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a b s t r a c t

Protein–solvent interaction provides important features for protein surface engineering when the struc-
ture is absent or partially solved. Presently, we can integrate the notion of solvent exposed/buried resi-
dues with that of their flexibility and intrinsic disorder to highlight regions where mutations may
increase or decrease protein stability in order to modify proteins for biotechnological reasons, while pre-
serving their functional integrity. Here we describe a web server, which provides the unique possibility of
integrating knowledge of solvent and non-solvent exposure with that of residue conservation, flexibility
and disorder of a protein sequence, for a better understanding of which regions are relevant for protein
integrity. The core of the webserver is DeepREx, a novel deep learning-based tool that classifies each resi-
due in the sequence as buried or exposed. DeepREx is trained on a high-quality, non-redundant dataset
derived from the Protein Data Bank comprising 2332 monomeric protein chains and benchmarked on a
blind test set including 200 protein sequences unrelated with the training set. Results show that DeepREx
performs at the state-of-the-art in the field. In turn, the Web Server, DeepREx-WS, supplements the pre-
dictions of DeepREx with features that allow a better characterisation of exposed and buried regions: i)
residue conservation derived from multiple sequence alignment; ii) local sequence hydrophobicity; iii)
residue flexibility computed with MEDUSA; iv) a predictor of secondary structure; v) the presence of dis-
ordered regions as derived from MobiDB-Lite3.0. The web server allows browsing, selecting and inter-
secting the different features. We demonstrate a possible application of the DeepREx-WS for assisting
the identification of residues to be variated in protein surface engineering processes.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Knowledge of the exposure of a residue in the context of a
folded protein allows defining the protein folding core and identi-
fying residues that interact with the solvent and other molecules in
physiological or artificial environments [1]. Solvent exposure is
routinely measured by residue Solvent Accessible Surface Area
(SASA) or its Relative Solvent Accessibility (RSA), in which the
maximum surface area for each residue type is the normalizing
factor [2–4]. Residues in any protein can be therefore classified
as buried or exposed by defining a threshold on the RSA value, rou-
tinely set equal to 20%. Programs like DSSP [5] or PSAIA [6] esti-
mate RSA starting from the Protein Data Bank (PDB) coordinates
of a protein structure. When the three-dimensional structure of a
protein is not or partially available, computational methods can
predict solvent exposure from the protein sequence.

Different prediction tools, mainly based on machine-learning
approaches, provide RSA estimation, classifying residues into bur-
ied or exposed [7–9]. Finer-grained predictions into three or four
classes of solvent exposure are possible [10]. Recently, solvent
exposure is computed with deep-learning approaches [10,11].

New developments in the protein structure prediction field led
to the release of AlphaFold2 [12], a very powerful deep-learning
based tool for the ab-initio prediction of protein three-
dimensional (3D) structure from sequence. AlphaFold2 optimally
scored in the most recent edition of the Critical Assessment of
Structure Prediction (CASP, predictioncenter.org), although the
accuracy is not uniform across all CASP target categories and still
limited on difficult targets (e.g., the free-modelling ones). Despite
the success of AlphaFold2, the availability of sequence-based pre-
dictors of protein features, like solvent exposure, are still impor-
tant for many reasons. Accurate predictions of protein features
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can be useful to validate models generated with AlphaFold2 (or
with others ab-initio methods), particularly in those regions where
the models are expected to be low quality. Moreover, predictions
of solvent exposure can be helpful also in the perspective of being
integrated into end-to-end deep-learning methods, even during
the learning phase, to guide and refine the training process. Tools
like AlphaFold2 are very demanding in terms of computational
resources, whereas simple predictors of protein structural features
can be easily adopted in the presence of time/resource constraints
for the preliminary structural/functional characterization of large
datasets of proteins. This allows the quick identification of
interesting cases on which focusing the attention and, possibly,
applying more sophisticated (and computationally demanding)
approaches.

Computation of solvent exposure provides valuable information
in different problems, which include defining constraints for ab-
initio protein structure prediction tools, refining protein–protein
interface predictors [13,14], and structurally and functionally
characterizing sequence positions, which undergo pathogenic
single-residue variations [15–17]. In biotechnological applications,
knowledge of residue solvent exposure is of prominent impor-
tance. Rational surface engineering i.e., the chemical modification
of key positions on the protein surface, is an effective tool for tai-
loring protein features to specific industrial and biotechnological
demands [18,19] and references therein]. Applications of protein
surface (re-)engineering include the improvement of protein solu-
bility in different solvents [20,21], immobilization [22], and stabi-
lization in aqueous or organic solvents [23,24]. In all these
applications, computational prediction of protein solvent accessi-
bility from sequence can provide constrains for screening the can-
didate sites to be considered for modifications when the
experimental protein three-dimensional structure (or a validated
structural model) is not available [19]. Other features, such as resi-
due conservation in multiple sequence alignment, local protein
flexibility, protein secondary structure and possibly the presence
of intrinsically disordered regions can further reduce the search
space, identifying residues not essential for protein function and/
or located in external loops.

