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Abstract. We illustrate and examine diverse approaches to the quantum
matter-gravity system which refer to the Born-Oppenheimer (BO) method. In
particular we first examine a quantum geometrodynamical approach introduced
by other authors in a manner analogous to that previously employed by us, so
as to include back reaction and non-adiabatic contributions. On including such
effects it is seen that the unitarity violating effects previously found disappear.
A quantum loop space formulation (based on a hybrid quantisation, polymer for
gravitation and canonical for matter) also refers to the BO method. It does not
involve the classical limit for gravitation and has a highly peaked initial scalar
field state. We point out that it does not resemble in any way to our traditional
BO approach. Instead it does resemble an alternative, canonically quantised, non
BO approach which we have also previously discussed.

1. Introduction

Quantum cosmology, i.e. the treatment of the universe as a unique quantum object,
governed by the laws of general relativity and quantum field theory, is becoming
a recognised part of modern theoretical physics. This is connected with at least
three reasons. Firstly, treatment of the universe as a quantum object is a natural
part of the program of the unification of all the fundamental interactions, including
gravitational ones. Secondly, the success of inflationary cosmology [1] requires
a further investigation of the physics of the very early universe. Thirdly, the
mathematical structure of quantum gravity and cosmology is close to that of such
popular theories as string and superstring models. Indeed, it represents a theory
with first class constraints, having reparametrisation invariance, or invariance with
respect to the spacetime diffeomorphisms. The main goal of quantum cosmology is
the description of the quantum state of the universe. Such a state should satisfy the
Wheeler-DeWitt equation (WDW) [2], which arises as a result of the application of the
Dirac quantisation procedure [3] to the universe. The study of the quantum state of
the universe and the Wheeler-DeWitt equation encounters serious difficulties. Firstly,
it involves a huge number of degrees of freedom and is enormously cumbersome. Thus,
the application of some approximation schemes is necessary. On then working with
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the constrained theory one should be able to choose and separate the physical degrees
of freedom from the gauge ones. Even if the wave function of the universe is then
constructed, its probabilistic interpretation is not immediate: one should give the
appropriate structure to the corresponding Hilbert state [4, 5]. Since the natural
notion of time is absent in quantum cosmology, one has to identify with time some
combination of degrees of freedom. Moreover, different choices of boundary conditions
for the Wheeler-DeWitt equation are possible. The most famous tunneling [6] and no-
boundary [7] cosmological wave functions give different physical predictions.

Historically, the first models for which some solutions of the Wheeler-DeWitt
equation were constructed were the so called minisuperspace models, where only a
small finite number of degrees of freedom was taken into account. These degrees
of freedom were connected with the global characteristics of the universe. The
next natural step in the development of quantum cosmology is the quantisation of
cosmological perturbations. At this stage, one can start with some global degrees of
freedom and on this background treat the inhomogeneous harmonics at tree level as in
[8] or also consider one-loop quantum corrections to the tree-level wave function of the
universe [9, 10]. The latter approach allows one to obtain the normalised wave function
of the universe [9] and predict the most probable initial conditions for inflation [10].

The separation between the background variables and the cosmological
perturbations both for the gravitational degrees of freedom and for the matter
ones, used in the papers mentioned above, was based on the purely geometrical
characteristics. Namely, the spatially homogeneous components of the metric and of
the matter fields were taken as background variables, while the inhomogeneous ones
were treated as perturbations. Such an approach descends from classical cosmology
[11]. However, another approach to the treatment of cosmological degrees of freedom
is possible. The point is that in reality we have two different mass/time scales in
cosmology. One is connected with the Planck mass (Planck length, Planck time)
and characterises gravitation, the other scale is connected with the non-gravitational
matter fields. This fact can direct one’s attention to a well-known method for the
treatment of molecules such as the Born-Oppenheimer (BO) approach [12].

Composite systems which involve two mass (or time) scales such as molecules
are amenable to this particular treatment. For molecules this is possible because
of the different nuclear and electron masses, which allows one to suitably factorise
the wave function of the composite system leading, in a first approximation, to a
separate description of the motion of nuclei and electrons. In particular it is found
that the former are influenced by the mean Hamiltonian of the latter and the latter
(electrons) follow the former adiabatically (in the quantum mechanical sense). By this
we mean that the nuclei move sufficiently slowly so that the electrons do not change
eigenstates. Clearly should the nuclei move quickly enough, the electrons will undergo
(non-adiabatic) transitions between states.

It has been pointed out that the matter-gravity system is also amenable to such
an approach [13] since gravity is characterised by the Planck mass, which is much
greater than the usual matter mass, then the heavy degrees of freedom are associated
with gravitation and the light ones with matter. As a consequence, to lowest order,
gravitation will be driven by the average matter Hamiltonian and matter should follow
gravity adiabatically. The original motivation for such an approach [13] was to examine
the emergence of time in the context of quantum gravity where time does not appear
as a consequence of reparametrisation invariance. This then led to a study of the
semiclassical limit for gravitation starting from a mini-superspace formulation for
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quantum gravity [2] and quantum matter. One then obtained the Einstein equations
with gravity driven by the (quantum) mean energy Hamiltonian of matter [13].

