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Anomalous Diffusions in Option Prices: Connecting Trade Duration and the
Volatility Term Structure\ast 
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Abstract. Anomalous diffusions arise as scaling limits of continuous-time random walks whose innovation times
are distributed according to a power law. The impact of a nonexponential waiting time does not
vanish with time and leads to different distribution spread rates compared to standard models. In
financial modeling this has been used to accommodate random trade duration in the tick-by-tick
price process. We show here that anomalous diffusions are able to reproduce the market behavior
of the implied volatility more consistently than the usual L\'evy or stochastic volatility models. Two
distinct classes of underlying asset models are analyzed: one with independent price innovations and
waiting times, and one allowing dependence between these two components. These models capture
the well-known paradigm according to which shorter trade duration is associated with higher return
impact of individual trades. We fully describe these processes in a semimartingale setting leading
to no-arbitrage pricing formulas, study their statistical properties, and in particular observe that
skewness and kurtosis of asset returns do not tend to zero as time goes by. We finally characterize
the large-maturity asymptotics of call option prices, and find that the convergence rate to the spot
price is slower than in standard L\'evy regimes, which in turn yields a declining implied volatility term
structure and a slower time decay of the skew.
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1. Introduction. In quantitative finance, models of asset returns typically evolve accord-
ing to It\^o diffusions or L\'evy-type models. From a microstructural point of view, these can be
seen as scaling limits of continuous-time random walks (CTRWs) with exponentially distrib-
uted interarrival times. Instead, time changing CTRWs to a renewal process whose waiting
times obey a power law yields, in the scaling limit, an anomalous diffusion, namely, a space-
time propagation process where the particle spreads at a rate different from linear, which is
observed in the classical diffusive case. The use of anomalous diffusions in financial models
was pioneered by Mainardi et al. (2000) and Scalas, Gorenflo, and Mainardi (2000), and they
have proved useful to capture memory effects, trade idle time, and other microstructural price
features exhibited by high-frequency time series.

However, applications of anomalous diffusions for continuous-time option pricing have so
far been scarce. The subdiffusive Black--Scholes model was introduced in Magdziarz (2009)
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1138 ANTOINE JACQUIER AND LORENZO TORRICELLI

to capture asset staleness and periods of trade inactivity, but implications on option pricing
and implied volatilities were not illustrated. Cartea and Meyer-Brandis (2010) analyzed the
volatility surface of a CTRW whose innovation times are distributed according to a Mittag--
Leffler hazard function, produced explicit option pricing formulas, and provided evidence that
the long-term skewness and smile can be captured.

We show here how anomalous diffusions in equity returns can also capture the long-term
behavior of the implied volatility surface. Specifically, we argue that the persistence of a slowly
decaying volatility skew can be explained by postulating the survival of trade duration effects
at longer maturities. We consider returns and innovation time random walks which converge
in the scaling limit to a pair of L\'evy processes, one of which is a subordinator. According
to Becker-Kern, Meerschaert, and Scheffler (2004), Meerschaert and Scheffler (2008, 2010),
Straka and Henry (2011), Jurlewicz et al. (2012), the associated CTRW time-changed with
the renewal process of the innovation times converges to an anomalous diffusion which can
be represented as a time-changed L\'evy process. One appealing feature is that both analytical
formulas for the Laplace transforms (in the time variable) of the characteristic function of this
limit and integral expressions for the density functions (in terms of the L\'evy measures) are
known.

We analyze two distinct classes of anomalous diffusion models. The first is the purely
subdiffusive L\'evy (SL) model, where the CTRW limiting diffusion consists of a L\'evy process
time-changed by an independent inverse-stable subordinator. Several instances of such models
have already been investigated in the literature. In terms of the generating fractional Fokker--
Planck equations such a class has been investigated in Cartea and del-Castillo-Negrete (2007).
The particular case where the parent L\'evy process is a Brownian motion was introduced
in Magdziarz (2009); the compound Poisson case in Cartea and Meyer-Brandis (2010). A
general treatment when the driving noise is a generic L\'evy process has been recently provided
in Torricelli (2020). Moreover the classical models in Mainardi et al. (2000), Scalas, Gorenflo,
and Mainardi (2000) also admit a representation of the SL form: we revisit such models as
stochastic time changes, well-suited tools for option pricing purposes.

The time change representation of subdiffusive models also paves the way for our second
class of models, developing an idea that originally appeared in (Becker-Kern, Meerschaert,
and Scheffler (2004, Example 2.8)) and (Jurlewicz et al. (2012, Example 5.4)). This asset
price evolution realistically incorporates the dependence between the L\'evy parent returns
generating process and the inverse-stable subordinator modeling the trades waiting time. We
call it the model with dependent returns and trade duration (DRD).

Apart from being natural outcomes of time-changed random walk tick-by-tick price mod-
els, these two models are strongly supported by the econometric analysis by Engle (2000)
and Dufour and Engle (2000), and confirmed in numerous empirical studies later on. The
evidence is that trading activity is inversely correlated with price impact, i.e., the ``volatility""
of the asset price: the fewer the trades (longer duration), the more sluggish the price innova-
tions; conversely, intense trading (short duration) is associated with higher price excursions.
Remarkably, this principle is captured in our setting.

We describe such equity models in a semimartingale dynamic setting, leading to no-
arbitrage pricing relations under appropriate equivalent risk neutral measures. Using the
results of Jurlewicz et al. (2012) on the Fourier--Laplace transforms of anomalous diffusions,D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1139

we further provide familiar Parseval--Plancherel formulas for option prices in the spirit of Lewis
(2001). Additionally, we study the moments and serial correlation properties of the model
and show that skewness and kurtosis of the asset returns in the DRD model converge for
large times, and do not vanish, contrary to L\'evy models, leading in particular to profound
differences on the long-term volatility smile.

Finally we characterize the large-maturity behavior of call options and find that the conver-
gence rate is much slower than in standard L\'evy or stochastic volatility regimes. We uncover
a relationship according to which a declining implied volatility level implies a slowly decaying
skew, at least compared to that of L\'evy and exponentially affine models. But we find that a
(slowly) vanishing volatility level is a defining feature of these models, due to long-maturity
prices converging much slower than in standard models. Ultimately, for the DRD model we
show that the vanishing rate of the skew is slower than the usual 1/T , in line with market
data. As illustrated in the calibration in section 8, the practical importance of anomalous
diffusion model is that the ``duration parameter"" \beta improves the cross-sectional fit to multiple
maturities compared to a L\'evy model, while having virtually no impact on the short-maturity
calibration. This justifies the interpretation of \beta as a long-term skew component.

We believe the contribution of this work to be manyfold. We establish an explicit structural
connection between trade duration and skew persistence; we introduce an analytical model
that accounts for trades duration and dependence between trade waiting times and returns,
consistent with the econometrics literature; we systematically unify the treatment of SL models
under the umbrella of a single time-changed representation and the corresponding analytic
pricing formulas; finally we extend the analysis of the ``beta-time"" process in Meerschaert and
Scheffler (2004) and Jurlewicz et al. (2012), providing its moments and statistical properties
through its time-changed representation.

In section 2 we introduce fundamental building blocks and some useful notations. In
section 3 we introduce the CTRWs components of the base tick-by-tick model and the conver-
gence theorem leading to their limiting continuous-time versions. The anomalous diffusions
are introduced in section 4, together with their analytical properties and time-changed semi-
martingale representations, while their statistical properties are characterized in section 5. In
section 6 we show how to construct equivalent pricing measures, and provide an integral price
representation for European call option prices. This allows us to study in section 7 the struc-
ture of the corresponding implied volatility, with a particular emphasis on its large-maturity
properties. Finally in section 8, we numerically highlight interesting features of the SL and
DRD models, and show that both models allow for a good fit to market data.