Here, we present DeepREx-WS, a web server providing a multi-
dimensional characterization of exposed and buried positions of a
protein starting from its residue sequence. A two-class prediction
of protein solvent exposure is provided with a novel deep
learning-based method, DeepREx. The new predictor described in
this paper has been trained and tested on high-quality structures
extracted from the PDB and performs at the state-of-the-art, when
benchmarked against other methods available for the same task.

The server DeepREx-WS, for each position, supplements the
exposure prediction of DeepREx with the Kyte-Doolittle hydropho-
bicity and residue conservation obtained from a multiple sequence
alignment. Furthermore, three external resources, MEDUSA [25],
PYTHIA [26] and MobiDB-Lite3.0 [27], are present to estimate, for
each residue position, protein flexibility, protein secondary struc-
ture and the presence of intrinsically disordered regions,
respectively.

We release DeepREx as both Python stand-alone program and
Docker image.
2. Material and methods

2.1. DeepREx implementation

2.1.1. Datasets
DeepREx is trained and tested on a dataset extracted from the

Protein Data Bank (PDB) [28] (accessed Oct 15, 2019), which
includes 692,646 residues from 2532 non-redundant, monomeric
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proteins with an X-ray crystallographic structure at a
resolution � 2.5 Å and a coverage � 70% of the corresponding Uni-
Prot sequence [29]. Mapping between PDB and UniProt sequences
was retrieved with SIFTS [30]. Membrane proteins were excluded
via a cross-check on the Orientations of Proteins in Membranes
(OPM) database [31].

All proteins are declared by authors of the crystallography to be
functional as monomers. The dataset was reduced by similarity, so
that all protein sequences share � 30% pairwise identity. The clus-
tering and representative sequence selection have been performed
using the MMseqs2 program [32]. Specifically, we used cluster
mode 1 (single-linkage clustering) and 30% sequence identity
threshold. No threshold has been set for coverage, allowing to clus-
ter also sequences with very local sequence similarity. More details
on the dataset collection are available in Supplementary Materials.

The absolute Solvent Accessible Surface Area (SASA) of each
residue in the PDB file is computed using DSSP [5]. Relative Solvent
Accessibility (RSA) values are then obtained dividing absolute SASA
values by residue-specific maximal accessibility values, as
extracted from the Sander and Rost scale [2]. Finally, each residue
is classified as buried (B) if its RSA is � 20%, and exposed (E) other-
wise. This threshold divides the set of residues into two almost
equally sized subsets, with 52% buried and 48% exposed residues
and therefore provides a balanced dataset for training and testing.

The non-redundant dataset was then randomly split into a
training set, comprising 2332 sequences, and a blind test set
including 200 sequences. Proteins in the training set were further
split into 10 equally sized sets for cross validation.

The blind test set includes 200 protein sequences (and their
structures) from different organisms: 124 monomeric proteins
from Bacteria, 56 from Eukaryotes, 15 from Archaea and 5 from
Viruses. Moreover, these proteins cover a wide range of 3D SCOP/
CATH [33,34] classes including 30 all-alpha proteins, 37 all-beta,
84 alpha/beta (a/b) and 16 alpha + beta (a + b) (32 proteins are
unclassified). Overall, the 200 protein sequences contain 56,206
residues, 29,068 and 27,138 of which are buried and exposed,
respectively, in the experimental 3D structure (for details, refer
to Supplementary Table 1S).

Finally, we performed an additional comparative benchmark
using 9 targets from the CASP14 experiment and previously used
in literature for the evaluation of sequence-based prediction of
protein features [26]. In particular, the chosen targets belong to
the free modelling category i.e., no homologous sequences can be
found for them and for this reason they are particularly challenging
for structure prediction.

2.1.2. Input encoding
DeepREx is trained on 71 features, encoding for each position

the protein sequence and information derived from Multiple
Sequence Alignments (MSA).

MSA for each sequence in our dataset is generated with HHblits
version 3 [35], setting two iterations and default parameters.
Search is executed against the Uniclust30 database [36]. HHblits
provides MSA and Hidden Markov Models (HMMs) adopted to
guide the search of related sequences and from which we derived
some of the features.

