where ũB “ uBvB. If the closed form 1
48π2 xκ, rκ, κsy of G, where κ is the Maurer-Cartan

form, is a representative of an integer cohomology class, the above expression takes integer
values times 2π. Let us assume this is indeed the case. By virtue of (4.22), if U is
gauge transformation obeying the boundary condition U|T r1sBM P ION∗

CINNH KpBMq, A takes
the form

A “
k

24π

ż

T r1sBM
%BM

@

dũũ´1,
“

dũũ´1, dũũ´1‰D . (4.25)

where ũ “ uv, v being an extension to a neighborhood of BM of the component vB of a
boundary gauge transformation VB P GINNH KpBMq satisfying condition (4.23) with UB “
U|T r1sBM . If the level k is an integer, A is integer values times 2π as desired, much as in
ordinary CS theory. Level quantization so occurs.

We consider next the case where M “ AD∗ G. We have then E “ g∗, viewed as an
Abelian group and 9τpXq “ 0 for X P g∗. By (4.22), A then vanishes,

A “ 0. (4.26)

In this case, level quantization of course does not occur.
The isotropic linear boundary conditions considered above serve the purpose of ren-

dering the CS variational problem well-defined and gauge covariant. By virtue of their
origin, they suit the perturbative semiclassical limit k Ñ 8 in which k can be considered
as a continuous parameter regardless its integrality. Below, we envisage other types of
boundary conditions are appropriate for the opposite non perturbative quantum finite k
regime.

The boundary condition we shall study is best expressed in components. We require
that the higher gauge fields Ω P CMpMq to be fake flat on the boundary

φ “ dω ` 1
2 rω, ωs ´ 9τpΩq “ 0 on T r1sBM (4.27)
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(cf. subsection 3.3). We require further that the allowed gauge transformations U P GMpMq

are special on the boundary, that is of the form

u “ τpBq, (4.28)
U “ ´dBB´1 ´ 9µpω,Bq on T r1sBM, (4.29)

where B P MappT r1sBM,Eq (cf. eqs. (3.51), (3.52)). Note that the Ω are not fake flat
in general, as the fake flatness condition (4.27) is required to hold only on the boundary
BM of M . Likewise, the U are not special in general, as they are required to be of the
form (3.51), (3.52) only on BM . Finally notice that by (3.53), (3.54) we have ωu,U “ ω,
Ωu,U “ Ω on T r1sBM . These gauge transformations so leave the boundary values of the
gauge field components fixed.

The boundary fake flatness condition (4.27) can be enforced by adding to CS action
CS a boundary term of the form

∆CSpΩ, Λq “ k

4π

ż

T r1sBM
%BM xφ,Λy , (4.30)

where Λ P MappT r1sBM, er1sq is an auxiliary boundary field. By (2.13), (3.42) and (4.28),
∆CS is invariant under any gauge transformation U with the boundary form (4.28), (4.29)
provided Λ transforms as

ΛU “ AdB´1pΛq. (4.31)

When the relevant higher gauge field ω, Ω and the gauge transformation u, U obey
the boundary conditions (4.27) and (4.28), (4.29), the gauge variation term (4.15) takes
the form

A “
k

24π

ż

T r1sBM
%BM

@

9τpdBB´1q,
“

dBB´1, dBB´1‰D . (4.32)

2 This can again viewed as a kind of the winding number of a Lie group valued map. A is
a homotopy invariant, as one might expect. Indeed, under a variation δB of B, the varia-
tion of the integrand in the right hand side of (4.32) is 3d

@

9τpδBB´1q, rdBB´1, dBB´1s
D

entailing that δA “ 0.
For reasons we explained earlier, we are going to obtain the form the expression (4.32)

of the gauge variation A takes when the Lie group crossed module M is either INN G
with a suitable invariant pairing or AD∗ G with the canonical duality pairing, where G is
a Lie group.

We consider first the case where M “ INN G for which E “ G and 9τpXq “ X X P g.
By (4.32), A takes the form

A “
k

24π

ż

T r1sBM
%BM

@

dBB´1,
“

dBB´1, dBB´1‰D . (4.33)

2The full expression of A contains in the integrand a term ´6 xφ,9µpω,Bqy which vanishes by (4.27) and
a further term xrω, ωs ,9µpω,Bqy ´

@

ω,9µ
`

rω, ωs , B´1˘D which vanish by (2.14) which in turn holds by the
assumed fineness of the crossed module M.
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Again, if the closed form 1
48π2 xκ, rκ, κsy of G with κ the Maurer-Cartan form is a represen-

tative of an integer cohomology class, as we assume presently, A takes integer values times
2π provided the level k is integer. Level quantization once more occurs.

We consider next the case where M “ AD∗ G. We have then E “ g∗, viewed as an
Abelian group and 9τpXq “ 0 for X P g∗. By (4.32), A then vanishes

A “ 0. (4.34)

In this case, again level quantization does not occur.
The calculations carried out above show that level quantization, when it occurs, is a

boundary effect. This remarkable property markedly distinguishes higher CS theory from
its ordinary counterpart.

4.4 Global issues in 4-d Chern-Simons theory

In this subsection, we examine the issue whether it is possible to give a reasonable definition
of 4-dimensional CS theory on a non trivial higher principal bundle. We refer the reader
to subsection 3.5 for a preliminary discussion of this matter.

The components ω, Ω of the higher gauge field Ω are only locally defined when the
underlying higher principal bundle is non trivial. Consequently also the 4-dimensional
CS Lagrangian density is only locally defined and formula (4.1) giving the CS action is
unusable. This is only the first of a number of subtle points which must be settled before
attempting a definition of 4-dimensional CS theory on a non trivial background. We leave
a more thorough analysis of these issues for future work and here we shall limit ourselves
to tackle the problem from a different more elementary perspective.

We look for an expression of the 4-dimensional CS action CS on a trivial higher gauge
principal bundle that can be sensibly extended also on a non trivial one. To this end, we
try to adapt a strategy that has shown itself to be successful in the familiar 3-dimensional
case. We write the gauge field Ω as the sum of a background gauge field Ω and a deviation
W, viz

Ω “ Ω`W. (4.35)

We assume furthermore that Ω is flat

Φ “ dΩ` 1
2
“

Ω,Ω
‰

“ 0. (4.36)

This is not done only for mathematical convenience, but also because it allows for a more
precise characterization of the CS action CSpΩq, as shown momentarily. We also assume
that Ω obeys an isotropic linear boundary condition (cf. subsection 4.1) and require that
W also does. In this way, Ω will satisfy it too.

The Lagrangian of 4-dimensional CS theory can now be expressed as
`

Ω, dΩ` 1
3 rΩ,Ωs

˘

“
`

Ω, dΩ` 1
3 rΩ,Ωs

˘

`
`

W,DW` 1
3 rW,Ws

˘

´ d
`

Ω,W
˘

, (4.37)

where we have conventionally set
D “ d` ad Ω. (4.38)
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Upon integration on T r1sM , the last term in the right hand side of (4.37) gives a vanish-
ing contribution because of the isotropic boundary conditions obeyed by both Ω and W.
From (4.1), we find so that

CSpΩq “ CSpΩq ` k

4π

ż

T r1sM
%M

`

W,DW` 1
3 rW,Ws

˘

. (4.39)

We now concentrate on the background CS action CSpΩq.
Denote by δ a variation with respect to the background gauge field Ω respecting both

the flatness requirement (4.36) and the given isotropic linear boundary condition. Then,
since the flatness condition (4.36) coincides with the CS field equation (cf. subsection 4.1),
we have

δCSpΩq “ 0. (4.40)

CSpΩq is therefore constant on each connected component of the space of flat background
gauge fields Ω. If M has no boundary, CSpΩq is also fully gauge invariant. In such a
case, CSpΩq represent a locally constant function on the moduli space of flat gauge fields
Ω. If conversely M has a boundary, then CSpΩq, or more precisely eiCSpΩq, is a section
of a flat unitary line bundle on the moduli space whose matching data are defined by the
exponentiated gauge variation (4.21).

When M has no boundary, CSpΩq can be evaluated by a method borrowed once more
from the 3-dimensional case. Suppose that the 4-fold M is the boundary of a 5-fold ĂM .
We extend the background gauge field Ω to a gauge field rΩ on ĂM such that rΩ|T r1sM “ Ω.
Since

rd
`

rΩ, rdrΩ` 1
3
“

rΩ, rΩ
‰˘

“
`

rΦ, rΦ
˘

, (4.41)

where rΦ is the curvature of rΩ defined according to (3.30), we have

CSpΩq “ kI
ĂM
prΩq, (4.42)

where I
ĂM
prΩq is given by

I
ĂM
prΩq “ 1

4π

ż

T r1sĂM
%
ĂM

`

rΦ, rΦ
˘

. (4.43)

The value of I
ĂM
prΩq does not depend on the choice of rΩ as

rδI
ĂM
prΩq “ 1

2π

ż

T r1sBĂM
%
ĂM

`

rδ rΩ, rΦ
˘

“
1

2π

ż

T r1sM
%M

`

δΩ,Φ
˘

“ 0 (4.44)

by (4.36). The value of I
ĂM
prΩq does not depend also on the choice of ĂM because

`

rΦ, rΦ
˘

is exact by (4.41). It is interesting to notice here that quadratic curvature polynomial
1

8π2

`

rΦ, rΦ
˘

is formally analogous the familiar Chern 4-form. It has however degree 5. Ex-
pressed through the curvature components rφ, rΦ, I

ĂM
prω, rΩq reads in fact as

I
ĂM
prω, rΩq “

1
2π

ż

T r1sĂM
%
ĂM

@

rφ, rΦ
D

. (4.45)
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Suppose now that the background principal bundle is non trivial. We pick again a
background gauge field specified, as explained in subsection (3.5), by a collection of local
data Ωi. The Ωi relate via matching data Fij as in (3.67). The Fij adapt in turn via
the consistency data Hijk as in (3.70) with the Hijk obeying conditions (3.71) and (3.82).
Because of (3.67), the integrand of the second term in the right hand side of (4.39) will be
globally defined if the local data Wi of the deviation field match according to

Wi “ Ad FijpWjq. (4.46)

Integration on T r1sM is then possible. In this respect, the context is formally similar to
that of the 3-dimensional theory. If (4.46) holds, the local data of the gauge field are
Ωi “ Ωi `Wi. The corresponding matching data Fij and consistency data Hijk so equal
their background counterparts Fij and Hijk. However, the data Hijk will obey (3.71) only if

Ad HijkpWiq “ Wi. (4.47)

This is a constraint on the deviation data Wi whose implementation in the classical as well
quantum theory is problematic. Alternatively, we can disregard (4.47) giving up (3.71),
but then the gauge field data Ωi no longer can be considered as specifying a 2-connection.

Leaving aside these issues, when the background principal bundle is non trivial other
problems arise with regard to the proper definition of the background CS action CSpΩq
using the procedure outlined above valid for a base 4-fold M with no boundary. To begin
with, we have to extend the background bundle and 2-connection structure on M , given
by the data Ωi, Fij , Hijk, to one on the chosen 5-fold ĂM , given by the data rΩi, rFij , rHijk.
Assuming that this is indeed possible, the extended higher curvature data rΦi match as

rΦi “ Ad rFijprΦjq. (4.48)

By virtue of this, the integrand in the right hand side (4.43) is globally defined and its
integration over T r1sĂM can be carried out. The problem arising here is that the quadratic
curvature polynomial 1

8π2

`

rΦ, rΦ
˘

has no a priori integrality properties and so the value of
I
ĂM
prΩq depends in principle on the choice of the extending 5-fold ĂM by an amount that

does not vanish modulo 2πZ. The quantization of the level k as integer is of no avail here
in sharp contrast with what happens in the corresponding 3-dimensional setting.

We conclude this subsection with one more remark pointing to a further problem. To
allow for the well-definedness of higher holonomies, in turn necessary for the incorporation
of Wilson surfaces in 4-dimensional CS theory, the gauge field components ωi, Ωi are
required to satisfy the vanishing fake curvature condition (3.77). The fake flatness condition
is however one the field equations of the CS model. So, it should emerge from the classical
variational problem and should not be assumed from the onset.

4.5 Canonical formulation

In this subsection, we shall illustrate the canonical analysis of the 4-dimensional CS model
introduced and studied in the previous subsections. The close relationship of the canonical
formulations of 4- and 3-dimensional CS theory is again especially evident in the derived
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framework. We shall describe the phase space of the model in the derived set-up and obtain
compact derived expressions of its Poisson bracket. We shall further identify the model’s
phase space constraint manifold as the vanishing higher curvature locus and describe the
reduced phase space and its Poisson bracket. The results of the ordinary theory generalize
however to the higher one only up to a certain extent, which we shall make precise in
due course.

