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Abstract: In large-scale photovoltaic (PV) power plants, the integration of a battery energy storage
system (BESS) permits a more flexible operation, allowing the plant to support grid stability. In
hybrid PV+BESS plants, the storage system can be integrated by using different power conversion
system (PCS) layouts and different charge–discharge strategies. In the AC-coupling layout, the BESS
is connected to the ac-side of the system through an additional inverter. In the DC-coupling layout,
the BESS is connected to the dc-side, with or without a dedicated dc–dc converter, and no additional
inverter is needed. Referring to a 288 MWp PV plant with a 275 MWh BESS, this paper compares the
PCS efficiency between AC- and DC-coupling solutions. The power injected into the grid is obtained
considering providing primary power-frequency regulation services. A charging and discharging
strategy of the BESS is proposed to ensure cyclic battery energy shifting. The power flows in the
different components of the system that are obtained under realistic operating conditions, and total
energy losses and annual average efficiency are calculated accordingly. Finally, results show a higher
efficiency of DC-coupling compared to the AC-coupling layout.

Keywords: battery energy storage system (BESS); photovoltaic; power conversion system (PCS);
renewable energy sources (RES); solar plus storage sizing; grid-connected PV plant

1. Introduction

Grid-connected PV plants are non-dispatchable energy sources that are controlled
in order to inject the maximum available power into the grid. Due to their operating
characteristics, PV plants cannot usually provide the control and regulation services that
conventional sources can do and, moreover, can impact the voltage and the stability of the
electrical system [1–3]. For example, in PV plants with sizes up to hundreds of MW, the
unstable weather can cause deep power dips and high ramp-rate [4]. Therefore, the system
operator employs power from programmable sources (generally thermal plants using
pollutant sources) to control the system’s operation and preserve the grid stability. The
integration of a battery energy storage system permits a more flexible operation of the PV
plants with a much-reduced impact on safe grid operation [5]. A typical PV+BESS power
plant, in fact, consists of multiple PV arrays, power electronic converters, and storage
units which can contribute to grid stability and reliability through sophisticated grid-
friendly controls [6,7], thus supplementing (or even replacing in the long term) conventional
generators [8]. In particular, the development of advanced power controls can enable PV
to become a provider of a wide range of grid services, including spinning reserves, load
following, voltage support, ramping control, frequency response, and variability smoothing.
The BESS allows decoupling the PV power from the power that the plant injects into the
grid. It is hence possible to modulate the grid power without reducing the generated PV
power, or to keep constant the power injection to the grid even if the PV availability drops.
Possible support functions that a hybrid PV+BESS plant can provide to the grid without
involving curtailment of the PV generation are described, among others, in [9–18].
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In grid-connected PV plants, power is generated at the dc-side and is conveyed,
through a power conversion system, to the AC grid. Large-scale PV plants reach the size
of hundreds of MW by using multiple inverters and PV generator modules. In hybrid
PV+BESS plants, the storage system can be integrated by using different layouts [19–21].
In the AC-coupling layout, the BESS is connected to the ac-side of the system through an
additional inverter. In the DC-coupling layout, the BESS is connected to the dc-side, with
or without a dedicated dc–dc converter, and no additional inverter is needed.

The investigation of the advantages and disadvantages of the different layouts (AC
vs. DC coupling) has attracted the interest of companies [20,22,23]. Several works exist
now in the literature that analyzes and compare the performance of the AC-coupling and
DC-coupling solutions. However, few works provide a quantitative comparison in terms
of PCS efficiency. Several works exist now in the literature that analyzes and compare the
performance of the AC-coupling and DC-coupling solutions. The costs and benefits of the
different PV+BESS layouts are compared in the report of the national renewable energy
laboratory [19], which evaluated the technical and economic performance of PV plus
storage power plants. In the report, a PV power plant of 65 MWp with 30 MW/120 MWh
of BESS is considered as a case study for comparison. The net revenues are calculated
by hourly price and considering the following dispatching strategy: the battery charging
occurs in the early morning when prices are lowest, and the stored energy is injected into
the grid (battery discharging) during the late afternoon and early evening when prices
are highest. The conclusions show a slightly higher benefit/cost ratio for the DC-coupling
compared to the AC-coupling. However, the quantitative comparison in terms of energy
losses and power conversion system efficiency was not covered in this document.

Another comparison of the benefit/cost ratio is provided in [24] with similar conclu-
sions. This study provides a model to optimize energy storage operation in systems with
AC and DC coupled configurations. The results show an approximately 2 percent increase
in benefit/cost for DC-coupling than AC-coupling. However, even if conversion losses
are included in the benefit/cost calculation, a quantitative and qualitative analysis of the
losses performance and efficiency of the PCS is not provided. Moreover, not all possible
DC-coupling solutions are considered for comparison.

In reference [25], the authors provided a reliability analysis of a 160 kW/1500 V PV
system with a DC- or AC-coupled BESS operating in PV power smoothing and ramp-rate
regulation mode. The results show that compared with the AC-coupled configuration, the
DC-coupled configuration has a shorter lifetime period and lower reliability. On the other
hand, the paper [26] shows that the DC-coupled configuration better performs in terms
of component-, converter- and system-level reliability. However, no comparison on PCS
efficiency was provided in both references.

In reference [27], a loss model of a DC-coupled PV+BESS plant was developed, and
the power losses of a commercially available DC-coupled PV-battery converter system
were analyzed. However, the examined DC-coupled layout refers to a low power system
(5.2 kW of PV power), whose power profiles are more similar to a domestic or stand-alone
system. Furthermore, a comparison with the AC-coupled PCS efficiency was not provided.

In reference [28], a DC-coupling solution that utilizes a single battery dc–dc converter
capable of simultaneously operating as a charge controller and a maximum power point
tracking (MPPT) device was analyzed. The battery coupling solution in [28] is similar
to the DC-coupling analyzed in this paper. A multi-MW power plant of 14 MWp of PV
and a 1 MW/2 MWh of BESS is considered a case study, but consideration about the PCS
efficiency and comparisons with the AC-coupling counterpart was not provided.