The 71-valued vector encoding each position i includes:

� The canonical residue one-hot encoding, representing primary-
sequence information and accounting for 20 values.

� The protein sequence profile, computed from MSA and consist-
ing of 21 values that account for the relative frequencies of each
residue type (plus the gap) in the corresponding aligned posi-
tion of the MSA.

� The HMM emission probabilities obtained from the match state
in position i (20 values).
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� The HMM transition probabilities (7 values), corresponding to
all possible transitions between HMM states in position i.

� The 3 values of Neff_Match, Neff_Insertion and Neff_Deletion
[35] computed by HHblits and encoding for the MSA local diver-
sity around position i. These values provide the number of effec-
tive sequences (i.e., a sequence diversity estimation) for the
subalignments comprising sequences having a match, an inser-
tion and a deletion at position i of the full alignment,
respectively.

2.1.3. The deep-learning architecture
Fig. 1 shows the deep architecture implemented in DeepREx.
Each sequence in the dataset is encoded as a Lx71 matrix, where

L is the protein length and 71 is the dimension of the encoding, as
detailed in the previous section.

This input is firstly processed by three cascading Bidirectional
Long-Short Term Memory (BLSTM) layers [37]. BLSTMs belong to
the class of Long-Short Term Memory (LSTM) networks [38], a spe-
cial recurrent neural network architecture well-suited for process-
ing sequence data (e.g., protein sequences) and extracting relevant
relations between elements of the sequence. Moreover, LSTMs
have several advantages over traditional recurrent architectures
in terms of stability of training and the proper handling of the van-
ishing gradient problem [39]. BLSTMs perform a double scanning
of the input sequence, from left to right and vice versa, in order
to better capture the sequential relations among sequence posi-
tions. Here, each BLSTM layer includes 32 activation units.

The output of the third recurrent layer is then provided as input
to a time-distributed, fully-connected layer adopting a sigmoid
activation function. This layer provides the final, binary classifica-
tion of each residue in the sequence into buried or exposed classes.
It computes a numerical output in the range [0,1] for each residue
that can be interpreted as a probability for the residue to be
exposed: all residues with p�0.5 are predicted as exposed while
those with p < 0.5 are classified as buried.
Fig. 1. Architecture of the deep neural network implemen
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The method has been implemented with the Keras deep-
learning Python library [40]. The total number of trainable param-
eters in the model is 76,353.

The output value o has been used to estimate the reliability
index (RI) of the prediction:

RI ¼ 2� o� 0:5j j ð1Þ
If o is close to 0.5 (uncertain classification), RI is close to 0. If o is

close to 0 (strong classification in the buried class) or 1 (strong
classification in the exposed class), RI is close to 1.

2.1.4. DeepREx training and evaluation
Training is performed by adopting a 10-fold cross-validation

procedure, using 8 sets for training, one set for validation and early
stopping (to avoid overfitting), and one for testing. Cross-validation
results are reported as the average over performances computed
on the testing sets. This training phase sets the optimal values of
the architecture hyperparameters. Each model is trained for at
most 1000 epochs. An early stopping procedure is adopted to
reduce overfitting: the training procedure is stopped after 50 con-
secutive epochs when the error computed on the validation set
does not decrease. The presence of sequences of variable length
is handled using mini-batches of 64 sequences and zero-padding
each sequence in the batch to the same length (i.e., the maximal
length in the mini-batch). A masking layer, placed after the input
layer, is used to ignore padded values. The ADAM optimizer [41]
is adopted for gradient descent on the binary cross-entropy loss
function. We run several complete cross-validations to select the
optimal set of hyperparameters (number of activation units in
LSTM layers, minibatch size, ADAM optimizer parameters). We
chose the set of hyperparameters maximizing the performance of
the method on the cross-validation validation sets.

Once the hyperparameters are fixed, the final DeepREx model
for testing the blind set is obtained after training over the whole
training set with the routinary procedure: 9/10 subsets are for
ted in DeepREx to predict residue solvent exposure.
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the actual training, while one random set among the 10 is adopted
as validation set for early stopping. This final model is then tested
on the 200 proteins of the blind test set and excluded from the
training set to evaluate its performance.

