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Abstract

In distributed environments, such as distributed ledgers technologies and other peer-to-peer architectures,
communication represents a crucial topic. The ability to efficiently disseminate contents is strongly influ-
enced by the type of system architecture, the protocol used to spread such contents over the network and
the actual dynamicity of the communication links (i.e. static vs. temporal nets). In particular, the dissemi-
nation strategies either focus on achieving an optimal coverage, minimizing the network traffic or providing
assurances on anonymity (that is a fundamental requirement of many cryptocurrencies). In this work, the
behaviour of multiple dissemination protocols is discussed and studied through simulation. The perfor-
mance evaluation has been carried out on temporal networks with the help of LUNES-temporal, a discrete
event simulator that allows to test algorithms running on a distributed environment. The experiments show
that some gossip protocols allow to either save a considerable number of messages or to provide better
anonymity guarantees, at the cost of a little lower coverage achieved and/or a little increase of the delivery
time.

Keywords: temporal networks, simulation, P2P, gossip protocols.

1 INTRODUCTION

Nowadays, the ubiquitous cloud computing paradigm implies that most of the applications running on the
Internet follow a centralized client-server approach. This means that all the resources of the application
are situated in some servers, and the users of the system need to contact such servers in order to retrieve
the information. An alternative to this scheme is to use a decentralized approach, where the data and com-
putation resources are distributed among the various nodes and the central servers, if present, only have a
coordination role. So, it is possible to design systems whose architecture is decentralized and where all the
nodes, often referred as peers, share the workload without privileges, a hierarchy and central entities being
involved, i.e. Peer-to-Peer (P2P).
Normally, P2P systems make use of an overlay network, meaning that an application level communication
network is created, running on top of an already existing network infrastructure (i.e. the Internet), often
regardless of the real geographical distribution of involved nodes. In such a case, this scheme might lead
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to a lot of traffic overhead to keep the network up and running (Backx et al. 2002). However, it has been
demonstrated that it is possible to considerably reduce the network traffic by using a smart approach to
propagate the information on the network (D’Angelo and Ferretti 2017). Often there has been little interest
in traffic minimization in distributed environments, because it may not be crucial for the functioning of the
system. Thus, usually peers relay the new data that they receive to all their neighbors (except the one from
which they received the message), and the only concern is to avoid infinite loops of messages. However,
for certain applications, traffic minimization can be a relevant issue, and significant improvements can be
achieved without compromising the efficiency of the communication. Several algorithms to spread the mes-
sages among the peers exist and, depending on the features of the system, certain protocols (and certain
protocols’ parameters) may turn out to be more appropriate than others.
Simulation is a useful methodology in order to investigate which protocols are more suitable for the various
purposes. By generating a virtual environment where multiple nodes communicate through the use of mes-
sages, it is possible to analyze the behaviour of the different algorithms and to evaluate the overall efficiency
with the help of some performance metrics. Generally, it is desirable to achieve a very high if not complete
coverage (i.e. the percentage of peers that receive a message), and to minimize the network traffic and the
delivery time (i.e. the time between the creation of a message and its delivery). However, no algorithm can
maximize all these features simultaneously, so it is necessary to find a balanced trade off, taking into account
which trait is more important for the specific application. For example, blockchains usually do not require
all the nodes to suddenly receive all the blocks and transactions, because some information, if missing, can
be retrieved. Therefore, in this scenario a protocol that focuses on anonymity and traffic minimization might
be convenient, but without totally neglecting the delivery time, that if too large could lead the network to
reach an inconsistent state. The output of the metrics can be influenced by many factors other than the gossip
protocol, like the connectivity of the network or the topology of the overlay. Another factor to consider is
the dynamicity of the nodes, which are not necessarily always active, but they can turn on and off over time,
therefore changing the structure of the graph. Models associated with such kinds of dynamic systems are
usually referred to as temporal networks, which are the main focus of this work.
In this paper we introduce LUNES-temporal, a simulator for distributed environments, focusing on two
types of dissemination algorithms: protocols for enhancing the anonymity (that is a feature considered as
necessary in most modern cryptocurrencies and related blockchains (Khalilov and Levi 2018)) and proto-
cols for minimizing the network traffic (i.e. improve the communication efficiency). Temporal networks
have been used to carry out our investigation in a dynamic environment, where nodes are randomly located
and they can change their activation state.
From our results, it turns out that some dissemination algorithms are more efficient than others, either be-
cause they ensure both good anonymity properties and 100% of messages delivery (i.e. Dandelion++(Fanti
et al. 2018)) or because they allow to save network traffic under the same coverage achieved. Furthermore,
it was noticed that the presence of hubs (i.e. nodes with a number of links that greatly exceeds the average)
in the graph (used to represent the network) is relevant for which concern the average delivery time.
The remainder of the paper is organized as follows. Section 2 introduces some background and related work.
Section 3 describes the design choices of the software tool and deals with the critical aspects of the imple-
mentation. Section 4 analyzes the results obtained by testing different dissemination protocols in various
network configurations. Finally, Sections 5 provides some concluding remarks.