In the reference [29], a dc-coupled energy storage system connected to the bus-dc of
the grid-tied PV inverter through a dedicated dc–dc converter was analyzed. The results
showed that the storage system leads to reduced clipping losses. Even if an average
estimation of the PCS’s conversion efficiency is analyzed considering the different possible
paths of the power flows, a quantitative comparison of the efficiency and losses power
profile among the different solutions was not covered in this paper.
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Finally, to the best of the authors’ knowledge, no article presents a quantitative
comparison in terms of conversion losses and efficiency of different AC- and DC-coupling
solutions for battery integration in large utility-scale PV power plants.

The purpose of this work was to analyze and compare the losses that involve three
different solutions of power conversion system architectures in hybrid multi-MW grid-
connected PV+BESS plants during ordinary daily operation. To achieve this, a 288 MW PV
power plant with a 92.2 MW/275.2 MWh BESS, capable of contributing primary frequency
response and energy shifting services to the grid, was considered as a case study. The energy
flows that involve the PCSs during the plant’s operation were quantitatively analyzed, and
the performance of the different solutions in terms of loss and efficiency were evaluated
and compared. The analysis was carried out under different daily and seasonal irradiance
conditions, and annual efficiency data were compared for the different connection layouts.

The paper is organized as follows: the main characteristics of the case study used
for the efficiency comparison are resumed in Section 2; the three different PCS layouts
that are considered to integrate the energy storage system into the PV plant are described
in Section 3; Section 4 presents the methodology used to calculate the power flows of
the plant during daily operation in grid support mode (primary frequency reserve and
energy shifting); Section 5 resumes the method and data used to calculate the losses in each
conversion stage; the numerical results in terms of power flow, losses and efficiency are
reported and discussed in Section 6. Concluding remarks are finally drawn in Section 7.

2. The Case Study: A 288 MW PV Plant with 92.2 MW/275.2 MWh Integrated BESS

A 288 MW power PV plant with a 92.2 MW/275.2 MWh battery storage capacity
is introduced in this section as a case study. The general characteristics of the plant are
discussed in the following. The typical size of PV inverters usually employed in large
hybrid PV plants is up to 5 MW. The DC voltage of the inverter is generally in the range
of 900 Vdc–1500 Vdc (PV side), and the output AC voltage is in the range of 400 Vac ÷
690 Vac [30] Large-scale PV plants reach the size of hundreds of MW by using multiple
inverters and PV generator modules. In this reference case study, the low voltage (LV) AC
output of more inverters is connected to a single multi-winding transformer that steps up
the voltage to the medium voltage (MV) level, in the range of 15,000 Vac–20,000 Vac. The
transformer may consist of one single grid-side winding with four secondary windings
connected to the inverters. A containerized solution was used: the PCS container involves
one single multi-winding transformer and four PV inverters. In Figure 1a, the schematic
of the 288 MWp PV plant used as a case study is shown. The plant is made of 80 PCS
containers. Each PCS includes four inverters modules with a 900 kVA rating, connected
to the multi-winding transformer. Both the inverters and the transformer are three-phase.
Different architectures can be considered for integrating the 92.2 MW/275.2 MWh BESS
system in the PV power plant, which is analyzed in detail in the following. However,
no matter the solution chosen, maintaining the modular approach is essential for the
correct design, assembling, operation, and maintenance of the power plant. For this reason,
the total BESS capacity of 92.2 MW/275.2 MWh is subdivided into 320 (4× 80) battery
modules with 288 kW/860 kWh rating, to be individually coupled with the 900 kW PV
modules via the power converters. The BESS can consist of various battery cell technologies.
Popular battery technologies include Lithium-ion (Li-ion), Lead–Acid (PbA), and Nickel–
Metal Hydride (Ni–MH) [31]. Among these, Li-ion batteries have become the prevailing
technology used in large BESS [32], as the system described in this paper, due to the higher
energy density, the higher round trip efficiency, the longer life span, the fast response time,
and the decrease in cost seen in recent years [33–35].

The schematic of the modularized PV+BESS solution is shown in Figure 1b. In
Figure 1a,b PCCPlant denotes the point of common coupling (PCC) of the total plant, and
PCCCont.[i] (with i ∈ [1:80]) denotes the PCC of the single PCS container. Similarly, it is
possible to define the PCC of the single PV module (a) or the PCC of the hybrid PV+BESS
module (b). The point of common coupling of the module is denoted with PCCModule[i, j]



Energies 2021, 14, 4823 4 of 22

in Figure 1a,b, where i refers to the container’s number and j is the module’s number
(j ∈ [1:4]).
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Figure 1. (a) A modular 288 MWp PV power plant made of 80 separate PCS, each including 4 PV
inverter modules with a 900 kVA rating. (b) Modular integration of the 92.2 MW/275.2 MWh BESS
into the 288 MW PV plant.

3. BESS Coupling Topologies

Three different PCS architectures can be considered for connecting the BESS modules.
Each PCS architecture refers to a single PV/Battery module and involves the power
converters and the (part of the) transformer connected to the PCCCont. More in particular,
as shown in Figure 1b, the PCS of one single PV/Battery module only considers one single
secondary-winding of the multi-winding transformer. Furthermore, for comparing the
different layouts, in the following, it is assumed that the PCS also includes the primary
winding of the transformer. Thus, the single PCS modules under analysis consist of the
power electronics and the equivalent transformer (two winding) that allow the coupling of
the PV/Battery modules with the MV side of the plant transformer. The three different PCS
layouts are schematized in Figure 2 and are discussed in detail in the following. The size of
each element of the PCS system according to the architecture considered is summarized in
Table 1.
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Figure 2. Possible coupling architecture for PV and BESS modules: (a) AC-coupling; (b) DC-coupling/BESS-side; (c) DC-
coupling/PV-side.

Table 1. Data of the case study of PV+BESS plant components in Figure 2.