Subsequently the approach was further analysed in order to justify the use of
the mean matter energy to drive gravitation [14]. This was found to be true when
non-adiabatic transitions (fluctuations) are negligible and the Universe is sufficiently
far from the Planck scale. This occurs during inflation and one then has the usual
(unitary) time evolution of quantum matter (Schwinger-Tomonaga or Schrödinger).

Initially the BO approach in cosmology addressed mini-superspace and
homogeneous matter modes. Subsequently it was generalised to metric perturbations
and non-homogeneous modes in order to obtain corrections to the usual power
spectrum of cosmological fluctuations produced during inflation [15]. These
corrections, which essentially amount to the inclusion of the non-adiabatic transitions,
can affect the infrared part of the spectrum and may lead to an amplification or
suppression depending on the background evolution. Indeed, in all the above our
ultimate scope was to obtain corrections to the usual power spectrum of cosmological
fluctuations produced during inflation.

Other authors have applied the BO approach (or what they call a BO approach),
again with the aim of finding its effect on the power spectrum. In particular, in
the next sections we illustrate two diverse approaches both involving gravitation and
matter.

The first geometrodynamical approach by Brizuela, Kiefer and Kramer
(henceforth BKK) [16, 17] is examined in detail in Section 2, in particular with the
aim of comparing it with our, above mentioned, traditional BO method which, in
contrast, does not suffer from unitarity violating difficulties.

The second approach [18] employs a (polymer quantised) loop space formulation
for gravitation together with a Fock space quantisation for matter. Concerning this
approach in Section 3 we shall limit ourselves to a brief description of it and observe
that even if it has nothing in common, both technically and physically, with our
first, traditional BO method, it does bear some resemblance with an alternative (non
BO) approach which we have previously examined [19]. It consisted of the study of a
quantum matter-gravity system containing a minimally coupled massive homogeneous
scalar field which is known to lead to inflation. After choosing a suitable initial state
for the scalar field, the equations for the homogeneous gravity matter system is solved
in the inflationary (scale factor a large) limit. On then introducing other matter fields
(or inhomogeneous modes), after coarse graining of the gravitational wave function,
an effective time evolution emerges for them. In this case the presence of an effective
time evolution for matter arises from a mechanism similar to one already observed in
the analysis of the classical limit of quantum systems, such as the hydrogen atom [20].
In particular the zero angular momentum and large principal quantum number case
which exhibits a radial highly oscillatory behaviour. In this case on coarse graining
(in particular on applying the Riemann-Lebesgue Lemma) one is able to recover the
classical trajectory. Indeed, the classical trajectory is related to a classical spatial
probability distribution of a particle in terms of the inverse of its speed (the fraction
of time spent in a spatial interval is a measure of the probability density). There
is a deep connection between the above example and the situation present in the
matter-gravity system for this case.

Lastly our results are summarised and discussed in the conclusions.
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2. Geometrodynamical Approach

The BKK approach [16] is based on the Wheeler-de Witt equation and can be directly
compared with ours [15]. Indeed, in [16], they introduce a “master” Wheeler-de Witt
equation (we shall follow an identical notation to theirs whenever possible) obtained
after a Fourier expansion (we work on a flat FRW background):

1

2

[

−
h̄2

m2
GAB

∂2

∂qA∂qB
+m2V (q) +

∑

k

(

−h̄2
∂2

∂vk2
+ ω2

kv
2
k

)

]

Ψ(q, {vk}) = 0, (1)

where the minisuperspace variables q2 ≡ α = ln (a/a0), the logarithm of the scale
factor, q1 ≡ φ/m, which is a homogeneous scalar field φ scaled by the Planck mass m,
have been introduced. In the above one has a metric GAB ≡ diag

(

−e−2α, e−2α
)

and

a potential V (q) with q =
{

q1, q2
}

. Further ωk(q) ≡ ωk(η) where η is the conformal
time and vk is the Mukhanov-Sasaki (MS) [21, 22] variable associated with the wave
number k. On following a BO approach [12] we expand Ψ onto a complete basis of
states for the matter field ‡ and subsequently separate the equations of motion for the
homogeneous (minisuperspace) and inhomogeneous parts of the wave function:

Ψ(q, {vk}) = Ψ0 (q)
∏

k

Ψ̃k (q, vk) ≡ Ψ0(q)Ψ̃ (q, {vk}) (2)

where the tilde just labels the parts of the wave function containing the inhomogeneous
variables. We emphasise that hereafter, in contrast with our approach [15], the
homogeneous mode for the scalar field is included in the “slow” part of the factorisation.
This occurs since the scalar field has been rescaled with m and has consequences on
the Einstein equations obtained. This is somewhat artificial and in contrast with the
spirit of the BO approach which we shall nonetheless follow.
On multiplying the above by Ψ̃∗ and integrating over all vk one obtains the equation
for the gravitational part of the total wave function
[