2 BACKGROUND AND RELATED WORK

In this section, we introduce some background and related work needed by the rest of the paper. In particular,
we briefly describe Distributed Ledger Technologies (DLTs), their underlying P2P networks used to manage
communication in DLTs and the main issues related to their simulation.
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2.1 Peer-to-Peer Systems as Temporal Networks

Some years ago, the P2P technology got attention for making it possible to share and exchange resources
such as text files, music, video. Furthermore, for some time it appeared to be the main component of
decentralized Internet (e.g. BitTorrent, Emule, Gnutella and TooFast). Although interest in this technology
was fading due to the growth of cloud computing, a new wave of interest emerged with the advent of
blockchains and cryptocurrencies. Blockchains, and DLTs in general, are systems in which a ledger of
transactions is distributed among several nodes. Different types of DLTs provide different implementations
of the ledger, but in blockchains, transactions are collected in blocks and each block contains the hash of
the previous one. To achieve decentralized verification of each block, the entire blockchain is replicated
among all nodes forming a P2P network. These nodes operate in an unstructured topology where each peer
is randomly connected to other peers and transactions are disseminated across the entire network. Each node
then independently verifies the transactions received in order to ensure their consistency and to avoid double
spending attacks (Nakamoto, Satoshi 2009). Once blocks are created they are disseminated in the network
as well, to notify the peers that the blockchain has been extended.
Generally speaking, P2P applications usually run on top of an already existing network, like the Internet,
and the underlying overlay network can be represented as a graph (directed or undirected depending on
the implementation), where the nodes are the peers of the system and the edges connect the nodes that are
directly in touch. Different P2P architectures may exist, usually depending on the type of the application
that must be supported. Two prominent aspects related to the functioning of a P2P system are i) how the
overlay is built and maintained in order to cope with churns (i.e. nodes that dynamically come and go in the
system) , ii) how messages are exchanged among peers.
In a P2P environment, a node is not connected with all the other peers of the network: that would be possible
just for applications with a very small number of actors involved. As a result, each node is connected only
with a certain number of other nodes, and thus multiple message relays among peers are needed in order to
spread the information to the whole network. For example, in Bitcoin each node has a number of connections
in the range [8, 125] (Naumenko et al. 2019). How these connections are chosen is fundamental, since
they drive the creation of overlays with specific topologies. Moreover, the dynamicity of peers that can
(freely) join and leave the network, often requires the use of some protocol to maintain the net healthy and
connected (D’Angelo and Ferretti 2017, Ferretti 2013).
The modeling of this system dynamicity has been a main topic of research in the past (Surati et al. 2017).
Studies were focused on the evolution of the overlay, and usually did not consider applications running on
top of it. On the other hand, studies on (the modeling of) distributed applications typically assume that the
underlying overlay is static, thus neglecting the possible presence of churns. In this paper, we deal with both
these issues by means of a specific simulator of temporal networks. More specifically, through temporal
networks, we are able to model the dynamism of interactions among nodes. On top of this, the simulator
allows running specific message dissemination models.
As concerns how messages are exchanged among nodes in the P2P overlay, several dissemination schemes
can be devised, they are discussed in detail in the next subsection.