Single Module Total Plant (320 Modules)

Layout AC DC–BESS DC–PV AC DC–BESS DC–PV

PV [MW] 0.900 0.900 0.900 288 288 288
BESS (energy) [MWh] 0.860 0.860 0.860 275.2 275.2 275.2
BESS (power) [MW] 0.288 0.288 0.288 92.2 92.2 92.2

transf. [MVA] 1.200 1.200 1.200 384 384 384
BESS-transf. [MVA] 0.400 - - 128 - -

inverter [MVA] 0.900 0.900 0.900 288 288 288
BESS-inverter [MVA] 0.288 - - 92.2 - -
dc–dc conv. [MW] - 0.288 0.900 - 92.2 288

3.1. AC-Coupling

The AC-coupling architecture employs two distinct inverters for connecting a PV and
a BESS module, as is shown in Figure 2a. Both inverters are connected to the PCCCont.
using two winding (per phase) transformers. The PV inverter sets the MPPT operation and
conveys the power to the ac-side unidirectionally. The BESS converter controls the battery
power flows operating in the inverter or the rectifier mode. It is worth noting that due to
the use of two separate inverter systems, this configuration allows both a distributed BESS
system, which can be used for the modular configuration of the whole plant, as discussed
in this paper, and a concentrated system where the overall BESS power is conveyed in
unique point, that can even be far from the PV plant. For these reasons, the BESS in the
AC-coupling could be designed with different modularity, such as 80 PCS containers of
1.15 MW/3.44 MWh each.

3.2. DC-Coupling/BESS-Side

The DC coupling architecture with the dc–dc converter on the battery side (DC-
coupling/BESS-side in brief) only employs one inverter per module, as is shown in
Figure 2b. A dc–dc converter connects the battery module to the dc bus. The inverter
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controls the power conveyed to the converter’s PCC (ac-side), regulating the current from
the bus-dc. The dc–dc converter manages the bus-dc voltage to allow the PV to work
in MPPT conditions, and it must allow the bidirectional power flow from BESS to PCC
(battery discharging) and from PCC to BESS (battery charging). This architecture only
applies to distributed storage systems because the BESS module must be connected to the
dc-side of each PV inverter.

3.3. DC-Coupling/PV-Side

The DC coupling architecture with the dc–dc converter on the PV side (DC-coupling/
PV-side in brief) is shown in Figure 2c. It only employs one inverter connecting the storage
module to the module’s PCC. The PV strings are connected to the dc-link through a dc–dc
converter. The dc–dc converter manages the PV voltage to work in MPPT conditions;
meanwhile, the inverter manages the power supplied to the PCC and, consequently, the
battery power. This architecture only applies to distributed storage systems because the
BESS module must be connected to the dc side of each inverter.

4. Plant’s Power Flows Analysis

In order to investigate the efficiency of the three different architectures, the power
flows managed by the PCS in each conversion stage need to be identified. The PV-generated
power (PPV) depends on daily irradiance and temperature. On the other hand, the plant’s
output power, which is the power measured on the PCC side (PPCC), depends on the grid
demand and system’s characteristics. Finally, the BESS power (PB) is obtained by the power
balance in Equation (1).

PPCC = PPV + PB (1)

Note that the load convention is used for defining the grid power; hence a positive
value of PPCC indicates a power absorbed by the grid. This is the only possible case as no
possible power flow from the grid to the plant is considered in this paper. On the opposite,
the generator convention is used for defining PPV and PB, hence a positive value indicates
a generated power and a negative value an absorbed power (possible for the battery only).
The battery operates in charging mode when the PV power is higher than the output PCC
power (generation higher than grid demands); otherwise, it operates in discharging mode.

4.1. Primary Frequency Reserve Operation and BESS Charging

In this paper, it is assumed that the PV+BESS plant operates in a weak grid system.
In particular, operating conditions and management procedures as those applying in the
power system of the Puerto Rico island are considered. Weak grid, or in general weak
connection points, are most commonly found in sparsely populated rural or remote ar-
eas, islands, or countries with under-developed electricity infrastructure [36]. This grid
includes a relatively small number of power sources and loads, compared to a conven-
tional transnational interconnected grid, so any unexpected imbalance between load and
generation can induce significant voltage and frequency excursions and requires appro-
priate procedures to be dealt with [10]. In fact, as an isolated island system, the Puerto
Rico power system has a lower inertial constant compared to large interconnected power
systems. During peak daytime hours, when solar penetration is high and has displaced
conventional generation, the available inertia from spinning mass is even lower because
PV generation, unlike conventional generators, does not have any rotating mechanical
parts to replace inertia losses [6]. The rate of change of frequency (RoCoF) depends upon
the magnitude of the power imbalance (e.g., PV generation droops because of unstable
weather conditions) and the total inertia of the system. The lower the system’s inertia is, the
higher the RoCoF is during an imbalance event to the extent that system security may be
endangered. Thus, a faster response time of active power reserve activation to stabilize the
system is required [37]. On the other hand, PV systems, with no mechanical contribution
and a small time-constant (fast response), also have a significant capability to participate in
frequency support, as reported in [6].
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In fact, according to the Puerto Rico electric power authority (PREPA) [38], large
grid-tied PV facilities provide an immediate primary frequency response (PFR), similar to
the governor response of conventional generation, by adjusting their real power output.
The change in real power must be proportional to the deviation of frequency from the
nominal value. The control of the PV plant should be able to provide both for up- and
down-regulation. The real power response to frequency deviations should be similar to, or
more responsive than, the 5% droop used by conventional generators.

The frequency droop is the percent change in frequency normalized against the percent
change in the regulating power output, multiplied by 100. A 5% frequency droop response
means that a 5% frequency deviation on the system would result in a 100% change in
regulating the power capacity of the generating unit [6]. The droop curve proposed by
PREPA is shown in Figure 3 and is used in this paper to calculate the PCC power of the
considered PV plant. According to the PREPA grid code and references [8,9], 10% of the
available PV power must be reserved both for up and down-regulation. Therefore, in
nominal conditions, the plant is set to operate at a curtailed power level (Pbase) that is 90%
of the available PV power. The nominal grid frequency is fn = 60 Hz. The PCC power value
depends on the frequency error ∆ f = ( f − fn), where f is the measured frequency value.
A deadband of ±0.012 Hz is applied to the primary frequency response, so regulation only
begins when the frequency is higher than the upper threshold ( f1 = 60.012 Hz) or lower
than the lower threshold ( f2 = 59.988 Hz). The droop characteristic reaches a plateau when
the frequency error reaches the value of ∆ f = ±0.300 Hz (±0.5% of fn). In over-frequency
conditions, when the frequency is higher than the threshold f3 = 60.3 Hz, the plant’s
power output is lowered by 10%, corresponding to 80% of the available PV power. On the
other side, in under-frequency conditions, when the frequency is lower than the threshold
f4 = 59.7 Hz, the plant’s power output is increased by 10%, corresponding to 100% of the
available PV power.