To carry out the canonical analysis, we assume that M “ R1 ˆ S, where S is an
oriented compact 3-fold possibly with boundary, viewing the Cartesian factors R1 and S
respectively as a time axis and a space manifold. M of course is not compact, as we
assumed earlier, making it necessary imposing integrability conditions on fields to have a
finite action integral. Alternatively, when S is compact, one may compactify R1 into the
circle S1 requiring fields to be periodic.

In the canonical formulation, it is natural to rely on a hybrid geometrical frame-
work whereby the function algebra FunpT r1sMq of M is viewed as the algebra
MappT r1sR1,FunpT r1sSqq of maps from the shifted tangent bundle T r1sR1 of R1 into
the internal function algebra FunpT r1sSq of S. Proceeding in this way, a generic derived
superfield field Ψ P MappT r1sM,Dmrpsqq decomposes as

Ψ “ dtΨt `ΨS , (4.49)

where Ψt P MappR1,MappT r1sS,Dmrp ´ 1sqq, ΨS P MappR1,MappT r1sS,Dmrpsqq and t

and dt denote conventionally the base and fiber coordinates of T r1sR1. Similarly, the
differential d of T r1sM decomposes as

d “ dtdt ` dS (4.50)

in terms of the differential dS of T r1sS, where dt “ d{dt and both d and dS are defined
according to (3.19).

A higher gauge field Ω P CMpMq can so be expressed in terms of components
Ωt P MappR1,MappT r1sS,Dmr0sqq, ΩS P MappR1,MappT r1sS,Dmr1sqq in accordance
with (4.49). Its curvature Φ can be similarly decomposed in components Φt P

MappR1,MappT r1sS,Dmr1sqq, ΦS P MappR1,MappT r1sS,Dmr2sqq. Geometrically, ΩS P

MappR1, CMpSqq is to be regarded as a time dependent higher gauge field on S. ΦS is then
identified with the curvature of ΩS , since ΦS is given by (3.30) in terms of dS and ΩS .

Expressed in terms of the higher gauge field components Ωt, ΩS , the 4-dimensional CS
action (4.1) takes the form

CSpΩt,ΩSq “
k

4π

ż

R1
dt

ż

T r1sS
rpdtΩS ,ΩSq ` 2pΩt,ΦSqs `

k

4π

ż

R1
dt

ż

T r1sBS
pΩt,ΩSq. (4.51)

It is natural to interpret the component Ωt as a Lagrange multiplier implementing the
vanishing curvature constraint

ΦS “ 0. (4.52)

upon variation of the action CS. However, CS is not differentiable with respect to Ωt in
the sense established in refs. [73, 74] because of the presence of the boundary term.
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Naively, it would seem that the problem could be solved by requiring that

Ωt|T r1sBS “ 0. (4.53)

A similar boundary condition was imposed in ref. [75] to cope with the analogous issue
arising in the canonical formulation of 3-dimensional CS theory. The question of the
stability of a boundary condition of this sort under gauge transformation is however quite
different in the ordinary and higher cases. In the ordinary theory, the condition is preserved
by gauge transformations which are time independent on the boundary, which constitute
a tractable subgroup of the full gauge group. In the higher theory, the condition (4.53) is
preserved by gauge transformations obeying a complicated boundary condition involving
also ΩS , as emerges by inspection of the component expressions the transformations of
eqs. (3.40), (3.41), leaving doubts about the eventual viability of the whole approach.

It seems more natural to resort to a boundary condition of the isotropic linear kind
introduced in subsection 4.1. We thus demand that the higher gauge field Ω P CMpMq

satisfies the requirement that Ω|T r1sBM P CM1pBMq, where M1 is an isotropic submodule of M.
When Ω is expressed in terms of the components Ωt, ΩS , the boundary condition constrains
Ωt|T r1sBS , ΩS |T r1sBS to be Dm1r0s, Dm1r1s valued respectively, making the problematic
boundary term in the right hand side of (4.51) vanish. For ΩS , the condition can be cast
transparently as

ΩS |T r1sBS P MappR1, CM1pBSqq. (4.54)

Next, we examine the issue of higher gauge symmetry. In the hybrid geometrical frame-
work we are employing here, a higher gauge transformation U P GMpMq factorizes as U “

UtUS , where Ut P MappT r1sR1,MappT r1sS,DMqq is a gauge transformation of the form
Upαq “ eαdtUt with Ut P MappR1,MappT r1sS, er0sqq and US P MappR1,MappT r1sS,DMqq.

The isotropic linear boundary condition which we have imposed on the higher gauge
field Ω, viz Ω|T r1sBM P CM1pBMq, is stable under the gauge transformations U P GMpMq

which satisfy the boundary condition U |T r1sBM P IN
CM1 pBMq

, where IN
CM1 pBMq

is the invari-
ance subgroup of CM1pBMq introduced and studied in subsection 4.2. When U is expressed
in terms of its components Ut, US as indicated above, this condition can be written sug-
gestively as

US |T r1sBS P MappR1, IN
CM1 pBSq

q, (4.55)

There is however a further restriction involving both Ut and US following
from (4.19), (4.20). It ensures that the boundary condition obeyed by Ωt is stable un-
der gauge transformation. For fixed US , this restriction may fail to be satisfied by any Ut

unless US is further delimited. For this reason, in (4.55) it may be necessary to replace
the invariance subgroup IN

CM1 pBSq
with a proper subgroup of it. However, in the canonical

set-up illustrated below both Ωt and Ut do not appear and we may therefore disregard this
extra limitation.

In canonical theory, we replace the higher gauge field component ΩS with a time in-
dependent gauge field Ω viewed as a point of an ambient functional phase space CMpSq,
where we suppress the subscript S for notational simplicity. Similarly, we replace the
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higher gauge transformation component US with a time independent gauge transforma-
tion U of an ambient phase space gauge group GMpSq acting on Ω according the familiar
prescription (3.37). No boundary conditions on either Ω or U are imposed at this stage.

The physical phase space CMphpSq is the functional subspace of the ambient phase
space CMpSq defined by the flatness constraint corresponding to (4.52)

Φ « 0, (4.56)

where Φ is the curvature of Ω defined according (3.30). CMpSq is invariant under the action
of the ambient gauge transformation group GMpSq. The reduced physical phase space
rCMphpSq is the quotient of CMphpSq by GMpSq,

rCMphpSq “ CMphpSq{GMpSq. (4.57)

All this is rather formal, since the above quotient turns out to be singular. It therefore calls
for a more precise formulation of the symplectic structure of CMpSq, which we provide below.

The short action term in the right hand side of (4.51) indicates the appropriate ex-
pression of the symplectic potential Γ P O1

MpSq as the 1-form

Γ “
k

4π

ż

T r1sS
%S pΩ, δΩq (4.58)

(cf. eq. (4.8)). The symplectic 2-form Υ P O2
MpSq yielded by Γ is

Υ “ δΓ “
k

4π

ż

T r1sS
%S pδΩ, δΩq (4.59)

(cf. eq. (4.10)). The non singularity of Υ follows from that of the field pairing p¨, ¨q. The
higher gauge field manifold CMpSq is in this way equipped with the appropriate symplectic
structure. Our task now is expressing the associated Poisson bracket.

For any functional F P F MpSq, the Hamiltonian vector field HF P VMpSq of F is
characterized by the property that

ιHF
Υ ` δF “ 0. (4.60)

From (3.59), HF is given by relation (3.61) with V replaced by

HF “
2π
k

δF

δΩ . (4.61)

The field functional algebra FMpSq is so equipped with the Poisson bracket

tF ,Gu “ ιHF
δG “

2π
k

ż

T r1sS
%S

ˆ

δF

δΩ ,
δG

δΩ

˙

(4.62)

for F ,G P FMpSq. The basic Poisson bracket of the theory is in this way
"
ż

T r1sS
%SpΩ,Σq,

ż

T r1sS
%SpΩ,Σ1q

*

“
2π
k

ż

T r1sS
%SpΣ,Σ1q (4.63)

with Σ,Σ1 P MappT r1sS,Dmr1sq.
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We consider next the field functionals

QpΘq “ k

2π

«

ż

T r1sS
%SpΦ,Θq ´

ż

T r1sBS
%BSpΩ,Θq

ff

. (4.64)

where Θ P GMpSq is an infinitesimal gauge transformation and Φ is the curvature of higher
gauge field Ω given by (3.30) as before. The boundary term is added to render QpΘq
differentiable in the sense established in ref. [73, 74], as is evident by writing QpΘq in
the form

QpΘq “ k

2π

ż

T r1sS
%S

“

pΩ, dΘq ` 1
2prΩ,Ωs,Θq

‰

(4.65)

QpΘq is the Hamiltonian of Θ,
"

QpΘq,
ż

T r1sS
%SpΩ,Σq

*

“

ż

T r1sS
%SpδΘΩ,Σq. (4.66)

for Σ P MappT r1sS,Dmr1sq, where the gauge variation δΘΩ is given by (3.44). Under
Poisson bracketing, the Hamiltonians QpΘq form a centrally extended representation of
the gauge transformation Lie algebra. Specifically, we have

tQpΘq,QpΘ1qu “ QprΘ,Θ1sq ` k

2π cpΘ,Θ
1q (4.67)

with Θ,Θ1 P GMpSq, where c is the 2-cocycle

cpΘ,Θ1q “
ż

T r1sBS
%BSpΘ, dΘ1q. (4.68)

The Poisson bracket relation (4.67) describes a higher 3-dimensional current algebra anal-
ogous to the 2-dimensional current algebra appearing in the canonical formulation of ordi-
nary CS theory. More on this in the next subsection.

We now write the above results in terms of the components ω, Ω of the higher gauge
field Ω for the sake of concreteness. The symplectic form Υ defined in eq. (4.59), has a
simple component expression,

Υ “
k

2π

ż

T r1sS
%S xδω, δΩy , (4.69)

which shows that ω, Ω are canonical conjugate fields. The component expression of the
Poisson bracket (4.62) takes so the familiar canonical form

tF ,Gu “
2π
k

ż

T r1sS
%S

„B

δF

δΩ
,
δG

δω

F

´

B

δG

δΩ
,
δF

δω

F

. (4.70)

The basic Poisson bracket (4.63) reads in this way as
"
ż

T r1sS
%S xω,Σy,

ż

T r1sS
%S xσ,Ωy

*

“
2π
k

ż

T r1sS
%S xσ,Σy (4.71)

for σ P MappT r1sS, gr1sq, Σ P MappT r1sS, er2sq.
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To write down the component expressions of the gauge transformation Hamiltonians,
we need the components φ, Φ of the higher gauge curvature Φ given by (3.32), (3.33).
From (4.64), the Hamiltonian of an infinitesimal higher gauge transformation of compo-
nents θ, Θ is

Qpθ,Θq “
k

2π

#

ż

T r1sS
%S rxφ,Θy ` xθ, Φys ´

ż

T r1sBS
%BS rxω,Θy ` xθ,Ωys

+

. (4.72)

The component form of the Hamiltonian relation (4.66) is then
#

Qpθ,Θq,

ż

T r1sS
%S xω,Σy

+

“

ż

T r1sS
%S xδθ,Θω,Σy, (4.73)

#

Qpθ,Θq,

ż

T r1sS
%S xσ,Ωy

+

“

ż

T r1sS
%S xσ, δθ,ΘΩy, (4.74)

where the gauge variations δθ,Θω, δθ,ΘΩ are given by (3.47), (3.48).
In components, the Q generator Poisson bracket (4.67) reads as

tQpθ,Θq,Qpθ1, Θ1qu “ Qprθ, θ1s,9µ9pθ,Θ1q ´ 9µ9pθ1, Θqq `
k

2π cpθ,Θ; θ1, Θ1q (4.75)

and that of the occurring 2-cocycle (4.68) as

cpθ,Θ; θ1, Θ1q “ ´
ż

T r1sBS
%BS

“

xdθ,Θ1y ´ xdθ1, Θy ` x 9τpΘq, Θ1y
‰

. (4.76)

As we have already stated, the physical phase space CMphpSq of higher CS theory is the
functional hypersurface in the ambient phase space CMpSq defined by the flatness condition
Φ « 0 (cf. eq. (4.56)). As the bulk contribution to the Hamiltonian functionals QpΘq is
proportional to Φ (cf. eq. (4.64)), it seems plausible that the constraint may be expressed
through the weak constraints

QpΘq « 0 (4.77)

with Θ P GMpSq, in analogy to ordinary CS theory. There are a number of problems
with this approach. First, the QpΘq contain also a boundary proportional to Ω, making
the use of (4.77) as definition of the physical phase space doubtful. Second, since the
QpΘq generate infinitesimal gauge transformations (cf. eq. (4.66)), they should be first
class functionals, while they are not because of the 2-cocycle cpΘ,Θ1q appearing in the
Poisson bracket relations (4.67).