2.1.5. Scoring indexes
The performance of the binary solvent accessibility classifiers is

assessed with the following standard scores. Without loss of gener-
ality, we assume the exposed (E) and the buried (B) classes to be
the positive and negative classes, respectively. In what follows,
TP, TN, FP and FN are true positive, true negative, false positive
and false negative predictions, respectively. The following scoring
measures are computed:

� Accuracy (Q2), defined as:

Q2 ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

� Precision:

Prec ¼ TP
TP þ FP

ð4Þ

� Recall:

Rec ¼ TP
TP þ FN

ð5Þ

� F1, the harmonic mean of the precision and recall, defined as:

F1 ¼ 2 � Prec � Rec
Prec þ Rec

ð6Þ

� Matthews Correlation Coefficient (MCC), defined as:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp ð7Þ
Table 1
DeepREx performance in a 10-fold cross-validation and on the blind test set.

Scoring index Cross-validation Blind test

Precision 0.820 ± 0.002 0.82
Recall 0.800 ± 0.001 0.80
F1 0.810 ± 0.001 0.82
Q2 0.810 ± 0.001 0.82
MCC 0.620 ± 0.002 0.63

For index definition see section 2.1.5.
2.2. The Web Server (DeepREx-WS) implementation

DeepREx-WS integrates DeepREx predictions with external
resources. We include predictions obtained with MEDUSA [25],
estimating residue flexibility of the proteins across five classes
(0 = rigid, 4 = flexible). MEDUSA is based on a deep convolutional
neural network architecture processing an input comprising evolu-
tionary information, derived from MSAs and residue physicochem-
ical properties [25].

We provide secondary structure prediction by means of PYTHIA,
a protein local conformation prediction tool [26]. Specifically,
PYTHIA (released in 2021, [26]) can be easily integrated in our
web server, being released as a docker container. Furthermore, it
runs fast, and it takes multiple sequence alignments as inputs. It
is designed to predict local conformation in terms of Protein Blocks
(PB). Overall, 16 PDB classes (labelled with lower-case letters, from
a to p) are provided by PYTHIA: PB labels a, b, c, d, e and f represent
different beta-strand regions (c is for the core of strand, a, b and d, e
for N- anc C-terminal caps, respectively), PB labels g, h, i and j are
all representing random coils while labels k, l, m, n, o and p map
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into alpha-helices (m for the helix core, k, l and n, o for N- and C-
terminal caps, respectively). Here we mapped PB to secondary
structure as follows: c to beta-strand (E), m to alpha-helix (H)
and the remaining labels to random coil (C).

We integrate intrinsically disordered regions as predicted with
MobiDB-Lite3.0 [27], providing a binary prediction for each residue
(disordered/structured). MobiDB-Lite3.0 computes a consensus
derived from the outputs of eight different predictors of disordered
regions and applies a filtering procedure to get rid of spurious dis-
order predictions. All the three methods have been downloaded
and are executed in-house.

Finally, DeepREx-WS also includes for each residue a hydropho-
bicity index, computed by averaging the Kyte-Doolittle hydropathy
scale [42] over a window of 5 residues, and a conservation index
computed from the MSA with the following equation:

CI ið Þ ¼ 1:0� � 1
log 20ð Þ

X20
a¼1

f a ið Þ � log
�
f a ið Þ

� !
ð2Þ

where fa(i) is the frequency of the residue type a in the position i of
the MSA. The CI ranges between 0 (not conserved) and 1 (fully con-
served). The MSA used for computing the CI is the same provided in
input to the DeepREx predictor and built for the input sequence
using HHblits as detailed in section 2.1.2. The CI is only computed
for MSA positions having at most 70% of gaps in the aligned column.
For position with more than 70% gaps a default conservation of 0 is
reported.

The web server is implemented using the Python Django appli-
cation server (version 2.2.5), Apache (version 2) and Postgresql
(version 11). The user interface is designed using Bootstrap (ver-
sion 4), DataTable (version 1.10.22), the neXtProt feature viewer
(version 1.0, https://github.com/calipho-sib/feature-viewer) and
custom JavaScript-based validators for input data.
3. Results

3.1. Performance of the solvent accessibility DeepREx prediction

3.1.1. Cross-validation and blind test performance
DeepREx performance is scored using a 10-fold cross-validation

procedure on our training dataset comprising 2332 proteins
sequences and a blind set with 200 protein sequences, compiled
to be non-redundant with respect to our training dataset. Results
are reported in Table 1. DeepREx is quite robust, achieving similar
performances in the two validation procedures. Overall, our
method discriminates buried from exposed residues with 82%
accuracy, 82% F1 and 0.63 MCC.