−
h̄2

m2
GAB

∂2

∂qA∂qB
+m2V (q) +

∑

k

〈Ĥk〉

]

Ψ̄0 (q) =
h̄2

m2
GAB〈

∂2

∂qA∂qB
〉Ψ̄0 (q) , (3)

where

Ψ0(q) = Ψ̄0(q) exp

[

i

∫ q

AA(Q)dQA
]

, (4)

AA(q) ≡ i〈Ψ̃|
∂

∂qA
|Ψ̃〉 = i

∫

Ψ̃∗(q, {vk})
∂

∂qA
Ψ̃(q, {vk})

∏

k

dvk (5)

and QA is a dummy integration variable,

Ĥk =
1

2

[

−h̄2
∂2

∂vk2
+ ωk(η)

2v2k

]

, (6)

with

〈Ô〉 ≡

∫

¯̃Ψ
∗
(q, {vk}) Ô

¯̃Ψ (q, {vk})
∏

k

dvk (7)

‡ A suitable lowest order basis could be the solutions to the time dependent harmonic oscillator
equations of motion [23, 24].
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and

Ψ̃ (q, {vk}) =
¯̃Ψ (q, {vk}) exp

[

−i

∫ q

AA(Q)dQA
]

, (8)

where each matter mode is individually normalised and QA is a dummy integration
variable. Actually all the above can be repeated using non normalised states without
any change in the results, this is done in [24, 25], here we have just used normalised
states for simplicity. Let us note that the barred wave functions introduced by (4)
and (8) are defined just through a q dependent phase factorisation which is opposite
for (4) and (8) in order to leave their product phase invariant.

As before [15] one can obtain an equation for the matter wave function ¯̃Ψ(q, {vk})

and, in particular, project out a single Fourier component ¯̃Ψk (q, vk) obtaining

[

Ĥk − 〈Ĥk〉k

]

¯̃Ψk −
h̄2

m2
GAB

∂

∂qA
ln Ψ̄0

∂

∂qB
¯̃Ψk

=
h̄2

2m2
GAB

[

∂2

∂qA∂qB
− 〈

∂2

∂qA∂qB
〉k

]

¯̃Ψk, (9)

where

〈Ô〉k ≡

∫

dvk
¯̃Ψ
∗

k(q, vk)Ô
¯̃Ψk(q, vk). (10)

The equations (3) and (9) are equivalent to (1) and are the expected outcome of the
BO decomposition.
BKK, in [16], in order to obtain the Schrödinger-like equation for the wave function of
the inhomogeneous matter modes, the Eq. (1) is surprisingly (since the new equation
is incompatible with the previous one, however see later) replaced by an equation with
a single mode:

1

2

[

−
h̄2

m2
GAB

∂2

∂qA∂qB
+m2V (q) − h̄2

∂2

∂vk2
+ ω2

kv
2
k

]

Ψk (q, vk) = 0. (11)

If we apply the BO decomposition to (11) and define

Ψk (q, vk) ≡ Ψ0 (q) Ψ̃k (q, vk) (12)

instead of Eq. (3) one now obtains from Eq. (11) the following equation for the
homogeneous part

[

−
h̄2

m2
GAB

∂2

∂qA∂qB
+m2V (q) + 〈Ĥk〉k

]

Ψ̄0 (q)

=
h̄2

m2
GAB〈

∂2

∂qA∂qB
〉kΨ̄0 (q) , (13)

where now

Ψ0(q) = Ψ̄0(q) exp

[

i

∫ q

AA,k(Q) dQA
]

(14)

with

AA,k(q) ≡ i〈Ψ̃k|
∂

∂qA
|Ψ̃k〉 = i

∫

dvkΨ̃
∗
k(q, vk)

∂

∂qA
Ψ̃k(q, vk) (15)

and QA is a dummy integration variable. Le us note that, if one just considers one
mode, the Ψ̄0 in Eqs. (3) and (13) differ unless the Hamiltonian of the perturbations
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is negligible.
Concerning the inhomogeneous matter modes, in this case one does not have to
perform a projection onto a particular mode and one immediately obtains (9). The
equations (13) and (9) obtained from the BO decomposition are equivalent to (11).