2. Foundational elements. We follow here Kyprianou (2014, Chapter 1). In a market
filtration (\Omega ,\scrF , (\scrF t)t\geq 0,\BbbP ), a L\'evy process X is uniquely characterized by its L\'evy exponent,
namely, the function \psi X : \BbbC \rightarrow \BbbC defined via the relation \BbbE 

\bigl[ 
e - \mathrm{i}zXt

\bigr] 
= exp ( - t\psi X(z)), and

given explicitly by the L\'evy--Khintchine formula

(2.1) \psi X(z) = iz\mu +
z2\sigma 2

2
 - 
\int 
\BbbR 
(e - \mathrm{i}zx  - 1 + izx1| x| <1)\nu (dx),

where \mu \in \BbbR , \sigma \geq 0, and \nu is a measure concentrated on \BbbR \setminus \{ 0\} such that
\int 
\BbbR (1 \wedge x

2)\nu (dx) is
finite. In order to guarantee some minimal properties of the asset pricing model (existence ofD
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1140 ANTOINE JACQUIER AND LORENZO TORRICELLI

the first moment), we always assume that

(2.2)

\int 
| x| >1

ex\nu (dx) <\infty .

A subordinator L is an almost surely nondecreasing L\'evy process, with L\'evy measure \nu L
supported on (0,\infty ), and the L\'evy--Khintchine representation for its Laplace exponent defined
via the relation \BbbE 

\bigl[ 
e - sXt

\bigr] 
= exp ( - t\phi L(s)) simplifies to

(2.3) \phi L(s) = s\mu  - 
\int \infty 

0
(e - su  - 1)\nu L(du)

for \mu > 0, and where
\int \infty 
0 u\nu L(du) < \infty . A bivariate L\'evy process (X,L), with L a subordi-

nator, has joint Fourier--Laplace transform \BbbE [e - \mathrm{i}zXt - sLt ] = exp ( - t\psi X,L(z, s)) of the form

(2.4) \psi X,L(z, s) = iz\mu X + s\mu L +
z2\sigma 2

2
 - 
\int 
\BbbR 

\int \infty 

0

\bigl( 
e - \mathrm{i}zx - su  - 1 + izx1| x| <1

\bigr) 
\nu X,L(dx, du)

with L\'evy--Laplace triplet ((\mu X , \mu T ), \sigma , \nu X,T ).
For a process Y , we denote with Yt - the random variable of the left limits, Yt+ that of the

right limits, and with Y  - = (Yt - )t\geq 0 and Y + = (Yt+)t\geq 0 the corresponding processes. If Y is
a L\'evy process, stochastic continuity implies that Y = Y  - = Y + up to a modification.1

The first hitting time of [t,\infty ) of L is the random variable

(2.5) Ht := inf \{ s > 0 | Ls > t\} ,

which is \scrF -adapted by the debut theorem (Dellacherie and Meyer (1978)) and has continuous
paths if and only if L is strictly increasing. The process H is called the inverse-subordinator
of L. Of particular interest for us here is the case where L is an \alpha -stable subordinator, i.e.,
\psi L(s) = s\alpha , \alpha \in (0, 1), whose associated inverse-subordinator is central in fractional calculus
and anomalous diffusions theory.

Following (Jacod (1979, Chapter 10)), a time change is a nondecreasing, almost surely
finite process (Tt)t\geq 0 diverging almost surely to infinity for large times. In particular, both L
and H are time changes. If X is an \scrF t-adapted semimartingale, then its time change by T
is the \scrF Tt-adapted semimartingale XT := (XTt)t\geq 0. Further, if X is almost surely constant
on all sets [Tt - , Tt] we say that X is continuous with respect to T ; in this case many other
properties are preserved, and the semimartingale characteristics of X scale with T .

A triangular array of random variables is a collection of random variables (Y c
i , J

c
i )i\in \BbbN ,c>0

indexed by a scale parameter c such that each (Y c
i )i\in \BbbN and (Jci )i\in \BbbN is an independent and

identically distributed (i.i.d.) sequence, but not necessarily independent from each other. For
fixed c the variable Y c

i retains the interpretation of the ith log-return, and Jci the time elapsed
between two consecutive price moves. We can canonically associate with (Y c

i , J
c
i ) two families

of CTRWs:

(2.6) Rct :=

[t]\sum 
i=0

Y c
i and T ct :=

[t]\sum 
i=0

Jci ,

1A process Y is said to be a modification of a process X if \forall t, \BbbP (Xt = Yt) = 1.D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1141

and associate with T c the counting process N c
t := max\{ n : T cn \leq t\} . The notation \widehat \cdot indicates

the Fourier transform of probability measures, and the Laplace transform in the time variable
is denoted by \scrL (\cdot , s), where s is the new transformed variable.

3. The microstructural returns and their analytical properties. At a microscopic level,
we postulate that the time series of returns and trade times, at the time scale c, are determined
by a triangular array of random variables (Y c

i , J
c
i )i\in \BbbN , where Y c

i \in \BbbR determines the size of
the returns implied by the equity price variation conditional to observing a price revision,
and Jci > 0 dictates the time elapsed between subsequent revisions. The renewal process N c

corresponds then to the total number of price movements at t, and the tick-by-tick returns
process \Sigma c is thus given by time changing Rc with N c:

(3.1) \Sigma ct :=

Nc
t\sum 

i=0

Y c
i .

At time t the price will have moved by a quantity
\sum n

i Y
c
i if the nth arrival time is recorded

before t, or, conditional to n price moves occurred by time s, the price will move again by Y c
i

before time t > s if the waiting time variable Jcn+1 realizes at a value less than t  - s. We
assume that there exists a constant risk-free market rate r > 0 affecting the price growth
linearly in time and independently of the time scale and modify (3.1) as

(3.2) \Sigma c,\ast t := rt+

Nc
t\sum 

i=0

Y c
i .

The reasons for this modification shall be explained further on. For the moment, we
remark that this physical tick-by-tick model must be understood in the sense that only the
price innovations correspond to market observations. Hence, the linear drift introduced in
the random walk \Sigma c,\ast between two price movements does not give rise to a traded value, and
impacts the price only at revision times. However, further deterministic trends in the price
dynamics, such as risk premiums, are still possible and can be captured by an appropriate
choice of Y c.

3.1. Joint limits of CTRWs. The continuous-time pricing model we describe here is
based on a scaling limit of the CTRW \Sigma c,\ast for an appropriately selected triangular array
(Y c
i , J

c
i ). This setup encompasses classical mathematical finance models: when (Y c

i )i\in \BbbN are
centered with finite variance and Jci = 1 for all i, then the central limit theorem yields a
Brownian motion. If the Y c

i have infinite variance and are in the domain of attraction of a
stable process X, then their scaling limit yields exactly X. Considering random waiting times
for J ic with finite expectation does not improve here the generality of the setting since by the
renewal theorem N c

t \sim t/\BbbE [Jc1 ] in probability for large t. Therefore, in order to build processes
in which the trade time duration information has impact on the distribution of the scaling
limit of \Sigma c, one has to consider infinite mean waiting times. Under this choice, taking the
limit leads to an anomalous diffusion model for the asset price dynamics. The following result
is central to the entire anomalous diffusion theory.D
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1142 ANTOINE JACQUIER AND LORENZO TORRICELLI

Theorem 3.1 (Becker-Kern, Henry, Jurlewicz, Kern, Meerschaert, Scheffler, Straka). Assume
that (Y c

i , J
c
i )i\in \BbbN ,c>0 forms a triangular array of random variables and set Rc, T c, and \Sigma c as

in (2.6)--(3.1). If there exists a bivariate L\'evy process (X,L), where L is a subordinator with
inverse process H as in (2.5), such that

(3.3) lim
c\uparrow \infty 

(Rcc, T
c
c ) = (X,L)

in the J1-topology on the Skorokhod space \scrD (\BbbR \times \BbbR +), then

(3.4) lim
c\uparrow \infty 

\Sigma c = ((X - )H)
+

in the J1-topology on \scrD (\BbbR ), where ((X - )H)
+ is the right-continuous version of the process

obtained by time changing by H the left limits process of X.

