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Abstract: Semantic segmentation is a very popular topic in modern computer vision, and it has
applications in many fields. Researchers have proposed a variety of architectures for semantic image
segmentation. The most common ones exploit an encoder–decoder structure that aims to capture
the semantics of the image and its low-level features. The encoder uses convolutional layers, in
general with a stride larger than one, to extract the features, while the decoder recreates the image by
upsampling and using skip connections with the first layers. The objective of this study is to propose
a method for creating an ensemble of CNNs by enhancing diversity among networks with different
activation functions. In this work, we use DeepLabV3+ as an architecture to test the effectiveness of
creating an ensemble of networks by randomly changing the activation functions inside the network
multiple times. We also use different backbone networks in our DeepLabV3+ to validate our findings.
A comprehensive evaluation of the proposed approach is conducted across two different image
segmentation problems: the first is from the medical field, i.e., polyp segmentation for early detection
of colorectal cancer, and the second is skin detection for several different applications, including face
detection, hand gesture recognition, and many others. As to the first problem, we manage to reach
a Dice coefficient of 0.888, and a mean intersection over union (mIoU) of 0.825, in the competitive
Kvasir-SEG dataset. The high performance of the proposed ensemble is confirmed in skin detection,
where the proposed approach is ranked first concerning other state-of-the-art approaches (including
HarDNet) in a large set of testing datasets.

Keywords: semantic segmentation; activation function; deep ensembles

1. Introduction

Semantic segmentation is a computer vision activity that consists in labeling the
pixels of an image with the class they belong to. This has very important applications in
many fields such as autonomous driving [1] and computer-aided medical diagnosis [2].
In recent years, deep learning techniques have become the most relevant ones to address
this problem. An early architecture for semantic segmentation was U-Net [3], which was
based on an encoder-decoder structure. However, it failed to precisely classify the borders
of the figures, due to the lack of skip-connections in the decoder. After that, many other
segmentation networks were proposed and most of them followed more or less the same
structure [4–6].

In this paper, we propose a novel approach to image segmentation based on ensembles
of DeepLabV3+, which is one of the architectures of the DeepLab family. The motivation of
the proposed method is the following: it is well known from the literature that ensemble
classifiers can be used for improving prediction performance and in this case the accuracy
of segmentation. No single model exists that works well for all the segmentation problems,
however, the sets of objects segmented by the different methods would not necessarily
overlap, which suggested that different algorithms potentially offered complementary
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information. This led to the possibility of fusing the responses obtained by different
approaches to hopefully gain better performance. To design a good ensemble the classifier
diversity is the most important property to be considered, i.e. their capability not to make
coincident errors. With the motivation of creating diversity in an ensemble, our approach
to segmentation consists in creating an ensemble starting from the same architecture, but
randomly substituting its activation functions. Given a base segmentation model, which
consists of the DeepLabV3+ architecture in our case, first, we evaluate the use of different
backbone networks (i.e. ResNet, Xception, EfficentNet, and MobileNet), to select the
most suited for the given problem, then we stochastically substitute each ReLU activation
function, with a random one extracted from a pool of activations proposed in the literature.
We aim to show that we can train a large number of high-performing classifiers that are
independent enough from each other to be useful when included in an ensemble.

Here we focus on two applications, in particular on colorectal cancer segmentation
and skin detection.

Colorectal Cancer is one of the most dangerous cancers according to the statistics. The
early diagnosis is crucial to be able to fully remove it while it is small. The presence of
polyps in the colon is highly correlated with the appearance of cancer, hence they must be
recognized and removed as soon as possible [7]. However, this is a challenging task even
for trained doctors, hence an automatic tool able to recognize them would be very useful in
this case. The boundaries of polyps are not always easy to recognize, due to their similarity
with surrounding mucosa, besides there might be partial occlusions. Polyps belong to four
different classes: adenoma, serrated, hyperplastic, and mixed, which is quite rare. This
makes classification and detection even harder.

Skin detection is a completely different task when it comes to applications. It is a
useful step for face detection, body tracking, and gesture recognition [8–10]. However, the
deep learning tools, as well as the challenges, are very similar in polyp segmentation and
skin detection. Again, we usually face occlusions and intra-class variance, since images
have very different light and the subjects can be very different from each other.

