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Abstract
The recent multi-year 2015–2019 drought after a multi-decadal drying trend over Central
America raises the question of whether anthropogenic climate change (ACC) played a role
in exacerbating these events. While the occurrence of the 2015–2019 drought in Central
America has been asserted to be associated with ACC, we lack an assessment of natu-
ral vs anthropogenic contributions. Here, we use five different large ensembles—including
high-resolution ensembles (i.e., 0.5◦ horizontally)—to estimate the contribution of ACC to
the probability of occurrence of the 2015–2019 event and the recent multi-decadal trend.
The comparison of ensembles forced with natural and natural plus anthropogenic forcing
suggests that the recent 40-year trend is likely associated with internal climate variability.
However, the 2015–2019 rainfall deficit has been made more likely by ACC. The synthesis
of the results from model ensembles supports the notion of a significant increase, by a factor
of four, over the last century for the 2015–2019 meteorological drought to occur because of
ACC. All the model results further suggest that, under intermediate and high emission sce-
narios, the likelihood of similar drought events will continue to increase substantially over
the next decades.

Keywords Drought · Central America · Large ensemble simulations · Climate change

1 Introduction

Most of Central America—here loosely defined as the continental land between southern
México and Panamá—experienced below average rainfall between 2015 and 2019 (Fig. 1a,
Fig. S1). This prolonged rainfall deficit resulted in severe and continued drought conditions
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Fig. 1 Recent multi-year meteorological drought in Central America. a Map of 2015–2019 May-to-
September precipitation anomaly (GPCC dataset; Schneider et al. 2013) over Central America, relative to
the 1921–1970 climatological mean. The grey outline denotes the study region used to define the Summer
Rainfall Index (SRI). b Histogram of annual MJJAS SRI anomalies and c 5-yr mean MJJAS SRI anomalies.
d Five-year running mean of MJJAS SRI anomalies for four observational products (GPCC, CRU, CMAP,
and CHIRPS, see Section 2.1 for details on these datasets). The horizontal dashed line denotes the lowest
observed 5-year anomaly (2015–2019)

affecting the livelihoods of millions of people living in Guatemala, El Salvador, Honduras,
Nicaragua, and Costa Rica (Palencia 2014; Moloney 2018; Masters 2019). Specifically,
years 2019, 2015, and 2018 have seen the largest (in magnitude) negative anomalies of sum-
mer precipitation in Central America over the last century (Fig. 1b). Furthermore, the period
2015–2019 experienced the lowest 5-year mean May-September (MJJAS) precipitation
(Fig. 1c) over the last century.

The 2015–2019 exceptionally dry period is at the end of an approximately 40-year time
period (from the late 70s’ to present) characterized by a negative trend in summertime pre-
cipitation (Fig. 1d, Fig. S2, see also, e.g., Neelin et al. 2006). Summer precipitation over
Central America shows a marked decadal variability resulting from modes of large scale
variability like El Niño-Southern Oscillation, the Atlantic Multidecadal Oscillation, and the
North Atlantic Oscillation (Giannini et al. 2000, 2001; Wang 2007; Hastenrath and Polzin
2013; Muñoz-Jimènez et al. 2019; Anderson et al. 2019; Hidalgo et al. 2019). Climate pro-
jections from global and regional models consistently suggest a reduction of summertime
precipitation between May and September in Central America by the end of this century,
along with higher summer temperatures (Giorgi 2006; Rauscher et al. 2008; Fuentes-Franco
et al. 2015; Hidalgo et al. 2013; Almazroui et al. 2021; Depsky and Pons 2020). This
raises the question of whether Anthropogenic Climate Change (ACC) has contributed to
the 2015–2019 meteorological drought and to the 40-year negative trend, increasing their
likelihood.

Most of Central America features a monsoonal climate, with the summertime wet sea-
son characterized by a bimodal regime with two precipitation peaks in June and September
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separated by the midsummer drought (MSD; Magaña et al. 1999; Gamble et al. 2008, see
also Fig. S1). In areas of Central America on the side of the Caribbean Sea, the precipitation
distribution is more uniform during the wet season though, with higher annual accumula-
tions compared to the rest of Central America (Alfaro 2002; Martinez et al. 2019). Because
of the highly seasonal character of Central American rainfall, even small changes in rain-
fall can have a substantial impact on regional water resources and local rain-fed agriculture.
Indeed, crop shortages due to extreme drought conditions over the last decade and the sub-
sequent impoverishment have been identified as the main driver of mass migrations from
Central America in recent years (World Food Programme 2020). Climate migration from
Central America is expected to continue and ramp up in the next decades due to stronger
impacts of global warming combined with rapid population growth (Rigaud et al. 2018;
Hidalgo and Alfaro 2012).