Energies 2021, 14, 4823 7 of 22 
 

 

generation, unlike conventional generators, does not have any rotating mechanical parts 
to replace inertia losses [6]. The rate of change of frequency (RoCoF) depends upon the 
magnitude of the power imbalance (e.g., PV generation droops because of unstable 
weather conditions) and the total inertia of the system. The lower the system’s inertia is, 
the higher the RoCoF is during an imbalance event to the extent that system security may 
be endangered. Thus, a faster response time of active power reserve activation to stabilize 
the system is required [37]. On the other hand, PV systems, with no mechanical contribu-
tion and a small time-constant (fast response), also have a significant capability to partic-
ipate in frequency support, as reported in [6]. 

In fact, according to the Puerto Rico electric power authority (PREPA) [38], large grid-
tied PV facilities provide an immediate primary frequency response (PFR), similar to the 
governor response of conventional generation, by adjusting their real power output. The 
change in real power must be proportional to the deviation of frequency from the nominal 
value. The control of the PV plant should be able to provide both for up- and down-regu-
lation. The real power response to frequency deviations should be similar to, or more re-
sponsive than, the 5% droop used by conventional generators.  

The frequency droop is the percent change in frequency normalized against the per-
cent change in the regulating power output, multiplied by 100. A 5% frequency droop 
response means that a 5% frequency deviation on the system would result in a 100% 
change in regulating the power capacity of the generating unit [6]. The droop curve pro-
posed by PREPA is shown in Figure 3 and is used in this paper to calculate the PCC power 
of the considered PV plant. According to the PREPA grid code and references [8,9], 10% 
of the available PV power must be reserved both for up and down-regulation. Therefore, 
in nominal conditions, the plant is set to operate at a curtailed power level (𝑃 ) that is 
90% of the available PV power. The nominal grid frequency is 𝑓  = 60 Hz. The PCC power 
value depends on the frequency error Δ𝑓 = (𝑓 − 𝑓 ), where 𝑓 is the measured frequency 
value. A deadband of ±0.012 Hz is applied to the primary frequency response, so regu-
lation only begins when the frequency is higher than the upper threshold (𝑓  = 60.012 Hz) 
or lower than the lower threshold (𝑓  = 59.988 Hz). The droop characteristic reaches a 
plateau when the frequency error reaches the value of Δ𝑓 = ±0.300 Hz (±0.5% of 𝑓 ). In 
over-frequency conditions, when the frequency is higher than the threshold 𝑓 = 60.3 Hz, 
the plant’s power output is lowered by 10%, corresponding to 80% of the available PV 
power. On the other side, in under-frequency conditions, when the frequency is lower 
than the threshold 𝑓 = 59.7 Hz, the plant’s power output is increased by 10%, corre-
sponding to 100% of the available PV power. 

 
Figure 3. PV facility droop characteristic for PFR in Puerto Rico (PREPA). 

The considered daily profile of frequency with a 1-min resolution is shown in Figure 
4a. The percentage occurrence of different frequency values obtained from the daily data of 
Figure 4a is shown in Figure 4b. In both these graphs, the key frequency values of the droop 

Figure 3. PV facility droop characteristic for PFR in Puerto Rico (PREPA).

The considered daily profile of frequency with a 1-min resolution is shown in Figure 4a.
The percentage occurrence of different frequency values obtained from the daily data of
Figure 4a is shown in Figure 4b. In both these graphs, the key frequency values of the droop
characteristic are pointed out: the nominal frequency ( fn); the deadband limits ( f1 and f2);
the frequency thresholds where the regulating power reaches the bounds ( f3 and f4).

Figure 5 shows an example of the PFR power profile of the plant during about 2 h,
obtained according to the PFR droop characteristic of Figure 3 and the frequency data of
Figure 4a. Referring to the left-axis of Figure 5a, the black line is the available PV power
PPV. The black dotted line represents the base power, which is 90% of the available PPV
power. Based on the frequency excursion, the PCC power may deviate from the base value
providing up- and down-reserve, thus creating the output power profile reported with
the blue line in Figure 5a (named PPCC). The grey line in Figure 5a depicts the minimum
admissible value of PPCC that is equal to 80% of PPV.
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Since the probability distribution of frequency (see Figure 4b) is practically symmet-
rical with respect to the nominal value, the average output power profile of the plant is
coincident with the base power of 90% of PPV, as confirmed in Figure 5. This means that
about 10% of the energy generated is not transferred to the grid. This surplus energy is
stored in the battery. As a result, the BESS is charged during daytime hours. Furthermore,
since according to Figure 4b, the probability of occurrence of an under-frequency event
with f < f4 is very low; the PCC instant power is always lower than 100% of the PV power.
This implies that, according to Equation (1), a continuous power flow always occurs toward
the battery during day hours. The red line (right axis) of Figure 5a shows the resulting
battery power flow. Figure 5b shows the role of the energy storage during the daytime PFR
operation of the plant. The base power sets a battery power value that does not depend
on the grid frequency and is given by Pbase − PPV (10% of PV availability, black line). In
case of under-frequency occurrence, the power absorbed by the storage system (red line)
decreases. On the other hand, in over-frequency conditions, the charging battery power
increase according to the PFR droop curve. The PFR operation could also be obtained
without a BESS by reducing and modulating the PV generation but to the expense of MPPT
operation. However, by introducing a storage system, the PV+BESS plant is capable of
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providing both up- and down-reserve without modulating the PV power, maximizing the
exploitation of the PV source (MPPT operation is assured).

To exploit the BESS capacity, it is necessary to ensure cyclic working conditions, in
which the batteries must be completely charged and discharged during a 24-h cycle. A
discharge strategy for the battery must then be planned after daily hours, which restores
the initial SOC value at the beginning of the next day. This discharge strategy, which is
obtained by assuming that the battery provides ramp rate support during sunset hours, is
discussed in the next subsection.