The outbreak of deep learning for computer vision led to an increased effort to improve
the classification performances of methods for semantic segmentation on a variety of
applications. Nowadays state-of-the-art approaches have performances comparable with
human experts in polyp segmentation [2,11–13]. However, this application has a long
history, and the first methods used classic machine learning techniques. For example,
Thambawita et al. [14] trained five models for polyp segmentation including both classical
machine learning techniques as well as convolutional networks. Guo et al. [15] proposed
a couple of fully convolutional networks to participate at the Gastrointestinal Image
ANAlysis (GIANA) in 2017 and 2018 and managed to reach the first and second place in
the ranking in two consecutive years. Until recently, methods for polyp segmentation were
trained and tested on very small datasets, preventing the networks to generalize enough
and also not allowing a good statistical significance of the results. Besides, most of the
largest datasets were not publicly released [2,11].

Jha et al. [16] recently made available a new public polyp dataset, named Kvasir-SEG
dataset, including 1,000 polyp images annotated by expert endoscopists from the Oslo
University Hospital. Jha et al. [17] propose a method based on ResNet and U-Net which
reached very promising results in this novel dataset.

Skin detection also saw a huge number of papers dealing with this issue both before
and after the deep learning revolution. For example, Phung et al. [18] proposed an approach
based on classical machine learning techniques such as histograms analysis and Gaussian
mixture classifiers. More recently, Roy et al. [19] proposed a system for hand recognition
based on skin segmentation using CNNs. Arsalan et al. [20] used a CNN with skip
connections for generic skin recognition, following the modern trends that tend to apply
skip connections in neural networks more and more often. Shahriar et al. [21] used
skin recognition based on CNN to detect hands, to interpret the sign language. Lumini
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and Nanni [22] performed extensive experiments using several CNN architectures and
concluded that DeepLabv3+ gained the best performance for skin segmentation.

In this paper, we propose a framework for designing ensemble classifiers for semantic
segmentation. The main contribution of this work is:

A method for increasing classifier diversity where each neural network is stochastically
designed by varying the activation layers to increase the diversity of the ensemble. A
selection procedure to include in the final set a pool of K networks selected as the most
diverse networks on the given problem. The selection procedure is performed using only
training data

Extensive experimentations in two very different segmentation problems confirm the
good performance of the ensemble. Our approach has been compared with other state-of-
the-art methods in both problems, included the recently proposed HarDNet-MSEG [23]
which here is evaluated for the first time in the skin detection problem.

2. Methods
2.1. Deep Learning for Semantic Image Segmentation

Image segmentation is a pixel-based classification problem that performs pixel-level
labeling with a set of object categories for all image pixels. Fully Convolutional Networks
(FNC) [6] are one of the first attempts to use CNN for segmentation: they were designed
by replacing the last fully connected layers of a net with a fully convolutional layer that
allows the classification of the image on a per-pixel basis.

A step forward in the design of a segmentation network is done by the encoder-
decoder architecture [3] which overcomes the loss of information of FNC due to the
absence of deconvolution, by proposing an architecture where a multi-layer deconvolution
network is learned. A similar architecture is proposed by U-Net, a U-shape network where
the encoder part downsamples the image and increases the number of features, while
the opposite decoder part increases the image resolution to the input size [24]. Another
encoder-decoder structure is proposed in SegNet [4], which uses VGG [25] as a backbone
encoder, coupled to a symmetric decoder structure. In SegNet decoding is performed using
max-pooling indices from the corresponding encoder layer, as opposed to concatenating it
as in U-Net, thus saving memory and getting a better boundary reconstruction.

The next step to image segmentation is represented by DeepLab [26], a semantic
segmentation model designed by Google which achieves dense prediction by simply up-
sampling the output of the last convolution layer and computing pixel-wise loss. The
novelty is in the use of atrous convolution for up-sampling: it is a dilated convolution
that uses a dilation rate to effectively enlarge the field of view of filters without increasing
the number of parameters or the amount of computation. The last improvement of the
DeepLab family is DeepLabV3+ [27], which combines cascaded and parallel modules of
dilated convolutions and is the architecture used in this work.

Several other architectures have been proposed in the literature for image segmenta-
tion, including recurrent neural networks, attention-based and generative models. The
interested reader can refer to [28] for a recent survey.

Apart from the main architecture of the network, there are a handful of other good
design choices that would help to achieve good performance. For example, the choice of a
pretrained backbone for the encoder part of the network. Among several CNNs [29] widely
used for transfer learning we tested the following models (Table 1):

• MobileNet-v2 [30] is a lightweight CNN designed for mobile devices based on depth-
wise separable convolutions.