Observational evidence of more prolonged MSDs along with more dry days has been
recently discussed in the literature (Maurer et al. 2017; Anderson et al. 2019), but there has
been little progress so far in attributing these changes to ACC. Herrera et al. (2018) exam-
ined the 2013–2016 Pan-Caribbean drought, which affected mostly the Caribbean islands,
and concluded that ACC played a major role in increasing the drought’s severity through
the effects of higher temperature on potential evapotranspiration. This made its attribution
to ACC somewhat less problematic, given the observed, long-term warming of the region
(Aguilar et al. 2005; Pachauri and Meyer 2014). Attribution of a meteorological drought to
ACC is instead more troublesome, since this is determined by local and large-scale circu-
lation changes which, in turn, are generally less directly controlled by temperature (NAS
2016). We have no evidence of specific attribution studies connecting ACC to the recent
2015–2019 meteorological drought in Central America. Neelin et al. (2006) analyzed the
recent multi-decadal summer drying trend over Central America and concluded that the
observed trend cannot be unambiguously attributed to ACC, that is, it cannot be excluded
that it is due to natural interdecadal variability.

This study has two objectives. First, to determine if the recent drying trend observed from
the late 1970s is attributable to ACC. Second, to evaluate whether the 2015–2019 Central
American meteorological drought has been influenced, i.e., made more likely, by ACC.
These two questions will be addressed from a meteorological point of view by looking at
the impact of climate change on the precipitation deficit. We realize that this is only the
first step in analyzing the drivers of a complex phenomenon like a drought, which is not
only caused by large scale circulation anomalies but also by complex interactions of local
precipitation, wind, temperature, land use, and water management (Mishra and Singh 2010;
AghaKouchak et al. 2021).

We will use five different large ensembles—including two high-resolution (i.e., 0.5◦ hor-
izontally) ensembles—to estimate the contribution of ACC and distinguish it from that of
internal variability. Large ensembles of climate models (Deser et al. 2020) are very useful
for climate risk and attribution studies (Otto et al. 2018; Swain et al. 2018; Pascale et al.
2020) as they provide thousands of years of data and thus allow for a direct reconstruc-
tion of the underlying probability distribution of hydroclimatic extremes without relying
on a hypothesized statistical model of extremes (Van der Wiel et al. 2019). Central Ameri-
can summer rainfall has large magnitude interannual and decadal variability (Giannini et al.
2000, 2001; Wang 2007; Hastenrath and Polzin 2013; Muñoz-Jimènez et al. 2019; Anderson
et al. 2019) and a large ensemble is, thus, also a powerful method to isolate, at the decadal
timescale, internal variability from the forced signal (Kay et al. 2015; Deser et al. 2020).
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2 Data andmethods

2.1 Observation data

To take into account uncertainty in observed precipitation over Central America, four dif-
ferent observational precipitation datasets are used in this study: (1) the Global Precipitation
Climatology Centre (GPCC) dataset version 7, at 0.5◦ horizontal resolution (Schneider et al.
2013), (2) the Climate Research Unit high-horizontal resolution grids of monthly rainfall at
the University of East Anglia, version 3.24, at 0.5◦ horizontal resolution (Harris et al. 2013),
(3) the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), at 0.05◦
horizontal resolution (Funk et al. 2015), and (4) the CPC Merged Analysis of Precipitation
(CMAP), at 2.5◦ (Xie and Arkin 1997) horizontal resolution.

For atmospheric variables, like, e.g., the 925 hPa winds, we employ the ERA5 reanaly-
sis (Hersbach et al. 2019). ERA5 is the most recent reanalysis product from the European
Centre for Medium-Range Weather Forecast and it features major improvements such
as higher horizontal and vertical resolution (0.28◦ and 139 vertical levels), an updated
and enhanced version of the Integrated Forecast System (IFS) Earth system model and
associated observational assimilation system (Hersbach and Dee 2016).

Sea surface temperatures (SSTs) are taken from the Extended Reconstructed Sea Sur-
face Temperature version 5 (ERSSTv5) dataset (Huang et al. 2017), which is a global
monthly SST dataset from 1854 to present on a 2◦ × 2◦ grid derived from the International
Comprehensive Ocean-Atmosphere Dataset.

2.2 Modelling data

We use a suite of large ensemble simulations from the the Seamless System for Prediction
and EArth System Research (SPEAR; Delworth et al., 2020). SPEAR is the newest model-
ing system for seasonal to multi-decadal prediction developed at NOAA Geophysical Fluid
Dynamics Laboratory (GFDL) and shares underlying component models with the CM4 cli-
mate model (Held et al. 2020). The SPEAR atmospheric model is run at different horizontal
resolutions (atmosphere, land) in this paper: 0.5◦(SPEAR MED) and 1◦ (SPEAR LO), and
it has 33 atmospheric levels in the vertical. More details about SPEAR and the SPEAR large
ensemble can be found in Delworth et al. (2020), Lu et al. (2020), Pascale et al. (2020),
and Murakami et al. (2020). The SPEAR MED large ensemble is characterized by a hori-
zontal grid-spacing that is finer than those of most other available large ensembles, which
makes the SPEAR MED ensemble an unprecedented and unique tool to study regional
climates.