4.2. Discharging Strategy of the BESS

As previously shown, due to the fact that the lower bound f 4 of the droop characteris-
tics, corresponding to 100% of PV power conveyed to the grid, is very seldomly reached,
the BESS is charged during daytime hours. A discharge strategy must then be planned for
allowing the battery to operate in cyclic conditions. In this paper, we assume that in the
evening, and in particular during sunset hours, the batteries start the discharging process
to deliver the stored energy to the grid. This process is generally referred to as energy
shifting (ES).

The scheduling of the power that the BESS should supply during the energy shifting
depends on different factors, such as the BESS and PV size, the PCC load profile, the
seasonal and daily irradiance, and, finally, the type of services that the plant provides.
In power systems where a substantial amount of solar source is installed, the amount of
power that must be generated from programmable sources (mainly thermal power plants)
rapidly increases during sunset and reaches the peak in the mid-evening hours. As it is
shown in [39], the higher the penetration of solar power, the higher the ramp rate of the
programmable power during sunset hours. This phenomenon (which is referred to as the
“duck curve” due to the power profile resembling a duck’s silhouette) is typical in electric
systems with high penetration of RES. The excessive ramp rate of thermal power requires
the inefficient operation of thermal power plants at reduced power and is mitigated by
operating the PV+BESS power plant in energy shifting mode, that is, discharging the
battery during evening hours.

To assure appropriate operation, lifetime, and safety, a minimum and maximum value
of SOC that can be reached by the battery system need to be considered. A value of SOCmin
= 20% and SOCmax = 90% are used. This operating range is typical for large battery systems,
as the one considered in this paper [40]. The cyclic operation of the BESS implies that the
battery is completely discharged (at the lower bound allowed) at the end of the day; hence,
the following equation holds:

SOC(24) ∼= SOC(0) ∼= SOCmin (2)

where SOC(24) is the SOC at time t = 24 : 00 and SOC(0) is the SOC value 24 h before,
that is, at t = 0 : 00. Since the allowed SOC range is between 20% and 90%, the maximum
energy (EB), which could be stored in the BESS and supplied to the grid during evening
hours, is 70% of EBmax (EB = 192 MWh). The trapezoidal power profile shown in Figure 6a
is assumed for the scheduled BESS power during the evening energy shifting (discharge).
In particular, constant power is scheduled from 19:00 to 20:00, while downward power
rate is applied after 20:00 and the same upward ramp rate is applied to start around 18:00
(tESstart) for reaching the planned power, thus generating the trapezoidal profile shown.
The area under the BESS power curve represents the energy EB(supplied) supplied to the
grid. It is worth pointing out that the curve of Figure 6a holds under the assumption that
SOC(tESstart) = SOCmax. In case that SOC(tESstart) < SOCmax the scheduled battery power
is scaled by a factor k ∈ [0 : 1] defined as:

k =
SOC(tESstart)− SOCmin

SOCmax − SOCmin
(3)
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We point out that during the energy shifting, the BESS also participates in the primary
frequency regulation according to the same procedure described in Section 4.1 (i.e., the
delivered power is regulated between 80% and 100% of the planned power, following
the droop characteristic of Figure 3). Accordingly, the energy that the battery provides
to the grid is, on average, 90% of scheduled. Hence, in order to exploit all the available
capacity of the batteries, the scheduled profile of the BESS power is designed to obtain
90%EB(supplied) = 70%EBmax, while the maximum power allowed during discharge remains
equal to 92 MW.
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Figure 6b shows the power flows of the hybrid plant during three consecutive spring
days with different irradiance obtained according to the criteria depicted above. The
shifting effect of the delivered power is evident from the plots of Figure 6c,d, showing the
battery power and SOC profiles, respectively. Finally, the SOC’s plot (Figure 6d) confirms
the cyclic operation of the battery.

5. Plant’s Loss and Efficiency Calculation

In order to compare the performance of the three different PCS layouts, the daily
energy efficiency of the plant is defined in Equation (4), where EPCC is the daily energy that
the plant provides to the grid at the PCC, EPV is the daily energy that is generated by the
PV, and ∆EB is the daily energy that is stored in the BESS compared to the day before. The
value of ∆EB is null in perfect cyclic operation (SOC(0) = SOC(24)). We recall the load
convention is used for defining the power PCC of the grid, and the generator convention
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is used for defining the power of the PV and BESS. According to Equation (4), a daily
efficiency of 100% would be obtained for the plant if all the energy produced by the PV
modules that are not stored in the battery were delivered to the grid. Of course, a lower
efficiency is obtained in practice due to the loss of the various conversion stages, which
depends on the layout considered for the PCS.

η =

∫ 24
0 PPCC(t)dt∫ 24

0 PPV(t)dt +
∫ 24

0 PB(t)dt
=

EPCC

EPV + ∆EB
(4)

To evaluate the energy efficiency, the power losses occurring in the power components,
that is, transformers, dc–dc converters, and inverters, need to be evaluated.

The efficiency of the dc–dc converters and inverters is shown in Figure 7 as a function
of the power normalized with respect to the converters’ rating reported in Table 1. As for
the inverters, the values shown in Figure 5 are obtained by in-field measurement of the
input and output power (source ENGIE Eps internal document). The efficiency of the dc–dc
converter shown in Figure 7 is given by [41,42]. As for the transformer, a constant efficiency
ηT , independent on the power, is assumed. This is obtained by assuming, according to the
datasheet [43], Vcc = 6%, and by considering a power factor cos(ϕ) = 0.95 along with the
rating in Table 1. According to Figure 2, both AC and DC coupling architecture include the
container transformers that connect the net power output to the MV grid. An efficiency
ηTPV = 98.68% is obtained for this transformer. However, the AC coupling layout also
employs a second transformer connected to the BESS. This transformer manages a reduced
peak power and has a lower efficiency ηTB = 98.43% (generally, transformer efficiency
increases as the size increases).
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The intrinsic efficiency of the battery storage (i.e., at the cell terminals) is not considered
in this calculation. Of course, this leads to an overestimation of the overall system’s
efficiency. However, since the power flow of batteries is the same for all the considered
layouts, this does not affect the results of the comparison in terms of energy losses that
occur in the PCSs. However, for more details, Appendix A provides efficiency comparisons
of the three layouts, including the round-trip battery losses.