Let us follow the approach of BKK in Ref. [16] and, instead of the BO factorisation
(12), we make the ansatz

Ψk(q, vk) = e
i
h̄
S(q,vk) (16)

with

S = m2S0 +m0S1 +m−2S2 + . . . (17)

On substituting the previous expression in Eq. (11) and collecting different powers of
m one has

O
(

m4
)

:
∂

∂vk
S0 = 0, (18)

O
(

m2
)

: GAB
∂S0

∂qA
∂S0

∂qB
+ V = 0. (19)

We observe that if one identifies Ψ = e
i
h̄
S , with S given by (17), and substitutes in

Eq. (1) the results (18) and (19) are unchanged since Hk is O(m0).
Continuing with Eq. (11), one has

O
(

m0
)

: 2GAB
∂S0

∂qA
∂S1

∂qB
− ih̄GAB

∂2S0

∂qA∂qB
− ih̄

∂2S1

∂v2k
+ ω2

kv
2
k = 0, (20)

O
(

m−2
)

: GAB
∂S0

∂qA
∂S2

∂qB
+

1

2
GAB

∂S1

∂qA
∂S1

∂qB
,

−
ih̄

2
GAB

∂2S1

∂qA∂qB
+
∂S1

∂vk

∂S2

∂vk
−
ih̄

2

∂2S2

∂v2k
= 0. (21)

It is clear that had we used Eq. (1) we would have had a
∑

k in Eqs. (20) and (21). The
above approach followed by BKK in [16] is what the authors also call a “BO scheme”
because, on collecting the different powers of m, the total wave-function is splitted
into a minisuperspace (homogeneous) part satisfying Eq. (19) and an inhomogeneous
part of higher order in m.

Ley us perform an m expansion analogous to (17) of Ref. [16] in our Eqs. (13)
and (9) which have been obtained through a BO factorisation. We also use the
identification

Ψk = Ψ0Ψ̃k = Ψ̄0
¯̃Ψk = γ−1em

2 i
h̄
S0+m

−2 i
h̄
ζ γ e

i
h̄
S1+m

−2 i
h̄
χ

≡ γ−1em
2 i
h̄
S0+m

−2 i
h̄
ζψ

(1)
k , (22)

where we have further decomposed S2 of (17) into S2 = ζ(q) + χ(q, vk) and γ is a
prefactor (related to the Van Vleck determinant) which is associated with the WKB
approximation and is a function of q. If one now substitutes in Eqs. (13), on keeping
terms to different orders in m one obtains:

O
(

m2
)

: GAB
∂S0

∂qA
∂S0

∂qB
+ V = 0 (23)

O
(

m0
)

:
h̄

2
GAB

[

2i

γ2
∂γ

∂qA
∂S0

∂qB
−
i

γ

∂2S0

∂qA∂qB

]

+
〈Ĥk〉0
γ

= 0, (24)

O
(

m−2
)

:
h̄2

2
GAB

[

−
2

γ2
∂γ

∂qA
∂γ

∂qB
+

1

γ

∂2γ

∂qA∂qB
+

2

h̄2
∂S0

∂qA
∂ζ

∂qB

]

+ 〈Ĥk〉2
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=
h̄2

2
GAB〈

∂2

∂qA∂qB
〉k,0, (25)

where by 〈Hk〉0, 〈
∂2

∂qA∂qB 〉k,0 and 〈Hk〉2 we mean the corresponding contributions to

O
(

m0
)

and O
(

m−2
)

respectively §. From Eq. (9) one obtains:

O
(

m0
)

: −
ih̄

2

∂2S1

∂v2k
+

1

2

(

∂S1

∂vk

)2

+
1

2
ω2
kv

2
k − 〈Ĥk〉0 −

ih̄GAB
∂S0

∂qA

(

∂ ln γ

∂qB
+
i

h̄

∂S1

∂qB

)

= 0, (26)

O
(

m−2
)

: −
ih̄

2

∂2χ

∂v2k
+
∂S1

∂vk

∂χ

∂vk
+
ω2
k

2
v2k − 〈Hk〉2 + h̄2GAB

∂ ln γ

∂qA
∂ ln γ

∂qB

+ GAB
∂S0

∂qA
∂χ

∂qB
= −

h̄2

2
GAB

(

〈
∂2

∂qA∂qB
〉k,0 −

1

γ

∂2γ

∂qA∂qB

−
i

h̄

∂2S1

∂qA∂qB
+

1

h̄2
∂S1

∂qA
∂S1

∂qB

)

. (27)

Let us first note that (23) is equal to (19). Furthermore, on comparing (24) and (26)
and eliminating 〈Ĥk〉0, one obtains Eq. (20). Analogously on using (25) and (27)

and eliminating 〈Ĥk〉2 and GAB〈 ∂2

∂qA∂qB 〉k,0 one obtains (21). The BO factorization

(12) combined with the m expansion (22) are thus equivalent to the expansion (17)
performed in [16].
We observe that BKK in Ref. [16] now demand:

GAB
∂

∂qA

[

1

2γ2
∂S0

∂qB

]

= GAB
[

−
1

γ2
∂ ln γ

∂qA
∂S0

∂qB
+

1

2γ2
∂2S0

∂qA∂qB

]

