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Abstract Extremely low frequency magnetic fields (ELF-MF) have been classified as “possibly carcinogenic”, but
their genotoxic effects are still unclear. Recent findings indicate that epigenetic mechanisms contribute to
the genome dysfunction and it is well known that they are affected by environmental factors. To our
knowledge, to date the question of whether exposure to ELF-MF can influence epigenetic modifications
has been poorly addressed. In this paper, we investigated whether exposure to ELF-MF alone and in
combination with oxidative stress (OS) can affect DNA methylation, which is one of the most often
studied epigenetic modification. To this end, we analyzed the DNA methylation levels of the 5′untranslated
region (5′UTR) of long interspersed nuclear element-1s (LINE-1 or L1), which are commonly used to
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frequency pulsed magnetic field (PMF; 50  Hz, 1  mT) in 
combination with OS. The methylation levels of CpGs 
located in L1 5′UTR region were measured by MassAR-
RAY EpiTYPER. The results indicate that exposures to 
the single agents PMF and OS induced weak decreases and 
increases of DNA methylation levels at different CpGs. 
However, the combined exposure to PMF and OS lead to 
significant decrease of DNA methylation levels at different 
CpG sites. Most of the changes were transient, suggesting 
that cells can restore homeostatic DNA methylation pat-
terns. The results are discussed and future research direc-
tions outlined.

Keywords  DNA methylation · Epigenetics · LINE-1 · 
Retrotransposition · Extremely low frequency magnetic 
field · Oxidative stress

Introduction

Extremely low frequency magnetic fields (ELF-MF) are 
pervasive in today’s society. Indeed, people are exposed 
to increasing electromagnetic fields generated by power 
lines and ordinary electric and electronic devices on a daily 
basis. In 2002, the International Agency for Research on 
Cancer surmised that ELF-MFs increase the risk of neo-
plastic malignancies and classified them as “possibly carci-
nogenic to humans” (IARC 2002).

Various in  vivo and in  vitro studies have been carried 
out to understand the molecular mechanisms behind the 
biological effects induced by ELF-MF, but a clear picture 
has not yet emerged. Moreover, the assessment of genotox-
icity by standard genotoxicity assays has given conflicting 
results, so the question whether ELF-MF can be involved in 
carcinogenesis or in cancer progression is still unanswered 
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(Vijayalaxmi and Prihoda 2009). Some reports suggested 
that ELF-MF exposure alone is not genotoxic but it can 
increase DNA damage in the presence of a genotoxic agent. 
Therefore, further research dealing with co-exposure evalu-
ation should be considered.

Recent evidence suggests that non-genotoxic epigenetic 
mechanisms, such as DNA methylation, microRNA, long 
noncoding RNAs, histone code etc, are involved in aging 
and disease development and, in particular it is known that 
DNA methylation may play a key role in tumorigenesis and 
tumor progression (Klutstein et al. 2016).

DNA methylation, the most studied epigenetic mecha-
nism, is a biochemical process where a methyl group is 
added to DNA nucleotides and, in mammals it typically 
occurs at cytosines in a CpG dinucleotide. DNA methyla-
tion may have a role in the control of gene expression by 
acting on regulatory elements. Cancer cells often show 
hypermethylation of the promoter region of specific genes 
and hypomethylation of the promoter region of repetitive 
elements, including long interspersed nuclear elements 
(LINE-1s or L1s) (Klutstein et al. 2016; Cruickshanks et al. 
2013; Schulz 2006).

L1 elements constitute approximately 17% of the human 
genome. A full length L1 element is about 6 kb and con-
sists of a 5′ untranslated region (5′UTR) with sense and 
antisense promoter activity, two open reading frames 
(ORF1 and ORF2), encoding proteins involved in retro-
transposition and 3′ untranslated region (3′UTR) with poly-
adenylation site. Recently, an additional ORF (ORF0) has 
been reported in the primate lineage and it has been sug-
gested that it could play some positive regulatory role in 
the retrotransposition process (Denli et  al. 2015). After 
transcription, the L1 retroelement can be inserted into 
another genomic site by target-primed reverse transcrip-
tion (TPRT) mechanism. L1 insertion can cause insertional 
mutagenesis, DNA double-strand breaks, exonisation or 
shuffling of genetic material, resulting in genetic instability 
(Iskow et al. 2010).