This theorem has appeared in various forms and has an interesting evolution. It was
first proved in Becker-Kern, Meerschaert, and Scheffler (2004) under the weaker M1 topology,
under an assumption only slightly weaker than independence between spatial evolution and
waiting times. However, even if it was the process XH that was claimed there to be the limit,
the latter can be shown to coincide with (X - )H under such assumptions. This was noted
by Straka and Henry (2011), who also gave a version of the theorem which allows dependence
between X and L, but excludes the possibility of either X or L being a compound Poisson
process (CPP). Another proof is obtained by combining (Jurlewicz et al. (2012, Theorem 3.1
and Remark 3.5)), which finally extends the result of Straka and Henry to CPPs.

Remark 3.1. Unless the Jci are constant or exponentially distributed, the CTRW limit is
not Markovian.

Example 3.1. For a sequence (Yi)i\in \BbbN of i.i.d. centered random variables with unit variance,
let Y c

i := c - 1/2Yi; consider further the i.i.d. sequence (Jci )i\in \BbbN distributed as Exp(\lambda ), for some
\lambda > 0. As previously detailed, applying the central limit theorem and the renewal theorem
show the familiar convergence of \Sigma c to W\lambda for some Brownian motion W .

Example 3.2. Assume that (Yi)i\in \BbbN and (Ji)i\in \BbbN are independent sequences of i.i.d. ran-
dom variables belonging to the domain of attraction of, respectively, an \alpha -stable law X with
\alpha \in (1, 2), and a \beta -stable law L with \beta \in (0, 1), namely, there exist regularly varying se-
quences (Bn)n\in \BbbN and (bn)n\in \BbbN , with respective indices  - 1/\alpha and  - 1/\beta such that Bn

\sum n
i=1 Yi

and bn
\sum n

i=1 Ji converge, respectively, to X and L almost surely. Then letting Y c
i := B(c)Yi

and Jci := b(c)Ji with B(c) := B[c] and b(c) := b[c] yields an explicit triangular array, and
the theorem to the stable processes canonically associated with X and L. In this case, Theo-
rem (3.1) collapses to (Meerschaert and Scheffler (2004, Theorem 4.2)).

Example 3.3. An explicit representation of the CGMY process as a CTRW limit can be
obtained by appropriately tempering variables in the domain of attraction of a stable law,
as explained in Chakrabarty and Meerschaert (2011). Combining this with Example 3.2
provides another explicit CTRW limit representation of (3.4) for a CGMY process X and a
stable subordinator L.D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1143

3.2. Transform analysis and connections to fractional calculus. It is remarkable that
the CTRW limit in Theorem 3.1 enjoys a very high degree of analytical tractability. For
example the probability density of an inverse L\'evy subordinator H is known in terms of the
L\'evy measure of the original process L. Similarly, the law of XHt - can be recovered by
integral transforms involving \nu X,L and the other Fourier--Laplace characteristics, as explained
in Meerschaert and Scheffler (2008) and Jurlewicz et al. (2012). We recall the following
from (Jurlewicz et al. (2012, Proposition 4.2)):

Proposition 3.2. Let XHt - be as in the CTRW limit in (3.4), with law Pt. Then

(3.5) \scrL 
\Bigl( \widehat Pt(dz), s\Bigr) =

1

s

\phi L(s)

\psi X,L(z, s)
.

The formula of the Laplace transform of XHt - is particularly simple. Having at hand a
specification for XHt - in terms of the involved characteristic exponents, by virtue of (3.5) we
are only one Laplace inversion away from the characteristic function, and we shall see that this
inversion can be computed explicitly in our cases. From a theoretical perspective, the Fourier--
Laplace transform of the process provides an interesting connection between the stochastic
representation of anomalous diffusions via CTRW limits and the classical characterization
of their laws as weak solutions of fractional abstract Cauchy problems. For details we refer
the reader to Baumer, Meerschaert, and Scheffler (2005), Meerschaert, Nane, and Vellaisamy
(2013), Jurlewicz et al. (2012), Meerschaert and Scheffler (2008), and references therein.

4. The asset price models. We introduce here the two anomalous diffusions to establish
the connection between trades duration and the implied volatility surface.

Definition 4.1. Let X be a L\'evy process, L an independent \beta -stable subordinator, and
(Y c
i , J

c
i )i\in \BbbN ,c>0 a triangular array satisfying (3.3). We define the underlying price S as

(4.1) St = S0 exp(rt+ Yt), S0 > 0,

with Yt := XHt - given by (3.4), and shall consider the following two cases:
(SL) The SL model is such that (Y c

i , J
c
i )i\in \BbbN satisfy the assumptions of Theorem 3.1 with

(X,L) in the right-hand side of (3.3);
(DRD) The DRD model is such that (Y c

i , J
c
i )i\in \BbbN satisfy the assumptions of Theorem 3.1 with

(XL, L) in the right-hand side of (3.3).

The two models look very similar, the only difference being that the second requires
convergence of the return innovations to the subordinated L\'evy process XL instead of X.
Yet, this difference is critical since this subordination is precisely what introduces coupling in
the DRD model. We shall denote the CTRW limits Y SL and Y DRD and, correspondingly, the
price processes SSL and SDRD. The underlying standard L\'evy model is S0 = (S0

t )t\geq 0 with
S0
t = S0 exp(rt+Xt).

Remark 4.1. For the SL model, since X is stochastically continuous and independent of H,
then XHt - = XHt in law for each t > 0.

Remark 4.2. As \beta tends to 1, Lt tends to t in probability and almost surely. Therefore the
usual conditional independence argument shows that St tends in law to S0

t . So in the limitingD
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1144 ANTOINE JACQUIER AND LORENZO TORRICELLI

case, the L\'evy models are recovered, and \beta can be interpreted as a parameter regulating the
divergence from L\'evy and, therefore, quantifies the degree of ``anomaly"" of the diffusion.

Example 4.1. When X is a Brownian motion and L an independent \beta -stable subordinator
the resulting SL model is the subdiffusive Black--Scholes first introduced in Magdziarz (2009).

Example 4.2. Cartea and Meyer-Brandis (2010) introduce a CTRW model with indepen-
dent trade duration and returns, where the conditional waiting time is modeled through
a hazard function. They, in particular, consider the latter to be of Mittag--Leffler type
\BbbP (Tn > t) = E\beta ( - t\beta ) (see also (6.1) below), and the price innovations follow an arbitrary
infinitely divisible distribution. The resulting driving CTRW is a fractional Poisson process
(FPP) as in Laskin (2003), Mainardi, Gorenflo, and Scalas (2004) with parameter \beta . Since an
FPP can be represented as a CPP, time-changed by an independent inverse \beta -stable subor-
dinator (as proved by Meerschaert, Nane, and Vellaisamy (2011)), the FPP model by Cartea
and Meyer-Brandis (2010) is included in our framework.

Example 4.3. The original model in Scalas, Gorenflo, and Mainardi (2000) and Mainardi
et al. (2000) also admits an FPP representation, where the return innovations follow a stable
distribution, and can be written in terms of a triangular array limit (Meerschaert and Scalas
2004).

Example 4.4. A comprehensive treatment of subdiffusive asset models obtained as frac-
tional counterparts of popular L\'evy models is provided in Cartea and del-Castillo-Negrete
(2007), who tackle the option pricing problem by numerically solving the fractional partial dif-
ferential equations characterizing their transition probabilities. In view of the results of Meer-
schaert and Scheffler (2008), all such models admit a time-changed representation of SL type.