During the daily operation of the PV+BESS plant, different power flows can occur
between PV, grid, and BESS, regardless of the layout of the PCS. However, as it can be
deduced from Figure 2, the number of conversion stages involved in the power flows
depend on the PCS’s layout. For example, when power flows from PV to PCC, the AC-
coupling and the DC-coupling/BESS side layouts involve two conversion stages (inverter
and transformer), whereas the DC-coupling/PV-side involves three conversion stages
(dc–dc converter, inverter, and transformer) and is less efficient. On the other hand,
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when power flows from BESS to PCC, the less efficient layout is the DC-coupling/BESS
side coupling because it presents one conversion stage more than the others. Similarly,
different conversion stage number and efficiency is obtained for the three layouts when
the power flow from PV to BESS is considered (in this case the worst-performing layout
is the AC-coupling since it involves two converters and two transformers). The count of
the conversion stages and the efficiency for each layout, and the different power flows are
resumed in Table 2.

Table 2. Power efficiency and conversion stages based on power flow directions, where ηinvPV and ηinvB are the efficiencies
of the PV and BESS inverter, ηTPV and ηTB are the efficiencies of the PV and BESS transformers for the AC coupling layout.
On the other hand, ηinv is the inverter efficiency, ηdcdc is the dc–dc converter efficiency and ηT is the transformer efficiency
for both DC-coupling layouts.

AC-Coupling DC-Coupling (BESS) DC Coupling (PV)

Power Flow N◦ Conv.
Stages Path Efficiency N◦ Conv.

Stages Path Efficiency N◦ Conv.
Stages Path Efficiency

from PV to Grid 2 ηinvPV ηTPV 2 ηinv ηT 3 ηdcdc ηinv ηT
From PV to BESS 4 ηinvPV ηTPV ηTB ηinvB 1 ηdcdc 1 ηdcdc

From BESS to grid 2 ηinvB ηTB 3 ηdcdc ηinv ηT 2 ηinv ηT

The daily energy loss EL for each layout can be calculated based on the power losses
PL(t) during plant’s operation as follows.

EL =
∫ 24

0
PL(t)dt (5)

where PL is given by the difference between the input and output power of the conversion
stage. The input and output power of each conversion stage is shown in Figure 8.

For the three layouts. Based on the symbols of Figure 8a, the power flows and energy
losses of the AC-coupling layout are expressed by:

EL =
∫ 24

0
(PPV − PPVac)dt +

∫ 24

0
|PB − PBac|dt (6)

PBac =

{
(ηinvB ηTB) · PB, discharging

1
ηinvB ηTB

· PB, charging (7)

PPVac = (ηinvPV ηTPV)PPV (8)

PPCC = PPVac + PBac (9)

Based on the symbols of Figure 8b, the power flows and energy losses of the DC-
coupling/BESS-side layout are expressed by:

EL =
∫ 24

0
(PPCCdc − PPCC)dt +

∫ 24

0
|PB − PBdc|dt (10)

PBdc =

{
ηdcdc · PB, discharging

1
ηdcdc
· PB, charging (11)

PPCCdc = PPV + PBdc (12)

PPCC = (ηinvηT)PPCCdc (13)

Finally, based on the symbols of Figure 8c, the power flows and energy losses of the
DC-coupling/PV-side layout are calculated by the following equations:

EL =
∫ 24

0
(PPCCdc − PPCC)dt +

∫ 24

0
(PPV − PPVdc)dt (14)
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PB = PPCCdc − PPVdc (15)

PPVdc = ηdcdc · PPV (16)

PPCC = (ηinv ηT)PPCCdc (17)

The daily energy losses of the AC-coupling, DC/BESS-side, and DC/PV-side layout
are calculated by means of Equations (6), (10) and (14), respectively. For example, focusing
on AC-coupling, PPVac is the PV power net of the conversion losses (ac-side) and is affected
by the inverter and transformer efficiencies (Equation (8)). The second term of the right
side of Equation (6) refers to the energy loss in the BESS leg of the system, where PBac
is the battery power that is measured on the ac-side. Since the batteries’ power flows
are bidirectional, the difference between PB and PBac can be positive or negative. Hence,
the absolute value appears in the BESS term of Equation (6). According to the generator
convention used, PBac is calculated by Equation (7) during charging and discharging.
Finally, the PCC power is given by Equation (9). Based on the nomenclature and definitions
introduced, the performance of the three layouts in terms of losses and efficiency is carried
out in the next section.
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The daily energy loss 𝐸𝐸𝐿𝐿 for each layout can be calculated based on the power losses 
𝑃𝑃𝐿𝐿(𝑡𝑡) during plant’s operation as follows. 

𝐸𝐸𝐿𝐿 =  � 𝑃𝑃𝐿𝐿(𝑡𝑡)𝑑𝑑𝑡𝑡
24

0
 (5) 

where 𝑃𝑃𝐿𝐿 is given by the difference between the input and output power of the conver-
sion stage. The input and output power of each conversion stage is shown in Figure 8. 
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Figure 8. Power flows that involve the three different layouts: (a) AC coupling; (b) DC-coupling/
BESS-side; (c) DC-coupling/PV-side.

6. Results and Discussion

This section shows the simulation results of the reference PV+BESS plant described in
Section 2. The calculation is carried out in MATLAB/Simulink and runs with a one-minute
resolution. Figure 9 shows the power delivered to the grid for the three layouts during
one typical summer day. The generated PV power, which is common for all the layouts,
is also shown in the figure. As discussed in Section 4 all layouts deliver, on average,
90% of the available PV power to the grid during daytime hours and use the 10% excess
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power to charge the battery. The energy stored during the day is delivered to the grid in
evening hours (energy shifting), as can be seen in the figure. At a first glance, no substantial
difference can be appreciated in the delivered power profile of the three layouts.
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Figure 9. Delivered grid power of the three different layouts during one typical summer day.

A substantial difference indeed exists in terms of loss and overall efficiency, which can
be appreciated by a more careful analysis of the results. The battery power of each layout
during the simulated 24 h is shown in Figure 10a. The corresponding profile of SOC is
shown in Figure 10b. The overall power loss (MW), i.e., the loss occurring in all conversion
stages, is shown in Figure 10c. The corresponding energy loss (MWh) is finally shown in
Figure 10d.