• ResNet18 and ResNet50 [31] are two CNNs of the ResNet family, a set of architectures
based on the use of residual blocks in which intermediate layers of a block learn a
residual function concerning the block input.

• Xception [32] is a CNN architecture that relies solely on depthwise separable convolu-
tion layers.
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• Inception-ResNet-v2 (IncR,) [33] combines the Inception architecture with residual
connections. In the Inception-Resnet block, multiple-sized convolutional filters are
combined with residual connections, replacing the filter concatenation stage of the
Inception architecture.

• EfficentNet [34], is a family of CNNs designed to scale well with performance. Ef-
ficientNetB0 is a simple mobile-size baseline architecture, the other networks of the
family are obtained applying an effective compound scaling method for increasing
the model size to achieve maximum accuracy gains.

Table 1. Summary of CNN models.

Network Depth Size (MB) Parameters (Millions) Input Size

mobilenetv2 53 13 3.5 224 × 224
resnet18 18 44 11.7 224 × 224
resnet50 50 96 25.6 224 × 224
xception 71 85 22.9 299 × 299

IncR 164 209 55.9 299 × 299
efficientnetb0 82 20 5.3 224 × 224

Also, the choice of the loss function influences the way the network is trained. The
most used loss function for the task of image segmentation is a pixel-wise cross-entropy
loss. This loss treats the problem as a multi-class classification problem at pixel level
comparing the class predictions to the actual label. Pixel-wise loss is calculated as the log
loss summed over all the classes and averaged over all pixels. This can be a problem if
some classes have unbalanced representation in the image, as training can be dominated by
the most prevalent class. A possible solution is to use weighting for each class to counteract
a class imbalance present in the dataset [6].

Another popular loss function for image segmentation is the Dice loss [35], which
is based on the Sørensen-Dice similarity coefficient for measuring overlap between two
segmented images. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes
perfect and complete overlap. The Dice loss is used in this work. Other popular loss
functions for image segmentation and their usage for fast and better convergence of a
model are reviewed in [36].

Moreover, the choice of the activation function can be significant. ReLU is the nonlin-
earity that most works use in the area, but several works have reported improved results
with different activation functions [37]. In Section 2.2, our approach for perturbing models
by replacing activation layers is explained.

Finally, data augmentation can help avoid overfitting, since in many applications, the
size of the dataset is small compared to the number of parameters in a segmentation deep
neural network. We perform experiments with data augmentation, consisting of horizontal
and vertical flips and rotations of 90◦.

2.2. Stochastic Activation Selection

Given a neural network architecture and a pool of different activation functions,
Stochastic Activation Selection consists in creating different versions of the same archi-
tecture that differ in the choice of the activation layers. This method was first introduced
in [37]. The process to create a new network is based on the replacement of each activation
layer (ReLU) by a new activation function which can be fixed a priori or randomly selected.
This leads to a new network, which in the stochastic version, has different activation layers
through the layers. Since this is a random procedure, it yields a different network every
time. Hence, we iterate the process multiple times to create many different networks that
we use to create an ensemble of neural networks. We train each network independently on
the same set of data and then we merge their results using the average rule, which consists
in averaging the softmax output of the networks in the ensemble. The pseudo-code of the
procedures for stochastic activation selection is reported in Figure 1.
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Figure 1. Pseudocode of the procedures for stochastic activation selection.

In this paper, we use Deeplabv3+ [27] as neural architecture. The pool of activation
functions is made by the following activation functions. ReLU [38] is the most common
activation in modern deep learning. Leaky ReLU [39] is a modification of ReLU that has
a small positive slope for negative values to avoid zero gradient regions. ELU [40] also
has a positive slope for negative values that saturates as the input goes to minus infinity.
PReLU [41] is a leaky ReLU whose slopes on negative values are different in every channel
and are learnable. S-Shaped ReLU [42] (SReLU), as its name suggests, has the shape of
the letter S, since it is equal to the identity function in a compact interval that contains
zero and has a learnable slope outside the interval. This introduces further representation
power to the activation. Adaptive Piecewise Linear Unit [43] (APLU) goes deeper in this
direction since its learnable parameters are all the non-differentiability points and the
slopes of a generic piecewise linear function with a fixed number of non-differentiability
points. Mexican ReLU [44] (MeLU) (with k ∈ {4, 8}) is similar to APLU, since it is a generic
piecewise linear function, although non-differentiability points are fixed and the different
slopes are obtained by adding triangular function (Mexican hat functions) to leaky ReLU.
This allows a more stable training. Gaussian Linear Unit (GaLU) [37] (with k ∈ {4, 8})
follows the idea of MeLU but adding Gaussian-like function, PDELU is a smooth function
equal to ReLU for positive values and whose slope on positive values is calculated so that
its output has zero mean and unit variance if the input follows a Gaussian distribution with
zero mean and unit variance [45]. Swish (fixed and learnable) is an activation introduced
in [46] using a random search and reinforcement learning to find the “optimal” activation
function, Soft Root Sign [47] is similar to PDELU in the sense that is the function that maps
a standard Gaussian into a random variable with unit mean-variance. Mish (fixed and
learnable) [48] is defined as