Several studies have shown an inverse correlation 
between L1 expression and the methylation status of the 
CpG island in L1 5′-UTRs (Bourc’his and Bestor 2004). 
Indeed tumor cells often show both low DNA methylation 
levels of the L1 5′-UTR promoter region and high L1 ret-
rotransposition activity (Schultz 2006), with consequent 
alterations of gene expression and genomic instability. 
Moreover, recent evidence suggests that alterations of the 
L1 promoter methylation level might be involved in several 
cell processes, including cell replication timing and chro-
matin organization (Belan 2013).

Emerging data indicate that changes in L1 5′-UTR meth-
ylation levels can be induced by environmental factors 
(Bollati et al. 2007; Pogribny and Beland 2013). It has been 
suggested that L1 5′-UTR methylation evaluation should be 

included in health risk assessment of environmental (Vrij-
heid et al. 2014; Chappell et al. 2016).

To the best of our knowledge, only one paper addressed 
the issue of evaluating the effects of ELF-MF exposure 
on DNA methylation, reporting that methylation changes 
occurred in mouse spermatocyte-derived GC-2 cell line 
under exposure to ELF-MF (Liu et al. 2015).

The aim of this study is to assess whether the exposure 
to ELF-MF, alone and in combination with oxidative stress 
(OS), induces changes in methylation of L1 5′UTR region 
in human cells. A combined exposure was tested to simu-
late condition of real life, where the simultaneous expo-
sure to ELF fields and other stress agents normally occurs. 
OS was chosen as co-stressor having been shown to affect 
DNA methylation (O’Hagan et  al. 2011) and to contrib-
ute to tumorigenesis and tumor progression (Kryston et al. 
2011; Li et al. 2015).

A pulsed magnetic field (PMF) was used since it is pro-
duced by several devices and is widely used in clinical 
applications. Moreover, it was shown to be biologically 
effective in our previous investigations (Del Re and Giorgi 
2013; Del Re et al. 2012).

We used the BE(2)C human cell line, which is repre-
sentative of neuronal cell type (Biedler et al. 1978) because 
ELF-MF effects on neuronal cells appear interesting for the 
risk assessment. Indeed, epidemiological studies suggested 
a possible relationship between Alzheimer’s disease, brain 
tumors and ELF-MF exposure (Qiu et  al. 2004; Li et  al. 
2009).

Materials and methods

Cell culture and treatments

Neuroblastoma BE(2)C cells were kindly provided by Prof. 
Della Valle (University of Bologna, Italy), and were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM, 
EuroClone, Milano, Italy), supplemented with 10% heat-
inactivated fetal bovine serum (FBS, EuroClone), 100 UI/
ml penicillin (Sigma, Ronkonkoma, NY, USA) and 100 μg/
ml streptomycin (Sigma), in a humidified 5% carbon diox-
ide air atmosphere at 37 °C.

24  h before PMF/Sham exposure, BE(2)C cells were 
seeded into 3 cm petri dish at the density of 75,000 cells/
dish.

BE(2)C cells were exposed to 300 μM H2O2 (Sigma) for 
1 h. Control cultures were treated with equivalent volumes 
of distilled water. This dose has been largely used in studies 
dealing with oxidative stress and does not greatly affect the 
cell viability of our cellular model, as previously reported 
(Giorgi et al. 2011, 2014).
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Exposure system and field characteristics