Both the term proportional to Ω in the QpΘq and the 2-cocycle cpΘ,Θ1q are supported
on the boundary BS of S. They could be removed by imposing appropriate boundary
conditions on Ω and Θ. Requiring that Ω P CMpSq obeys

Ω|T r1sBS P CM1pBSq (4.78)

and that Θ P GM1pBSq satisfies

Θ|T r1sBS P GM1pBSq, (4.79)
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where M1 is some isotropic submodule of the crossed module M, eliminates at once the un-
wanted term in QpΘq and the 2-cocycle cpΘ,Θ1q, rendering the QpΘq honest first class func-
tionals defining the physical phase space via (4.77) as desired. Note that (4.78) precisely
answers to the boundary condition (4.54) discussed earlier, while (4.79) is compatible with
the boundary condition (4.55), since GM1pBMq Ď IN

CM1 pBMq
. Below, we shall so refer to the

boundary conditioned phase space CM,M1pSq Ă CMpSq formed by those gauge fields Ω which
satisfy (4.78) and similarly to the boundary conditioned gauge algebra GM,M1pSq Ă GMpSq

formed by those infinitesimal gauge transformations Θ which satisfy (4.79). We notice here
that while the boundary conditions (4.79) is essentially mandated by the requirement of
first class nature of the functionals QpΘq, the boundary condition (4.78) could be weakened
by requiring less restrictively that Ω|T r1sBS P CONM1pBSq, where ONM1 is the orthogonal
normalizer of the isotropic crossed submodule M1 (cf. subsection 2.3). More on this point
in subsection 4.6.

All field functionals F P FMpSq we consider are defined on the full phase space CMpSq

containing all higher gauge fields Ω obeying no preassigned boundary condition. The
boundary condition (4.78) is implemented by restricting the functionals to the conditioned
phase space CM,M1pSq. The calculation of the relevant Poisson brackets is correspondingly
performed employing the unrestricted phase space canonical framework described above.
The boundary condition (4.78) is imposed at the end. Doing so before that may lead to
inconsistencies since smooth functionals generally involve boundary terms and for these
differentiation and imposition of the boundary condition may not commute.

On the basis of the above analysis of boundary conditions of gauge fields and gauge
transformations, it appears that the physical phase space may be described as the subman-
ifold CM,M1physpSq of CM,M1pSq defined by the weak constraints

L « 0 (4.80)

with L P FM,M1trivpSq, FM,M1trivpSq being the ideal of FMpSq generated by the Hamiltoni-
ans QpΘq with Θ P GM,M1pSq. FM,M1trivpSq codifies the infinitesimal higher gauge symme-
try action associated with the Lie subalgebra GM,M1pSq. The reduced physical phase space
rCM,M1physpSq is the quotient of CM,M1physpSq by this gauge symmetry. The physical field
functional algebra is the algebra of field functionals on rCM,M1physpSq. As is well known,
rCM,M1physpSq is a complicated non local object that is problematic to describe in local field
theory. Moreover, by (3.57), (3.58), special gauge transformations in GM,M1pSq are inert on
the flat gauge fields Ω which constitute CM,M1physpSq. Thus, rCM,M1phpSq is also a singular
manifold. Consequently, also the field functional algebra of rCM,M1phpSq is problematic to
describe. A proper treatment of rCM,M1phpSq and its field functionals in local field theory
requires the full apparatus of BRST-BV theory for reducible gauge symmetries. For the
time being, it is enough to adopt a more modest stance and proceed as follows.

Since these Hamiltonians QpΘq with Θ P GM,M1pSq obey a Poisson algebra of the
form (4.67) with vanishing central extension by the isotropy of M1, the constraints (4.80)
are first class, as indeed

tL,Mu « 0 (4.81)
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for L,M P FM,M1trivpSq. A physical field functional rF is represented by a gauge invariant
functional F P FMpSq, that is one such that

tF ,Lu « 0 (4.82)

for L P FM,M1trivpSq. The representative F is not unique however being modifiable by
the addition of any functional ∆F P FM,M1trivpSq, so that F , F ` ∆F can be considered
as physically equivalent. Let us denote by FM,M1invpSq the subalgebra of FMpSq of the
functionals F satisfying (4.82). Then, the algebra of physical functionals is the quotient

ĂFM,M1physpSq “ FM,M1invpSq{FM,M1trivpSq. (4.83)

ĂFM,M1physpSq supports the induced Poisson bracket. If rF , rG P ĂFM,M1physpSq are physical
functionals represented by gauge invariant functionals F ,G P FM,M1invpSq, then t rF , rGu is
represented by the gauge invariant functional tF ,Gu.

The above has a mathematical formalization. Let IM,M1pSq be the ideal of FMpSq

generated by the Hamiltonians QpΘq with Θ P GM,M1pSq. IM,M1pSq is a Poisson subalgebra
of FMpSq, but not a Poisson ideal. We consider so the Poisson normalizer NPIM,M1pSq

of IM,M1pSq, the set of all functionals F P FMpSq such that tF ,Lu P IM,M1pSq for all
L P IM,M1pSq. NPIM,M1pSq is both a subalgebra and a Poisson subalgebra of FMpSq. The
Poisson Weyl algebra of IM,M1pSq

WPIM,M1pSq “ NPIM,M1pSq{IM,M1pSq (4.84)

is then defined. WPIM,M1pSq is both an algebra and a Poisson algebra with the induced
Poisson bracket

tF `IM,M1pSq,G `IM,M1pSqu “ tF ,Gu `IM,M1pSq. (4.85)

It should be apparent that IM,M1pSq, NPIM,M1pSq and WPIM,M1pSq correspond respec-
tively to FM,M1trivpSq, FM,M1invpSq and ĂFM,M1physpSq in the previous more conventional
characterization.

The constraints (4.77) are not independent though, as we show next. Recall that a
special infinitesimal gauge transformation Θ∗ is an infinitesimal gauge transformation de-
pending on the underlying gauge field Ω that in component form reads as in (3.55), (3.57)
for some map Ξ P MappT r1sS, eq. Such a Θ∗ must hence be regarded as a functional of
Ω and Ξ. Θ∗ will obey the boundary condition (4.79), if Ω and Ξ satisfy respectively
the boundary condition (4.78), reading in components as ω|T r1sBS P MappT r1sBS, g1r1sq,
Ω|T r1sBS P MappT r1sBS, e1r2sq, and Ξ|T r1sBS P MappT r1sBS, e1q. Using the component ex-
pression (4.72) of QpΘ∗q and the Bianchi identity (3.35), it is found that

QpΘ∗q “ 0 (4.86)

when Ω and Ξ are restricted as indicated above. Consequently, QpΘ∗q “ 0 strongly. For
varying Ξ, the (4.86) represent a set of relations obeyed by the QpΘq for general infinitesimal
gauge transformations Θ showing their non independence. The higher gauge symmetry is
so reducible signaling a higher gauge for gauge symmetry of the theory.
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4.6 Surface charges and holography

In this subsection, we analyze one of the most interesting holographic properties of higher
CS theory: the existence of surface charges obeying under suitable conditions a non trivial
Poisson bracket algebra that is a higher counterpart of the familiar Kac-Moody current
algebra.

The canonical framework of subsection 4.5 turns out to be particularly suited for
this purpose. For any infinitesimal gauge transformation Θ1 P GM,M1pSq, the Hamiltonian
QpΘ1q P IM,M1pSq, where IM,M1pSq is the constraint ideal. For a generic infinitesimal gauge
transformation Θ P GMpSq, though, the Hamiltonian QpΘq R NPIM,M1pSq, NPIM,M1pSq

being the Poisson normalizer of IM,M1pSq, as we have tQpΘq,QpΘ1qu R IM,M1pSq for
Θ1 P GM,M1pSq in general. In order QpΘq P NPIM,M1pSq, the gauge transformation Θ must
be suitably restricted and since what distinguishes the gauge transformations Θ1 P GM,M1pSq

is only their obeying the boundary condition (4.79), it is a boundary condition that presum-
ably has to be imposed on Θ. A detailed analysis shows indeed that QpΘq P NPIM,M1pSq if
Θ P GM,ONM1pSq, where ONM1 is the orthogonal normalizer of the crossed submodule M1

(cf. subsection 2.3) and GM,ONM1pSq is the subalgebra of GMpSq of the infinitesimal gauge
transformations Θ satisfying the boundary condition

Θ|T r1sBS P GONM1pBSq (4.87)

analogously to the subalgebra GM,M1pSq. To see this, we note that ONm1 being a crossed
submodule of Nm1 ensures that for Θ1 P GM,M1pSq, rΘ,Θ1s P GM,M1pSq by (3.15). Further,
by the expression (4.68) of the 2-cocycle c , ONm1 being the orthogonal complement of m1
in Nm1 and (3.19) imply that for Θ1 P GM,M1pSq, cpΘ,Θ1q “ 0. It follows by virtue of (4.67)
that tQpΘq,QpΘ1qu P IM,M1pSq, as required.

Since m1 is a crossed submodule of ONm1, for Θ P GM,ONM1pSq, Θ1 P GM,M1pSq one
has Θ ` Θ1 P GM,ONM1pSq. The identity QpΘ ` Θ1q “ QpΘq ` QpΘ1q shows then that
QpΘ`Θ1q and QpΘq are equivalent modulo IM,M1pSq and so define the same element QpΘ`
GM,M1pSqq P WPIM,M1pSq, the reduced gauge invariant functional algebra, as explained in
subsection 4.5.

Remarkably, the reduced Hamiltonians QpΘ ` GM,M1pSqq P WPIM,M1pSq with Θ P

GM,ONM1pSq form a subalgebra of the reduced Poisson algebra WPIM,M1pSq, as we now
show. Pick Θ1,Θ2 P GM,ONM1pSq. ONm1 being a crossed submodule of Nm1 implies
by (3.15) that GM,M1pSq is an ideal of the Lie algebra GM,ONM1pSq. So, the Lie bracket
rΘ1,Θ2s depends on the choice of Θ1, Θ2 mod GM,M1pSq only mod GM,M1pSq. Further,
as ONm1 is the orthogonal complement of m1 in Nm1, cpΘ1,Θ2q is independent from the
choice of Θ1, Θ2 mod GM,M1pSq and may be denoted as cpΘ1`GM,M1pSq,Θ2`GM,M1pSqq.
By virtue of (4.67), the Poisson bracket of QpΘ1`GM,M1pSqq, QpΘ2`GM,M1pSqq thus read

tQpΘ1 `GM,M1pSqq,QpΘ2 `GM,M1pSqqu (4.88)

“ QprΘ1 `GM,M1pSq,Θ2 `GM,M1pSqsq `
k

2π cpΘ1 `GM,M1pSq,Θ2 `GM,M1pSqq.

This is the Poisson subalgebra of WPIM,M1pSq sought for.
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As GM,M1pSq is an ideal of the Lie algebra GM,ONM1pSq, the quotient Lie alge-
bra GM,ONM1pSq{GM,M1pSq is defined. The reduced Hamiltonians QpΘ ` GM,M1pSqq are
parametrized by the cosets Θ ` GM,M1pSq P GM,ONM1pSq{GM,M1pSq. By (4.88), the re-
sulting map Q : GM,ONM1pSq{GM,M1pSq Ñ WPIM,M1pSq is a Lie algebra morphism. This
morphism is projective because of the central extension term.

The Lie algebra GM,ONM1pSq{GM,M1pSq is non trivial only if M1 is isotropic but not
Lagrangian. In fact, when M1 is Lagrangian, one has ONm1 “ m1 and hence GM,ONM1pSq “

GM,M1pSq. The same thus holds for the reduced Hamiltonians QpΘ`GM,M1pSqq and their
Poisson bracket algebra (4.88),

From (4.65), it is apparent that on the constraint submanifold, where Φ « 0, the
Hamiltonians QpΘ ` GM,M1pSqq reduce to the surface term supported on BS. For this
reason, the QpΘ ` GM,M1pSqq are identified with the surface charges of higher CS theory.
The nature of these charges, in particular their non triviality, depends on the boundary
conditions imposed on the higher gauge field Ω.