We recall that a stable subordinator has no drift; therefore the sample paths of Y SL

and Y DRD are Lebesgue almost everywhere constant (Bertoin (1997, Chapter 2)), and thus
conveniently capture the idea of tick-by-tick trading and persistence of trade duration at all
time scales. This also implicates that all equivalent measures for Y are mutually singular with
respect to the usual diffusion processes. However, the discounted asset value necessarily con-
tains a Lebesgue absolutely continuous part, orthogonal to all equivalent martingale measures
for Y , coming from discounting by the market numeraire (the bank account). Therefore, in
order for the fundamental theorem of option pricing (Delbaen and Schachermayer (1994)) to
apply, we need to cancel that part. This clarifies the choice (3.2) of modeling the interest
rate effects externally to Y . Of course, nothing prevents that the physical dynamics Y itself
have a drift in the component X. In Figure 1 we show sample paths of H and Y SL when X
is a standard Brownian motion, for two different values of \beta . As \beta increases, reversion to,
respectively, the linear time and a standard Brownian return model with no trades duration
effects, is observed.

The non-Markovian structure of the two processes captures the possible memory effects
in price formation when observing random waiting times between trades. As we shall see
later, both the value of the process at time t and the time elapsed since the last price revision
influence the price evolution. Dependence between trade times and price returns is a widely
acknowledged fact, as pointed out in Engle and Russell (1998) and confirmed in several empir-
ical studies. This makes the DRD model more realistic compared to the SL one, although theD
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1145

Figure 1. Paths of XH (blue) and H (green) in the SL model. \beta = 0.7 on the left and \beta = 0.95 on the
right. Here, X is a driftless Brownian motion with diffusion parameter \sigma = 0.4.

cost/benefit impact in terms of performance of embedding this feature remains to be assessed.
For now, observe that the two models have the same number of parameters, so that modeling
price/duration dependence does not add any dimension in the calibration and estimation.

It would be useful to find a DRD model representation in terms of an independent time
change similar to the one for the SL model. Consider first the special case X = L in Theo-
rem 3.1. Since L - is \scrF t adapted then

(4.2) LH := ((L - )H)
+

is an \scrF Ht-adapted time change. We can then consider the process X time-changed by LH and
see in which relation are the process XLH and the limiting process X((L - )H)+ coming from
Theorem 3.1, where we recall that XL is just a L\'evy subordinated process. The construction
of these two processes is different: in particular the former is obtained through an independent
time change while the latter is not. However,

(4.3) (X - 
L )H = X(L - )H

up to a modification, because X is stochastically continuous with left limits. But then

(4.4) ((X - 
L )H)

+ = (X(L) - H
)+ = X((L - )H)+ = XLH

up to evanescence, since X is also right continuous. There are then two ways of looking at the
DRD returns process. The CTRW limit definition gives us a dependent representation using
a continuous time change. The equalities above give instead an independent representation
employing a discontinuous time change. Both will be useful in the following.

Finally, let us briefly comment on the nature of the process LH . It is easy to show that,
for any t \geq 0,

(4.5) LHt - = sup\{ s < t : s = Lu, for some u \geq 0\} .

In light of this identification, the process (LHt - )t\geq 0 is sometimes called the last passage process
(Bertoin (1997, Chapter 1)) and plays an important role in potential theory for L\'evy processes:D
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1146 ANTOINE JACQUIER AND LORENZO TORRICELLI

Figure 2. Densities of the time change LH
t \sim t\scrB \beta ,1 - \beta . For each t the total integral at some value x has

the interpretation of the probability that the time for the background L\'evy process X ran at most up to x.

it can be seen as the discontinuous increasing process which represents the past time at which
H has started resting at its current (time t) location. Now the times of discontinuity of
(LHt - )t\geq 0 coincide with the points in the image of L isolated on their right, which on account
of L being driftless, by Bertoin (1997, Chapter 1, Proposition 1.9) is a set of Lebesgue measure
zero. From this we conclude that LH is a right-continuous modification of the first passage
time. Moreover the postjump value of LH is exactly t, and in any case LHt \leq t almost surely.
This ties in with the interpretation of LH as a delayed calendar time.

Notably, the distribution of LHt is known. We have the following result.

Proposition 4.2. Denote by \scrB a,b the beta distribution with parameters a and b. For any
t > 0, LHt is distributed as t\scrB \beta ,1 - \beta .

Proof. See Becker-Kern, Meerschaert, and Scheffler (2004, Example 5.5) or Jurlewicz et al.
(2012, Example 5.2) for the proof.

This underpins the greater analytic tractability of the DRD model with respect to the SL
model: somewhat paradoxically, the more realistic model is also the more explicit. Propo-
sition 4.2 clarifies how the DRD model captures the paradigm of Engle (2000) and Dufour
and Engle (2000). The DRD time-changed evolution obeys a form of delayed calendar time
whose mass in [0, t] concentrates more around 0 or t depending on whether \beta is close to zero
or one (Figure 2). This mass represents the quantity of delay one has to apply to X to obtain
the current price value. When L has a low \beta , that is when duration of trade is higher, the
price evolution is stickier, since t\scrB \beta ,1 - \beta is much smaller than t with high probability. This
is associated with a reduced impact of the individual trades on the price process because the
informational content of sporadic trading is low. Conversely, as t\scrB \beta ,1 - \beta is close to t with high
probability (namely, when \beta is close to one) we observe a higher trading activity, typically
associated with the presence of informed traders. In such a case the contribution of each single
trade to the process of price formation is greater, and the impact of trading on price higher. A
similar reasoning applies to the SL model. Here combining subordination with independence
``delays"" the evolution of X for the time necessary to the next price revision to happen, butD
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1147

the resulting move retains the variance of an earlier point-in-time position of the process X.
Therefore, again, the lower the \beta , the stickier the price dynamics.

5. Moments and time series properties. We derive some statistical properties of the SL
and DRD models and provide some initial insight into the structure of the volatility surface
they generate, anticipating the full analysis in section 7. We begin with the moments of
the DRD model, whose analytic tractability plays a major role. The following proposition
extends (Leonenko et al. (2014, Theorem 2.1)) to higher cumulants. In this section, X is a
given L\'evy process, T an independent time change, and we let \kappa i and \tau i denote their respective
ith cumulants, which we assume to exist for i = 1, . . . , 4.

Proposition 5.1. The process Y := XT has moments up to order four, and its cumulants
read
(5.1)

\kappa Y1 = \tau 1\kappa 1, \kappa Y2 = \tau 1\kappa 2 + \kappa 21\tau 2,
\kappa Y3 = \tau 1\kappa 3 + 3\kappa 1\kappa 2\tau 2 + \kappa 31\tau 3, \kappa Y4 = (3\kappa 22 + 4\kappa 1\kappa 3)\tau 2 + 6\kappa 21\kappa 2\tau 3 + \kappa 4\tau 1 + \kappa 41\tau 4.

Proof. In our notation \kappa n =  - (in\psi 
(n)
X (0)). We proceed as in (Leonenko et al. (2014,

Theorem 2.1)), where the usual conditioning argument yields

(5.2) \BbbE [Yt] = i
d

dz
\BbbE 
\bigl[ 
e - \mathrm{i}zYt

\bigr] \bigm| \bigm| \bigm| 
z=0

= i
d

dz
\BbbE 
\Bigl[ 
e - \psi X(z)Tt

\Bigr] \bigm| \bigm| \bigm| 
z=0

=  - i\psi \prime 
X(0)\BbbE [Tt],

which gives \kappa Y1 . Next

(5.3) \BbbE [Y 2
t ] =  - d2

d2z
\BbbE 
\bigl[ 
e - \mathrm{i}zYt

\bigr] \bigm| \bigm| \bigm| 
z=0

= \psi \prime \prime 
X(0)\BbbE [Tt] - \psi \prime 

X(0)
2\BbbE 
\bigl[ 
T 2
t

\bigr] 
.