The exposure system has been previously described (Del 
Re et al. 2012) and is shown in Fig. 1. It consisted of two 
systems, each composed by two sets of horizontal Helm-
holtz coils of 25 cm diameter, with 40 (20 + 20) turns that 
were double-wrapped to obtain wound (active coil) or 
counter-wound configuration. In the counter-wound con-
figuration, the current is the same as in the active coil but 
the MF is zero (sham). The coils are powered by a home-
made DC current amplifier, connected with a signal gen-
erator Model 33120A (Agilent Technologies, Loveland, 
CO, USA). Both the active and the sham coils were main-
tained in the same 5% CO2 incubator (B-5060, Heraeus, 
Hanau, Germany) at a constant temperature of 37 °C, and 
at a sufficient distance to minimize the stray field from 

the active coil in such a way as to have in the Sham coils 
a magnetic field ≤1/50 of the field in the active system. 
The background field within the incubator was also meas-
ured: the static component of the local magnetic field was 
16.9  µT (horizontal component 10.8  µT, vertical com-
ponent 13.0 µT), the AC component was on the order of 
0.1 µT, as measured with a very sensitive probe (EMDEX 
II, Enertech Consultants, Campbell, CA).

The system was controlled by means of a PC which, 
through an appropriate software and a switching sys-
tem, randomly selected the active and sham coil system. 
All experiments were conducted in blind and only at the 
end of the experiments was the code decrypted. To have 
a field uniformity within 5%, the samples were placed 
within a virtual cylinder (about 11 cm in height, and 4 cm 
in diameter), centered with respect to the coil system. A 
bipolar pulsed-square wave magnetic field was chosen 
(Fig. 1b), with an intensity 0-peak of 1 mT, a 50-Hz rep-
etition frequency, and a duty cycle 50%. The rise time 
τ of the square, from peak to peak, was about 0.6  ms, 
resulting in an average rate of change of magnetic flux 
density of 3.3  T/s. The MF was measured by means of 
a Bell gaussmeter (F.W. Bell 7010, Division of Test and 
Measurement, Orlando, FL); the error in the magnetic 
flux-density values was on the order of 2%.

DNA extraction and sodium bisulfite treatment

Genomic DNA was extracted by QIAmp DNA Mini Kit 
(QIAgen, Hilden, Germany) according to manufacturer’s 
instructions. 1 μg was treated with sodium bisulfite using 
the EZ methylation kit (Zymo-Research, Irvine, CA). The 
treatment converts unmethylated cytosine into uracil, leav-
ing methylated cytosine unchanged. In this way, variations 
in the sequence are produced according to DNA methyla-
tion status of the original DNA molecule.

Methylation analysis

MassARRAY EpiTYPER technology (Sequenom) was 
used to quantitatively measure the methylation status 
of CpG sites within L1 5′UTR region (Accession No. 
X58075) (Fig.  2). 10  ng of bisulphite-treated DNA were 
PCR-amplified using the following primers: forward strand 
primer: AGG​AAG​AGA​GTT​TAT​TAG​GGA​GTG​TTA​GAT​
AGT​GGG​; reverse strand primer: CAG​TAA​TAC​GAC​TCA​
CTA​TAG​GGA​GAA​GGC​TTC​TAT​ACC​CTA​CCC​CCA​
AAA​ATA​AA.

By using these primers, we evaluated DNA methylation 
levels of 24 CpG units (i.e. regions containing one or multi-
ple CpG sites), containing 28 CpG sites (Table 1).

Fig. 1   The exposure system (a) and PMF signal wave shape (b). The 
rise time τ of the square was about 0.6 ms
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Statistical analysis

Student’s t test was used to evaluate differences in methyla-
tion levels. A p value <0.05 was considered to correspond 
with statistical significance.

Results

To verify whether PMF exposure alone or in combination 
with OS would affect DNA methylation level of the L1 
5′UTR region, BE(2)C cells were exposed or sham-exposed 
to PMF using the exposure system shown in Fig. 1. In the 
first hour of exposure, samples were subjected or not to 
OS (hydrogen peroxide 300  µM, 1  h). After 24 and 48  h 
of exposure, DNA methylation was evaluated by Mas-
sARRAY EpiTYPER technology, which is a highly accu-
rate and sensitive method for the quantitative analysis of 
DNA methylation. We focused on a part of the L1 5′UTR 
region which is 466 bp in length and includes 24 CpG units 
(Fig. 2). The comparison of methylation levels of all CpGs 
among all the samples showed that the methylation level 
of 10  CpG units was modified depending on the type of 
treatment.