We further compared DeepREx with two recent state-of-the-art
tools, both based on deep-learning approaches: PaleAle5 [10] and
NetSurfP-2.0 [11]. PaleAle5, predicts exposure into 4 classes: E (ex-
posed), e (partially exposed), b (partially buried) and B (buried).
The threshold used by PaleAle5 authors to separate exposed (either
E or e) from buried (either b or B) residues is 25% RSA, very close to
the threshold adopted in this work. NetSurfP-2.0 directly predicts

https://github.com/calipho-sib/feature-viewer
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RSA real values: in this case we used our 20% RSA threshold to
transform these values into a binary classification.

Comparative results on the blind test and on the CASP14 dataset
are reported in Table 2. We should remark that the blind test set
may not be blind for the other methods. Remarkably, all methods
achieve a similar performance on both testing sets. DeepREx
reports the most balanced results in the blind test set, as shown
by the close values of precision and recall. When tested on the
CASP14 dataset comprising 9 free-modelling targets, performances
of all methods drop to lower values. The 9 targets are difficult to
predict since they do belong to the free-modelling CASP category,
without or with very few homologous in the data base. Nonethe-
less, the three approaches seem to have very close performances,
as highlighted by the only small differences in the MCC values.

The three methods (DeepREx, PaleAle5 and NetSurfP-2) are all
based on similar neural network architectures involving LSTMs
and/or convolutional layers. Among the three, DeepREx adopts
the simplest architecture, with only three cascading BiLSTM layers.
This ensures the lowest number of parameters for the resulting
model without affecting prediction performances that are compa-
rable among the three approaches.

Differently from the other two methods, our DeepREx predictor
has been trained on functional monomeric protein chains. This
allows to properly define solvent exposure in physiological condi-
tions and to avoid the introduction of biases in solvent exposure
computation due to conformational changes at the interfaces upon
protein complex formation. However, training only on monomers
does not limit the adoption of our model for predicting solvent
exposure of multimeric protein chains. To prove this, we per-
formed an additional experiment testing DeepREx on a set of 984
multimeric protein chains extracted from the PaleAle5 indepen-
dent dataset [10]. In this test, we registered only a slight decrease
in the accuracy. The performances of both methods are listed in
Table 2S (Supplementary Materials). This suggests that the exclu-
sion of multimeric chains from our training dataset has a very lim-
ited impact on the overall performance of DeepREx.

Finally, a reliability index (RI) can be associated to each predic-
tion by applying Eq. (1). RI close to 0 indicates a prediction output
close to 0.5 while RI close to 1 indicates that the output is close to 0
(buried) or 1 (exposed). We performed tests to assess whether the
RI value can be adopted to discriminate accurate from poor predic-
tions. Results are reported in Supplementary Table 3S and indicate
that the higher the RI value the most accurate is the prediction.
Notably, most predictions have RI values higher than 0.6. Predic-
tions with low RI values (<0.2) mostly pertain to proteins with very
few sequences in the corresponding MSA and, therefore, with a
poor input information.
3.2. The web server: DeepREx-WS

DeepREx-WS is available at https://deeprex.biocomp.unibo.it.
The server input interface accepts a single sequence in FASTA for-
mat with length ranging between 50 and 5000 residues. Upon sub-
mission the user is redirected to the page where results will be
Table 2
Comparison of DeepREx and other protein solvent accessibility predictors on the blind tes

Method Dataset Precision

DeepREx BlindTest 0.82
PaleAle5.0 [10] BlindTest 0.78
NetSurfP2.0 [11] BlindTest 0.92
DeepREx CASP14 0.87
PaleAle5.0 [10] CASP14 0.90
NetSurfP2.0 [11] CASP14 0.81

For index definition see section 2.1.5.
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available after job completion. This page automatically refreshes
every 60 s and shows to the user the current status of the job
(queued or running). The server also provides the user with a uni-
versal job identifier, which can be thereafter used to retrieve job
results. The result page (Fig. 2) provides information about the
job, including i) the identifier, ii) submission and completion time,
iii) protein ID, iv) protein length and v) counts of buried and
exposed predictions. After that, the output of the predictor is
shown using an interactive viewer along the submitted protein
sequence as well as in tabular format.

The following information is reported both in track and tabular
form:

i) DeepREx output as two-class prediction of solvent exposure
(E = exposed, B = buried).

ii) The RI associated to the DeepREx prediction.
iii) The Kyte-Doolittle hydropathy score [42], averaged over a

window of five residues.
iv) The conservation index computed as in Equation (2).
v) The three-class prediction of secondary structure by PYTHIA

[26].
vi) The five-class flexibility prediction provided by MEDUSA

(0 = rigid, 4 = flexible) [25].
vii) The two-class prediction of intrinsically disordered regions

provided by MobiDB-lite3.0 (S = structured, D = disordered)
[27].