Subtracting from (5.3) the square of (5.2) reconstructs \tau 2 and yields \kappa Y2 . Similarly,

(5.4) \BbbE [Y 3
t ] =  - i

d3

d3z
\BbbE 
\bigl[ 
e - \mathrm{i}zYt

\bigr] \bigm| \bigm| \bigm| 
z=0

=  - \psi \prime \prime \prime 
X(0)\BbbE [Tt] + 3\BbbE 

\bigl[ 
T 2
t

\bigr] 
\psi \prime 
X(0)\psi 

\prime \prime 
X(0) + i\psi \prime 

X(0)
3\BbbE 
\bigl[ 
T 3
t

\bigr] 
;

calculating \BbbE [Y 3
t ]  - 3\BbbE [Yt]\BbbE [Y 2

t ] + 2\BbbE [Yt]3 and factoring \tau i as necessary we obtain \kappa Y3 . The
last term \kappa Y4 is obtained analogously.

The above proposition confirms the well-known fact that a L\'evy model X subordinated by
a L\'evy process L creates nonzero skewness and kurtosis even in the presence of a mesokurtic
and symmetric parent process X such as a Brownian motion. Our situation here is identical,
and carries the message that trade duration alone can be a determinant of departure from
normality of returns (thus, in an option pricing perspective, creating volatility smile). How-
ever, the term structure analysis of the moments is completely different. The key fact is that
the moment time dispersion of a time-changed L\'evy process only depends on the moments
of the time change, and not on the moments of X. In the usual L\'evy subordination case,
that is when T is a L\'evy process, one then sees that the moments are linear in t, consistently
with the fact that the subordinated process is itself L\'evy. As a consequence the skewness and
kurtosis of the returns vanish with time. In contrast, our framework produces a nonlinear
time evolution of the moments, which we analyze in detail for the DRD model, where such
evolution is polynomial.D
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1148 ANTOINE JACQUIER AND LORENZO TORRICELLI

Proposition 5.2. For any t \geq 0, the first four cumulants of Y DRD
t are

(5.5)

\kappa Y1 = \beta \kappa 1t,

\kappa Y2 = \beta \kappa 2t+
\kappa 21
2
(1 - \beta )\beta t2,

\kappa Y3 = \beta \kappa 3t+
3\kappa 1\kappa 2

2
(1 - \beta )\beta t2  - \kappa 31

3
(1 - \beta )\beta (2\beta  - 1)t3,

\kappa Y4 = \beta \kappa 4t+
4\kappa 1\kappa 3 + 3\kappa 22

2
\beta (1 - \beta )t2

 - 2(1 - \beta )\beta (2\beta  - 1)\kappa 21\kappa 2t
3 +

\kappa 41
8 (1 - \beta )\beta (2 - 11\beta (1 - \beta )) t4,

and the following asymptotic relations hold:

(5.6)
lim
t\uparrow \infty 

Skew(Yt) =
2
\surd 
2

3

1 - 2\beta \sqrt{} 
(1 - \beta )\beta 

sgn(\kappa 1), lim
t\uparrow \infty 

Kurt(Yt) =
1

\beta (1 - \beta )
 - 11

2
,

lim
t\downarrow 0

\surd 
t Skew(Yt) =

\kappa 3\sqrt{} 
\beta \kappa 32

, lim
t\downarrow 0

t Kurt(Yt) =
\kappa 4
\beta \kappa 22

.

Proof. By explicitly integrating the beta probability density function we have the central
moments of Tt:

\mu T1 = \BbbE 
\bigl[ 
LHt
\bigr] 
= \beta t = \tau 1,(5.7)

\mu T2 = \BbbV 
\bigl[ 
LHt
\bigr] 
=

1

2
(1 - \beta )\beta t2 = \tau 2,(5.8)

\mu T3 = \BbbE 
\bigl[ 
(LHt  - \tau 1)

3
\bigr] 
=  - 1

3
(1 - \beta )\beta (2\beta  - 1)t3 = \tau 3,(5.9)

\mu T4 = \BbbE 
\bigl[ 
(LHt  - \tau 1)

4
\bigr] 
=
\beta 

8
(1 - \beta ) (2 - 11(1 - \beta )\beta )) t4 = \tau 4 + 3\tau 22 .(5.10)

Since in the DRD model Xt and L
H
t are independent, we can solve the above equations for

\tau i and substitute into (5.1) obtaining (5.5). Calculating further the normalized cumulants
Skew(Yt) = \kappa Y3 /(\kappa 

Y
2 )

3/2 and Kurt(Yt) = \kappa Y4 /(\kappa 
Y
2 )

2 and taking, respectively, the limits for
large t and the leading order around t = 0 imply the limits in the proposition.

In the DRD model, as the time scale gets larger, higher moments do not vanish, but
converge to a level that only depends on \beta , and not on the value of the L\'evy cumulants (the
sign of \kappa 1 dictates the sign of the skewness). As frequently noted, leptokurtosis and negative
skewness of returns are important drivers of implied volatility smiles. It thus makes sense to
deduce that nonzero time limits of skewness and excess kurtosis determine persistence of the
volatility smile over time. In contrast, for t close to zero, moment explosions are observed,
as in the L\'evy case; the rate of this explosion is exactly that of exponential L\'evy models,
including--up to a normalization by \beta --the constant factor. This suggests that the short-term
smile/skew behavior of the DRD implied volatility should be identical to that of the underlying
L\'evy model. We will verify these intuitions and make the matters more precise in section 7.

The analysis of the returns series properties stems from the observation that the models we
are studying, although not Markovian with respect to their own filtration, admit a MarkovianD
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1149

embedding. Remarkably, the marginal distributions of this embedding are known for the DRD
process. For any t \geq 0, we define the backward renewal time

(5.11) Vt := t - LHt ,

which represents the time elapsed from the current instant t to the previous price move.
Knowing the price at t and the time since the last price move is enough to fully describe the
law of the future asset evolution.

Proposition 5.3. The following properties hold:
(i) the pairs (Y SL, V ) and (Y DRD, V ) are time-homogeneous Markov processes;
(ii) the process Y SL has correlated increments, whereas Y DRD has uncorrelated incre-

ments;
(iii) the increments of Y SL are nonstationary, whereas the increments of Y DRD are weakly

stationary.

Proof. Item (i) is proved in Meerschaert and Straka (2014, Theorem 4.1). For the SL
model, statement (ii) can be deduced from Leonenko et al. (2014, Example 3.2, Equation 9),
since in our case \BbbE [X1] \not = 0. In the case of the DRD model, for s \leq t, we can write (we drop
the model superscript for convenience)

\BbbE [XtXs] = \BbbE [(Xt - Xs)Xs]+\BbbE 
\bigl[ 
X2
s

\bigr] 
= (t - s)s\BbbE [X1]

2+s\BbbV [X1]+s
2\BbbE [X1]

2 = ts\BbbE [X1]
2+s\BbbV [X1],

so that by independence and conditioning

Cov(Yt, Ys) = \BbbE 
\bigl[ 
LHt L

H
s

\bigr] 
\BbbE [X1]

2 + \BbbE 
\bigl[ 
LHs
\bigr] 
\BbbV [X1] - \BbbE 

\bigl[ 
LHt
\bigr] 
\BbbE 
\bigl[ 
LHs
\bigr] 
\BbbE [X1]

2

= Cov
\bigl( 
LHt , L

H
s

\bigr) 
\BbbE [X1]

2 + \BbbE 
\bigl[ 
LHs
\bigr] 
\BbbV [X1].(5.12)

Thus, considering increments and using the above, together with Proposition 5.1,

Cov(Yt  - Ys, Ys) = Cov(Yt, Ys) - \BbbV [Ys] = \BbbE [X1]
2
\bigl( 
Cov(LHt , L

H
s ) - \BbbV [LHs ]

\bigr) 
= \BbbE [X1]

2Cov(LHt  - LHs , L
H
s ),(5.13)

so the absence of returns autocorrelation is equivalently checked on LHt . Now Meerschaert and
Straka (2014, Example 5.4) give the conditional transition probabilities pt(y0, v0, dy, dv) :=
\BbbP (LHt \in dy, Vt \in dv | y0, v0) of the Markov process (Yt, Vt) as

pt(y0, 0, dy, dv) =
v - \beta 

\Gamma (1 - \beta )

(t - v)\beta  - 1

\Gamma (\beta )
\delta y0+t - v(dy)dv1\{ 0<v<t\} ,

pt(y0, v0, dy, dv) = \delta y0(dy)\delta v0+t(dv)

\biggl( 
v0 + t

v0

\biggr)  - \beta 

+

\Biggl( \int v0+t

v0

\biggl( 
v

v0

\biggr)  - \beta 
\delta v0+y0+t - v(dy)

(v0 + t - s - v)\beta  - 1

\Gamma (\beta )

\beta s - \beta  - 1

\Gamma (1 - \beta )
ds

\Biggr) 
dv.