2.2 Dissemination Protocols

A gossip protocol is a dissemination scheme that aims to spread a message within a P2P network. In our
work, we will consider the following algorithms (D’Angelo and Ferretti 2009):

• Probabilistic Broadcast (PB). Given a forwarding parameter p, there is p% of chance that a node
forwards the message to all the neighbors except the forwarder and (100− p)% that it does not send
it to any other node.
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• Fixed Probability(FP). Given a parameter p, a roll of dice for each of the neighbors (except the
forwarder) takes place, so each neighbor will have p% of chance of receiving the message.

• Fixed Fanout(F-FAN). Given a parameter n, the message is forwarded to n neighbors. If the con-
cerned node has less than n neighbors, then it is forwarded to all the neighbors.

• Degree Dependent Function Algorithms(DDF). The message is sent based on the degree (i.e. num-
ber of neighbors of a node) of the potential receiver: the less connected is the neighbor, the more
possibilities it has to receive the message (D’Angelo and Ferretti 2017). The information of the
degree should lead to a better propagation, since the protocol aims to reach the most isolated nodes
of the graph, which are the most likely to cause problems in the dissemination process. Above all in
networks with a high degree differential among the nodes, this strategy could lead to better results, at
the cost of sending messages from time to time for updating the data about neighbors’ connections.
In our implementation, if the potential receiver has less than 3 neighbors, then the message is always
forwarded. Otherwise, a strategy based on either logarithmic or exponential functions is followed.
Therefore, given a parameter X , the message is forwarded with either probability 1/logDX or 1/DX ,
where D represents the degree of the potential receiver.

• Dandelion. The focus of this protocol is to prevent de-anonymization attacks (Amarasinghe et al.
2019). It consists of two phases: initially in the so-called “stem phase” a message is relayed to
just one neighbor chosen at random. Then, after a certain number of stem steps, the messages are
forwarded to all the neighbors (i.e. “fluff phase”).

• Dandelion++. This algorithm has been proposed to improve the Dandelion protocol, as some as-
sumptions are not necessarily valid in practice and the theoretical properties of anonymity and guar-
anteed delivery may not always be ensured. The protocol is currently used by cryptocurrencies like
Monero (Monero Project Blog (ErCiccione) 2021) and Zcoin (Serena et al. 2020). Among the
changes from the previous version there is a different policy for transactions forwarding. Time is
divided into epochs and in each epoch a peer is either a “diffuser” (spreading messages to all the
neighbors) or a “relayer” (sending messages to just another node), depending on the hash of the
node’s own identity and on the epoch number. Furthermore, a fail-safe mechanism is implemented,
preventing data to get lost if a malicious or a defective node did not correctly relay the disseminated
message.

In all the considered dissemination strategies except for Dandelion and its variations, when a new message
is originated then it is sent by its creator to all his neighbors. This is done in order to avoid getting stuck
immediately at the first step. Independently from the protocol being used, a cache system and a Time-To-
Live (TTL) are employed to prevent infinite loops of messages. The strategy is respectively to not forward
an already received message and to allow a message to be relayed only for a limited number of hops.
The metrics used to evaluate the performance of such algorithms are the following:

• Successful communication rate. It indicates the percentage of times that a node is able to get in touch
with a designated node.

• Messages sent. It indicates the average number of messages being sent in the process of getting
in touch with the recipient node. Both successful and unsuccessful attempts are considered in the
count.

• Delay. It indicates the number of discrete steps needed on average to contact the recipient node.
Except protocols with recovery mechanisms, it corresponds to the number of hops needed for the
delivery.

• Time overhead. It indicates the ratio between the delay obtained with a certain gossip protocol and
the delay obtained with a pure broadcast scheme, which guarantees (by definition) to obtain the
lowest delay that can be possibly achieved.
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Certain applications may need to achieve a 100% successful communication rate in order to function prop-
erly, but in other cases a minor percentage could still be acceptable to make everything work fine. An
example of the second case is the blockchain, where most of the messages being sent are blocks or trans-
actions. Transactions are validated by different nodes, meaning that it is not indispensable for all the actors
involved in the validation process to know exactly all the transactions that have been spread into the net-
work. For what concerns the blocks, specific recovery mechanisms are used by the blockchain nodes to
retrieve non-delivered blocks when it is detected that there are missing blocks. Anyway, although 100% of
successful communication rate is not indispensable for certain systems, often a very high percentage is still
required for a correct functioning.