= 0, (28)

which, on comparing with Eq. (24), requires 〈Ĥk〉0 = 0 and is in contrast with
the Gaussian ansatz solution subsequently used by Ref. [16] in their Section 5.
Subsequently in Ref. [16] conformal time is introduced by

∂

∂η
≡ GAB

∂S0

∂qA
∂

∂qB
. (29)

On now defining ψ
(0)
k = γe

i
h̄
S1 Eq. (21) becomes

[

∂ζ

∂η
− h̄2GAB

∂ ln γ

∂qA
∂ ln γ

∂qB
+
h̄2

2γ

∂2γ

∂qA∂qB

]

+
∂χ

∂η
+ h̄2GAB

∂ lnψ
(0)
k

∂qA
∂ ln γ

∂qB

−
h̄2

2ψ
(0)
k

GAB
∂2ψ

(0)
k

∂qA∂qB
− ih̄

∂ lnψ
(0)
k

∂vk

∂χ

∂vk
−
ih̄

2

∂2χ

∂v2k
= 0, (30)

and on setting the term in the square bracket equal to zero [26] one obtains

∂χ

∂η
=

1

ψ
(0)
k

(

−h̄2GAB
∂ψ

(0)
k

∂qA
∂ ln γ

∂qB
+
h̄2

2
GAB

∂2ψ
(0)
k

∂qA∂qB

+ih̄
∂ψ

(0)
k

∂vk

∂χ

∂vk
+
ih̄ψ

(0)
k

2

∂2χ

∂v2k

)

(31)

§ Let us note that Eq. (24) does not contain any terms associated with non-adiabatic transitions
(r.h.s. of Eq. (13)) due to quantum gravitational effects. The omission of such terms is essentially
the lowest order BO approximation.
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which is Eq. (88) of Ref. [16]. However, setting the square bracket in Eq. (30) equal
to zero is in contrast with our Eq. (25) (after the introduction of time).

In contrast, using our Eq. (25), Eq. (31) is modified as follows:

∂χ

∂η
= !

1

ψ
(0)
k

(

−h̄2GAB
∂ψ

(0)
k

∂qA
∂ ln γ

∂qB
+
h̄2

2
GAB

∂2ψ
(0)
k

∂qA∂qB

+ih̄
∂ψ

(0)
k

∂vk

∂χ

∂vk
+
ih̄ψ

(0)
k

2

∂2χ

∂v2k

)

+ 〈Ĥk〉2 −
h̄2

2
GAB〈

∂2

∂qA∂qB
〉k,0. (32)

On introducing ψ
(1)
k as in [16] by

∂χ

∂η
=
m2h̄

2

∂ ln
ψ

(1)

k

ψ
(0)

k

∂η
=
ψ
(0)
k

ψ
(1)
k

m2h̄

i





1

ψ
(0)
k

∂ψ
(1)
k

∂η
−

ψ
(1)
k

ψ
(0)
k

2

∂ψ
(0)
k

∂η



 (33)

and using Eq. (26) one finally obtains (setting 〈Ĥk〉0 +m−2〈Ĥk〉2 = 〈Ĥk〉 since we
only keep terms to order m−2):

− ih̄
∂ψ

(1)
k

∂η
− 〈Ĥk〉ψ

(1)
k + Ĥkψ

(1)
k +

h̄2

2m2
GAB〈

∂2

∂qA∂qB
〉k,0ψ

(1)
k

+
h̄2

m2

ψ
(1)
k

ψ
(0)
k

GAB
∂ ln γ

∂qA
∂ψ

(0)
k

∂qB
−

h̄2

2m2

ψ
(1)
k

ψ
(0)
k

GAB
∂2ψ

(0)
k

∂qA∂qB
= 0, (34)

instead of Eq. (90) of Ref. [16]. The Eq. (90) in [16] violates unitarity as BKK
explicitly claim in their comments to it. In contrast (34) is free of unitarity violating
contributions. Indeed one may identify a Schrödinger wave function ψSk as in done in
[15]:

ψSk = e−
i
h̄

∫

η
〈Ĥk〉dη

′

ψ
(1)
k , (35)

which can be seen to satisfy (remembering Eq. (26) and only keeping terms to
O
(

m−2
)

):

ih̄
∂

∂η

∫

ψSk
∗
ψSk dvk = ih̄

∂

∂η

∫

ψ
(1)
k

∗
ψ
(1)
k dvk

= ih̄

∫

[

ψ
(1)
k

∗ ∂ψ
(1)
k

∂η
− c.c.

]

dvk = 0. (36)

Thus there is no violation of unitarity. This, as has been pointed out before for the
homogeneous case in Ref. [24], is a consequence of the inclusion of back reaction
terms.