Explicitly integrating the second line we have

pt(y0, v0, dy, dv) = \delta y0(dy)\delta v0+t(dv)

\biggl[ 
v0 + t

v0

\biggr]  - \beta 
+ \delta v0+y0+t - v(dy)

\biggl[ 
t - v

v

\biggr] \beta (t - v + v0)
 - 1

\Gamma (\beta )\Gamma (1 - \beta )
dv,D
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1150 ANTOINE JACQUIER AND LORENZO TORRICELLI

whence, for t2 > t1 the the joint probability densities Pt1,t2 for (LHt1 , Vt1 , L
H
t2 , Vt2) can be

obtained through the Chapman--Kolmogorov equation

Pt1,t2(dy1, dv1, dy2, dv2) = pt1(0, 0, dy1, dv1)pt2 - t1(y1, v1, dy2, dv2).

Integrating out dv1 and dv2 from the explicit form of the above for 0 < v1 < t1 - y1, 0 < v2 <
t2  - y2 leads to the joint density of (LHt1 , L

H
t2 ):

Pt1,t2(dy1, dy2) =
y\beta  - 1
1 [(t1  - y1)(t2  - y2)]

 - \beta (y2  - t1)
\beta 

[\Gamma (1 - \beta )\Gamma (\beta )]2(y2  - y1)
1\{ 0<y1<t1<y2<t2\} dy1dy2

+
(t2  - y1)

 - \beta y\beta  - 1
1

\Gamma (1 - \beta )\Gamma (\beta )
\delta y2(dy1)dy2.(5.14)

Setting t1 = t and t2 = t+ h, a long integration yields

Cov(LHt+h, L
H
t ) =

\int 
\BbbR +\times \BbbR +

y1y2Pt,t+h(dy1, dy2) - \beta 2t(t+ h)

=

\int t+h

t

\int t

0

y\beta  - 1
1 ((t1  - y1)(t2  - y2))

 - \beta (y2  - t1)
\beta 

(\Gamma (1 - \beta )\Gamma (\beta ))2(y2  - y1)
dy1dy2 +

\int t

0

(t+ h - y1)
 - \beta y\beta +1

1

\Gamma (1 - \beta )\Gamma (\beta )
dy1 - \beta 2t(t+h)

=
1

2
t\beta (t+ 2h\beta + t\beta ) - \beta 2t(t+ h) =

1

2
t2(1 - \beta )\beta = \BbbV [LHt ]

(5.15)

and therefore Cov(LHt+h  - LHt , L
H
t ) = Cov(LHt+h, L

H
t )  - \BbbV [LHt ] = 0, which shows that the

increments of the DRD model are uncorrelated, and (ii) holds.
Finally, using Meerschaert and Scheffler (2004, Corollary 3.3) together with a conditional

argument, we see that the expected value of the increments of Y SL depends on t, so that
these cannot be stationary. Combining \BbbE [Y DRD

t+h  - Y DRD
t ] = \BbbE [X1]\beta h with the absence of

correlation between increments in the DRD shows weak stationarity and finishes the proof
of (iii).

It is generally accepted that return times series calculated at lags of above a couple of
minutes show no autocorrelation. Stationarity is also a desirable statistical property shown by
the returns: both these stylized facts are captured by the DRD model, which in this respect
is strikingly similar to a L\'evy process. However, these properties are not featured by the SL
model, further suggesting that the DRD model might be preferable.

6. Measure changes and derivatives valuation.

6.1. Equivalent martingale measure changes. In order to apply classical valuation the-
ory, one needs to show that the physical dynamics admit a martingale specification and to
identify (if possible) an explicit equivalent martingale measure. In our models, there are two
sources of market risk: the uncertainty in the returns distribution, and the trade duration,
captured, respectively, by the processes X and L. We could in principle consider measure
changes affecting the dynamics of both these processes. However, \alpha -stable processes are not
stable by equivalent measure change, since the Hellinger distance of the L\'evy measures of anyD
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1151

two stable subordinators is infinite. For example, if a standard Esscher transform is used,
after a measure change the process becomes tempered stable. Hence, since we are interested
in the risk-neutral parametrizations of the SL and DRD models, we shall restrict our analysis
to the class of equivalent martingale measures that only involve transformation of the law
of X. As one may reasonably guess, such a class coincides with the set of equivalent measures
under which the underlying L\'evy model S0 is itself a martingale.

Proposition 6.1. Let S be of SL or DRD type under \BbbP , and \BbbQ \sim \BbbP an equivalent measure
such that (e - rtS0

t )t\geq 0 is a L\'evy exponential martingale under \BbbQ . Define the Radon--Nikodym
derivative Z := d\BbbQ /d\BbbP , consider its time change ZH for any H of the form (2.5), and introduce
the measure \widetilde \BbbQ via d\widetilde \BbbQ /d\BbbP := ZH . Then (e - rtSDRDt )t\geq 0 and (e - rtSSLt )t\geq 0 are martingales,

respectively, under \BbbQ and \widetilde \BbbQ .

Proof. For the SSL models the statement follows from Torricelli (2020, Theorem 2) by
taking Lt to be a \beta -stable subordinator, St = e - rtSSLt , \scrX t = Zt, and \scrH t = 1, which cor-
responds to no change of measure in the subordinator. For the DRD model it suffices to
observe that LH is a bounded family of stopping times and thus e - rtSDRD = exp

\bigl( 
X\ast 
LH

\bigr) 
is a

martingale under \BbbQ by Doob's optimal sampling theorem.

Again we emphasize that this is a subset of all the possible equivalent martingale measures
and that for technical reasons we ignore a market price of duration risk. A model in which
this risk can be priced can be obtained for example by considering for L the wider class of
tempered stable subordinators, which is closed under the Esscher transform. This class, along
with related questions of market completeness, is studied in Torricelli (2020); see also Fries
and Torricelli (2020) for the situation when trade duration is caused by market suspensions.

6.2. The pricing formula. Having established that the risk-neutral specification comes
in the form of a time-changed martingale exponential, Proposition 3.5 can be combined with
standard integral price representations to yield semi-closed-form valuation formulas. Remark-
ably, the characteristic functions of the log-price in the SL and DRD models admit a very
simple representation in terms of the one-parameter Mittag--Leffler function

(6.1) Ea(z) :=

\infty \sum 
k=0

zk

\Gamma (ak + 1)
,

where \Gamma is the usual gamma function, and of the confluent hypergeometric function

(6.2) 1F1(a, b; z) :=

\infty \sum 
k=0

(a)k
(b)k

zk

k!
.