The feature viewer allows to navigate the sequence, visualizing
the different predicted features along it. The user can zoom to
specific regions and export a picture of the current visualization
in PNG format.

Tabular data can be sorted according to any one of the reported
outputs. Moreover, users can activate and combine filters for resi-
due type, exposed or buried positions, reliability index, conserva-
tion index, flexibility level, secondary structure and disordered
regions.

All results can be downloaded in Tab-Separated Values (TSV)
format. If one or more filters are active, the downloaded TSV will
report only results for selected residues.
3.3. DeepREx-WS output features

In this section we analyze the relation between solvent expo-
sure and other features included in the DeepREx-WS output, com-
prising, as detailed above, hydrophobicity (Kyte-Doolittle),
conservation index from MSA, flexibility (MEDUSA [25]), sec-
ondary structure (PYTHIA [26]) and disorder (MobiDB-Lite3.0
[27]).

All the correlation analyses (except for protein disorder) were
performed on the 200 protein sequences included in our blind test
(Table 3). Overall, the 200 proteins contain 56,206 residues, 29,068
and 27,138 of which are buried and exposed, respectively, in their
experimental 3D structure. On this set DeepREx performs quite
well, achieving a prediction accuracy of 82% and a MCC of 0.63
t set and CASP14 targets.

Recall F1 Q2 MCC

0.80 0.82 0.82 0.63
0.85 0.82 0.82 0.65
0.77 0.82 0.83 0.66
0.76 0.81 0.79 0.57
0.72 0.80 0.78 0.58
0.89 0.85 0.81 0.59

https://deeprex.biocomp.unibo.it


Fig. 2. A screenshot of the DeepREx-WS result page.
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(Table 2). The 200 proteins have a negligible disorder content
according to MobiDB (less than 1%).

For the evaluation of the correlation between exposure and dis-
order we collected a dataset of 88 human proteins extracted from
the DisProt database [43] and endowed with a disorder content
ranging from 10% to 30%. We only compute correlation with
5796
respect to predicted exposure, since for disordered regions which,
by definition, lack PDB structures, we cannot compute real solvent
accessibility.

For what concerns secondary structure predictions, we report
three different correlations between exposure and alpha-helix,
beta-strand and coil predicted content, respectively.



Table 3
Pairwise Pearson’s Correlation Coefficients (PCC) between predicted solvent exposure
and the other features.

Feature PCC with real
solvent
exposure (a)

PCC with
predicted solvent
exposure (a)

Flexibility (MEDUSA [25]) 0.56�0.06 0.58�0.08
Alpha-helix (PYTHIA [26]) �0.10�0.10 �0.11�0.11
Beta-strand (PYTHIA [26]) �0.20�0.10 �0.21�0.10
Coil (PYTHIA [26]) 0.24�0.08 0.25�0.08
Conservation from MSA �0.37�0.11 �0.39�0.11
Hydrophobicity (Kyte-Doolittle [42]) �0.23�0.09 �0.24�0.10
Disorder (MobiDB-Lite3.0 [27]) (b) – 0.27�0.11

(a) Average PCC computed per-protein and associated Standard Deviation values.
(b) Correlation computed on 88 proteins from DisProt [43] with disorder content
ranging from 10% to 30%.
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All correlation results are shown in Table 3 and are calculated
per protein and then averaged.

Residue flexibility as predicted by MEDUSA well correlates with
both real and predicted solvent exposure values (in Table 3, first
line, average PCCs are 0.58 and 0.56, respectively). This can be par-
tially explained by considering that MEDUSA adopts crystallo-
graphic B-factors as proxies for residue flexibility, and that these
values tend to be higher at the protein surface. However, the cor-
relation is not perfect, suggesting that the two features (i.e., resi-
due solvent accessibility and flexibility) provide complementary
information which can be profitably merged for a better under-
standing of residue structural properties from sequence.

Average correlation coefficients between exposure and helix
and strand motifs are negative and close to 0, considering the sig-
nificant deviations from the mean (in Table 3, second and third
lines, respectively). This may indicate that exposed residues (both
real and predicted) are not preferentially placed in helix or strand
regions. Correlations with coils are slightly positive (in Table 3,
fourth line), suggesting a weak propensity of exposed residues
for coil regions.

Exposed residues (either real or predicted) tend to be localized
in non-conserved positions, as highlighted by moderate anti-
correlation reported in Table 3 between predicted and real solvent
accessibility and conservation index (fifth line, average PCCs are
�0.39 and �0.37, respectively). Moreover, as expected, solvent
exposure anti-correlates with respect to hydrophobicity (in Table 3,
sixth line, average PCCs are �0.24 and �0.23). Again, these results
suggest that solvent accessibility cannot be completely explained
by conservation or residue hydrophobicity alone, justifying the
integration/combination of the different features for residue struc-
tural/functional characterization.