3 LUNES-TEMPORAL

LUNES (Large Unstructured Network Simulator) is a time-stepped discrete event simulator for complex
networks, which permits to simulate certain network protocols and to evaluate their efficiency. The soft-
ware (available at https://pads.cs.unibo.it) is thought to work with distributed environments, which can be
customized by choosing topology, size and level of connectivity of the network (Ferretti and D’Angelo
2020). LUNES is implemented on top of ARTÌS/GAIA simulation middleware, which offers the primitives
for time management and communication among simulated entities, enabling also a parallel and distributed
execution (D’Angelo and Ferretti 2017). The tool is thought to be easily expandable, so that adding new
simulation models on top of the existing services is a rather simple task. For example, the software was also
used to simulate some popular security attacks to different setups of blockchains.
LUNES-temporal is a specific version of LUNES in which the simulator is able to dynamically manage the
overlay network used to simulate the message dissemination. It allows to model a large number of peers,
each one is labeled with an integer identifier and a state indicating whether the node is active or not. Ac-
tive nodes act normally by receiving and forwarding messages. On the contrary, the non-active nodes are
deactivated, meaning that they are temporarily off and they cannot receive and relay messages until a future
reactivation. When a node deactivates, it immediately removes all its outgoing connections. At the next
timestep, its former neighbors will be notified of the deactivation and in turn they will remove such a peer
from its neighbors list. The nodes, if active, can directly communicate with a set of neighbors, with the
messages needing one timestep to be delivered to the adjacent recipient.
In the original version of the software (i.e. LUNES) the network is modelled as a static graph, meaning that
it is not subject to changes over time. This approach is useful when it is necessary to deal with precise con-
figurations (i.e. topology, number of nodes/links and network diameter). However, even if static networks
can still be a valid tool for the modelling of many systems, in some cases they lack veracity. In our specific
case, peer-to-peer applications usually work in dynamic environments, where continuously new nodes be-
come members of the system and other nodes temporarily (or permanently) shut down.
The employment of a temporal network, as the core of the simulator, permits to work with a dynamic envi-
ronment, whose structure changes over time. At the beginning, a certain number of connections (i.e. links)
between nodes are established, but the network configuration mutates more or less rapidly over time de-
pending on the activation rate of the temporal model. This leads to a complete renovation of the structure of
the graph after a certain amount of timesteps. It may happen that, due to the random transformations, certain
nodes achieve a much bigger degree than other ones, but such conditions are fleeting. For most connected
networks random changes are not a big concern, since the protocols still efficiently succeed in the dissemi-
nation, but for few connected networks the risk of bottleneck is real. In a graph where some nodes have very
few connections the possibilities that certain messages get lost are greater, above all for probabilistic gossip
algorithms that do not consider the degree of the neighbors. Therefore, a strategy to control and manage the
evolution of a temporal network (for example by setting a minimum number of active connections for each
peer) might play an important role for dissemination scopes.
In LUNES-temporal, the overlying layer implements the application layer message exchange protocol. In

 https://pads.cs.unibo.it
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particular, this module implements all the types of dissemination algorithms described in Section 2.2. The
dissemination is performed in accordance with the rules of the chosen gossip protocol, which can be selected
by the user before the simulation is started.