It can be seen from Figure 10c that during the daytime, the DC-coupling/BESS-side
layout shows less loss compared to the AC-coupling due to the reduced conversion stages
(1 versus 4) involving the power flow from PV to the battery. As a result, a higher SOC,
corresponding to higher stored energy, is reached with the DC–BESS layout during daytime
(see Figure 10b). On the other hand, during the evening hours, the energy only flows from
the battery to the grid, and the DC-coupling/BESS-side presents the highest losses due to
one more conversion stage. However, avoided losses of the AC-coupling during discharge
(two versus three converter stages) are less than increased losses during charge (four
versus one converter stages); hence lower overall energy losses are obtained with the
DC-coupling/BESS during the day cycle as it can be seen in Figure 10d.

The worst performing layout in terms of losses is the DC-coupling/PV-side, as can
be seen from the plots in Figure 11. This layout is, along with the AC coupling, the
most efficient during energy shifting in the evening hours (battery discharge) since it only
presents two conversion stages. However, the amount of energy involved in the energy
shifting is only about 10% of the daily PV energy. The main of the energy, which is 90% of
the PV energy, follow the PV-to-grid path and involves three conversion stage (compared
to two conversion stage only for the other two layouts), thus production the highest overall
losses shown in Figure 10b,c.
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Figure 10. Typical summer day simulation result: (a) battery power profiles, (b) battery SOC; (c) overall system power loss,
(d) overall system energy loss.

The PV power data used in this study are obtained by a one-year measurement with a
one-minute resolution from a power plant located in Central America The impact of the
different daily and seasonal irradiance conditions on the system’s loss, and efficiency is
evaluated in the following. In Figure 11, the grid power (Figure 11a,b) and the battery SOC
(Figure 11c,d) of the three different layouts during one week in two different periods of
the year are shown. The figure confirms the cyclic operation of the battery during all days,
regardless of the available PV power. The energy losses of the three different layouts are
also shown in Figure 11e,f.

It can be seen that the DC-coupling/BESS-side remains the best performing layout in
terms of loss and efficiency in all irradiance conditions. In particular, the total energy loss
of the DC-coupling/BESS-side in a summer week is about 470 MWh, while 23 MWh (4.9%)
and 110 MWh (23.4%) more losses are obtained for the AC-coupling and DC-coupling/PV-
side layouts, respectively. The winter week simulation follows a similar trend, with
310 MWh total energy loss for the DC-coupling/BESS-side, 14 MWh (4.5%) more losses for
the AC-coupling, and 72 MWh (22.2%) more losses for DC-coupling/PV-side.

To allow a quantitative comparison of the performance of the three systems in all
operating conditions, the values (MWh) of the PV energy, PCC energy, BESS energy,
and total energy loss are reported in Table 3 for three days with different irradiance
conditions: the low-irradiance condition (in which the PV produces 779.8 MWh in total), the
mean-irradiance condition (with the PV producing 1957.9 MWh), and the high-irradiance
condition (with the PV producing 2398.1 MWh).
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Figure 11. Power and SOC profiles for the three different layouts during typical summer and winter weeks. (a) grid power
during summer week, (b) grid power during winter week, (c) battery SOC during summer week, (d) battery SOC during
winter week, (e) total energy loss during summer week, (f) total energy loss during a winter week.

Finally, the annual energy loss and efficiency obtained by simulating an operating
time of one year are shown in Figure 12a,b, respectively. The one-year analysis confirms
the trend reported by the one-day and weekly simulations. The most efficient layout
is the DC-coupling/BESS-side, which presents 21.48 GWh of losses per year and has
an average annual efficiency of 97.02%. The losses of the AC-coupling are 22.67 GWh
per year (+1190 MWh), corresponding to an annual average efficiency of 96.86%. The
worst performing layout is the DC-coupling/PV-side with 26.26 GWh losses per year
(+4780 MWh) and annual average efficiency of 96.34%.
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Table 3. Energy values (MWh) refer to the system’s elements. The results consider three different initial PV conditions: low,
mean, and high irradiance.

Low-Irradiance Mean-Irradiance High-Irradiance

AC DC/BESS DC/PV AC DC/BESS DC/PV AC DC/BESS DC/PV

EPV 779.8 1957.9 2398.1
EPCC 753.6 754.9 747.6 1894.2 1897.4 1884.3 2312.0 2316.5 2300.5
∆EB −1.6 −0.9 −1.2 −2.2 −1.5 −1.8 −12.5 −11.4 −10.8
EL 24.5 23.9 31.01 61.5 58.9 71.7 73.6 79.1 86.7
η 96.8% 96.9% 96.0% 96.8% 97.0% 96.3% 96.9% 97.1% 96.4%
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As pointed out in the previous discussion, the efficiency of the layouts is affected by
the amount of energy involving the BESS compared to the available PV energy. Below,
an efficiency comparison of the three layouts is carried out, considering different ratios
between the BESS energy and PV energy. In particular, the previous one-year simulation
is run, considering the same battery capacity of 275 MWh, for different values of the PV
plant rating (MWp), and efficiency is calculated as a function of the BESS/PV ratio, which
is defined as the percentage amount of daily energy operated by the battery (70% of the
nominal capacity) and the daily PV generated energy. The same irradiance conditions, same
frequency profile, same deadband (±0.012 Hz), and same frequency thresholds (±0.3 Hz)
are considered for calculating the PCC power according to the PFR method described in
Section 4.1. The same bounds of the allowable SOC interval (20% and 90%) are also used.
On the other hand, the drop of the PFR is changed based on the considered PV plant rating
(MWp) for ensuring that the allowed storage capacity of the battery is fully exploited in
all considered cases. In other words, the higher the battery capacity with respect to the
average daily PV production (the higher BESS/PV ratio), the higher the regulating power
(in the percentage of the PV power) that the plant can provide.