If we required the gauge field Ω to obey the boundary condition (4.78), the surface
charges QpΘ`GM,M1pSqq would vanish since the crossed submodule ONm1 is the orthogonal
complement of m1 in Nm1. If we want as we do the QpΘ`GM,M1pSqq to be non trivial a less
severe boundary condition is required. We have already anticipated in subsection 4.5 that
in order the Hamiltonians QpΘ1q with Θ1 P GM,M1pSq to define through the weak constraints
QpΘ1q « 0 the flat higher gauge functional submanifold Φ « 0, it is enough to require that

Ω|T r1sBS P CONM1pBSq (4.89)

This boundary condition is weaker than (4.78) and subsumes it. Further, it is invariant
under the infinitesimal gauge transformation action of GM,M1pSq (cf. eqs. (3.47), (3.48)) and
when the Lie group G1 in M1 is connected also under the finite gauge transformation action
of GM,M1pSq (cf. eqs. (3.40), (3.41)), where GM,M1pSq is the subgroup of GMpSq of the gauge
transformations U such that U|T r1sBS P GM1pBSq. Finally, it makes the boundary term of
the QpΘ1q with Θ1 P GM,M1pSq vanish identically ensuring that the constraints QpΘ1q « 0
are equivalent to Φ « 0 as required.

The Poisson algebra (4.88) bears striking formal similarities to the 2-dimensional cur-
rent algebra known also as Kac-Moody algebra in mathematics [76], which occurs also in
ordinary CS theory in an analogous context [77–80]. The structure of 2-cocycle c given in
eq. (4.68) shows this rather clearly. So, (4.88) can be considered a higher current algebra
hinged on a Lie algebra crossed module rather than an ordinary Lie algebra.

The occurrence of a non trivial Poisson algebra of surface charges is a holographic
feature that 4-dimensional CS theory shares not only with its familiar 3-dimensional coun-
terpart but also with other 4-dimensional theories, notably electrodynamics and general
relativity. (See ref. [81] for a review.) 4-dimensional CS theory might so provide an ideal
testing ground for studying holography in 4 dimensions.

4.7 Toward the edge field theory of 4-d Chern-Simons theory

Gauge theories, including topological ones, on manifolds with boundaries normally exhibit
emergent boundary degrees of freedom called edge fields. In this subsection, we outline a
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canonical theory of the edge modes of 4-dimensional CS theory and their physical symme-
tries, extending the corresponding analysis of the 3-dimensional theory [53–57]. Although
there still remain basic issues to be clarified, as discussed shortly, it is already possible
to shed light on some of its main features. A more in-depth analysis will be provided
elsewhere [64].

We follow the method originally worked out in ref. [56]. In the canonical framework
of 4-dimensional CS theory, where the underlying 4-fold M “ R1 ˆ S with S a 3-fold, it is
possible to construct an extended phase space PMpSq, which comprises extra degrees of free-
dom localized at the boundary besides the interior ones. Edge fields are in this way added
to the original bulk gauge fields. Gauge invariance dictates the nature of the edge modes
and the form of their Poisson brackets by the requirement that PMpSq be invariant under
the group GMpSq gauge transformations of the original system, inclusive of those which are
effective at the boundary, on the physical shell. In addition, the edge fields are acted upon
by another set of Hamiltonian transformations. This form an infinite dimensional bound-
ary symmetry group KMpBSq emerging as a consequence of the original gauge invariance.
The boundary symmetry and gauge transformations reciprocally commute. Therefore, the
charges generating KMpBSq are gauge invariant, i.e. physical boundary observables.

The way gauge invariance is implemented in the extended phase space is a bit subtle.
The bulk and edge symplectic 2-forms, Υ and ΥB, are not separately invariant under bulk
gauge transformations. The gauge variation of the former is however a boundary term
which is cancelled by that of the latter. For a mechanism like this to work out for a given
bulk field content, gauge transformation prescription and symplectic structure, the edge
field content and its gauge transformation properties and symplectic structure must be
suitably adjusted. There is no a priori guarantee that this is possible at all, but happily it
is in our case.

We shall now describe the above construction in more precise terms. We utilize the
derived formalism of subsection 3.3 for convenience and frame our analysis in the covariant
canonical theory [72]. On the 3-fold S with boundary BS, the interior fields are just the bulk
gauge fields Ω P CMpSq already considered. The boundary fields comprise the edge gauge
fields ΩB P CMpBSq and Stueckelberg fields HB P GMpBSq, boundary gauge transformations
promoted to dynamical edge fields. The extended phase space PMpSq is the submanifold of
the product field manifold CMpSqˆCMpBSqˆGMpBSq defined by the condition Ω|T r1sBS “ ΩB
imposing the compatibility of the bulk and edge gauge fields.

Under a bulk gauge transformation U P GMpSq, a bulk gauge field Ω transforms as
in (1.5), while a edge gauge field ΩB and Stueckelberg field HB transform as

ΩBU “ Ad U´1pΩBq `U´1dU, (4.90)
HBU “ U´1HB, (4.91)

where U is tacitly restricted T r1sBS. Notice that the expression of ΩBU is dictated by the
gauge covariance of the compatibility requirement Ω|T r1sBS “ ΩB.

As we found in subsection 4.5, the bulk field symplectic 2-form Υ and Poisson brackets
t¨, ¨u are given by expressions (4.59) and (4.63). The edge field symplectic form ΥB and
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Poisson brackets t¨, ¨uB cannot be assigned independently being determined by the require-
ment of the full gauge invariance of the total symplectic 2-form Υtot “ Υ `ΥB and Poisson
brackets t¨, ¨utot thereof on the shell (4.56). This can be stated more precisely as follows.

Let gau : PMpSq ˆ GMpSq Ñ PMpSq, pr : PMpSq ˆ GMpSq Ñ PMpSq be the gauge
transformation action and projection maps, respectively. On the shell (4.56), the pull-
backs gau∗Υ , pr∗Υ of the bulk symplectic 2-form Υ are found to differ by a boundary
term. A straightforward analysis shows however that the edge symplectic 2-form ΥB can
be defined such that gau∗Υ ´ pr∗Υ « ´gau∗ΥB ` pr∗ΥB. Setting Υtot “ Υ ` ΥB, one has
therefore

gau∗Υtot « pr∗Υtot. (4.92)

In this sense, Υtot is gauge invariant.
The above result can be understood intuitively as follows. A Stueckelberg field HB P

GMpBSq can be extended non uniquely in the interior of S to a field H P GMpSq. If H
is an extension of HB and U P GMpSq is a gauge transformation, then HU “ U´1H is an
extension of the gauge transform HBU of HB. We view HU as the gauge transform of H, in
keeping with (4.91). If Ω P CMpSq is a bulk gauge field, its gauge transform ΩH depends
on the extension H used, but for a fixed choice of H it is gauge invariant. The 2-form Υtot
obtained from Υ by replacing Ω with ΩH in (4.59) is by construction gauge invariant. On
the shell (4.56), Υtot turns out to equal the sum of Υ and a boundary term ΥB, depending
on the edge fields ΩB, HB but not on the chosen extension H of HB, which is precisely the
edge symplectic 2-form.

The procedure described in the previous paragraph provides a practical way of com-
puting the edge symplectic 2-form ΥB. The expression of ΥB that we find reads as

ΥB “
k

2π

ż

T r1sBS
%BS

“`

δBHBHB´1, δBΩB
˘

(4.93)

´1
2
`

dpδBHBHB´1q, δBHBHB´1˘´ 1
2
`

ΩB, rδBHBHB´1, δBHBHB´1s
˘‰

.

From this expression, the edge Poisson brackets t¨, ¨uB can be determined. In particular, it
is found that edge Poisson brackets of functionals of the Stueckelberg field HB only Poisson
commute.

As we found in subsection 4.5, the bulk gauge transformation action on bulk fields
is Hamiltonian. For an infinitesimal gauge transformation Θ P GMpSq, the associated
bulk Hamiltonian functional QpΘq is given by eq. (4.64) and the gauge transformation
action on bulk fields can be expressed through the Poisson bracket (4.66). Remarkably,
the bulk gauge transformation action on edge fields is Hamiltonian as well. For the gauge
transformation Θ, the associated edge Hamiltonian functional QBpΘq reads as

QBpΘq “
k

2π

ż

T r1sBS
%BS pΩB,Θq . (4.94)

and the gauge transformation action on edge fields can be cast as

tQBpΘq,FBuB “ δΘFB, (4.95)
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where FB is an edge field functionals and δΘ denotes variation with respect the infinitesimal
form of the gauge transformation (4.90), (4.91).

The Poisson bracket algebra (4.67) of the bulk Hamiltonian functionals QpΘq features
a central extension with a GMpSq-2-cocycle c given by (4.68). The edge Hamiltonian
functionals QBpΘq obey a totally similar Poisson bracket algebra,

 

QBpΘq,QBpΘ1q
(

B
“ QBprΘ,Θ1sq ´

k

2π cpΘ,Θ
1q, (4.96)

with the same central extension up to sign.
For an infinitesimal gauge transformation Θ, the total bulk plus edge Hamiltonian

functional is
QtotpΘq “ QpΘq `QBpΘq “

ż

T r1sS
%S pΦ,Θq . (4.97)

By virtue of (4.67), (4.96), the Hamiltonian functionals QtotpΘq obey a centerless Poisson
bracket algebra,

tQtotpΘq,QtotpΘqutot “ QtotprΘ,Θ1sq. (4.98)

Thanks to (4.97) and (4.98), the physical on-shell condition (4.56) can hence be consistently
cast in the form

QtotpΘq « 0 (4.99)

with no need to impose any boundary conditions on either the bulk gauge field Ω or Θ, as
we were forced to in subsection 4.5.

As we outlined at the beginning of this subsection, the extended phase space enjoys
a second physical non gauge surface symmetry. We now describe it in greater detail. A
surface transformation is specified by an element TB P GMpBSq. It acts on the bulk gauge
fields Ω trivially and on the edge fields as follows,

ΩBTB “ ΩB, (4.100)
HBTB “ HBTB. (4.101)

As for the bulk gauge symmetry, the form of ΩBTB is dictated by the surface symmetry
covariance of the compatibility requirement Ω|T r1sBS “ ΩB.

The surface symmetry turns out to be Hamiltonian. For an infinitesimal surface trans-
formation ΛB P GMpBSq, the associated edge Hamiltonian functional CBpΛBq has the sim-
ple form

CBpΛBq “ ´
k

2π

ż

T r1sBS
%BS

´

ΩBHB ,ΛB
¯

(4.102)

and the surface transformation action on edge fields takes the expected form

tCBpΛBq,FBuB “ δΛBFB, (4.103)

where FB is an edge field functionals and δΛB denotes variation with respect the infinitesimal
form of the transformations (4.100), (4.101).
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The surface edge Hamiltonian functionals CBpΛBq obey a Poisson bracket algebra for-
mally identical to that of the gauge edge Hamiltonian functionals QBpΘq shown in eq. (4.96).
One has indeed,

 

CBpΛBq,CBpΛB1q
(

B
“ CBprΛB,ΛB1sq ´

k

2π cpΛB,ΛB
1q (4.104)

where the GMpBSq-2-cocycle c is given again by expression (4.68) with Θ, Θ1 replaced by
ΛB, ΛB1 throughout.

An important property of the surface Hamiltonians CBpΛBq is their Poisson commuting
with the gauge Hamiltonians QBpΘq,

tQBpΘq,CBpΛBquB “ 0. (4.105)

That a relation like the above must hold is evident also from the fact that CBpΛBq is
defined in (4.102) through the gauge invariant combination ΩBHB . Relation (4.105) proves
further the physical nature of the surface symmetry. The CBpΛBq are the associated charges.
Surface symmetry is therefore infinite dimensional.

By (4.104), the surface charges are in involution if the infinitesimal surface transfor-
mations ΛB P GMpBSq are restricted in such a way to make the central term vanish. An
inspection of (4.68) shows readily that there are several ways in which this can be achieved.
For instance, we may require that ΛB P GM1pBSq, where M1 is an isotropic crossed submod-
ule of M (cf. subsection 2.3), or that ΛB P GMclpBSq, the Lie subalgebra of GMpBSq spanned
by those elements ΛB which satisfy the equation dΛB “ 0.