f (x) = x·tan h(log(1 + eax))

and their authors report very high performances for this function that rapidly goes to
minus infinity for small values, as it does not happen often for activation functions. Lastly,
Soft Learnable [37] is yet another function that maps Gaussian distributions into zero mean
and unit variance distributions.

3. Results on Colorectal Cancer Segmentation
3.1. Datasets, Testing Protocol, and Metrics

All the experiments on colorectal cancer segmentation have been carried out on the
Kvasir-SEG dataset [16] which includes 1000 polyp images acquired by a high-resolution
electromagnetic imaging system, with a ground-truth consisting of bounding boxes and
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segmentation masks. For a fair comparison with other approaches as [17,23] we use the
following testing protocol: 880 images are used for training and the remaining 120 for testing.

The image sizes varied between 332 × 487 and 1920 × 1072 pixels. For training
purposes, the images were resized to the input size of each model, but for performance
evaluation, the predicted masks were resized back to the original dimensions (please note
that other approaches evaluated performance on the resized version of the images).

We trained our models with an SGD optimizer for 20 epochs, a learning rate of 0.01
with a drop period of 5 and drop factor 0.2, momentum 0.9, L2 regularization 0.005 (see the
code for details) using the Dice loss function and data augmentation.

Several metrics were proposed in the literature to evaluate the performance of image
segmentation models. We report metrics for segmentation in two classes (foreground/back-
ground), which are suited to the polyp segmentation problem. Regardless, they can be
easily extended to multiclass problems. The following metrics are the most popular to
quantify model performance. All the following definitions hold for single images and are
defined pixel-wise:

• Accuracy/precision/recall/F1-score/F2-score can be defined for a bi-class problem
(or for each class in the case of multiclass) starting from the confusion matrix (TP,
TN, FP, and FN refer to the true positives, true negatives, false positives, and false
negatives, respectively) as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

is the number of pixels correctly classified over the total number of pixels in the image.

Precision =
TP

TP + FP
(2)

is the fraction of the “polyp” that is correctly classified.

Recall =
TP

TP + FN
(3)

is the fraction of the “polyp” predictions that were actually “polyp” pixels.

F1− score =
2·TP

2·TP + FP + FN
(4)

F2− score =
5·Precision · Recall
4·Precision + Recall

(5)

are two measures that try to average precision and recall.
• Intersection over union (IoU): IoU is defined as the area of intersection between the

predicted segmentation map A and the ground-truth map B, divided by the area of
the union between the two maps:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(6)

• Dice: The Dice coefficient is defined as twice the overlap area of the predicted and
ground-truth maps divided by the total number of pixels. For binary maps, with
foreground as the positive class, the Dice coefficient is identical to the F1-score:

Dice =
|A ∩ B|
|A|+|B| =

2·TP
2·TP + FP + FN

(7)
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• All the above-reported metrics range in [0, 1] and must be maximized. The final
performance is obtained averaging on the test set the performance obtained for each
test image.

3.2. Experiments

The first experiment (Table 2) is aimed at comparing the different backbone networks
listed in Section 2.1. Since the size of images in the Kvasir dataset was quite large, we
also evaluated versions of the ResNet with a larger input size, i.e., 299 × 299 (resnet18-
299/resnet50-299) and 352 × 352 (resnet18-352/resnet50-352).

Table 2. Experiments with different backbones in the Kvasir dataset (best results in bold).

Backbone IoU Dice F2 Prec. Rec. Acc.