To evaluate forced vs. natural variability, we use four different numerical experiments:
(1) CTRL, a long-term control run with constant preindustrial (1850) forcing; (2) NATU-
RAL, an ensemble driven only by natural forcing (i.e., volcanic eruptions and solar cycles);
(3) ALLFORC4.5, an ensemble driven by observed anthropogenic and natural forcing up
to 2014 (HIST), and then according to the Shared Socioeconomic Pathway (SSP2-4.5)
developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6) (O’Neill et al.
2017; Eyring et al. 2016; Riahi et al. 2017); and (4) ALLFORC8.5, an ensemble driven by
observed anthropogenic and natural forcing up to 2014 (HIST) and then according to the
Shared Socioeconomic Pathway (SSP5-8.5). The SSP5-8.5 (“high emissions”) represents
the high end of the range of future scenarios (radiative forcing by 2100 of 8.5 W m2) and it
updates CMIP5 RCP8.5 (Kriegler et al. 2017). SSP5-8.5 is compatible with a future devel-
opment heavily based on fossil fuels. The SSP2-4.5 (“middle of the road emissions”) instead
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sits in the middle of the range of future forcing pathways and updates the CMP5 RCP4.5
(O’Neill et al. 2017).

We also analyze four additional large ensembles to assess model uncertainty:
SPEAR LO, the Forecast-Oriented Low Ocean Resolution model with flux adjustment,
FLOR FA (Zhang and Delworth 2018), the Community EARTH System Model Large
Ensemble, CESM-LENS (Kay et al. 2015), and the Max Planck Institute Grand Ensemble,
MPI-GE (Maher et al. 2019). While SPEAR LO forced runs follow the CMIP6 SSP5-8.5,
the last three ensembles are available with various CMIP5 scenarios. Table 1 provides addi-
tional details of the SPEAR and other models’ experiments used in this study. Although
developed following different protocols (CMIP5 vs CMIP6) and thus being different in
the details of the future anthropogenic forcings, SSP5-8.5 and SSP2-4.5 are comparable to
RCP8.5 and RCP4.5, respectively, when evaluated on the base of carbon dioxide emissions
and radiative forcing (Kriegler et al. 2017; Meinshausen et al. 2500).

2.3 Model evaluation

An important step in multi-model analysis of regional hydroclimates is to evaluate each
model’s performance to determine which models more reliably represent the hydroclimate
of a certain region. We assessed each model’s performance in terms of (1) the annual cycle
of precipitation over Central America (Fig. S3-S4 and Table 2), (2) the amplitude of the
interannual, multi-annual, and decadal variability of the Central American summer rainfall
(Fig. S5) and ability to simulate the tail of the probability distribution of the 5-year MJJAS
rainfall anomalies (that is, multi-annual negative rainfall deficits leading to droughts like
the 2015-2019 one, Fig. S6), and (3) the ability to capture the remote SST drivers of Central
American rainfall in the Atlantic and Pacific Ocean (Fig. S7).

SPEAR MED has the most realistic representation of the Central American summer
rainfall patterns (Fig. S3) and seasonal cycle (Fig. S4) according to six different precipita-
tion metrics (Table 2), followed by SPEAR LO and FLOR FA. All models reproduce quite
well the magnitude of rainfall variability, with the exception of CESM that underestimates
it (Fig. S5). The SPEAR models best reproduce the left tail of the 5-year MJJAS rainfall
anomaly cumulative probability distribution (Fig. S6). All models capture—though exag-
gerating it—the remote influence of the Atlantic and Pacific oceans on Central American
rainfall (Fig. S7), with MPI-GE and FLOR FA exaggerating the influence of the tropical
Pacific and partially missing that of the eastern tropical Atlantic. Collectively, these results
suggest that all models used in this study are appropriate tools for use in characterizing
future changes in regional precipitation over Central America, with the SPEAR MED and
SPEAR LO the best performing models.

Finally, we also evaluate if the models’ historical trends of MJJAS rainfall are consistent
with observations over Central America over the period 1979–2019 (Fig. S8). To do so, we
compute rainfall trends over the period 1979–2019 in GPCC and compared them with indi-
vidual members of the ALLFORC8.5 ensembles over the same time period. If the observed
trend at one grid point was within the range of those simulated by the 30 ensemble mem-
bers, then we said that the model is consistent with observations in that grid box. We found
that models are consistent with observations over most of the grid points (Fig. S8).

2.4 Climatological indexes and event definition

As precipitation in Central America is mostly concentrated from May to September, we use
a Central American Summer Rainfall Index (SRI hereafter) to monitor the interannual and
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monthly rainfall anomalies. The SRI is defined as the area-averaged MJJAS precipitation
over all land grid points between 11◦N–18◦N and 95◦W–84◦W (Fig. 1a). This is the area
most affected by the 2015–2019 meteorological drought (Fig. 1a), and will therefore be our
study region.

A more intense Caribbean Low-Level Jet (CLLJ) tends overall to reduce summertime
precipitation, especially over the west side of Central America (Wang 2007; Amador 1998;
Mo et al. 2005; Cook and Vizy 2010).