The above account of the edge sector of 4-dimensional CS theory is still incomplete.
There remains a basic problem to be solved: the lack of a Lagrangian and Hamiltonian
formulation describing the dynamics of edge fields, if any. In fact, the corresponding
analysis for 3-dimensional CS theory (see e.g. [57] for a discussion of this point) shows
that the edge dynamics of topological gauge theories may be non trivial as that of non
topological ones. Whether this is the case also for out 4-dimensional model is an issue
deserving further investigation.

4.8 Covariant Schroedinger quantization

In this final subsection, we study the covariant Schroedinger quantization of 4-dimensional
CS theory. Although there still are points requiring clarification and a more in-depth
analysis, in particular in connection to the edge field theory of the model discussed in
subsection 4.7, it is still possible to elucidate its outlines to a considerable extent.

The covariant Schroedinger quantization scheme of 4-dimensional CS theory is based on
its covariant phase space. This is the space CMpBMq of boundary gauge field configurations
ωB, ΩB. A straightforward analysis totally analogous to that of subsection 4.6 shows that the
symplectic form of ΥB, the associated Poisson bracket t¨, ¨uB, the Hamiltonians QBpθB, ΘBq of
the boundary infinitesimal gauge transformations θB, ΘB, their Poisson action and Poisson
bracket algebra are given respectively by relations (4.69), (4.70), (4.71), (4.72), (4.73), (4.74)
and (4.75) with S “ BM , BS “ H, ω, Ω replaced by ωB, ΩB, θ, Θ by θB, ΘB and c “ 0. In
this case, so, the QB Poisson algebra features no central extension.
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The Hilbert space of 4-dimensional CS theory consists of complex wave functionals
on CMpBMq obeying a polarization condition, that is annihilated by the vector fields on
CMpBMq belonging to an integrable Lagrangian distribution of TCMpBMq. There are two
obvious choices of the distribution. The first is spanned by the vector fields δ{δΩB and
produces wave functionals ΨpωBq of ωB. The second is generated by the vector fields δ{δωB
and leads to wave functionals ΨpΩBq of ΩB. Although these two alternatives are defined in
a seemingly symmetrical manner, only the first one is viable once gauge transformation is
implemented. In fact, inspection of (3.40), (3.41) shows that under gauge transformation
ωB does not mix with ΩB whilst ΩB does with ωB.

In the following, we therefore consider only the first choice of polarization. In this
canonical quantum set-up, the Hilbert space inner product reads as

xΨ1, Ψ2y “

ż

DωB Ψ1pωBq
∗ Ψ2pωBq, (4.106)

where DωB is a suitable formal functional measure. Further, the operators pωB, pΩω quan-
tizing ωB, Ωω take the familiar form

pωB “ ωB ¨ , (4.107)

pΩB “ ´
2πi
k

δ

δωB
. (4.108)

They are formally selfadjoint with respect to the inner product structure (4.106).
The infinitesimal gauge transformation Hamiltonians QBpθB, ΘBq constitute a set of first

class covariant phase space functionals. Since the QBpθB, ΘBq are linear in the curvature
components φB, ΦB, the physical phase space is defined by the constraints QBpθB, ΘBq « 0.
At the quantum level, the constraints translate into a set of linear conditions the wave
functionals must satisfy,

pQBpθB, ΘBqΨ “ 0. (4.109)

Here, the pQBpθB, ΘBq are operators quantizing the phase functionals QBpθB, ΘBq. The quan-
tization must be such that the commutator algebra

“

pQBpθB, ΘBq, pQBpθB
1, ΘB

1q
‰

“ i pQBprθB, θB
1s,9µ9pθB, ΘB

1q ´ 9µ9pθB
1, ΘBqq (4.110)

is obeyed in conformity with (4.75). This guarantees in particular the consistency of the
conditions (4.109).

Conditions (4.109) imply that the wave functional Ψ satisfy a pair of functional differ-
ential equations,

ż

T r1sBM
%BM

B

dωB `
1
2 rωB, ωBs `

2πi
k

9τ
´ δ

δωB

¯

, ΘB

F

ΨpωBq “ 0, (4.111)
ż

T r1sBM
%BM

B

θB,´
2πi
k

„

d
δ

δωB
` 9µ9

´

ωB,
δ

δωB

¯

F

ΨpωBq “ 0. (4.112)

On account of (3.47), these identities imply that

δθB,ΘBΨpωBq “
ik

2π

ż

T r1sBM
%BM

@

dωB `
1
2 rωB, ωBs, ΘB

D

ΨpωBq. (4.113)
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Therefore, the variation of Ψ under a finite boundary gauge transformation uB, UB is given
by a multiplicative factor

ΨpωB
uB,UBq “ exppiWZBpuB, UB;ωBqqΨpωBq. (4.114)

By the very structure of this relation, the functional WZBpuB, UB;ωBq appearing in it is a
Up1q-valued cocycle for the boundary gauge transformation action on the degree 1 boundary
gauge field component,

WZBpuBvB, UB ` µ9puB, VBq;ωBq
“ WZBpuB, UB;ωBq `WZBpvB, VB;ωBuB,UBq mod 2πZ. (4.115)

To reproduce the infinitesimal variation (4.113), WZBpuB, UB;ωBq must further satisfy the
normalization condition

δθB,ΘBWZBpuB, UB; rωBq “
k

2π

ż

T r1sBM
%BM

@

dωB `
1
2 rωB, ωBs, ΘB

D

, (4.116)

where the tilde indicates that δθB,ΘB is inert on ωB. Properties (4.115), (4.116) determine
the cocycle WZB up to a trivial cocycle,

WZBpuB, UB;ωBq “
k

4π

ż

T r1sBM
%BM

”

@

9τpUBq, dUB `
1
3 rUB, UBs

D

(4.117)

` xωB, rUB, UBsy ` 2
@

dωB `
1
2 rωB, ωBs, UB

D

ı

`KBpωB
uB,UBq ´KBpωBq,

where KBpωBq is a local boundary functional which cannot be determined in the present
method. We expect KB to be generated by quantum effects as we shall discuss in greater
detail momentarily.

At this point, it is important to remark that the above Schroedinger quantization
scheme of 4-dimensional CS theory mirrors closely the Bargmann one used in ordinary
3-dimensional CS theory [58]. In particular, relations (4.111), (4.112) are the higher coun-
terpart of the familiar WZNW Ward identities, the cocycle WZB appearing in (4.114) is a
higher gauged WZNW functional and the cocycle relation (4.115) is just a higher version
of the Polyakov-Wiegmann identity [82]. However, unlike its ordinary counterpart, the
WZNW functional WZB is fully topological, being independent on any background met-
ric structure. Further, it depends only on the second component of the underlying gauge
transformation, UB, but not on the first one, uB.

The issue of the cohomological triviality of the cocycle functional WZB, the property
that WZBpωBq “ SBpωBuB,UBq ´ SBpωBq mod 2πZ for a local boundary functional SBpωBq, is
relevant. When it occurs, the modified wave functional

Ψ1pωBq “ eiSBpωBqΨpωBq (4.118)

is fully gauge invariant so that

WZB
1 “ 0 mod 2πZ. (4.119)
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It is interesting to illustrate this point by some examples. Consider the case where
M “ INN G is the inner automorphism crossed module of a Lie group G with an invariant
symmetric non singular bilinear form x¨, ¨y on g. Then, a simple calculation shows that the
WZNW functional WZB can be cast as

WZBpuB, UB;ωBq “
k

24π

ż

T r1sBM
%BM

@

duBuB
´1,

“

duBuB
´1, duBuB

´1‰D

` CSBpωB
uB,UBq ´ CSBpωBq `KBpωB

uB,UBq ´KBpωBq, (4.120)

where CSBpωBq is the boundary CS action

CSBpωBq “
k

4π

ż

T r1sBM
%BM

@

ωB, dωB `
1
3 rωB, ωBs

D

. (4.121)

If G is a compact semisimple Lie group, x¨, ¨y is the suitably normalized Killing form of
g and k is an integer, then the first term in the right hand side of (4.120) vanishes mod
2πZ and so WZB is cohomologically trivial. When M “ AD∗ G is the coadjoint action
crossed module of G with the canonical duality pairing or a generic crossed module, WZB
is cohomologically non trivial.

In 4-dimensional CS theory on a 4-fold M , a wave functional ΨM pωBq is yielded by
path integration over all gauge field configuration ω, Ω such that ω|T r1sBM “ ωB. Formally,
one has

ΨM pωBq “

ż

ω|T r1sBM“ωB

DωDΩ eiCS1pω,Ωq, (4.122)

leaving aside such relevant issues such as normalization and gauge fixing. The consistent
quantization of the theory requires however that the CS action CS1 employed be differen-
tiable in the sense of refs. [73, 74] under the boundary condition enforced.

As explained in subsection 4.1, the variation δCS of the CS action CS, given by
eq. (4.3), exhibits a boundary contribution showing that CS is not differentiable as it
is. To obtain a differentiable CS action, it is necessary to iq replace CS by a modified the
CS action CS1 obtained by adding to CS a suitable boundary term ∆CS as in eq. (4.6)
and iiq impose a boundary condition on the gauge field components ω, Ω such that the
variation δCS1 of CS1 is given by the bulk contribution in the right hand side of eq. (4.3)
only, once the boundary condition is enforced. For the boundary condition used in (4.122),
the expression of the appropriate boundary term ∆CS is readily found,

∆CSpω,Ωq “
k

4π

ż

T r1sBM
%BM xω,Ωy . (4.123)

With this choice, the modified CS action CS1 is given by the right hand side of (4.2) with
the boundary term removed. The boundary part of the variation δCS1 of CS1 then turns out
to be δCS1boundary “

k
2π

ş

T r1sBM %BM xδω,Ωy. This vanishes when the boundary condition
ω|T r1sBM “ ωB with assigned ωB is imposed, rendering CS1 differentiable as required. Here,
it is appropriate to recall that the above procedure has a well-known counterpart in 3-
dimensional CS theory. In that case, however, the boundary term depends on the choice of
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a conformal structure on the 2-dimensional boundary, since the two boundary gauge field
1-form components are canonically conjugated [58]. In the present case, conversely, since ω
is canonically conjugate to Ω, there is no need to introduce a new structure in the theory
and so the boundary term is fully topological.

In section 4.2, we found that the gauge variation A1 of the modified CS action CS1
is given by (4.17) in terms of the gauge variations A and ∆A of the CS action CS and
the boundary term ∆CS. Using relations (4.15) for A and computing ∆CS from (4.123)
employing (3.40), (3.41), it is straightforward to obtain

A1pω;u, Uq “ k

4π

ż

T r1sBM
%BM

”

@

9τpUq, dU ` 1
3 rU,U s

D

` xω, rU,U sy ` 2
@

dω ` 1
2 rω, ωs, U

D

ı

. (4.124)

Comparing (4.117) and (4.124), we find that A1pω;u, Uq reproduces the first term in the
right hand side of (4.117) when u|T r1sBM “ uB, U |T r1sBM “ UB, ω|T r1sBM “ ωB. On
account of (4.122), this shows that such term is the full classical contribution to WZB. The
remaining terms, therefore, if they arise at all, are of a quantum nature.

5 Sample applications

In this section, we illustrate a few field theoretic models which are interesting instances of
4-dimensional CS theory: the toric and the Abelian projection models. Here, our aim is
showing by direct construction that 4-dimensional CS theory can find explicit realizations
related to various areas of theoretical research on one hand and prepare the ground for a
more systematic study of the models presented to appear in future work on the other. So,
this last section should also provide an outlook for perspective applications of the theory
which we have developed.

5.1 The toric 4-dimensional CS model

Dijkgraaf-Witten theory [19] is known to classify symmetry protected topological phases
without fermions in low dimension. 4-dimensional Dijkgraaf-Witten theory in turn has a
continuum description in terms of toric 4-dimensional CS theory [83–85].

The Lie group crossed module of the toric model is the toric crossed module M “

pT,T, ς,$q, where T is a torus, that is a compact connected Abelian group, ς : T Ñ T is
an endomorphism and $ : T ˆ T Ñ T is the trivial action of T on itself. The associated
Lie algebra crossed module is m “ pt, t, 9ς,9$9q.

The torus T can be represented as the quotient t{Λ, where Λ is the integral lattice of
T defined by the property that el “ 1T for l P Λ. ς being an endomorphism of T entails
that 9ς : ΛÑ Λ is a lattice endomorphism.