Mobilenetv2 0.734 0.823 0.827 0.863 0.841 0.947
resnet18 0.759 0.844 0.845 0.882 0.856 0.952
resnet50 0.751 0.837 0.836 0.883 0.845 0.952
xception 0.699 0.799 0.792 0.870 0.800 0.943

IncR 0.793 0.871 0.878 0.889 0.892 0.961
efficientnetb0 0.705 0.800 0.801 0.860 0.814 0.944
resnet18-299 0.782 0.863 0.870 0.881 0.883 0.959
resnet50-299 0.798 0.872 0.876 0.898 0.886 0.962
resnet18-352 0.787 0.865 0.871 0.891 0.884 0.960
resnet50-352 0.801 0.872 0.884 0.881 0.900 0.964

The second experiment (Table 3) aimed at designing effective ensembles by varying
the activation functions. Each ensemble is the fusion by the average rule of 14 models
(since we used 14 activation functions). The ensemble name is the concatenation of the
name of the backbone network and a string to identify the creation approach:

• _act: each network was obtained by deterministically substituting each activation
layer with one of the activation functions of Section 2.2 (the same function for all the
layers, but a different function for each network)

• _sto: ensembles of stochastic models, whose activation layers were replaced by a
randomly selected activation function (which may be different for each layer)

• _sel: ensembles of “selected” stochastic models. The network selection was performed
using cross-validation on the training set among 100 resnet50 stochastic models. The
selection procedure was based on the idea of sequential forward floating selection
(SFFS) [49], a selection method originally proposed for feature selection and used
here for selecting the most performing/independent classifiers to be added to the
ensemble. SFFS is an iterative method that, at each step, adds to the final ensemble
the model that provides the highest incremental of performance to the existing subset
of models. Then, a backtracking step is performed to exclude the worst model from
the actual ensemble. Since SFFS requires a training phase, we performed threefold
cross-validation on the training set. For a fair comparison with other ensembles, we
selected a set of 14 networks, which were finally fine-tuned on the whole augmented
training set at a larger resolution.

• _relu: an ensemble of original models that differ only for the random initialization
before training. It means that all the starting models in the ensemble are the same,
except for the initialization. This ensemble is the baseline for comparisons with the
approaches above.
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Table 3. Experiments on ensembles in the Kvasir dataset (best results in bold).

Ensemble Name IoU Dice F2 Prec. Rec. Acc.

resnet18_act 0.774 0.856 0.856 0.888 0.867 0.955
resnet18_relu 0.774 0.858 0.858 0.892 0.867 0.955
resnet18_sto 0.780 0.860 0.857 0.898 0.864 0.956
resnet50_act 0.779 0.858 0.859 0.894 0.869 0.957
resnet50_relu 0.772 0.855 0.858 0.889 0.870 0.955
resnet50_sto 0.779 0.859 0.864 0.891 0.877 0.957

resnet50-352_sto 0.820 0.885 0.888 0.915 0.896 0.966
resnet50-352_sel 0.825 0.888 0.892 0.915 0.902 0.967

Finally, in Table 4, a comparison with some state-of-the-art results is reported.

Table 4. State-of-the-art approaches in the Kvasir dataset using the same testing protocol (all val-
ues are those reported in the reference papers, except for our approaches). The results of many
methods are reported in [17]. Please refer to it for the original reference of a given approach. Other
results [50,51] using a different protocol are not included in the comparison.

Method IoU Dice F2 Prec. Rec. Acc.

resnet50-352 0.801 0.872 0.884 0.881 0.900 0.964
resnet50-352_sel 0.825 0.888 0.892 0.915 0.902 0.967

U-Net [17] 0.471 0.597 0.598 0.672 0.617 0.894
ResUNet [17] 0.572 0.69 0.699 0.745 0.725 0.917

ResUNet++ [17] 0.613 0.714 0.72 0.784 0.742 0.917
FCN8 [17] 0.737 0.831 0.825 0.882 0.835 0.952

HRNet [17] 0.759 0.845 0.847 0.878 0.859 0.952
DoubleUNet [17] 0.733 0.813 0.82 0.861 0.84 0.949

PSPNet [17] 0.744 0.841 0.831 0.89 0.836 0.953
DeepLabv3+ResNet50 [17] 0.776 0.857 0.855 0.891 0.861 0.961
DeepLabv3+ResNet101[17] 0.786 0.864 0.857 0.906 0.859 0.961