To monitor the correlation between the CLLJ and SRI, we introduce, following the defi-
nition of (Wang 2007), the CLLJ index as the area-averaged MJJAS 925 hPa zonal wind in
the region represented in Fig. 2a (12.5◦N–17.5◦N, 80◦W–70◦W) multiplied by −1. This is
justified by the fact that easterly winds feature a maximum (larger than 13 m/s) in the lower
troposphere at about 925 hPa (Fig. 2a). The 5-year running mean of the CLLJ index is shown
in Fig. 2b. The correlation between CLLJ and SRI in summer is −0.58 in observations, with
models generally reproducing such relationship well (Table 2).

Interannual variability of precipitation over Central America is affected by interactions
with Pacific and Atlantic Ocean SSTs. Warm Atlantic-cool Pacific (cool Atlantic-warm
Pacific) conditions cause a weakening (strengthening) of the CLLJ and favor increased
(decreased) precipitation over Central America (Taylor et al. 2002, 2011; Fuentes-Franco
et al. 2015, see also Fig. S6).

Fig. 2 Anomalously strong Caribbean low-level jet and tropical Atlantic-tropical Pacific temperature differ-
ence. a 2015–2019 zonal wind anomaly at 925hPa (dataset: ERA5). Contours show the climatological mean
(1979–2019) of the zonal wind component, which highlights the position of the Caribbean low-level jet. b
Five-year running mean of the Caribbean low-level jet index (Wang 2007) (dataset: ERA5). c 2015–2019 SST
anomaly relative to the 1921–1970 climatological mean (contours). The long term positive trend is removed
to better highlight the interbasin temperature difference (dataset: ERSSTv5). d Five-year running mean of the
the Tropical Pacific-Tropical Atlantic SST difference index (Fuentes-Franco et al. 2015). Dataset: ERSSTv5
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To quantitatively define the relationship between SRI and the Tropical North Atlantic
(TNA)-Tropical North Pacific (TNP) SST difference, we calculate the TNATNP SST index
(TNATNP hereafter) as defined by Fuentes-Franco et al. (2015). The TNATNP is the dif-
ference between the TNA SST averaged in the region between 5 to 22◦N and from 85 to
35◦W, and the TNP SST averaged in the region between 9 to 27◦N and from 110 to 90◦W
(Fig. 2c). As expected, the TNATNP index is positively correlated to SRI (0.6, Table 2),
with models generally featuring an even larger correlation (between 0.7 and 0.8). The 5-
year running mean of the TNATNP anomaly index indicates the persistence of conditions
characterized by TNP warmer than the TNA (Fig. 2d).

Hereafter, we refer to the 2015–2019 Central American SRI negative anomaly (Fig. 1d)
as “prec event 1519”. Averaging all four observation datasets, we obtain a 5-year anomaly
of −37 mm/month, which is the largest (in magnitude) measured over the observa-
tional record (i.e., 1921–2019). Similarly, for the CLLJ and the TNATNP, we refer to
the mean 2015–2019 MJJAS CCLJ and 2015–2019 MJJAS TNATNP anomalies as the
“cllj event 1519” and ‘tnatnp event 1519”. The values of these anomalies are 14.8 m/s and
−0.23 K, respectively (Fig. 2b and c). The CLLJ has been persistently intense during 2014–
2019, resulting in record high values of the 5-year running mean values of the CLLJ index
(Fig. 2b). Likewise, the mean 2015–2019 SSTs in the tropical Pacific were generally higher
than the SSTs in the tropical Atlantic by about 1 K (Fig. 2c), resulting in large negative
values of TNATNP (Fig. 2d).

2.5 Estimate of probability and risk ratios

The probability of occurrence of prec event 1519 is estimated according to the empirical
probability distribution of the 5-year SRI anomalies in the conterfactual climate, i.e., a cli-
mate undisturbed by anthropogenic influence (e.g., NAS 2016; Hauser et al. 2017). As noted
by Hauser et al. (2017), choices of different counterfactual climates (e.g., pre-industrial
vs. early twentieth century) can lead to contradicting results. We account (when possible,
see Table 1) for three counterfactual climates: (1) CTRL, (2) NATURAL, and (3) PAST.
PAST employs historical simulations forced with observed boundary conditions (i.e., HIST)
over time period (1921–1970) when the anthropogenic impact on climate was substantially
smaller than today.

As in Pascale et al. (2020), to build the CTRL empirical probability distribution, we
randomly selected a 50-year and 5-year sequence (nonoverlapping) and then calculate the
anomaly of the 5-year period relative to the 50-year climatology. This choice mimics the
2015–2019 mean minus the 1921–1970 mean. We then repeat this process 10,000 times to
form a distribution of the 5-year SRI anomalies. We deal with the NATURAL runs in the
same way after concatenating all the ensemble members. For the HIST runs, we concatenate
the ensemble members after taking years 1921–1970.