3. Loop Gravity Approach

Loop cosmology has become a topic of considerable interest (see e.g. [27]).
In [27] several approaches to quantum cosmology are examined, but not the
quantum geometrodynamical one. Three leading approaches to LQG are illustrated
and compared: the so-called the “effective constraint”, the “separate universe
approximation” and the “hybrid quantisation” approaches. It is only the last one
[18] that claims a relation to the BO approach and is the one we shall address in
this paper. Here in contrast with our case, a three torus rather than a flat three
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space is considered. Further, unlike the traditional approach we have illustrated in
the Introduction, loop gravity in not quantised canonically but is quantised through a
so-called polymer representation. This essentially means that rather than postulating
canonical commutation relations between a coordinate and its conjugate momentum,
thus leading to a representation of the momentum as a derivative with respect to the
coordinate, one replaces the conjugate momentum by translations (or a limit thereof)
with respect to the coordinate. Let us observe that a naive application of polymer
quantisation, for example, to a harmonic oscillator does not appear to lead to the
usual spectrum but rather leads to a band structure [28]‖. Moreover starting from
LQG the semiclassical limit to the usual general relativity is rather problematic [29].

In such a loop space formulation for gravitation one also introduces matter
through a massive scalar field. Again one allows for non-homogeneous perturbations
for both matter and geometry retaining terms at most to the second order (quadratic).
The linear perturbative constraints relate the matter and geometric perturbations
leading to the introduction of Mukhanov-Sasaki (MS) variables and a corresponding
Hamiltonian formulation. The homogeneous matter is canonically quantised and
a Fock space representation is introduced for the inhomogeneous modes. Such an
approach is termed, by the authors, “hybrid loop quantum cosmology”. In this
approach also what the authors call a BO approach is followed and an ansatz is made
to describe states of the system by a wave function decomposed as

Ψ = Γ(α, φ)ψ(v, φ) (37)

where α ≡ ln (a/a0) is the logarithm of the FRW scale factor, φ is the homogeneous
part of the matter field and v is the MS variable. It is then assumed that an
initial state Γ (α, φ0) is essentially evolved by the square root of the lowest order
homogenous matter Hamiltonian. One further assumes that the state Γ (α, φ0) of the
FRW geometry is so peaked on some value of φ that the corresponding state Γ(α, φ)
remains peaked for all considered values of φ. In this approach the zero mode of the
scalar field is interpreted as an internal time and no classical limit is taken for the
gravitational part.

After having introduced the “BO ansatz” through (37) and the approximation
that the state Γ remains highly peaked on the operator values that encode the
effect of the FRW geometry in the zero mode Hamiltonian constraint, effective
classical equations for the MS variables are obtained. In the effective dynamics the
perturbations are treated as classical, namely the creation and annihilation operators
for the inhomogeneities are replaced by their classical counterparts.
The scope of the above discussion was just to illustrate the “hybrid quantisation”
scheme in order to point out that it is does not involve a BO approach and how
our first, true BO approach, is totally diverse with respect to it and is based on
different physical principles. In particular in the former the gravitational part is
polymer quantised whereas the homogeneous part of the scalar field φ is canonically
quantised and they are both included in the same wavefunction (in contrast with
the spirit of the BO approximation) which is assumed to be peaked on some value
of φ which is related to the time. In our approach, even on limiting ourselves to
the homogeneous case one can perform a BO factorisation separating gravitation and
matter fields, introduce time through the semiclassical limit for the gravitational wave

‖ Clearly analogous considerations would also apply to the polymer quantisation of, say, a massive
scalar field which consists of an infinite set of oscillators.
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function and study inflation even for a non-classical homogeneous scalar field states
[30].

Our second approach, which we briefly illustrated in the Introduction, however is
not a BO based one and bears some resemblance to the above loop space formulation,
insofar as it does begin from a highly peaked homogeneous scalar field state and also
involves a non-classical gravitational state. Let us examine it in more detail [19].
We start from the quantum (WDW) Einstein equation for a flat FRW universe in the
coordinate (a, φ) representation:
(

h̄2

2m2

∂2

∂a2
1

a
−

h̄2

2a3
∂2

∂φ2
+
µ2a3

2
φ2
)

Ψ0(a, φ) =

(

h̄2

2m2

∂2

∂a2
1

a
+ ĤI

)

Ψ0(a, φ) = 0 (38)

where, as before, m is the Planck mass, µ is the scalar field (inflaton) mass, for
convenience we have taken a particular ordering for the first term on the l.h.s. of (38)
and Ψ0(a, φ) is the total scale factor-inflaton homogeneous wave function. Here we
shall be interested in configurations with large a, typical of a situation in an advanced
stage of the inflationary phase, thus we are far away from any bounce or initial
singularity, and one can verify that the difference between diverse factor orderings
are irrelevant (negligible) in such a limit. A suitable choice of the matter part of the
total wave function will lead to inflation: for example for φ constant one has a de
Sitter universe. It is clear that for a positive definite inflaton Hamiltonian the wave
function Ψ0 will tend to have a strongly oscillatory dependence on a. The oscillation
period will be so small that natural scales for the matter dynamics in a are much
longer and a coarse graining which can be, for example, chosen as an averaging over
a period of oscillation in a, will be necessary to study the effective matter dynamics.
A statistical interpretation as given in studies of the probability distributions in the
hydrogen atom, as mentioned in the introduction, gives further insight [20].