U-Net ResNet34 [17] 0.81 0.876 0.862 0.944 0.86 0.968
ColonSegNet [17] 0.724 0.821 0.821 0.843 0.850 0.949

DDANet [52] 0.78 0.858 — 0.864 0.888 —
HarDNet-MSEG [23] 0.848 0.904 0.915 0.907 0.923 0.969

4. Result on Skin Detection
4.1. Datasets, Testing Protocol, and Metrics

To evaluate the proposed ensemble for image segmentation, we also performed a test
on another relevant segmentation problem: skin detection. Skin segmentation (or detection)
is a problem that discriminates regions in images and videos into the two classes “skin” and
“nonskin”. Following the testing framework developed in Reference [22], the performance
results of the ensemble proposed here were compared to several state-of-the-art approaches
on 11 datasets (Table 5) for skin segmentation. The training protocol provided that network
models were trained only on the first 2000 images of the ECU dataset, while the other skin
datasets were used only for testing (including the remaining 2000 images from ECU).

The evaluation and comparison of the state-of-the-art approaches were performed
according to the most used performance indicators in skin detection, F1-score, i.e., Dice,
which is calculated at the pixel level (and not at the image level) to be independent of the
image size in the different datasets (i.e. the values TP, TN, FP, and FN in the confusion
matrix are calculated summing the values of all the pixels in the dataset and then the
F1-score is calculated as in equation 4).
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Table 5. Summary of the skin detection datasets.

Short Name Name #Samples Ref.

FV Feeval Skin video DB 8991 [53]
Prat Pratheepan 78 [54]

MCG MCG-skin 1000 [55]
UC UChile DB-skin 103 [56]

CMQ Compaq 4675 [57]
SFA SFA 1118 [58]
HGR Hand Gesture Recognition 1558 [59]
Sch Schmugge dataset 845 [60]

VMD 5 datasets for human activity recognition 285 [61]
ECU ECU Face and Skin Detection 4000 [18]
VT VT-AAST 66 [62]

4.2. Experiments

Table 6 reports the F1-score obtained on the 11 testing sets by the networks and
ensemble proposed in this paper compared to some state-of-the-art approaches obtained
in each test set. Moreover, the average F1-score and the rank of the method with respect
to the average value were calculated. The results of approaches followed by a citation
were taken from the related papers and for HarDNet were calculated using the same
parameter configuration used for the polyp dataset [23] (a loss function that is a weighted
sum of binary cross-entropy and IoU, an Adam optimizer with a learning rate of 0.001 and
100 epochs). As far as our methods are concerned, to avoid overfitting, we maintained for
the training on skin detection the same parameter configuration described above for polyp
segmentation, including data augmentation. Due to this configuration, the results are quite
different from those published in [22] for the same network, but the aim, in this case, was
to validate our ensemble without ad hoc tuning per dataset.

Table 6. Experiments on skin datasets (F1-score). The last two columns report the average F1-score on all the tested datasets
and the rank of Avg (best results in bold).

Method FV Prat MCG UC CMQ SFA HGR Sch VMD ECU VT Avg Rank

resnet50-224 0.694 0.874 0.862 0.866 0.797 0.939 0.954 0.760 0.608 0.927 0.682 0.815 7
resnet50-352 0.745 0.910 0.880 0.881 0.831 0.948 0.962 0.784 0.727 0.945 0.742 0.850 4
HarDNet-224 0.674 0.890 0.882 0.894 0.819 0.949 0.963 0.792 0.677 0.936 0.756 0.839 3
HarDNet-352 0.667 0.913 0.887 0.902 0.835 0.952 0.968 0.795 0.729 0.946 0.744 0.849 2

resnet50-352_sel 0.742 0.917 0.884 0.910 0.840 0.952 0.968 0.785 0.742 0.949 0.755 0.859 1
FusAct3 [39] 0.790 0.874 0.884 0.896 0.825 0.951 0.961 0.776 0.669 0.933 0.737 0.845 6

FusAct10 [39] 0.796 0.864 0.884 0.899 0.821 0.951 0.959 0.776 0.671 0.929 0.748 0.845 5
SegNet [22] 0.717 0.730 0.813 0.802 0.737 0.889 0.869 0.708 0.328 - - -
U-Net [22] 0.576 0.787 0.779 0.713 0.686 0.848 0.836 0.671 0.332 - - -

DeepLab [22] 0.771 0.875 0.879 0.899 0.817 0.939 0.954 0.774 0.628 - - -

Compared with the state-of-the-art results in [22] and [37] (only the best method are
reported for sake of space), the proposed ensemble resnet50-352_sel gets the best average
performance. Notice that in [22] DeepLabV3+ was compared with several other skin
detector methods, reporting the best performance. This is a valuable result since it proves
that the good performance reported for the previous problem can be replicated in a very
different context.