To evaluate the decadal change in the probability of occurrence during the historical,
present (factual climate) and future projected climate, we empirically estimate a decadal-
varying probability distribution of the 5-year MJJAS rainfall anomalies (relative to the
1921–1970 mean) using the ALLFORC experiments (HIST and SSP5-8.5 or SSP2-4.5 in
the case of SPEAR MED). Following the method used in Pascale et al. (2020), we estimate
the empirical probability distribution for a 20-year time window centered around the refer-
enced year (so, for example, decade 2010 is built from all years from 2001 to 2020). This
choice is a trade-off between a time period not too wide (in order to assume the stationarity
of the probability distribution) and a number of instances large enough to allow for suffi-
ciently accurate estimates of probabilities of rare events (e.g., 100-y return time). Once we
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have the decadal probability distribution, we can estimate the probability of occurrence, for
each 20-year period, of prec event 1519 for any random 5-year segment within the 20-year
time window. We repeat this calculation every 5 years, that is, 1921–1940, 1926–1945, ...,
2076–2095, 2081–2100, to obtain a time-varying estimate of the probability.

We estimate the risk ratio of prec event 1519 by computing the ratio of the probability
that the MJJAS precipitation deficit is below the chosen threshold in the factual world and
the probability that the MJJAS precipitation deficit is below the same threshold in the coun-
terfactual world. For the probability of the factual world (at the time of the event), we take
a weighed mean of the probabilities for the 2015 (i.e., 2006–2025) and 2020 (2011–2030)
decades. The 95% confidence intervals in these probabilities were estimated by applying
bootstrap-with-replacement resampling. The same approach described so far is applied to
the cllj event 1519 and tnatnp event 1519 events.

3 Results

3.1 Recent 40-year trend

The recent negative rainfall trends are common to most of Central America (Fig. 3a and
Fig. S2). Previous studies (Neelin et al. 2006) found that simulations from climate models of
the CMIP3 archive (Meehl et al. 2007) generally show a good intermodel agreement on this
pattern. This led Neelin et al. (2006) to wonder whether this regional precipitation anomaly
is a consequence of ACC. After analyzing CMIP3 (Meehl et al. 2007) models preindustrial
runs, they concluded that attribution to ACC of the observed negative trend is plausible but
inconclusive.

Here, we first evaluate how likely the 1979–2019 SRI trend is in a counterfactual climate
with no anthropogenic influence, i.e., in the long term control runs (CTRL, Table 1). The
CTRL 40-year trend distributions (Fig. 3b) suggest that this is indeed a rare yet possible
event in four out of five model ensembles analyzed in this study (0.9% in SPEAR MED,
0.6% in SPEAR LO, 0.07% in FLOR FA, 0% in CESM and 1.1% in MPI-GE). Differences
in these probability estimates might depend on the model’s ability to reproduce the vari-
ety of trends due to internal variability. For example, CESM largely underestimates natural
variability of Central American summer rainfall compared to observations (standard devia-
tion of 25 mm/month vs 33 mm/month). Nevertheless, we can state that a 40-year trend like
that observed recently is likely to be possible even without any anthropogenic influence on
the climate.

As a second step of our analysis, we then analyze the 1979–2019 trends from the ALL-
FORC ensembles (Table 1), whose forcing includes both natural and anthropogenic effects.
Fig. 3c shows the distribution of SRI 1979–2019 trends for each model ensemble. These dis-
tributions are centered around their forced value, with their widths determined by internal
climate variability. For each model, the trend’s ensemble mean, which represents the forced
signal, is close to zero (between −0.3 and 0 mm/month/year) and substantially smaller than
observations (−1.3 mm/month/year). This indicates a small forced signal relative to the
noise generated by internal variability. Large negative trends comparable to the observed
trend are achieved only by a few ensemble members (Fig. 3c).

Finally, for models for which we have the NATURAL experiments (SPEAR MED and
FLOR FA), we compare the trend distributions across the ensemble members for the ALL-
FORC and NATURAL experiments (Fig. 3d). This can be very informative if we recall that
ALLFORC and NATURAL differ only by the presence of anthropogenic forcing. Thus, any
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Fig. 3 Multi-decadal drying trend in Central America. a 1979–2019 trend in MJJAS precipitation totals
(GPCC dataset; Schneider et al. 2013). b Probability distribution of 40-year SRI trends from unforced,
long-term CTRL runs (see Table 1). The observed SRI negative trend, with its 95% significance confidence
interval, is shown by the black vertical line and grey bar. c Ensemble distribution of the 1979–2019 SRI
trends. The trend ensemble mean, for each ensemble, is shown by the color marks on the upper x-axis. The
pale blue denotes the range of the forced (i.e., ensemble mean) trends. d Ensemble distribution of the 1979–
2019 SRI trends from the ALLFORC and NATURAL (Table 1) ensembles. Precipitation trends are estimated
using least-squares linear trends for each grid point. Significance of trends at the 5% level is assessed through
a t-test

significant difference in the two distributions is to be attributed to anthropogenic forcing.
We find that, for both SPEAR MED and FLOR FA, the two distributions are qualitatively
very similar (Fig. 3d). A Kolmogorov-Smirnov test performed on the two arrays of trends,
for each model, reveals that the probability that the two arrays are drawn from the same dis-
tribution is 94% for both models. This test so does not pass the 5% level, although it falls
close to it (i.e., 95%). This results so suggests, at least for these two models for which we
have NATURAL, that the addition of anthropogenic forcing to natural forcing does not lead
to a substantial difference in the 40-year trends distribution across the ensemble.