It is difficult to find a solution to Eq. (38) however following our previous work
[19] we solve it by factorising

Ψ0(a, φ) = aψ(a)u(a, φ) (39)

and on making an ansatz for u(a, φ), show that it leads to an approximate solvable
differential equation of ψ(a). Let us observe that here Ψ0 is chosen so that it is 0 for
a ≤ 0 as expected although the choice is unimportant since we shall obtain a solution
in the inflationary, a large, limit.
On observing that the homogeneous inflaton Hamiltonian is that of an a dependent

harmonic oscillator which can be cast in the usual form ĤI = h̄µ
(

b̂†b̂+ 1
2

)

with

b =

√

µa3

2h̄

(

φ̂+
ih̄

µa3
π̂φ

)

(40)

we make the following ansatz for u(a, φ)

u(a, φ) =

(

µa3

πh̄

)
1
4

exp

[

−
µa3

2h̄
(φ− φa)

2

]

(41)

corresponding to the coherent state defined by b̂|α〉 = α(a)|α〉 with u ≡ 〈φ|α〉,

α(a) =
√

µφ2
aa

3

2h̄ and φa is a function of a. The expression (41) is a Gaussian peaked

around the φa with a width which decreases as the volume a3 increases (we allow
φa to have a small dependence on a and to decrease for a increasing). In particular
for the case of chaotic inflation, in the slow roll approximation, the dependence is
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logarithmic [31]. Let us observe that if φa is a constant (which is the case we have
previously considered) in the inflationary a large limit we have a de Sitter universe.
On allowing a small a dependence for φ we are allowing a small deviation from de
Sitter inflation corresponding to small non-zero slow roll parameters or if we wish a
cosmological constant slowly varying with a. We shall return to this point at the
end of this section. If we now evaluate the following four diverse contributions to the
WDW equation (38) obtained from the factorised wave function (39)

u ∂2aψ + 2 ∂aψau ∂aψ + ψ ∂2au+ 2
m2

h̄2
aψ ĤIu = 0, (42)

where ∂a ≡ ∂
∂a , u(a, φ) is given by (41), and one finds that such contributions are

strongly peaked on a small interval around φa. Such an interval decreases as a
increases. Furthermore one has

∂au(a, φ) =

[

3

4a
−

3µa2

2h̄
(φ − φa)

2 +
µa2

h̄
(φ− φa)φaδ1

]

u(a, φ) , (43)

with δ1 ≡ a (∂aφa)φ
−1
a ,

∂2a u(a, φ) =

[

−
3

16a2
−

21µa

4h̄
(φ− φa)

2 +
9µ2a4

4h̄2
(φ− φa)

4

+
2µa

h̄
(φ− φa) (13 + 2δ2) δ1φa +

µ2a4

h̄2
(φ− φa)

2
δ1φ

2
a

−
µ2a4

3h̄2
(φ− φa)

3
δ1φa

]

u(a, φ) , (44)

with δ2 ≡ a (∂aδ1) δ
−1
1 , and

∂2

∂φ2
u(a, φ) =

[

−
µa3

h̄
+
µ2a6

h̄2
(φ− φa)

2

]

u(a, φ) . (45)

Contributions of the form xne−x which are recurrent in the above expressions are
peaked in x = n and in particular

maxφ

{[

µa3

h̄
(φ− φa)

2

]n

u

}

=

(

µa3

πh̄

)1/4 (
2n

e

)n

=

(

2n

e

)n

maxφu (46)

with the maximum at φ(n) = φa +
√

2nh̄
µa3 . Such maxima are slightly displaced w.r.t.

to φa (where the maximum of u(a, φ) is located) but for large a3 they are very close
to it. For a large the contributions to (43), (44) and (45) which are independent of

δ1 and δ2 are of the same order of magnitude as u ∼
[

µa3 (φ− φa)
2 /h̄

]n

u. On the

other hand the remaining contributions to (43), (44) and (45) which contain δ1 and
δ2 depend on the choice of φa.

Let us note that, for a large, the contribution of the inflaton potential to (42) is
strongly peaked around φa and can be approximated by

m2

h̄2
µ2a4φ2u(a, φ) ≃

m2

h̄2
µ2a4φ2au(a, φ). (47)

On then assuming that φa is slowly varying w.r.t. a (which is a reasonable assumption
during inflation, at least at the classical level), the contributions (43), (44) and (45)
to (42) are negligible compared to (47) and Eq. (42) thus simplifies to

∂2aψ(a) +
m2

h̄2
µ2φ2aa

4ψ(a) = 0. (48)
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This last equation governs the quantum evolution of the scale factor during inflation
and leads to strongly oscillatory dependence on a. We immediately see that for
φa constant the second term in it corresponds to a cosmological constant. Such a
solution is completely different to that obtained through a semiclassical approach to
the gravitational wave equation obtained after the BO decomposition. Let us note
that a different operator ordering in the kinetic term for gravity in (38) would lead to
the same gravitational equation (48).