As a final experiment, we studied the performance of ensemble methods by varying
the number of networks in the ensemble and the number of training epochs. For the sake
of computation time, we considered only resnet50-352_relu vs. resnet50-352_sto, with the
aim of studying the effects of stochastic activation selection in the design of ensembles. The
graphs in Figure 2 report the performance obtained in the ECU testing set by ensembles of
different sizes (each ensemble was obtained by adding a new network to the previous one,
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without any selection procedure). On the left, the performance of ensembles is reported as
a function of the number of training epochs, and on the right, the performance at the final
epoch is reported as a function of the number of networks. From both graphs, it is clear that
even starting from a lower base performance (sto1 vs. relu1), the stochastic approach gains
a higher advantage from the fusion. In the second graph, resnet50-352_sto outperforms
resnet50-352_relu starting from Size 3.
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Figure 2. Performance on the ECU testing set (F1-score): on the left, performance as a function of the training epochs for
ensembles of size varying from 1 to 5. On the right is the performance as a function of the ensemble size.

For a visive evaluation of improvements gained varying the size of an ensemble, some
visualization results obtained by an ensemble of stochastic resnet50 composed of one, three,
and five models are shown in Figure 3 (the image is from ECU).
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Figure 3. Visualization results with the model resnet50-352_sto by varying its size. Green indicates missed skin, and red is
the wrong prediction.

5. Discussion

Clearly, using larger input sizes boosts the performance of Resnet50, as proved by
results in Table 2 for standalone models and Table 3 for ensembles. For ensemble creation,
stochastic variation of activation functions (sto) allows a performance improvement with
respect to a simple fusion of network based on ReLu activations (relu) or a set of networks
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differing by the activation function (act). Moreover, the selection procedure (sel) allows
for a further improvement. The best performance among the ensembles is obtained by
resnet50-352_sel (Table 3).

Our best approach obtains the best performance, except for HarDNet-MSEG [23],
a segmentation network based on weighted loss. Notice that our approach strongly
outperforms several other deep learning approaches, including the recently published
ColonSegNet [17] which works with a larger image size (512).

Of course, we are aware that ensemble methods greatly increase computational costs
and complexity with respect to a standalone network. Regardless, since the networks in the
ensemble are independent of each other, they can work in parallel. Furthermore, to reduce
the computational effort of our approach, we suggest a simple rejection rule. Considering
that in a real dataset, the incidence of images presenting polyps is quite low, we can use a
first-level rule to reject images not containing polyps based on a single net, then use the
ensemble only to gain a more precise segmentation if needed. Preliminary tests, using
a very low threshold, suggest that it is possible to set a rule able to discard images not
containing lesions without losing precision.

6. Conclusions

Semantic segmentation is a very important topic in medical image analysis and
several other applications. In this paper, we aimed to propose and evaluate a novel
approach for creating ensembles of CNNs by enhancing diversity among networks with
different activation functions. The proposed approach was extensively evaluated on
two very different segmentation problems, i.e., polyp segmentation during colonoscopy
examinations and skin detection, gaining excellent results.

We compared several convolution neural network architectures, including ResNet,
Xception, EfficentNet, MobileNet, HarDNet, and different methods for building ensembles
of CNN.

Our reported results show that our best ensemble obtains state-of-the-art performance
in both problems (Kvasir-SEG dataset, skin test sets), without ad hoc parameter opti-
mization. To reproduce our results, the MATLAB source code is available at GitHub:
https://github.com/LorisNanni (accessed on 5 nov. 2021).

In future work, we plan to deal with the complexity problem of deep neural networks.
Deploying large models or big ensembles on the edge is infeasible, since smartphones and
IoT sensors are resource-constrained devices; hence, it is vital to focus research also on tech-
niques for compressing large models into a compact one with minimal performance loss.
We plan to study the feasibility of reducing the complexity of our ensemble by applying
one or more of the following techniques: pruning, quantization, low-rank factorization,
and distillation.
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