The overall evidence presented so far suggests that the observed recent drying trend
may be mostly due to internal, multi-decadal variability rather than ACC. However, we
admit that we cannot totally exclude the role of ACC. This is because we are unable to
make a more precise statement (of the form “ACC has increased the likelihood of the 1979-
2019 SRI trend by X times”) given the scarcity of points, thirty, used to reconstruct the
probability distribution of the 1979–2019 SRI trends (Fig. 3d). Instead, we would have
needed hundreds to thousands of equivalent (i.e., under the same 1979-2019 natural only
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and natural plus anthropogenic forcing) estimates of the 1979–2019 SRI trends. These
would have then allowed us to reconstruct reliably the probability distribution of the 1979–
2019 SRI trends and so estimate the probability of having a 40-year trend smaller (i.e.,
more negative) than the one observed in 1979–2019 in both the factual and counterfactual
climate.

3.2 Attribution of the 2015–2019 drought event

Figure 4 shows, for each model ensemble, the risk ratio of prec event 1519. These values
are obtained by the ratio of the probabilities of occurrence of prec event 1519 in the factual
world and the probability of occurrence of prec event 1519 in three different counterfactual
climates (CTRL, NATURAL and PAST, see Section 2.5). For SPEAR MED, we have two
different sets of values, depending on whether years 2015–2030 are drawn from SSP2-4.5
or SSP5-8.5 (Fig. 5a).

All ensembles, with the exception of SPEAR MED ALLFORC4.5, indicate a risk ratio
significantly larger than one for all three counterfactual climates. The difference between
SPEAR MED ALLFORC4.5 risk ratio and SPEAR MED ALLFORC8.5 risk ratio origi-
nates from years 2015–2030, which lead to significantly different values of the probability
of occurrence of prec event 1519 (Fig. 5a). These differences may be in part explained by
the differences in radiative forcings between SSP2-4.5 and SSP5-8.5, which are minimal
until 2020–2030 and start differing substantially only afterwards (Riahi et al. 2017). Dif-
ferences may be also attributable to the limited number of ensemble members (30), which
does not allow a complete quantification of internal variability (Fig. 5a).

For the second part of the twenty-first century, the probabilities of occurrence of
prec event 1519 in SSP2-4.5 and SSP5-8.5 diverge substantially (Fig. 5b). In SSP2-4.5
(middle of the road pathway) it remains below 20% by the end of this century. Given a
probability of around 2% of prec event 1519 in the counterfactual climates, this implies a
risk ratio which remains below 10. In SSP5-8.5 (high emission scenario), this probabilities

Fig. 4 Risk ratios for prec event 1519 in 2015–2019 (PRES) for all ensembles and for all the available
counterfactual climates (PAST, CTRL, NATURAL). Bars show the median and the 95% uncertainty intervals
on a logarithmic axis. NATURAL runs are not available for the CESM and MPI-GE. A simple average is
used to synthesize the results
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Fig. 5 Probability of occurrence of a 5-year MJJAS rainfall anomaly equal to or worse than in 2015–2019
in HIST, SSP2-4.5, and SSP5-8.5 in SPEAR MED. Shading denotes the 95% confidence interval from boot-
strap resampling. The red constant line denotes the CTRL probability for such an event, and the red constant
dashed line is from the NATURAL run after concatenating all 30 ensemble members

increases swiftly, reaching 90% by the end of the century, that is a risk ratio of nearly 40.
SPEAR LO and FLOR FA share similar values (median values between 2 and 5). For MPI
(100 ensemble members), we use RCP8.5 for years 2005–2030, but we find no significant
differences when RCP4.5 and RPC2.6 are instead used (not shown).

Combining all different risk ratios for different models, using a simple average to syn-
thesize the results, the probability of an event like the observed 2015–2019 meteorological
drought has increased by a factor of 4 relative to the two counterfactual climates PAST and
CTRL, with confidence intervals (3, 7) and (3.5, 5) respectively, and by a factor 1.5 (0.95,
2) relative to NATURAL. Let us note, however, that the value for NATURAL is obtained
averaging only three cases, so we should bear in mind that is a less comprehensive and
somewhat biased result. Overall, results summarized in Fig. 4 suggest that ACC has signifi-
cantly increased the likelihood of a multi-year drought like that occurred in Central America
between 2015 and 2019.