We have previously discussed the solutions obtained for Eq. (48) for φa constant.
We observe that different initial conditions can be taken for the solutions as suggested
by Vilenkin [6] or Hartle and Hawking [7]. Coarse graining, corresponding to averaging
over an oscillatory period for the gravitational wave function, leads to the introduction
of time and evolution [19]. On then allowing φa to have a small dependence on a and
adding cosmological perturbations one may determine the power spectrum and obtain
predictions for large scale structures from such an approach [32].

4. Conclusions

The purpose of this paper was to illustrate and compare diverse approaches to the
cosmology of the matter-gravity system all of which have the ultimate aim of finding
expressions and corrections for the power spectrum generated by inflation and refer
to the BO method. As a basis for comparison we use the approach we have previously
studied in detail [15] and which we may term a traditional BO approach and hinges
on the fact that the Planck mass is much greater than the usual matter mass. This
allows us to separate the global matter gravity wave function into a purely gravitational
part, wherein gravitation is driven by the mean matter Hamiltonian, together with
an additional back-reaction due to transitions between diverse matter states induced
by the variation of the FRW radius, and a non linear matter equation which again
includes a back- reaction due to transition between matter states. All of this in the
semiclassical limit for gravitation.

Let us better illustrate what we mean by the above mentioned transitions. To
lowest order in the BO approach generally such transitions are neglected. This means
gravitation is just driven by the mean matter Hamiltonian. Matter evolution, on
the other hand, to lowest order and for each mode, is essentially described by a
harmonic oscillator-type Hamiltonian with a time dependent frequency (MS equation).
One can solve this equation, formally exactly, for the corresponding states [23]. The
corrections to both the gravitational and the matter evolution equations are associated
with transitions between such eigenstates [24].

The alternative approaches we addressed for the comparison are two which claim
to use, or be inspired by, a BO approach but actually differ significantly from the
beginning insofar as the homogeneous part of the matter (scalar) field is lumped
into the “heavy” part of the factorised wave function together with the homogeneous
gravitational part and the two are not separated in contrast with our traditional
approach (unless, of course, the scalar field has a Planck mass)

The first (BKK) approach for our comparison is quantum geometrodynamical
[16], being based on the WDW equation, is clearly related to our method and also
involves a semiclassical approximation. We have followed for it a treatment analogous
to the one employed in our traditional BO approach. This has allowed us to separate
the diverse equations obtained on expanding in powers of m (Planck mass) for both
matter and gravitation. One finds corrections to the results previously obtained due to
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the presence of back-reaction terms involving the average of the matter Hamiltonian
and the homogeneous gravitational kinetic terms with respect to the matter wave
function. As a consequence of the presence of such terms no violation of unitarity is
found. A similar result has been obtained previously for the purely homogeneous case
[24].

The only loop quantum cosmology approach that refers to BO is the so-called
“hybrid quantisation” one and differs completely from our traditional BO method. A
comparison between the two approaches is difficult since the former is also based on a
different quantisations for matter (canonical quantisation) and gravitation (polymer
quantisation for the homogeneous part). Furthermore time is introduced, not through
a semiclassical limit for gravitation (which remains quantised in contrast with our
approach), but through the interpretation of the homogeneous part of the scalar field
as a relational time. This is very different both technically and physically from our
traditional BO approach.

On the other hand another approach we have previously considered [19] bears
some resemblance to the above loop space approach. In such an approach we studied
the quantum minisuperspace homogeneous-inflaton system in the inflationary, a large,
limit. Beginning with a suitable ansatz for the initial matter (inflaton) state (a
highly peaked normal distribution) we solved the WDW equation for the gravitational
wave function finding it to have a highly oscillatory behaviour. On introducing
normal matter (or cosmological fluctuations) and coarse graining for the gravitational
wave function (averaging over a fluctuation period) one obtains time and evolution.
Thus, analogously with the loop space case, we have a quantum gravitational state
and a highly peaked scalar (inflaton) field. Here no classical limit is taken for
the gravitational wave function and it will be interesting to study cosmological
perturbations in such a context and the predictions for the CMB signatures.

The results of a quantum geometrodynamical and loop space formulations have
been examined before [33]. However the cases examined are the loop space “effective
constraint” approach, which does not refer to BO and can lead to a power enhancement
on large scales, and the geometrodynamical approach [16] which we disagree with. In
any case our emphasis has been on approaches which claim a BO link and not to
review different approaches or fits to the data (which few have done).
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