4 RESULTS AND ANALYSES

4.1 Setup and Methodologies

The P2P environment used in this performance evaluation consists of 10 000 peers, including both active (the
majority) and deactivated nodes. In our model, the graph is undirected, meaning that the link relationship
benefits from the commutative property. The only case where a link is available only in one direction is
when a node has still to be notified about the deactivation of a neighbor.
At each discrete step of simulation, there is a specific probability of changing the activation state for a node.
The chance for an active node to deactivate, and the chance for a deactivated node to activate, are not equal.
Otherwise, the graph would tend to have 50% of active nodes over time. Instead, such probabilities are
tuned to maintain approximately the same number of active peers over time. Specifically, in the following
simulations we have, on average, 80% of active nodes, with a probability of 1% for a deactivated node to
activate and a probability of 0.25% for an active node to shut down. When a node activates or when a node
remains without neighbors, it connects with a certain number of active peers, chosen at random (i.e. with
uniform distribution) along the graph. There is no further criterion for the nodes attachment, so the graph
retains its random properties.
The experiments that we executed consist of over 10 000 epochs (i.e. portion of the simulation where a single
communication attempt between peers is performed) in which data are collected to calculate the metrics
described in Section 2.2. At the beginning of each epoch an applicant and a holder of a hypothetical resource
are chosen at random among the active nodes of the system and these two peers will remain active for all the
duration of the epoch. If the applicant manages to get in touch with the holder then the communication has
success, otherwise a fail occurs. The average number of messages sent is obtained by taking into account
the data of all the epochs while, of course, in order to calculate the average delay just the successful epochs
are considered. Each message that is created has a Time-To-Live (TTL) that sets the duration of its epoch.
Usually, a TTL of 15-20 timesteps is abundantly sufficient, but the algorithms with a fail-safe mechanism,
above all under certain configurations, may require more time for the delivery. So in these cases it is
necessary to increase the duration of the epochs.
Some specific simulations have been run to observe the behaviour of the network over time and it turned
out that the graph does not split into multiple components, moreover it results that the diameter of the graph
does not change significantly. A split of the graph into multiple components would entail the inability to
deliver certain messages, and the growth of the graph’s diameter would likely increase the average delay.
Before testing the performance of the dissemination protocols, some experiments have been made in order
to evaluate how the average degree of the nodes and the level of dynamism of the network can influence the
results. The obtained outcomes are reported in the following.

4.2 Average Degree Variation

Figure 1 represents how the output of the metrics changes depending on the average number of connections
per node. As expected, under the same protocol configuration, the most-connected networks achieve a higher
successful communication rate and a lower average delay, but at the cost of a greater volume of forwarded
messages. Therefore, in case one is interested in minimizing the network traffic, it is necessary to calibrate
the parameters of the dissemination protocols according to the average number of connections.
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Figure 1: Effects of the average number of edges per node on specific performance metrics.

4.3 Dynamism Rate Variation

Specific experiments have been carried out to test how the level of network dynamism can influence the
dissemination. The main effect caused by the variation of the graph structure is that sometimes a message
is lost. In fact, when a node A sends at time t a message to the neighbor B, it can happen that B deactivates
right at the timestep t, so it will not be able to receive the message at the timestep t +1 as expected. Only at
t +1 the node A will be notified of the deactivation of B and then it will proceed to remove the link. In our
default configuration the chance for a node to shut down is 0.25%, meaning that on average a message out
of 400 will be lost in this way. Raising this percentage is equivalent, in terms of dissemination, to reduce
the probability of forwarding a message. So, for example, using Fixed Probability in a static network with
n as forwarding parameter allows to achieve the same successful communication rate when using n− x in a
network where at each timestep on average x% of the node deactivates. However, it is necessary to consider
that it is not realistic to represent a network with a very high dynamism rate. In fact, in our modelling a single
timestep represents the time necessary to receive, check and possibly forward a message, so it is unrealistic
to have a big percentage of the nodes to deactivate in such a small amount of time. The only dissemination
algorithm for which these variations of the graph’s configuration are crucial is Dandelion, since messages
can be lost in the stem phase. This issue, though, can be easily fixed by employing a fail-safe mechanism.
So, in conclusion, we can state that when having a small and reasonable dynamism rate of the network,
variations of such a value do not have a significant influence on the performance of the gossip protocols.
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4.4 Dandelion vs. Dandelion++