Let x¨, ¨y : t ˆ t Ñ R be a symmetric non singular bilinear form on t. Since the Lie
algebra t is Abelian and the action 9$9 is trivial, the form x¨, ¨y satisfies the invariance
property (2.2) trivially. x¨, ¨y satisfies the symmetry property (2.3) if the endomorphism 9ς

is symmetric with respect to x¨, ¨y, which we assume henceforth to be the case.
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It is natural to suppose that the form x¨, ¨y restricts to a lattice bilinear form x¨, ¨y :
Λ ˆ Λ Ñ Z, which we denote by the same symbol for the sake of simplicity. 9ς : Λ Ñ Λ is
then a symmetric lattice endomorphism.

The toric higher gauge field components are ω P Ω1pM, tq, Ω P Ω2pM, tq. The toric CS
action is

CSpω,Ωq “
k

2π

ż

M

@

dω ´ 1
2 9ςpΩq, Ω

D

´
k

4π

ż

BM
xω,Ωy (5.1)

A toric gauge transformation consists of a map u P MappM,Tq, U P Ω1pM, tq. Its action
on the toric gauge field is according to eqs. (3.40), (3.41),

ωu,U “ ω ` duu´1 ` 9ςpUq, (5.2)
Ωu,U “ Ω ` dU. (5.3)

These transformations are gauge symmetries only if BM is empty as we have seen.
If we identify t » Rr and Λ » Zr for some integer r, then we have

xx, yy “
řr
i,j“1Kijxiyj , (5.4)

where K is an r ˆ r matrix of the form

Kij “ niδij (5.5)

with ni P Z, ni ą 0. The endomorphism 9ς is similarly expressed as

9ςipxq “
řr
j“1sijxj , (5.6)

where s is a certain r ˆ r matrix. Requiring that is a symmetric lattice endomorphism
leads to the property that sij P Z and the condition

nisij ´ njsji “ 0. (5.7)

In the toric models of refs. [83, 84], one has

nisij “ ´pij lcmpni, njq ´ χipiiniδij , (5.8)

where pij is a symmetric integer matrix and χi “ 0 or 1 according to whether ni is even or
odd respectively. It is immediately checked that the matrix s furnished by (5.8) is integer
and satisfies (5.7).

The Lie group crossed submodules of M, which as we have seen in section 4 are
the basic datum of linear boundary conditions, have a simple structure in toric CS the-
ory. The most general one is of the form M1 “ pV,U, ς|V, $|UˆVq where U, V are sub-
groups of T such that ςpVq Ď U. The corresponding Lie algebra crossed submodule
is therefore m1 “ pv, u, 9ς|v,9$9|uˆvq. Thus, m1 isotropic if v Ď uK and Lagrangian if
v “ uK. The associated orthogonal normalizer and Weyl crossed modules are respectively
ONm1 “ puK, vK, 9ς|uK ,9$9|vKˆuKq and OWm1 “ puK{v, vK{u, 9ς|uK{v,9$9|vK{uˆuK{vq.
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5.2 The Abelian projection model

Abelian projection [86] is a theoretical framework for investigating the properties of confin-
ing gauge theories. It consists in a gauge choice reducing the gauge symmetry from a non
Abelian group to a maximal Abelian subgroup. Abelian gauge fields emerge then from the
non Abelian background and with these magnetic monopoles presumably responsible for
confinement. In this subsection, we show how a kind of Abelian projection can be imple-
mented in 4-dimensional CS theory, even though no Higgs field is provisioned by it, leaving
to future work the exploration of possible physical applications. Cartan-Weyl theory of
semisimple Lie algebras is used throughout. See appendix A.5 for a brief review of some
of basic facts and notation used.

We begin by showing that we can associate a toric 4-dimensional CS model (cf. sub-
section 5.1) to a maximal torus F of a compact semisimple Lie group E whose Lie algebra
e is endowed with an invariant symmetric non singular bilinear form. The model’s toric
crossed module ME “ pT,T, ς,$q is defined as follows. The torus T is just Up1qr, where r
is the rank of E. Below, we shall view the elements T as ordered r-uples pexαqαPΠ` of Up1q
elements indexed by a set Π` of simple positive roots of e, where xα P iR. The target map
ς is given by

ς
`

pexαqαPΠ`
˘

“
`

e
ř

βPΠ`
Cβαxβ

˘

αPΠ` , (5.9)

where Cαβ is the Cartan matrix of e defined by (A.40). Note that ς is well defined because
C is a matrix with integer entries. The action map $ is trivial. ME can be further equipped
with an invariant pairing. Writing the elements of t as ordered r-uples pxαqαPΠ` of up1q
elements indexed by Π` analogously to the finite case, this reads

@

pxαqαPΠ` , pyαqαPΠ`
D

“
ř

αPΠ`καxαyα, (5.10)

where κα is the inverse half lengths square of the root α defined by (A.41). The symmetry
property (2.3) is fulfilled as can be easily checked upon noticing that 9ς

`

pixαqαPΠ`
˘

“
`

i
ř

βPΠ`Cβαxβ
˘

αPΠ` and using the identity καCβα “ κβCαβ .
In the above formal framework, the components of a toric higher gauge field are ordered

r-tuples pωαqαPΠ` , pΩαqαPΠ` with ωα P Ω1pM, iRq, Ωα P Ω2pM, iRq. The CS toric model
action (5.1) then reads explicitly as

CS
`

pωαqαPΠ` , pΩαqαPΠ`
˘

“
k

2π

ż

M

ř

αPΠ`κα

´

dωα ´
1
2
ř

βPΠ`CβαΩβ

¯

Ωα

´
k

4π

ż

BM

ř

αPΠ`καωαΩα. (5.11)

The components of a toric higher gauge transformation are similarly ordered r-tuples
`

efα
˘

αPΠ` , pUαqαPΠ` with fα P Ω0pĂM, iRq, Uα P Ω1pM, iRq. Here, the functions fα are
generally multivalued and thus properly defined on the universal covering ĂM of M . The
integrality condition

1
2πi

ż

c
dfα P Z, (5.12)
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where c is a 1-cycle of M must be satisfied in order efα to be a well defined element
of MappM,Up1qq. In accordance with (5.2), (5.3). the gauge transformed gauge field
pωpe

f q,pUq
αqαPΠ` , pΩpe

f q,pUq
αqαPΠ` reads as

ωpe
f q,pUq

α “ ωα ` dfα `
ř

βPΠ`CβαUβ , (5.13)

Ωpe
f q,pUq

α “ Ωα ` dUα. (5.14)

Again, these transformations are gauge symmetries only if BM is empty.
The Abelian projection associates a CS toric model of the type just described with

a CS model based on a Lie group crossed module M “ pE,G, τ, µq whose source group E
is a compact semisimple Lie group and a choice of a maximal torus F of E. Its explicit
construction goes through a few steps detailed next.

The source e of the Lie algebra crossed module m “ pe, g, 9τ,9µ9q is a compact semisimple
Lie algebra. Hence, zpeq “ 0. So, since ker 9τ is a central ideal of e, we have ker 9τ “ 0.

Suppose M is equipped with an invariant pairing x¨, ¨y. Then, m is balanced so that
dim e “ dim g. Since ker 9τ “ 0 as seen above, we have ran 9τ “ g. 9τ is therefore a Lie
algebra isomorphism and e » g. g is consequently also a compact semisimple Lie algebra.

9τ being a Lie algebra isomorphism allows us to define a distinguished invariant sym-
metric non singular bilinear of the Lie algebra e, namely

xX,Y yτ “ x 9τpXq, Y y, (5.15)

which we shall tacitly employ in what follows.
A higher gauge field ω, Ω induces a toric higher gauge field pωαqαPΠ` , pΩαqαPΠ`

ωα “ xω,Hαy, (5.16)
Ωα “ x 9τpHα∗q, Ωy, (5.17)

where Hα, Hα∗ P if are the root and weight Cartan subalgebra generators associated with
the roots and weights α, α∗. We shall call pωαqαPΠ` , pΩαqαPΠ` the Abelian projection of
ω, Ω. In turn, with any toric higher gauge field pωαqαPΠ` , pΩαqαPΠ` there is associated a
higher gauge field ω, Ω of the form

ω “
ř

αPΠ`ωα 9τpHα∗_q, (5.18)

Ω “
ř

αPΠ`ΩαHα_ , (5.19)

where Hα_ , Hα∗_ P if are the coroot and coweight Cartan subalgebra generators associated
with the coroots and coweights α_, α∗_. We shall call a gauge field of this form Abelian
projected. It is immediately verified that the Abelian projection of the Abelian projected
gauge field corresponding to the toric gauge field pωαqαPΠ` , pΩαqαPΠ` equals this latter.
See appendix A.5 for some technical details.

The CS action of an Abelian projected higher gauge field ω, Ω equals precisely the
toric CS action of the underlying toric higher gauge field pωαqαPΠ` , pΩαqαPΠ` given by
eq. (5.11),

CSpω,Ωq “ CS
`

pωαqαPΠ` , pΩαqαPΠ`
˘

. (5.20)
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The Abelian projection involves a reduction of the higher gauge symmetry similarly
to ordinary gauge theory. The residual gauge symmetry is described by the normalizer
crossed module NMF of a certain crossed submodule MF of M depending on the maximal
torus F (cf. subsection 2.3).

The characteristic crossed module of F is MF “ pF, τpFq, τ |F, µ|τpFqˆFq. MF is a crossed
submodule of M. MF is toric as F, τpFq are maximal tori of E, G, respectively, and
µ|τpFqˆF is trivial. It is simple to show that the normalizer crossed module of MF is
NMF “ pNF, µNF, τ |NF, µ|µNFˆNFq. The Weyl crossed module of MF so turns out to
be WMF “ pNF{F, µNF{τpFq, τ |NF{F, µ|µNF{τpFqˆNF{Fq. WMF is a finite discrete crossed
module. Indeed, NF{F “ WE, the familiar Lie theoretic Weyl group of E. Furthermore,
since it turns out that µNF “ NτpFq, as is straightforwardly shown, µNF{τpFq “ WG,
the Weyl group of G. Notice that WG » WE, since g » e.

As already mentioned, NMF is the crossed module of the residual higher gauge sym-
metry left over by the Abelian projection. Therefore, to implement the projection, we
restrict to the subgroup of NMF-valued higher gauge transformations, that is, by what
found in the previous paragraph, the gauge transformations u, U , with u P MappM,µNFq
and U P Ω1pM, fq. u, U have for this reason a special form. Since µNF is a disjoint union
of finitely many cosets of τpFq, on each connected component of M , one has

u “ uca, (5.21)

where uc P MappM, τpFqq and a P µNF is constant. uc can thus be expressed as

uc “ e
ř

αPΠ`
fα 9τpHα∗_ q (5.22)

with fα P Ω0pĂM, iRq through the coweight generators Hα∗_ P if. As before, the fα are
generally multivalued functions. The well-definedness of the exponential in the right hand
side of (5.22) requires that

1
2πi

ż

c

ř

αPΠ`dfαHα∗_ P Λf (5.23)

for any 1-cycle c of M , where Λf is the integral lattice of f. Condition (5.23) is compatible
with (5.12) since the integral lattice Λf is a sublattice of the coweight lattice Λcwf. However,
the integer values which the periods of dfα can take are restricted unless Λf “ Λcwf, which
happens when the center ZpEq of E is trivial, as ZpEq “ Λcwf{Λf. Finally, U can be
expanded as

U “
ř

αPΠ`UαHα_ . (5.24)

with Uα P Ω1pM, iRq in terms of the coroot generators Hα_ P if. In this way, we can
associate with an NMF-valued gauge transformation u, U a toric gauge transformation
`

efα
˘

αPΠ` , pUαqαPΠ` satisfying (5.23), the Abelian projection of u, U . This can be defined
alternatively through

dfα “ xduu
´1, Hαy, (5.25)

Uα “ x 9τpHα∗q, Uy, (5.26)
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analogously to (5.16), (5.17) projecting on the root and weight generators Hα, Hα∗ P

if. Viceversa, with any toric gauge transformation
`

efα
˘

αPΠ` , pUαqαPΠ` satisfy-
ing (5.23), we can associated an Abelian projected NMF-gauge transformation uc, U
through (5.22), (5.24). Note that in performing the Abelian projection of a NMF-valued
gauge transformation u, U all the information about the discrete factor a P µNF appearing
in (5.21) is lost. Correspondingly, for the Abelian projected gauge transformation uc, U
yielded by a toric gauge transformation we have uc P MappM, τpFqq only.