Theorem 6.2. Let Y be either process in Definition 4.1, and F (\cdot ) a contingent claim on S
maturing at T . Assume that x \mapsto \rightarrow f(x) := F (ex) is Fourier integrable and let \scrS f be the domain

of holomorphy of its Fourier transform \widehat f . Let \Phi t(z) := \BbbE [e - \mathrm{i}zYt ] be the characteristic function
of Yt taken according to the relevant measure as described in Proposition 6.1, denote by \scrS Y its
holomorphy domain, and assume \scrS f \cap \scrS Y \not = \emptyset . The price P0 of the derivative paying F (ST )D
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1152 ANTOINE JACQUIER AND LORENZO TORRICELLI

at time T is given by

P0 = \BbbE 
\bigl[ 
e - rTF (ST )

\bigr] 
=
e - rT

2\pi 

\int \mathrm{i}\gamma +\infty 

\mathrm{i}\gamma  - \infty 

\Phi T (z) \widehat f(z)
(S0erT )

\mathrm{i}z
dz.(6.3)

The value \gamma \in \BbbR is chosen such that the integration line lies in \scrS f \cap \scrS Y and

(6.4) \Phi t(z) =

\Biggl\{ 
E\beta 

\Bigl( 
 - \psi X(z)t\beta 

\Bigr) 
if Y = Y SL,

1F1(\beta , 1, - t\psi X(z)) if Y = Y DRD.

Proof. Under the given assumptions, the Plancherel representation (6.3) is standard
(see Lewis (2001) for example), and we only need to prove (6.4). In the SL model, by in-
dependence of X and L we have \psi (s, z) = \phi L(s) + \psi X(z) = s\beta + \psi X(z), and Proposition 3.2
then yields

(6.5) \scrL (\Phi t(z), s) =
s\beta  - 1

s\beta + \psi X(z)
.

Inverting the right-hand side, as in Haubold, Mathai, and Saxena (2011), one obtains (6.4).
In the DRD model after conditioning and applying Proposition 4.2, we obtain

(6.6) \Phi t(z) = \BbbE 
\bigl[ 
exp

\bigl( 
 - \psi X(z)LHt

\bigr) \bigr] 
= \BbbE [exp ( - t\psi X(z)\scrB \beta ,1 - \beta )] ,

and the statement follows from the characteristic function of \scrB \beta ,1 - \beta .
Remark 6.1. Fast computational routines for the Mittag--Leffler and the confluent hyper-

geometric functions are available in most software packages. Also, the two functions can be
unified in a single software implementation by observing that the three-parameter Mittag--
Leffler function

(6.7) Ea,b,c(z) =
\infty \sum 
k=0

(c)k
zk

\Gamma (ak + b)

is such that Ea,1,1(z) = Ea(z) and E1,1,c(z) = 1F1(c, 1, z). Furthermore if a = b = c = 1,
then (6.7) reverts to the standard exponential, which is consistent with the fact that SSL

and SDRD revert to the exponential L\'evy model S0.

Remark 6.2. The function E\beta is entire and 1F1(\beta , 1, - t\psi X(\cdot )) is regular in the complex

plane without the negative real axis; hence \scrS f \cap \scrS Y \not = \emptyset depends on the domain of \psi X and \widehat f
only.

Remark 6.3. If XH has an FPP structure, then (6.3) coincides with the formula given
by Cartea and Meyer-Brandis (2010, Theorem 3), when the jump sizes have an infinitely
divisible distribution.

One sees that the pricing formulas are formally obtained from the standard L\'evy case by
replacing the exponential function with two different kinds of ``stretched exponentials."" The
parameter \beta relaxes the shape of the characteristic function, in particular, in the tails, thereby
generating large-maturity prices very different from the base case. This overcomes the ``curseD
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1153

Figure 3. Comparison of the function \Phi t for the SL and DRD models with the exponential, with \beta = 0.75,
t = 0.5. We used the compensated geometric Brownian motion characteristic exponent \phi X(z) = \sigma 2(z2  - iz)/2
along the line \Im (z) = 1/2 where it is real.

of exponentiality"" of the standard models (both L\'evy and exponentially affine), for which the
long-maturity option prices follow Laplace-type asymptotics of leading order exp( - T )/

\surd 
T .

We will detail this better, together with its implications on the volatility surface, in section 7
below. Note that the two functions (6.1) and (6.2) have very different behaviors. In Figure 3,
we can see for example that (6.1) has a crossover region where its decay transitions from super-
to sub-exponential, whereas in (6.2), the integrand always dominates the exponential. This
has a clear impact on the shape of the volatility surface, as illustrated numerically in section 8.

7. Time asymptotics of the volatility surface. Bearing in mind the discussion so far, we
naturally expect implications of trade duration (at least in the form we chose to model it)
on the volatility surface. The anomalous diffusion processes we constructed are subdiffusions,
and as such have a slower distributional dispersion rate than the benchmark L\'evy models,
hence, a slower option price convergence for large maturity. That said, since Black--Scholes is
a L\'evy model, inversion of the Black--Scholes formula using subdiffusive option prices should
generate a vanishing implied volatility term structure in order to match the slower price time
evolution.

Less intuitive is to find a reason why the long-term skew should decline slower than
standard L\'evy and stochastic volatility models. A first answer is provided by section 5:
skewness and kurtosis in our models do not tend to zero as time grows but converge to some
strictly positive level. Therefore Gaussian temporal returns aggregation is precluded, and
time reversion to a flat volatility might be pushed further away in time.2 However, as we shall
show, an exhaustive answer is provided by the fact that skew and level of the implied volatility
are connected, and the property of a vanishing asymptotic implied volatility is sufficient to
hamper the skew time decay.

In this section we generically indicate with \BbbQ any of the two risk-neutral measures of
Proposition 6.1. Without loss of generality, we assume here r = 0 and S0 = 1 and denote

2Gaussian aggregation is by no means responsible for the smile flattening, as shown by Rogers and Tehranchi
(2010).D
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1154 ANTOINE JACQUIER AND LORENZO TORRICELLI

by C(K,T ) the call option price with strike K and maturity T . In the Black--Scholes model
dSt = \sigma StdWt, with \sigma > 0, the price of such a call option is given by

(7.1) C\mathrm{B}\mathrm{S}(K,T, \sigma ) = S0\scrN 
\Bigl( 
d
\Bigl( 
\sigma 
\surd 
T
\Bigr) \Bigr) 

 - K\scrN 
\Bigl( 
d
\Bigl( 
\sigma 
\surd 
T
\Bigr) 
 - \sigma 

\surd 
T
\Bigr) 
,

where d(z) :=  - \mathrm{l}\mathrm{o}\mathrm{g}(K)
z + z

2 , \scrN denotes the standard Gaussian cumulative distribution function,
and n its derivative, the Gaussian density function. For K,T \geq 0, the implied volatility
\sigma (K,T ) is the unique nonnegative solution of C(K,T ) = C\mathrm{B}\mathrm{S}(K,T, \sigma (K,T )), and the implied
volatility skew is defined as

(7.2) \scrS (K,T ) := \partial \sigma 

\partial K
(K,T ).

It is known by Rogers and Tehranchi (2010) that \scrS (K, \cdot ) converges to zero as the maturity
increases, for each K. We begin with the following model-free lemma which, under some mild
assumptions on the underlying distribution, connects the time decay of the skew with its level.

Lemma 7.1. Let (St)t\geq 0 be a martingale such that the law of St is absolutely continuous
for each t and converges to zero in distribution as t tends to infinity.

(i) For any K \geq 0, if limT\uparrow \infty 
\surd 
T\sigma (K,T ) = \infty then, as T tends to infinity,

(7.3)

\scrS (K,T ) = 2

T\sigma (K,T )

\biggl[ 
1 +

2 log(K) - 4

T\sigma (K,T )2
+\scrO 

\biggl( 
T - 2

\sigma (K,T )4

\biggr) \biggr] 
 - \BbbQ (ST \geq K)\surd 

Tn(d(\sigma (K,T )
\surd 
T ))

;

(ii) as T tends to zero,

(7.4) \scrS (1, T ) =
\sqrt{} 

2\pi 

T

\Biggl[ 
1

2
 - \BbbQ (St \geq 1) - \sigma (1, T )

\surd 
T

2
\surd 
2\pi 

+\scrO 
\bigl( 
\sigma 2(1, T )T

\bigr) \Biggr] 
.