The assumed settings of the PFR in all the considered cases are resumed in Table 4.
Table 4 also includes the reference case discussed above (275 MWh/288 MWp). It is
noteworthy that the size considered for the PCSs is scaled according to the PV power, so to
leave the efficiency of each conversion system unchanged. The average annual efficiency
obtained for the different BESS/PV ratios of Table 4 is shown in Figure 13. The results
show that under low BESS/PV ratios, the difference in terms of total efficiency between
the AC-coupling and the DC-coupling/BESS-side decreases (while their overall efficiency
slightly increases). These two layouts approximately present the same losses and efficiency
value if BESS/PV ≤ 5%. The gap of efficiency of the AC-coupling layout with respect to
the DC-coupling/BESS-side constantly increases with increasing the BESS/PV ratio. For
the BESS/PV ratios of around 20%, both DC-coupling layouts present higher efficiency
than AC-coupling (the latter becomes even less efficient than the DC-coupling/PV-side).
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Table 4. The setting of the primary frequency reserve operation for different BESS/PV ratios. In all
cases, the same energy capacity (275 MWh of nominal capacity) is considered while the PV rating
changes.

PV Rating
[MWp]

PV Energy
[MWh/Day]

BESS/PV
[%]

PFR Pbase
[% of PPV]

PFR Reserve
[% of PPV]

550 3916 5 95 ±5
288 1958 9.8 90 ±10
275 1869 10 90 ±10
183 1305 15.3 85 ±15
137 979 20.4 80 ±20
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7. Conclusions

The efficiency comparison of three different layouts of power conversion systems that
can be used in large PV+BESS power plants providing primary frequency reserve and
energy shifting service to the grid was carried out. The proposed method can be applied
to PCS with different sizes, power ratings, and components’ numbers. AC-coupling and
DC-coupling layouts were investigated, and a utility-scale plant with 288 MWp PV power
and 92.2 MW/275.2 MWh of total battery capacity was considered as a case study. The
power flows in the different components of the system were calculated under realistic
operating conditions and total energy losses, and annual average efficiency was calculated
accordingly. It was found that under the same input–output condition (irradiance, PFR,
and dispatching settings), the best performing PCS layout is DC-coupling with dc–dc
converter at the battery side, presenting an annual average efficiency of 97.02%, followed
by the AC-coupling presenting annual average efficiency of 96.86%. The worst performing
layout is the DC-coupling with dc–dc converter at the PV-side, with an annual average
efficiency of 96.34%. The different performances were related to the different number of
conversion stages involving the energy flow from PV to battery during PFR service in day
hours and from battery to grid during energy shifting in evening hours. It was also shown
that by increasing the storage capacity of the battery with respect to average daily PV
production, the losses of the AC coupling layout increase, and the advantage of adopting
the DC-coupling with dc–dc converter at the battery side becomes even greater.
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Appendix A

The purpose of this work was to analyze and compare the losses that involve three
different power conversion system architectures in hybrid PV+BESS large power plants. Fo-
cusing on the PCS, the comparison was carried out considering the power flows converted
in each PCS’s element (dc–dc converter, dc–ac converter, and transformer). In fact, the PCS
is the only element of the power plant that changes among the three examined layouts. Of
course, without considering the battery round trip efficiency, an overestimation of the over-
all system’s efficiency is obtained. On the other hand, focusing only on the PCS efficiency
(without considering the battery’s one), it is possible to estimate and compare with more
accuracy and sensitivity the loss performance of the PCSs. Moreover, the BESS can consist
of different cell technologies, and accordingly, the round trip battery efficiency strongly
depends on the used chemistry. However, this appendix aims to provide an estimation
of the total efficiency, also considering the battery round trip losses in the calculation. For
these reasons, simulations were carried out, including the battery efficiency in the total
losses calculation.

Considering assuming a LiFePO technology, the battery efficiency data are provided
by the reference [44] and the reports in [34]. As shown in the reference documents, the
battery energy efficiency (ηB) is defined as the ratio between discharge energy and charge
energy and depends on the charging–discharging rate. The annual average C-rate under
the operating condition of the plant is less than 0.1 C. Reference [44] reports the efficiency
from 4 C (ηB = 88%) down to 0.25 C (ηB = 98%), showing that the efficiency monotonically
increases when the C-rate decreases. The battery losses can be introduced in the calculation
of the layout’s efficiency. As shown in Figure A1, it is possible to consider the battery as
a system composed of an ideal subsystem and a subsystem that introduces the battery
conversion losses.
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Referring to Figure A1, the following equations hold:

EBloss =
∫ 24

0
|PB − PBT |dt (A1)

PB =

{
ηBchPBT , charging.
1

ηBdis
PBT , discharging. (A2)

where ηBch and ηBdis are the charging and discharging efficiency of the battery, PBT is the
BESS power measured at the battery cell terminals, and PB is the power ideally measured
inside the cell, e.g., to the net of conversion losses during the charging. However, the
battery round trip efficiency refers to the cyclic operation, and it considers both the charging
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and discharging process. Since the annual average C-rate is considered, it is possible to
assume the following equation that relates the round trip efficiency with the charging and
discharging efficiency:

ηBch = ηBdis =
√

ηB (A3)

The battery losses are included in the calculation of the whole losses and efficiency,
and the obtained results are shown in Table A1.

Table A1. PCS+BESS efficiency as a function of the round trip battery efficiency.

PCS+BESS Efficiency

Battery Round Trip
Efficiency AC-Coupling DC/BESS

Coupling
DC/PV

Coupling
Average C-Rate

(LiFePO)

100% 96.86% 97.02% 96.34% ≤0.25 C98% 96.75% 96.92% 96.24%
95% 96.56% 96.71% 96.05%

0.25 < C-rate ≤ 490% 96.22% 96.37% 95.75%
85% 95.89% 96.03% 95.44%
80% 95.56% 95.69% 95.14% >4 C

Table A1 shows that, despite the overall system’s efficiency decrease with the decrease
in the battery round trip efficiency, the ranking of the three different layouts remains
unchanged (1st DC/BESS, 2nd AC, and 3rd DC/PV). We report that percentage difference
among efficiency values decrease with the decrease in the battery efficiency due to the
lower value of ηB compared to the PCS efficiency. The final efficiency is more weighted by
the battery losses, and the sensitivity of the efficiency parameter as a function of the PCS
layout decreases accordingly. Moreover, considering the average C-rate with which the
battery works (0.08 C) may be possible to also assume ηB around or higher than 98%, and
the error introduced is less relevant.
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