For a P µNF, the µ9pa, ¨q are automorphisms of the Lie subalgebra f. The findings of
the previous paragraph indicate that their action on the root, coroot, weight and coweight
lattices Λrf, Λcrf, Λwf, Λcwf of f may be relevant to the analysis of the gauge invariance of
Abelian projection. One finds

µ9pa,Hαq “
ř

βPΠ`χβαpaqHβ , (5.27)

µ9pa,Hα_q “
ř

βPΠ`χ
_
βαpaqHβ_ , (5.28)

µ9pa,Hα∗q “
ř

βPΠ`χ
_
αβpa

´1qHβ∗ , (5.29)

µ9pa,Hα∗_q “
ř

βPΠ`χαβpa
´1qHβ∗_ , (5.30)

where χ : µNF Ñ GLpr,Qq, χ_ : µNF Ñ GLpr,Qq are certain group morphisms. In fact,
χ_, χ are simply related

χpaq “ κχ_paqκ´1, (5.31)

where κ P GLpr,Rq is the diagonal matrix

καβ “ καδαβ , (5.32)

κα being defined by eq. (A.41). These relations follow form observing that the µ9pa, ¨q are
automorphisms of both the integral lattice Λf of f and its dual lattice Λf

∗ and that the
root and coroot generators span Λf

∗, Λf over Q, since the root and coroot lattices Λrf,
Λcrf are sublattices of Λf

∗, Λf respectively. Note also that, as AutpFq is a discrete group,
χ_paq “ χpaq “ 1r for a P τpFq. So, recalling that µNF{τpFq » WE, we have induced
group morphisms χ : WE Ñ GLpr,Qq, χ_ : WE Ñ GLpr,Qq, which we denote by the same
symbol for simplicity.

Let u, U be a NMF-valued higher gauge transformation with associated toric
gauge transformation

`

efα
˘

αPΠ` , pUαqαPΠ` and discrete factor a as defined by
eqs. (5.21), (5.22), (5.24). If ω, Ω is a higher gauge field and ωu,U , Ωu,U is the gauge trans-
formed gauge field, the toric higher gauge fields pωαqαPΠ` , pΩαqαPΠ` and pωu,UαqαPΠ` ,
pΩu,U

αqαPΠ` associated to ω, Ω and ωu,U , Ωu,U by Abelian projection according to
eqs. (5.16), (5.17) are related as

ωu,Uα “
ř

βPΠ`χβαpaqω
pef q,pUq

β , (5.33)

Ωu,U
α “

ř

βPΠ`χ
_
αβpa

´1qΩpe
f q,pUq

β , (5.34)
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where in accordance with eqs. (5.13), (5.14) pωpef q,pUqαqαPΠ` , pΩpe
f q,pUq

αqαPΠ` is the toric
gauge transform of pωαqαPΠ` , pΩαqαPΠ` . Correspondingly, if ω, Ω is an Abelian pro-
jected higher gauge field and ωu,U , Ωu,U is again the gauge transformed gauge field, then
ωu,U , Ωu,U is also Abelian projected and the toric gauge fields pωαqαPΠ` , pΩαqαPΠ` and
pωu,UαqαPΠ` , pΩu,U

αqαPΠ` underlying ω, Ω and ωu,U , Ωu,U in eqs. (5.18), (5.19) are again
related as in (5.33), (5.34).

Hence, the toric gauge transformation
`

efα
˘

αPΠ` , pUαqαPΠ` induced by the gauge
transformation u, U does not exhaust its action. There is a residual finite discrete WE
action. This constitutes an extra Weyl group symmetry of the toric CS action (5.11) for
Abelian projected gauge fields ω, Ω in addition to the toric higher gauge symmetry (for
BM “ H).

A Basic mathematical definitions and results

The following appendices collect basic results and identities used repeatedly in the main
body of the paper and provided also the proofs of a few basic statements relevant in our
analysis, which are original to the best of out knowledge.

A.1 Basic definitions and identities of crossed module theory

In this appendix, we collect a number of basic definitions and relations which are assumed
and used throughout the main text of the paper. This will also allow us to set our nota-
tion. A part of this material is fairly standard [49], the rest is original to the best of our
knowledge.

Lie group crossed modules and module morphisms. A Lie group crossed module
M consists of two Lie groups E and G together with Lie group morphisms τ : E Ñ G and
µ : G Ñ AutpEq such that

τpµpa,Aqq “ aτpAqa´1, (A.1)
µpτpAq, Bq “ ABA´1 (A.2)

for a P G, A,B P E, where here and below we view µ : Gˆ E Ñ E for convenience. τ and µ
are called the target and action maps and (A.1), (A.2) are called equivariance and Peiffer
properties, respectively. As a rule, we write M “ pE,G, τ, µq to specify the crossed module
through its constituent data.

A morphism β : M1 Ñ M of Lie group crossed modules consists of two Lie group
morphisms φ : G1 Ñ G and Φ : E1 Ñ E with the property that

τpΦpAqq “ φpτ 1pAqq. (A.3)
Φpµ1pa,Aqq “ µpφpaq, ΦpAqq (A.4)

for a P G1, A P E1. The morphism β is an isomorphism precisely when Φ, φ are both iso-
morphisms. We normally write β : M1 Ñ M “ pΦ, φq to indicate the constituent morphisms
of the crossed module morphism.
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There are obvious notions of direct product M1ˆM2 of two Lie group crossed modules
M1, M2 and direct product β1 ˆ β2 of two Lie group crossed module morphisms β1, β2
consisting in taking the direct product of the corresponding constituent data in the Lie
group category.

Lie group crossed modules and morphisms thereof with the direct product operation
constitute a monoidal category.

Lie group crossed submodules. Let M, M1 be Lie group crossed modules. M1 is a
submodule of M if E1, G1 are Lie subgroups of E, G and τ 1, µ1 are restrictions of τ , µ,
respectively or, equivalently, if there are inclusion Lie group morphisms E1 Ď E, G1 Ď G
which are the components of an inclusion Lie group crossed module morphism M1 Ď M.

Let M1, M2 be crossed submodules of a Lie group crossed module M with M1 a sub-
module of M2. M2 is said to normalize M1 if the following conditions are met. For a P G2,
b P G1, one has aba´1 P G1. For a P G2, B P E1, one has µpa,Bq P E1. Finally, for b P G1,
A P E2, one has µpb, AqA´1 P E1.

If M2 normalize M1, it is possible to define the quotient crossed module M2{M1. By
the condition listed in the previous paragraph, G1, E1 are normal Lie subgroups of G2, E2
respectively, making it possible to construct the quotient Lie groups G2{G1, E2{E1. Then,
M2{M1 “ pE2{E1,G2{G1, τ2M1 , µ

2
M1q, where τ2M1 , µ2M1 are the structure maps defined by

τ2M1pAE1q “ τpAqG1, (A.5)
µ2M1paG1, AE1q “ µpa,AqE1 (A.6)

for a P G2, A P E2. It can be verified that τ2M1 , µ2M1 are well defined and obey rela-
tions (A.1), (A.2).

Just as the notions of Lie algebra and algebra morphism and Lie subalgebra are the
infinitesimal counterpart of those of Lie group and group morphism and Lie subgroup, so
the concepts of Lie algebra crossed module and module morphism and Lie algebra crossed
submodule are the infinitesimal counterpart of those of Lie group crossed module and
module morphism and Lie group crossed submodule.

Lie algebra crossed modules and module morphisms. A Lie algebra crossed mod-
ule m consists of two Lie algebras e and g together with Lie algebra morphisms t : e Ñ g

and m : gÑ Derpeq such that

tpmpu, Uqq “ ru, tpUqs, (A.7)
mptpUq, V q “ rU, V s (A.8)

for u P g, U, V P e, where here and below we view m : gˆ eÑ e for convenience. t and m
are called the target and action maps and (A.7), (A.8) are called equivariance and Peiffer
properties, respectively, in analogy to the group case. Again, we write m “ pe, g, t,mq to
identify the crossed module through its defining elements.
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A morphism p : m1 Ñ m of Lie algebra crossed modules consists of two Lie algebra
morphisms H : e1 Ñ e and h : g1 Ñ g with the property that

tpHpUqq “ hpt1pUqq. (A.9)
Hpm1pu, Uqq “ mphpuq, HpUqq. (A.10)

for u P g1, U P e1. The morphism p is said to be an isomorphism if and only if H, h are
both isomorphisms. Again, we write as a rule p : m1 Ñ m “ pH,hq to specify the crossed
module morphism by means of its defining morphisms.

Similarly to the Lie group case, there are obvious notions of direct sum m1‘m2 of two
Lie algebra crossed modules m1, m2 and direct sum p1‘p2 of two Lie algebra crossed module
morphisms p1, p2 consisting in taking the direct sum of the corresponding constituent data
in the Lie algebra category.

Lie algebra crossed modules and morphisms thereof with the direct sum operation
constitute a monoidal category.

Lie algebra crossed submodules. Let m, m1 be Lie algebra crossed modules. m1 is
a submodule of m if e1, g1 are Lie subalgebras of e, g and t1, m1 are restrictions of t, m,
respectively or, equivalently, if there are inclusion Lie algebra morphisms e1 Ď e, g1 Ď g

which are the components of an inclusion Lie algebra crossed module morphism m1 Ď m.
Let m1, m2 be crossed submodules of a Lie algebra crossed module m with m1 a sub-

module of m2. m2 is said to normalize m1 if the following conditions are met. For u P g2,
v P g1, one has ru, vs P g1. For u P g2, V P e1, one has mpu, V q P e1. Finally, for v P g1,
U P e2, one has mpv, Uq P e1.

If m2 normalize m1, it is possible to define the quotient crossed module m2{m1. By
the condition listed in the previous paragraph, g1, e1 are Lie ideals of g2, e2 respectively,
making it possible to construct the quotient Lie algebras g2{g1, e2{e1. Then, m2{m1 “

pe2{e1, g2{g1, t2m1 ,m
2
m1q, where t2m1 , m2m1 are the structure maps

t2m1pU ` e1q “ tpUq ` g1, (A.11)
m2m1pu` g1, U ` e1q “ mpu, Uq ` e1 (A.12)

for u P g2, U P e2. It can be verified that t2m1 , m2m1 are well defined and obey rela-
tions (A.1), (A.2).

A.2 Lie differentiation of crossed modules

From what shown in appendix A.1, it is apparent that the Lie algebra crossed module
category is the infinitesimal counterpart of the Lie group crossed module one. As it might
be expected, they are related by Lie differentiation.

As a convention, whenever a Lie group theoretic structure S and a Lie algebra theoretic
structure s denoted by the same letter appear in a given context, it is tacitly assumed that
s is yielded by S via Lie differentiation, unless otherwise stated.
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Lie differentiation. Let M “ pE,G, τ, µq be a Lie group crossed module. With the
structure map τ : E Ñ G, there is associated its Lie differential 9τ : e Ñ g. Likewise, with
the structure map µ : GˆE Ñ E, there are associated three distinct Lie differentials, namely
µ9 : Gˆ eÑ e, 9µ : gˆ E Ñ e and 9µ9 : gˆ eÑ e. Since τ is a Lie group morphism, 9τ is a Lie
algebra morphism. Similarly, since µ encodes a Lie group morphism µ : G Ñ AutpEq, µ9 and
9µ9 encode respectively a Lie group morphism µ9 : G Ñ Autpeq and Lie algebra morphism
9µ9 : gÑ Derpeq. The interpretation of 9µ is less obvious: as it turns out, 9µ : gÑ CAd

1pE, eq
is a linear morphism of g into the linear space of adjoint action 1-cocycles of E on e. The
precise definition and main properties of these objects are provided below.

Let β : M1 Ñ M “ pΦ, φq be a Lie group crossed module morphism. The Lie differentials
of the Lie group morphisms Φ : E1 Ñ E, φ : G1 Ñ G are then Lie algebra morphisms
9Φ : e1 Ñ e, 9φ : g1 Ñ g.

Given a Lie group crossed module M “ pE,G, τ, µq, the data m “ pe, g, 9τ,9µ9q define a
Lie algebra crossed module. m is in this way associated with M much as a Lie algebra
is associated with a Lie group. Similarly, given a Lie group crossed module morphism
β : M1 Ñ M “ pΦ, φq, the data 9β : m1 Ñ m “ p 9Φ, 9φq define a Lie algebra crossed module
morphism. Again, 9β is associated with β just as a Lie algebra morphism is associated
with a Lie group morphism. The Lie algebra crossed module associated with the direct
product M1ˆM2 of two Lie group crossed modules M1, M2 is the direct sum m1‘m2 of the
associated Lie algebra crossed modules m1, m2. Similarly, the Lie algebra crossed module
morphism associated with the direct product β1 ˆ β2 of two Lie group crossed module
morphisms β1, β2 is the direct sum 9β1 ‘ 9β2 of the associated Lie algebra crossed module
morphisms 9β1, 9β2.