The main difference of Dandelion and Dandelion++ with respect to the other dissemination algorithms con-
sidered in this paper, is the goal to increase the anonymity properties in blockchain-like systems. In practice,
this is achieved by making more difficult to link the transactions to the Internet address (i.e. IP address) that
generated them (Fanti et al. 2018). In fact, commonly used gossip protocols spread the information isotrop-
ically along the graph, thus making it possible for an observer peer of the system to understand where a
certain transaction has originated, after having observed the spread of messages through the network over
time. Certain applications, like Bitcoin, introduce random independent delays during the dissemination in
order to avoid timing attacks, but such a strategy is not considered sufficient to avoid deanonymization (Bo-
jja Venkatakrishnan et al. 2017). The “ping pong” mechanism implemented in the Dandelion stem phase
makes it more difficult to pinpoint who originated the message, even by a peer connected to most or all the
nodes or by attackers who know significant information about the overall topology of the network. On the
other hand, Dandelion when used in a blockchain presents certain drawbacks: during the stem phase a node
might not relay the message as according to the protocol, either because it acts maliciously or simply be-
cause it is off at the moment. Resilience against Sybil attacks (i.e. attacks where several nodes purposely do
not relay the messages of certain users, trying to isolate them from the network) was analyzed in a previous
paper (Serena et al. 2020), pointing out that by integrating Dandelion with a fail-safe mechanism then a
P2P system manages to remain operational even when facing a big amount of peers acting maliciously. In
this performance evaluation, even if we do not consider the presence of attacks performed by other nodes,
Dandelion still has some problems to achieve a 100% coverage. This is due to the fact that sometimes hap-
pens (during the stem phase) that a node shuts down right in the moment when it was supposed to receive
and then relay a message. This issue, in the same way as for Sybil attacks, can be fixed by triggering the
fail-safe mechanism when needed: a node is therefore able to start the fluff phase by itself, in the event that
after relaying a message during the stem phase it did not receive it back in the fluff phase after a certain
amount of time.
Dandelion++, in order to avoid the messages from getting lost, implements the fail-safe mechanism and, in
addition, has a different management for forwarding transactions while ensuring anonymity. In each epoch
(about 10 minutes) a node is either a “diffuser” or a “relayer”, and therefore stem phase and fluff phase are
not temporally distinct and separated. Some tests have been carried out changing each time the percentage
of chance for a peer to be a relayer, with that decision depending on the node ID and on the epoch number.
To get better guarantees against deanonymization, it is advised to have 80% or more of relayer nodes.
From our tests it turned out that, independently from the network topology, 100% of successful communica-
tion rate can be easily achieved, as long as the network is sufficiently connected and the fail-safe mechanism
is implemented. From a coverage point of view, the protocols with the fail-safe mechanism behave like a
pure broadcast scheme, because if a problem during the “delicate” one-relay phase occurs, then the broad-
cast diffusion will still take place. If one was also interested to the minimization of the messages being sent,
it would be possible to integrate Dandelion or its variants with one of the previously mentioned dissemina-
tion algorithms: in this case Fixed Probability or Degree Dependent Function protocols would be applied in
the fluff phase (or by diffuser nodes for Dandelion++), instead of simply spreading the messages to all the
neighbors. The recovery mechanism entails a greater number of forwarded messages and a slightly bigger
average delay: this is due to the times when the fail-safe mechanism is triggered (and without which it would
not be possible to deliver the message). In these situations, the message is delivered later, since a certain
amount of time has to pass before the fluff phase is started. The delay gap, between 0.01 and 0.25, grows
proportionally with the number of stem steps.
Dandelion++, having a fail-safe mechanism implemented, guarantees 100% of average successful commu-
nication rate as well, independently from the percentage of diffusers and relayers. However, as shown in
Figure 2a, the percentage of relayers has a big influence on the average delay, both because the dissemination
process gets slower and because it happens more frequently that the fail-safe mechanism has to be triggered.
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(a) Dandelion++, average delay variation depending on the
percentage of relayer nodes.

(b) Dandelion++, average messages sent variation depend-
ing on the percentage of relayer nodes.

Figure 2: Dandelion++ metrics.

On the other hand, the average number of messages sent grows together with the percentage of relayer nodes
until 70% is reached, then with 80% of relayers or more such a value plummets (see Figure 2b).