Effects of PMF exposure alone are shown in Fig. 3. After 
24 h of PMF exposure, 3 CpGs (37, 217-220, 318) exhib-
ited a significantly increased methylation level as com-
pared to the CpGs from sham exposed samples (Fig. 3a). 
After 48 h of PMF exposure no significant differences were 
observed at any CpGs (Fig. 3b).

Results on the effects of OS alone are shown in Fig. 4. 
After 24  h three CpGs (184, 205, 277) exhibited signifi-
cantly less methylation as compared to the CpGs from 
control samples (Fig. 4a). Also in this case, after 48 h no 
significant differences were observed at any CpG units 
(Fig. 4b).

Results about the effects of PMF exposure in com-
bination with OS are shown in Fig.  5. After 24  h 5 CpG 
units (37, 131, 184, 217-220, 318) exhibited significantly 
less methylation as compared to the CpGs from samples 
exposed to PMF alone (Fig.  5a). After 48  h only 2  CpG 
units (60:64:66, 217-220) showed lower methylation levels 
than control (PMF) (Fig. 5b).

Discussion

Epigenetic processes, including DNA methylation, are 
a molecular interface mediating the interaction between 
genome and environment. Changes in global genome 
methylation have been observed in association with expo-
sure to such factors as air pollution (De Prins et al. 2013), 
gamma radiation (Kumar et al. 2011) low-levels of benzene 

Fig. 2   Schematic structure of an L1 element and CpG sites of the 
L1 5′UTR region. The sequence represents a 466 base pair fragment 
(Accession No. X58075). Numbers refer to locations of the CpG units 
interrogated for their methylation level by MassARRAY EpiTYPER

Table 1   24  CpG units con-
taining 28  CpG sites of the L1 
5′UTR region

CpG units Number 
of CpG 
sites

CpG_37 1
CpG_55 1
CpG_60-64-66 3
CpG_71 1
CpG_81 1
CpG_105 1
CpG_131 1
CpG_151 1
CpG_155 1
CpG_169 1
CpG_184 1
CpG_193 1
CpG_205 1
CpG_217-220 2
CpG_227 1
CpG_240 1
CpG_251 1
CpG_263 1
CpG_269 1
CpG_277 1
CpG_318 1
CpG_324 1
CpG_341-345 2
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(Bollati et al. 2007), cigarette smoke (Liu et al. 2010), syn-
thetic compounds such as perfluoroalkylacids (Watkins 
et  al. 2014), various genotoxic and non-genotoxic carcin-
ogens (Pogribny and Beland 2013) and nutritional factors 
(Bacalini et al. 2014). However, the effects of ELF-MF on 
DNA methylation in human cells has never been studied. 
Therefore, we analyzed the DNA methylation levels of the 
L1 5′UTR region, which is commonly investigated as a sur-
rogate for global genome methylation (Yang et al. 2004), in 
BE(2)C cells.

We showed that the exposure to PMF can interfere 
with DNA methylation inducing a slight increase in 
DNA methylation levels of some CpGs located in the L1 
5′UTR region. Moreover, we found that OS alone induced 
a small and transient decrease of DNA methylation levels 
at some CpG units, whereas the combined exposures to 
PMF and OS induced a methylation decrease in 10  CpG 
units (Fig. 5). Therefore, in the presence of OS, the slight 
increase of methylation, induced by the exposure to PMF 
alone, disappeared.