The map that associates with each Lie group crossed module M its Lie algebra crossed
module m and with each Lie group crossed module morphism β : M1 Ñ M its Lie algebra
crossed module morphism 9β : m1 Ñ m is a functor of the Lie group into the Lie algebra
crossed module monoidal category.

Let M, M1, be Lie group crossed modules with associated Lie algebra crossed modules
m, m1. If M1 is a crossed submodule of M, then m1 is a crossed submodule of m. Next,
let M2 be a Lie group crossed module with Lie algebra crossed module m2. If M2 is a
crossed submodule of M normalizing M1, then m2 is crossed submodule of m normalizing
m1. Moreover, the Lie algebra crossed module of the quotient crossed module M2{M1 is
precisely m2{m1.

Basic Lie theoretic identities. The relevant differentiated structure mappings 9τ : eÑ
g, µ9 : G ˆ e Ñ e, 9µ : g ˆ E Ñ e and 9µ9 : g ˆ e Ñ e of a Lie group crossed module
M “ pE,G, τ, µq which we introduced above satisfy a host of identities often used in detailed
calculations and analyses.

µ9 obeys the following algebraic identities:

µ9pab,Xq “ µ9pa, µ9pb,Xqq, (A.13)
µ9pa,9µ9px,Xqq “ 9µ9pAd apxq, µ9pa,Xqq, (A.14)
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where a, b P G, x P g, X P e. 9µ in turn satisfies the following relations:

9τp 9µpx,Aqq “ x´Ad τpAqpxq, (A.15)
9µp 9τpXq, Aq “ X ´AdApXq, (A.16)
9µprx, ys, Aq “ 9µ9px, 9µpy,Aqq ´ 9µ9py, 9µpx,Aqq ´ r 9µpx,Aq, 9µpy,Aqs, (A.17)

9µpx,ABq “ 9µpx,Aq `AdAp 9µpx,Bqq, (A.18)
µ9pa, 9µpx,Aqq “ 9µpAd apxq, µpa,Aqq, (A.19)

where a, b P G, A,B P E, x, y P g, X P e.
The following variational identities hold:

δµpa,Aqµpa,Aq´1 “ µ9pa, 9µpa´1δa,Aq ` δAA´1q, (A.20)
δµ9pa,Xq “ µ9pa,9µ9pa´1δa,Xq ` δXq, (A.21)
δ 9µpx,Aq “ 9µpδx,Aq ` 9µ9px, δAA´1q ´ r 9µpx,Aq, δAA´1s, (A.22)

where a P G, A P E, x P g, X P e.

A.3 Crossed modules with invariant pairing

In this appendix, we provide the definition and main properties of Lie group and algebra
crossed modules with invariant pairing used in the main text. We also provide details on
isotropic crossed submodules.

Lie algebra crossed modules with invariant pairing. A Lie algebra crossed module
with invariant pairing is a Lie algebra crossed module m “ pe, g, t,mq endowed with a non
singular bilinear map x¨, ¨y : gˆ eÑ R enjoying the properties that

xad zpxq, Xy ` xx,mpz,Xqy “ 0 (A.23)

for z, x P g, X P e and that

xtpXq, Y y “ xtpY q, Xy (A.24)

for X,Y P e. The non singularity of x¨, ¨y implies that m is balanced, dim e “ dim g.
A morphism p : m1 Ñ m “ pH,hq of Lie algebra crossed modules with invariant pairing

is a crossed module morphism that respects the pairing, that is

xhpxq, HpXqy “ xx,Xy1 (A.25)

for x P g1, X P e1.
If m1, m2 are Lie algebra crossed modules with invariant pairing, then their direct sum

m “ m1 ‘m2 is a crossed module with the invariant pairing

xx1 ‘ x2, X1 ‘X2y “ xx1, X1y1 ` xx2, X2y2, (A.26)

where x1 P g1, X1 P e1, x2 P g2, X2 P e2.
Lie algebra crossed modules with invariant pairing and morphisms thereof with the

direct sum operation constitute a monoidal category that is a subcategory of the monoidal
category of Lie algebra crossed modules and module morphisms.
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Lie group crossed modules with invariant pairing. A Lie group crossed module with
invariant pairing is a crossed module M “ pE,G, τ, µq such that the associated Lie algebra
crossed module m “ pe, g, 9τ,9µ9q (cf. appendix A.2) is a crossed module with invariant pairing
x¨, ¨y satisfying

xAd apxq, µ9pa,Xqy “ xx,Xy (A.27)

for a P G, x P g, X P e. Note that (A.27) implies (A.23) with m “ 9µ9 through Lie
differentiation with respect to a. Again, the non singularity of x¨, ¨y implies that M is
balanced, dim E “ dim G.

A morphism β : M1 Ñ M of Lie group crossed modules with invariant pairing is a
morphism of the underlying crossed modules such that the induced Lie algebra crossed
module morphism 9β : m1 Ñ m is a morphism of crossed modules with invariant pairing as
defined earlier (cf. eq. (A.25)).

If M1, M2 are Lie group crossed modules with invariant pairing, then their direct
product M “ M1 ˆM2 is a crossed module with the invariant pairing, since the associated
Lie algebra crossed module m “ m1 ‘ m2 is endowed with the invariant pairing (A.26)
satisfying (A.27).

Lie group crossed modules with invariant pairing and morphisms thereof with the direct
product operation constitute a monoidal category that is a subcategory of the monoidal
category of Lie group crossed modules and module morphisms.

Fine crossed modules. Let M “ pE,G, τ, µq be a Lie group crossed module with invari-
ant pairing x¨, ¨y. M is said to be fine if for x, y P g and A P E one has

xx,9µpy,Aqy “ xy,9µpx,A´1qy. (A.28)

This property is a sense dual to (A.27). M is fine under mild assumptions on the Lie group
E. In particular, M is fine when E is connected and also when E is not connected in the
connected component of the identity of E and in any connected component of E where it
holds for at least one element. M is fine also when τ is invertible with no restrictions on E.

A.4 Proof of the decomposition theorem

In this appendix, we provide a sketch of the proof of the decomposition theorem (2.11) of a
Lie algebra crossed module with invariant pairing m satisfying the hypothesis (2.10). The
theorem states the isomorphism

m » Cm‘ Rm, (A.29)

where Cm, Rm are the core and residue of m, the Lie algebra crossed modules with invariant
pairing defined by (2.4), (2.5), (2.8) and (2.6), (2.7), (2.9), respectively.

By the assumption (2.10), we have the Lie algebra direct sum decomposition

g “ ran t‘ h, (A.30)

where h is an ideal of g with ran tX h “ 0. The projector π : gÑ ran t associated with the
decomposition is a Lie algebra morphism.
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The duality pairing of g and e established by the invariant pairing x¨, ¨y entails the Lie
algebra direct sum decomposition

e “ ker t‘ hK, (A.31)

where hK, the orthogonal complement of h with respect to the pairing, an ideal of e with
ker t X hK “ 0. The projector Π : g Ñ ker t associated with the decomposition is again a
Lie algebra morphism.

We define mappings h : gÑ ran t‘ pg{ ran tq and H : eÑ pe{ ker tq ‘ ker t by

hpxq “ πpxq ‘ pp1´ πqpxq ` ran tq, (A.32)
HpXq “ pp1´ΠqpXq ` ker tq ‘ΠpXq (A.33)

with x P g, X P e. h, H are the components of a Lie algebra crossed module isomorphism p :
mÑ Cm‘Rm Indeed, as it is straightforward to verify, h, H are Lie algebra isomorphisms.
Further, by virtue of the relations,

πptpXqq “ tpp1´ΠqpXqq, (A.34)
p1´ πqptpXqq “ 0, (A.35)
Πpmpx,Xqq “ mpp1´ πqpxq, ΠpXqq, (A.36)

p1´Πqpmpx,Xqq “ mpπpxq, p1´ΠqpXqq, (A.37)

h, H obey the required conditions (A.9), (A.10). Property (A.25) is immediately checked.

A.5 Basic results of Cartan-Weyl theory

In this appendix, we review the basic notions of the Cartan-Weyl theory of lie algebras
used in section 5. A standard reference is [87].

Let E be a compact semisimple Lie group and F a maximal torus of E. Then, e is
a compact semisimple Lie algebra and f is a maximal toroidal Lie subalgebra of e. The
integer r “ dim f is the rank of E.

The structure of the Lie algebra e is best analyzed by complexification. We let eC “

C b e and fC “ C b f, the Cartan subalgebra of eC. Then, eC has the vector space direct
sum decomposition

eC “
À

αP∆eα ‘ fC, (A.38)

where ∆ Ă fC
∗ is set of roots of eC, the eigenvalues of ad fC, and the eα are the root

subspaces, the associated eigenspaces of ad fC. The eα can be shown to be all 1-dimensional.
eC admits an invariant symmetric non singular bilinear pairing x¨, ¨yK unique up to

normalization in each simple component of eC. x¨, ¨yK restricts to a non singular pairing on
fC. Through x¨, ¨yK , each element κ P fC∗ is then identified with a unique generator Hκ P fC.
An symmetric non singular bilinear pairing x¨, ¨yK on fC

∗, defined by xκ, λyK “ xHκ, HλyK

for κ, λ P fC∗, is so induced.
The roots α P ∆ are in this way identified with generators Hα of fC. With the α, there

are further associated the coroots α_ P fC
∗ given by α_ “ 2α{xα, αyK , which in turns are
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identified with generators Hα_ of fC. It can be shown that Hα, Hα_ P if. Unlike the Hα,
however, the Hα_ do not depend on the normalization of x¨, ¨yK . Besides these, there exist
normalized generators Xα P eα such that the basic Lie brackets of eC read as

rHα_ , X˘αs “ ˘2X˘α, rXα, X´αs “ Hα_ (A.39)

The root set ∆ is spanned over Z by a set of positive simple roots Π` Ă ∆. Note that
|Π`| “ r. The Cartan matrix

Cαβ “
2xα, βyK
xα, αyK

“
2xα_, β_yK
xβ_, β_yK

, α, β P Π` (A.40)

is independent from the normalization of the invariant pairing x¨, ¨yK . C is an invertible
r ˆ r matrix with integer entries in the range ´3,´2,´1, 0, 2 completely codifying e as
a Lie algebra. In particular, C determines essentially all the ratios of the normalization
dependent simple root inverse half lengths squares

κα “
2

xα, αyK
“
xα_, α_yK

2 , α P Π`. (A.41)

For non orthogonal roots α, β P Π`, κα{κβ “ Cαβ{Cβα “ 1, 2, 3, 1{2, 1{3 depending on
cases.

The real subspace if Ă fC is characterized by six lattices:

• the root lattice Λrf, the lattice of if generated by Hα with α P Π`,

• the coroot lattice Λcrf, the lattice of if generated by Hα_ with α P Π`,

• the integral lattice Λf, the set of all X P if such that e2πiX “ 1E,

and their dual lattices with respect to x¨, ¨yK :

• the weight lattice Λwf “ Λcrf
∗,

• the coweight lattice Λcwf “ Λrf
∗,

• the dual integral lattice Λf
∗.

The weight and coweight lattices can also be defined through generators. The simple roots
α P Π` can be paired with the fundamental weights and coweights α∗, α∗_P fC∗ defined by

xα∗, β_yK “ xα
∗_, βyK “ δαβ . (A.42)

The weight and coweight lattices Λwf, Λcwf are then the lattices of if generated by Hα∗ ,
Hα∗_ with α P Π`, respectively. Explicitly, we have Hα∗ “

ř

βPΠ` C
´1

βαHβ , Hα∗_ “
ř

βPΠ` C
´1

αβHβ_ . It is known that Λcrf Ď Λf Ď Λcwf and Λrf Ď Λf
∗ Ď Λwf. While the

lattices Λcrf, Λcwf Λrf, Λwf depend only on the Lie algebra e and are therefore the same for
all Lie groups E which share e as their Lie algebra, the lattices Λf, Λf

∗ do depend on E. In
this regard, one has ZpEq » Λcwf{Λf » Λf

∗{Λrf and π1pEq » Λf{Λcrf » Λwf{Λf
∗.
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