4.5 Gossip Algorithms Comparison

The goal of using a probabilistic dissemination algorithm instead of a pure broadcast scheme (i.e. relaying
the messages to all the neighbors except the forwarder) is to minimize the network traffic. The cons of these
protocols are that sometimes a minor coverage is achieved and a bigger amount of hops (and thus time) is
necessary on average to deliver the messages. Not always minimizing the traffic networks entails sacrificing
the coverage achieved. For example, in a graph with 8000 active nodes and 15 average connections per
node, 100% of successful communication rate is achieved with Fixed Probability having 60 as parameter.
That allows to save 40% of the messages being sent with respect to when using a pure broadcast approach.
The only cost in this case is the average delay, which is 1.12 times bigger. The percentage of messages
saved while still achieving a full coverage gets over 50% when using a degree-dependent algorithm, this
time with a 1.21 times bigger average delay. However, degree dependent protocols have a downside, since
they require from time to time to contact the neighbors to ask the number of peers they are connected to,
thus generating an adjunctive network overhead.
Figure 3a and Table 1 show that if 100% of coverage is not necessary then the efficiency in terms of network
traffic minimization can drastically increase. In fact, almost a half of the messages are necessary only to
raise the successful communication rate from 99% up to 100%. Furthermore, experiments show that the
degree dependent protocols are the best in terms of efficiency. However, the gap with the other algorithms
is significant only when a successful communication rate over 95% is needed. Probabilistic Broadcast,
in addition, behave slightly worse than other protocols. Figure 3b shows the delay overhead comparison,
pointing out that the number of hops necessary for delivering a message is inversely proportional to the
efficiency of an algorithm in terms of traffic minimization. That is a consequence of the fact that, unlike
when messages are broadcasted all the times, the communication rarely follows the shortest path connecting
the sender and the recipient. Nevertheless for non-time-critical applications this downside is not particularly
significant.
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(a) Number of messages spread in the graph when an
algorithm that obtains a certain successful connection

rate is used.

(b) Delay overhead: cost in terms of time delivery for
using a specific gossip algorithm instead of a pure

broadcast scheme.

Figure 3: Gossip protocols efficiency in relation with the pure broadcast scheme.

Table 1: % of messages w.r.t. full broadcast, based on the achieved successful communication rate.

- PB FP DDF F-FAN
100 60.1% 56% 47.4% 56%
99 32.8% 28% 26.4% 30.2%
95 22.4% 19.2% 18.9% 19.4%
90 18.1% 14.6% 14.7% 15.1%

4.6 Hierarchical Networks

The previous results have been obtained using a random dynamic graph to represent the modelled network.
In our experiments, the attachment of the nodes followed an aleatory procedure, meaning that the peers
choose their neighbors randomly within the set of active nodes. Consequently, differences of degree among
the nodes can happen but hubs are not generated. However, it is possible to deal with networks in which
there are some nodes with a considerably greater degree with respect to the rest of the nodes (i.e. hubs).
So we have repeated the simulations using as a testbed a graph with a hierarchical structure, where a set of
80 nodes (about 1% of the active nodes) has a very high degree, between 250-300 connections. In this new
network configuration the total number of links is still around 120000, entailing a consequent decrease of
the average degree for the non-hubs nodes (moving from an average of 15 connections to 12). While no
considerable variation for the successful communication rate was noticed, Figure 4 shows that hierarchical
networks ensure a lower delay without any significant variation on the number of messages sent. This is
probably due to the presence of hubs, which reduce the average shortest path length among the nodes.

5 CONCLUSIONS

In this paper, we presented LUNES-Temporal, a new simulator for the modeling of dynamic networks,
where connections among nodes have a temporal duration. While the model is general and several types of
dynamic networks can be easily modeled using our tool, in this work we specifically focused on distributed
and decentralized systems. The reason is that the overlying layer, built on top of the temporal network model,
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Figure 4: Effects of the average number of edges per node on the metrics.

allows to simulate different dissemination strategies, some of which are used in certain DLTs (i.e. Dande-
lion++). Decentralized systems may require a significant traffic overhead, which is directly proportional to
the average degree of the nodes. However, through accurate optimization, it is possible to reduce the traffic
overhead. Our study shows that degree dependent function protocols are the most efficient algorithms to
save as many messages as possible, having as downside a greater average delay to deliver the data. This
kind of protocol, however, requires knowledge of the degree of the neighbors, so an extra communication
overhead is needed. If this information is not available or is not easily retrievable, Fixed Probability and
Fixed Fanout are still good alternatives. In addition we have analyzed how the original proposal for Dan-
delion was troublesome, but such flaws can be avoided with the introduction of some features introduced
by Dandelion++, like the fail-safe mechanism. The anonymity algorithms bring a greater delivery time, but
this should not be an issue since they are proposed for blockchain environments, where a fast delivery of the
messages is not the only concern.
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