3.3 The role of the CLLJ and Tropical Atlantic-Tropical Pacific temperature SST
differences.

The 2015–2019 meteorological drought unfolded in association with a very strong CLLJ
(Fig. 2a) and a negative TNATNP (Fig. 2c). In particular, the 5-year mean of the CLLJ index
features the largest positive anomalies over the entire ERA5 time span (Fig. 2b) while the
5-year mean of TNATNP features a negative value equalled only other two times in the last
hundred years (Fig. 2d).

The observed mean 2015–2019 925 hPa zonal wind anomalies and SST anomalies have a
strong resemblance to those projected for the end of this century under the highest emission
scenario (Fig. 6). Strengthening of the CLLJ and faster warming up of the tropical Pacific
than the tropical north Atlantic is indeed a robust feature across climate models (Rauscher
et al. 2008, 2011; Fuentes-Franco et al. 2015). It is therefore natural to ask whether the
likelihood of the unusual 2015-2019 CLLJ and TNATNP anomaly was increased by ACC.
To address this question, we estimate the probability of occurrence of cllj event 1519 and
tnatnp event 1519 (Section 2.4) in the factual and counterfactual climates. We perform this
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Fig. 6 SPEAR MED projected strengthening of the Caribbean low-level jet and tropical Atlantic-tropical
Pacific temperature difference. a Projected (2071–2100 vs. 1921–1970) June-July anomalies in the zonal
component of the 925 hPa zonal wind (black contours show the climatological easterly component) under
SSP5-8.5. b Projected (2071–2100 vs. 1921–1970) MJJAS SST anomalies (black contours show the
climatological mean) under SSP5-8.5

analysis only for SPEAR MED and SPEAR LO, for which we have data readily available.
However, given the similar future projections in terms of CLLJ and SSTs, we speculate that
similar results would be obtained from other ensembles too. The CLLJ index features a long
term significant trend in both NATURAL and HIST (SPEAR MED). Since this trend is not
seen in reanalyses, and there is no long-term forcing in NATURAL which can physically
justify it, it must be a model drift unrelated to anthropogenic forcing. We therefore subtract
from the CLLJ index the trend estimated from NATURAL to both NATURAL and HIST
before estimating decadal probabilities of occurrence and risk ratios.

Figure 7 shows the risk ratio of cllj event 1519. We have contrasting results across
different counterfactual climates (e.g., in SPEAR LO) and for the same model (i.e.,

Fig. 7 Risk ratios for cllj event 1519 in 2015–2019 (PRES) for all SPEAR ensembles and for all the available
counterfactual climates (PAST, CTRL, NATURAL). Bars show the median and the 95% uncertainty intervals
on a logarithmic axis. Risk ratio values for SPEAR MED SSP2-4.5 and SSP5-8.5 differ because of the
different probability for the event15 19 during the years 2015–2030 used in the 20-year time window
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SSP2-4.5 vs. SSP5-8.5). Overall, there is not strong evidence for the 2015–2019 CLLJ
mean anomaly to be attributable to ACC. In SPEAR MED (SSP5-8.5), risk ratios of
cllj event 1519 are close to one (indicating no attribution to ACC) even though those of
prec event 1519 are clearly larger than one (Fig. 4). Similarly, in SPEAR LO, risk ratios
for prec event 1519 are clearly larger than one, but risk ratios for cllj event 1519 are larger
than one only when PAST is chosen as the counterfactual climate. This means that for
almost all cases in which prec event 1519 is attributable to ACC, the 2015-2019 CLLJ
anomaly is not attributable to ACC. While the CLLJ has not shown fluctuations unambigu-
ously attributable to ACC during 2015–2019, the decadal evolution of the probability of
cllj event 1519 in SPEAR MED suggests that this will be the case in the next few decades
(Fig. 9a and b).

Figure 8 shows the risk ratios associated with tnatnp event 1519. Results here are much
more consistent across the SPEAR models and with those about the prec event 1519
event, and they indicate that ACC has increased the likelihood of the tnatnp event 1519
by a factor 2 (with a 95% confidence interval between 1.5 and 5). The NATURAL data
are lacking for this case, although those do not generally lead to very differ results
from those of, e.g., CTRL (Fig. 7) and therefore that does not alter the validity of our
conclusions.

The emergence of the ACC impact on TNATNP is faster than that on CLJJ, as evident
from the time evolution of the probability of occurrence (e.g., Fig. 9a vs. c, b vs. d). We
conjecture that may be due to the larger level of background noise of a dynamical, atmo-
spheric field as the CLLJ as compared the more thermodynamically constrained SST field.
This leads us to speculate that—differently from SST, for which ACC is already detectable
(Chan and Wu 2015)—the signal associated with ACC on the regional circulation, specif-
ically the CLLJ, has not yet emerged from the noise of internal variability. For example,
previous work on the strengthening of the North Atlantic Subtropical High—which is con-
nected to the CLLJ, although it is not the only driver of the CLLJ—is also inconclusive
about the time of emergence of the ACC forced signal (Li et al. 2011, 2012, 2013, Diem
2013).