The relationship between ELF-MF and oxidative 
stress has been largely debated and it has been proposed 
that ELF-MF can both induce ROS production and acti-
vate antioxidants, depending on the specific conditions 

tested (Manikonda et  al. 2014; Di Loreto et  al. 2009). 
Here, we observed that PMF synergistically contributes to 
OS effects. However, after 48  h of exposure methylation 
changes became undetectable. This result seems to be in 
line with the most recent evolutionary theories about the 
role of DNA methylation changes in humans (Klironomos 
et al. 2013; Flores et al. 2013; Giuliani et al. 2015). These 
theories suggested that methylation changes seem of cru-
cial importance for rapid response to new stimuli, and in 
particular when new stimuli (in this case PMF + H202) 
arise. The data suggest that the environmental change 
from a normal condition—more than the constant expo-
sure itself—increase DNA methylation variability, at least 
at the cellular level. The molecular mechanisms involved 
in these changes need to be validated in future studies but 
we can speculate as follows. DNA methylation patterns 
are dynamic states resulting from a continuous balance of 
methylation and demethylation. The ‘maintenance meth-
yltransferase’ DNMT1 mainly maintains the methylation 
patterns across replication cycles, while de novo DNMT3A 
and DNMT3B enzymes mainly introduce methyl groups 
into unmethylated sites (Jurkowska et al. 2011). Currently, 
not much is known about the effects of electromagnetic 
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fields on these enzymes, but a recent paper suggests that 
DNMT1 and DNMT3B activity can be modulated by inter-
mittent ELF-MF exposure, depending on the magnetic field 
intensity (Liu et al. 2015). Kloypan et al. (2015) found that 
OS can induce LINE-1 hypomethylation and they observed 
that this effect was mediated through the depletion of 
S-adenosylmethionine (SAM) which is the classical methyl 
donor for methyltrasferases.

In our model, therefore, modulation of methyltransferase 
could be the mechanism responsible for the observed PMF 
effect, according with Liu et al. (2015). In addition, deple-
tion of SAM could be the underlying reason for the OS 
effect, according to Kloypan et  al. (2015). Finally, in the 
combined exposure, the presence of OS could determine 
an insufficient quantity of SAM, inhibiting the methyl-
transferase activity and, therefore, masking the increase of 
methylation induced by the PMF exposure alone.

Our data stimulate two methodological considerations. 
The first is about the time of exposure. Most studies on 
the relationship between DNA methylation alterations 
and environmental factors are epidemiological ones, 
which usually do not investigate the effects of differ-
ent exposure times. We analyzed two different exposure 

times and we found different results, showing that the 
effects were transient. Therefore, whenever possible, it 
is strongly recommended to analyze various exposure 
times. The second consideration is about the CpG sites 
that are affected by ELF-MF/OS exposure. The Mas-
sARRAY EpiTYPER approach allows to quantitatively 
evaluate DNA methylation levels of multiple adiacent 
CpGs, providing more detailed information with respect 
to other commonly used approaches, such as the COBRA 
(combined bisulphite restriction analysis polymerase 
chain reaction) assay. We analyzed 24 CpG units and we 
observed that methylation changes occurred preferen-
tially at specific CpG. This observation is in agreement 
with findings by Nüsgen et al. (2015), who observed that 
some specific CpG units within 5′-UTR L1 region are 
more prone to be subjected to methylation modifications. 
Our data suggest that it is important to analyse as many 
CpG sites as possible, since we do not known which sites 
are sensitive in each cell type and eventually affect gene 
transcription.

Emerging evidences reveal that microvesicles repre-
sent an important mechanism of cell to cell communica-
tion and that they can be involved in epigenetic processes 
including DNA methylation (Qian et al. 2015). Recently, 
it has been reported that microvesicles are released from 
cells upon activation by various stimuli including radia-
tion (Jella et  al. 2014) and ELF-MF exposure (Stratton 
et al. 2013). This aspect should be investigated, to verify 
whether it could be involved in the epigenetic alterations 
which we observed.

In conclusion, our results suggest that only some CpG 
units within L1 5′-UTR region could be subjected to 
methylation modification by PMF and OS exposure and 
that these alterations are, in any case, transient. The bio-
logical relevance of these transient variations of DNA 
methylation levels needs to be elucidated; they are at 
the forefront of important mechanisms of what is gener-
ally called “epigenetic stress”. We hypothesize that these 
variations can explain some conflicting results obtained 
until now in in  vitro cell systems after ELF exposure. 
Further studies are needed to clarify this point and to elu-
cidate the epigenetic effect of ELF-MFs alone and in the 
presence of OS, also considering different cell types and 
exposure scenarios.
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