Finally, a modest correlation (PCC = 0.26) of exposure is also
observed with protein disorder on a dataset of 88 proteins
extracted from DisProt [43]. This may indicate a slight propensity
of disordered regions for exposed positions.

Although the size of our protein sets is limited, the results pre-
sented in this section suggest that protein solvent exposure posi-
tively correlates with protein flexibility and negatively correlates
with hydrophobicity and conservation. In general, all these fea-
tures provide complementary information on residues and can be
then combined to characterize proteins from a structural and func-
tional point of view. This can be useful in many contexts such as
protein surface engineering, where one looks for residues placed
at the protein surface to be selected as candidate for site-specific
mutagenesis. Routinely, selected positions are exposed residues
characterized by low conservation indexes (in order to avoid func-
tionally important sites) and placed in flexible loops. Starting from
protein sequence, the combination of predicted exposure, flexibil-
ity and conservation can be helpful to reduce the search space in
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protein surface engineering. For instance, in our dataset of 200 pro-
teins, selecting residues predicted as exposed, having a low conser-
vation index (residue conservation lower than the median for each
protein) and flexible (MEDUSA value � 3) we obtain 12,068 resi-
dues, representing 21% of the total number of residues. This allows
to significantly restrict the search space of candidate positions for
surface engineering particularly when 3D structure is lacking.

3.4. Case study: DeepREx-WS to assist surface engineering

In this section, we benchmark DeepREx-WS in the context of
protein surface charge engineering with an example. Surface
charge engineering is particularly important for the industrial
use of biocatalyst. Recently, much attention has been focused on
halophilic enzymes that can be adopted in hypersaline environ-
ments (e.g., brines, ionic liquids or ionic detergents) [21]. Putative
enzymes for the use in high-salt conditions have been traditionally
identified among those available in natural systems. An alternative
approach consists in the induction of halotolerance into an existing
biocatalyst possessing the required features in terms of catalytic
activity. Following this trend, in a recent study [21], authors con-
sidered the bovine carbonic anhydrase II (bCAII, UniProtKB:
P00921) for the rational design of halotolerance by protein surface
engineering. Specifically, in order to enhance bCAII halotolerance,
authors adopted one of the possible mechanisms present in natural
halophilic enzymes: the increase of the abundance of acidic resi-
dues in the protein surface. By this, 18 positions were identified
and mutated into negative residues, after a rational choice proce-
dure based on the available PDB bCAII structure (1V9E). The selec-
tion of positions to be mutated is not exhaustive and integrates
considerations on solvent accessibility and/or side-chain steric
bulks, and on the residue conservation in a multiple sequence
alignment generated using 50 homologous sequences. The avail-
ability of the three-dimensional structure provides a large amount
of information. However, what if the structure is not available as it
is for many proteins? DeepREx-WS can assist the choice of residues
to be mutated without the help of the structure. We submitted the
260-residue long sequence of the bCAII to the server and filtered
the results to select possible positions for mutation into negative
residues (Glutamic or Aspartic acid). Remarkably, the exposure
prediction reaches a high MCC value (0.81). Mimicking the rational
procedure described in [21] and considering the DeepREx-WS out-
put for the whole protein sequence, we can select residues pre-
dicted as exposed, obtaining 139 positions, 112 of which are
different from Glutamic or Aspartic acid, and then reducing the
search space to 43% of the protein residues. All the 18 positions
from [21] are included in this set. If we add a filter on protein con-
servation, selecting only lowly conserved residues (CI lower than
the median on the protein equal to 0.2), we can further restrict
to 78 possible target positions (30% of the sequence). Out of the
18 positions considered in [21], 13 are included in the set of 78
positions selected. Five out of 18 positions are not retained in
our selection. Two of them (G8 and N24) have a conservation index
(0.22) only slightly higher than the threshold used here (0.20). The
remaining 3 positions (N62, N252 and Q254) are weakly variable in
the MSA used in [21] and their selection in the study does not take
into consideration conservation.

If exposed positions are intersected with most flexible ones
(MEDUSA score equal to 3 or 4), 66 positions are selected, corre-
sponding to 25% of the sequence. This set contains 12 out of 18
positions selected in [21]. Out of the 6 not included positions, 3
are predicted with a medium flexibility level (MEDUSA score equal
to 2) and 3 are predicted with limited flexibility (MEDUSA score 1).
Remarkably, none of them are predicted as rigid (MEDUSA score 0).