Fig. 8 Risk ratios for tnatnp event 1519 in 2015–2019 (PRES) for all SPEAR ensembles and for all the
available counterfactual climates (PAST, CTRL). Bars show the median and the 95% uncertainty intervals
on a logarithmic axis
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Fig. 9 a–b Probability of occurrence of a 5-yr MJJAS CLLJ index anomaly equal to or worse than in 2015-
2019 in HIST, SSP2-4.5, and SSP5-8.5 in SPEAR MED. Shading denotes the 95% confidence interval from
bootstrap resampling. The red constant line denotes the CTRL probability for such an event, and the red
constant dashed line is from the NATURAL run after concatenating all 30 ensemble members. c–d As for
a–b but for the TNATNP index

4 Discussion and conclusions

In this study, we have analyzed the recent drying trend observed from the late 1970s and
the 2015–2019 Central American meteorological drought to determine whether these two
events have been made more likely by ACC.

From the comparison of large ensembles driven by natural forcing only and natural plus
anthropogenic forcing, we conclude that the observed 1979–2019 drying trend is consistent
with internal, multi-decadal variability, although our analysis on this was not conclusive
and therefore we cannot totally exclude the role of ACC. Instead, we found strong evi-
dence that the 2015–2019 rainfall deficit was made four times more likely by ACC (Fig. 4).
Closely related to that, we also found that ACC increased the probability (1.5 to 3), for the
period 2015–2019, of large, negative SST differences between the Tropical North Atlantic
and Tropical North Pacific, which are known to drive meteorological droughts in Central
America.

At this point it is worth speculating on why we managed to attribute the 2015–2019
rainfall deficit to ACC while we did not for the 1979–2019 trend. First, as already dis-
cussed in Secttion 3.1, we are unable to quantify a risk ratio for the 1979–2019 trend
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event—and thus quantify by how many times ACC made it more or less likely—because
we cannot empirically reconstruct the probability distribution for this event due to scarcity
of data. Second, we note that the effect of ACC starts becoming noticeable on the 5-
year SRI distribution’s tail only after 2010 in SPEAR MED (Fig. 5a) and after 2000 in
FLOR FA. Therefore, while this allows us to see the effects of this climatic change on
a short-term event like prec event 1519, it may not directly lead to a detectable effect
on the 1979–2019 trend, whose estimate is based, for the most part, on years dur-
ing which the effect of ACC was not yet detectable (at least according to these two
models).

The extent of the precipitation anomaly observed between 2015 and 2019 revealed a
key role for rainfall in this multi-year drought, leading us to focus on precipitation as
the dominant variable to characterize this event. Indeed, recent studies highlight the pro-
jected precipitation reduction over Central America as the key factor in the increase of
drought risk in the coming decades (Giorgi 2006; Rauscher et al. 2008; Fuentes-Franco
et al. 2015; Almazroui et al. 2021; Depsky and Pons 2020). However, it is also impor-
tant to mention that regional ongoing warming trends (Aguilar et al. 2005; Gourdji et al.
2015) play an important role in driving enhanced evapotranspiration and thus further
exacerbating future droughts (Hidalgo et al. 2021, 2019; Alfaro-Cordoba et al. 2020).
An example of that is the 2013–2016 Pan-Caribbean drought, which was not driven by
a precipitation deficit but it was a direct consequence of exceptionally high evapotran-
spiration due to higher temperatures (Herrera et al. 2018). Furthermore, higher surface
temperature from surrounding oceans along with drier land conditions can induce stronger
lower-to-middle tropospheric stability, especially in the early summer, by increasing the
midtropospheric dry static energy relative to near-surface moist static energy (Seth et al.
2011, 2013; Giannini 2010). Increased lower-to-middle tropospheric stability suppresses
convection, reducing precipitation in monsoonal regimes where summertime precipita-
tion is mostly associated with convective systems (Pascale et al. 2017, 2019). Higher
temperatures therefore may exacerbate the consequences of a meteorological drought in
multiple ways. Future work should include analysis of the risk associated with compound
events in Central America driven by exceptionally high temperatures and prolonged rainfall
deficits.

Although a multi-year meteorological drought like the one that hit Central America
between 2015 and 2019 is a rare event, anthropogenic climate change has significantly
increased the likelihood for such a prolonged rainfall deficit to occur. All of the models
analyzed in this study suggest that the probability of occurrence of this event will continue
to increase into the future, with a rate depending on the specific socioeconomic scenario
(Eyring et al. 2016; O’Neill et al. 2017; Riahi et al. 2017). As a consequence, we expect
that prolonged multi-year periods of below-average precipitation in the region will be more
severe in the coming decades.

The more frequent occurrence of multi-year meteorological droughts in Central America
shown in this study, along with increased aridity due to higher temperatures and the likeli-
hood of increased water demand due to a growing population (Hidalgo 2021), suggests that
managing water resources will likely be increasingly challenging in the decades to come.
Advanced planning for drought years and measures to increase water efficiency for agricul-
tural and urban use is therefore urgently needed at the national and regional level to better
adapt to the new hydroclimatic conditions.
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