In Table 4 we report the complete output of DeepREx-WS for
the 18 positions of interest reported in [20]. Interestingly, all the



Table 4
Analysis of relevant positions of the bovine carbonic anhydrase II protein (UniProtKB:P00921) reported in [21] with the DeepREx-WSs.

Pos Res SE(a) RI(b) HP(c) CI(d) Flexibility(e) Disorder(f)

8 G E 0.10 �1.84 0.22 3 S
18 K E 0.98 �1.74 0.13 3 S
24 N E 0.95 �0.22 0.22 4 S
36 K E 0.98 �0.42 0.10 3 S
39 V E 0.62 0.64 0.12 3 S
50 V E 0.23 1.62 0.13 1 S
57 R E 0.48 �1.72 0.09 1 S
62 N E 0.54 �1.28 0.32 1 S
74 Q E 0.76 �3.04 0.12 4 S
85 T E 0.95 0.08 0.16 4 S
136 Q E 0.11 �2.06 0.11 4 S
169 K E 0.96 �2.56 0.1 4 S
177 N E 0.78 �0.6 0.13 3 S
186 N E 0.91 1.34 0.14 3 S
220 Q E 0.95 �1.34 0.18 2 S
238 L E 0.17 0.88 0.16 2 S
252 N E 0.94 �2.32 0.28 3 S
254 Q E 0.75 �2.36 0.25 2 S

(a) SE = Solvent Exposure, as predicted by DeepREx. E = Exposed, B = Buried.
(b) RI = DeepREx Reliability Index, as defined in Eq. (1).
(c) HP = Kyte-Doolittle Hydrophobicity [42].
(d) CI = Conservation Index, computed as in Eq. (2).
(e) Flexibility value, as predicted by Medusa [25]. It goes from 0 (rigid) to 4 (highly flexible).
(f) Disorder annotation as retrieved from MobiDB-Lite3.0 [27]. S = Structured, D = Disordered.
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positions are correctly predicted as exposed, most of them with
high reliability. Moreover, they are all characterized by a low con-
servation index (between 0.09 and 0.32), while most of them (12
out of 18) are predicted as localized in flexible regions (MEDUSA
� 3). Altogether, these features are in line with those required by
the rational design performed in [21] and show that the
DeepREx-WS prediction can reconstruct them starting from the
protein sequence alone.

4. Conclusion

In this paper, we develop DeepREx, a novel deep-learning based
tool for annotating residue solvent exposure into two classes (bur-
ied and exposed). DeepREx performance is evaluated on a blind
dataset comprising 200 proteins and on a selected set of difficult
targets from CASP14. Results show that DeepREx is competitive
with other tools at the state-of-the-art. The method is made avail-
able as a web server (DeepREx-WS) and as a standalone tool,
including a containerized version. This makes DeepREx well-
suited for applications on large datasets and for easy integration
into higher-level workflows. The web server which integrates the
predictor of solvent accessibility (DeepREx-WS) is implemented
to allow the intersection of DeepREx outputs with other protein
features such as residue flexibility, conservation, hydrophobicity
and inclusion in intrinsically disordered regions. Our results on
200 proteins indicate that solvent accessibility well correlates with
flexibility and negatively correlates with conservation and
hydrophobicity. Disorder is apparently negligible for this analysis.
Furthermore, with the example of the bovine carbonic anhydrase II
[21] and comparing with residue selection done directly on the
protein structure, we confirm that the integration of the server
outputs can profitably allow a primary selection of candidate posi-
tions for surface residue modification starting from the protein
sequence alone. We propose our web server to highlight likely
positions in protein sequence for surface engineering and as a valu-
able alternative when protein structure is not or partially available.

5. Data and method availability

The DeepREx web server and datasets are available at https://
deeprex.biocomp.unibo.it.
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The DeepREx standalone tool Python source code is available at
https://github.com/BolognaBiocomp/deeprex. The program has
been tested with Python version 3.8. External dependencies
include the Biopython package (tested version 1.78), the Keras
(tested version 2.4.3) deep-learning library as well as a working
installation of the HHsuite (tested version 3.3.0) for multiple
sequence alignment building.

DeepREx has been also released as a Docker container available
at https://hub.docker.com/r/bolognabiocomp/deeprex. In both
cases, the program takes in input: i) a FASTA file containing one
or more sequences; ii) a valid sequence database for HHblits align-
ments; iii) a file name where an output TSV file will be written
after termination.
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