Proof. We only prove the first statement, as the second one is proved in Gerhold, G\"ul\"um,
and Pinter (2016, Lemma 2). Since St has an absolutely continuous law, then by Figueroa-
L\'opez, Forde, and Jacquier (2011, Lemma C.1), \scrS in (7.2) exists, \partial KC(K,T ) =  - \BbbQ (ST \geq K),
and the chain rule yields

(7.5) \scrS (K,T ) =  - \partial KC\mathrm{B}\mathrm{S}(K,T, \sigma (K,T )) +\BbbQ (ST \geq K)

\partial \sigma C\mathrm{B}\mathrm{S}(K,T, \sigma (K,T ))
.

Set z =
\surd 
T\sigma (K,T ). Using the formulas for the Black--Scholes delta and vega:

(7.6) \scrS (K,T ) = \scrN ( - d(z)) - \BbbQ (ST \geq K)\surd 
Tn(d(z))

,

where we recall that \scrN (\cdot ) is the standard Gaussian cumulative distribution function. Since,
as x tends to infinity,

(7.7) \scrN ( - x) = n(x)

x

\biggl( 
1 - 1

x2
+\scrO 

\bigl( 
x - 4

\bigr) \biggr) 
and

1

d(x)
=

2

x
+

4 log(K)

x3
+\scrO 

\bigl( 
x - 5

\bigr) 
,D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1155

then
(7.8)
\scrN ( - d(z))\surd 
Tn(d(z))

=
1\surd 
Td(z)

\biggl( 
1 - 1

d(z)2
+\scrO 

\bigl( 
d(z) - 4

\bigr) \biggr) 
=

2\surd 
Tz

\biggl( 
1 +

2 log(K) - 4

z2
+\scrO 

\bigl( 
z - 4
\bigr) \biggr) 

,

and (7.3) follows by substituting z and combining the above with (7.6).

Remark 7.1. If S0 = exp(X) is a martingale for some L\'evy process X, from the proof
of Proposition 6.1, our models can be written as S0

Tt
for some time change Tt, so that S0

Tt
converges to zero almost surely as t tends to infinity, provided we know this to hold for S0

t .
Such a property for exponential L\'evy models can be proved using fluctuation identities, since
the assumption \BbbE [X1] < 0 implies (Bertoin (1996, VI.4, Exercise 3)) that Xt diverges to  - \infty .
Because of the Jensen inequality, a negative first moment is always the case for Xt when S

0

is a martingale. Regarding the absolute continuity of the price process, this follows from the
fact that the law of the involved processes are weak solutions of fractional Cauchy problems.
These can be found using arguments analogous to Jurlewicz et al. (2012, Examples 5.2--5.4).

Part (i) of this lemma implies that the level and skew of the implied volatility are entangled:
one cannot modify the leading order 1/T of the skew decrease without postulating a zero or
diverging asymptotic implied volatility level. In turn, a declining implied volatility can only be
attained through a convergence rate of option prices distributions to the spot price slower than
Gaussian, which is precisely the distinguishing feature of anomalous diffusion-based models.
Part (ii) is an already known fact, originally observed in Gerhold, G\"ul\"um, and Pinter (2016,
Lemma 2), which highlights a very stringent relationship between the prices of digital options
and the small-time at-the-money skew. It will be used later in Corollary 7.5.

Theorem 7.2. As T tends to infinity, we have the following asymptotic expansions for the
call price C(K,T ), for any K \geq 0:

(i) in the DRD model with \beta \in (0, 1], with the interpretation that Lt = t when \beta = 1,

there exist C\beta 1 and c\beta > 0 such that
(7.9)

C(K,T ) = 1 - 1\{ \beta \not =1\} 
C\beta 1

\Gamma (1 - \beta )

1

T \beta 

\biggl[ 
1 +\scrO 

\biggl( 
1

T

\biggr) \biggr] 
 - c\beta 

\Gamma (\beta )

e - T\psi X(\mathrm{i}/2)

T 3/2 - \beta 

\biggl[ 
1 +\scrO 

\biggl( 
1

T

\biggr) \biggr] 
;

(ii) in the SL model with \beta \in (0, 1), there exists C\beta 2 > 0 such that

(7.10) C(K,T ) = 1 - C\beta 2
\Gamma (1 - \beta )

1

T \beta 

\biggl( 
1 +\scrO 

\biggl( 
1

T

\biggr) \biggr) 
.

Proof. Since we are under the assumptions of Theorem 6.2, we can consider the price
representation for a call option

(7.11) C(K,T ) = 1 - 1

2\pi 

\int \infty 

 - \infty 

e(\mathrm{i}u+
1
2) \mathrm{l}\mathrm{o}\mathrm{g}(K)

u2 + 1/4
\Phi T

\biggl( 
u+

i

2

\biggr) 
du

which can be obtained from (6.3) by moving the integration contour inside the strip \Im (z) = 1/2
and applying the residue theorem (see Lewis 2001). Now the integrand in (7.11) is boundedD
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1156 ANTOINE JACQUIER AND LORENZO TORRICELLI

by an integrable function, thus by dominated convergence we can take the limit as T tends to
infinity of C(K,T ) under the integral sign. So once we determined the asymptotic expansion
of \Phi T we can integrate the resulting expression to get the asymptotic equation of interest.

Assume \beta < 1 in the DRD model. First of all, since the integration line contains points
of variable argument, we must ensure that the Stokes phenomenon3 does not occur. The
asymptotic expansion of 1F1(a, b, z), for large | z| is (Luke (2012, Chapter 4))
(7.12)

1F1(a, b, z) \sim 
\Gamma (b)

\Gamma (b - a)
z - ae\mathrm{i}\delta \pi a2F0

\biggl( 
a, 1 + a - b, - 1

z

\biggr) 
+

\Gamma (b)

\Gamma (a)
za - bez2F0

\biggl( 
b - a, 1 - a,

1

z

\biggr) 
with \delta = 1 if \Im (z) > 0 and \delta =  - 1 otherwise. So when \Im (z) = 1/2, since \Re (\psi X(z)) > 0, in
(6.4) for large T | \psi X(z)| we have the well-defined behavior

1F1(\beta , 1, - T\psi X(z)) \sim 
(T\psi X(z))

 - \beta 

\Gamma (1 - \beta )
2F0

\bigl( 
\beta , \beta , (T\psi X(z))

 - 1
\bigr) 

+
e - T\psi X(z)( - T\psi X(z))\beta  - 1

\Gamma (\beta )
2F0

\bigl( 
1 - \beta , 1 - \beta , - (T\psi X(z))

 - 1
\bigr) 

\sim (T\psi X(z))
 - \beta 

\Gamma (1 - \beta )
+
e - T\psi X(z)( - T\psi X(z))\beta  - 1

\Gamma (\beta )
,(7.13)

where in the last line we used that limx\rightarrow 0 2F0(a, b;x) = 1 for all a, b. In order to substitute
in (7.11) the above expression for large T , we need a uniformity argument in u. Notice
first that as | z| tends to infinity, | \psi X(z)| also tends to infinity because the risk-neutral drift
of X must be nonzero by Bertoin (1997, Corollary 1.1.3). This implicates that along any
line \Im (z) = c, | \psi X(z)| is strictly increasing. Also \psi X is even in its real part and odd in its
imaginary part, so that | \psi X(\cdot + i/2)| on such sets must be an even function. We conclude
that | \psi X(\cdot +i/2)| has a positive minimum at the origin. Therefore so long as T is much larger
than 1/| \psi X(i/2)| we can replace \Phi T in (7.11) with (7.13). Integrating the first term of the
resulting expression produces the first term in (7.9) with

(7.14) C\beta 1 =
1

2\pi 

\int \infty 

 - \infty 

e(\mathrm{i}u+1/2) \mathrm{l}\mathrm{o}\mathrm{g}(K)

(u2 + 1/4)\psi X(u+ i/2)\beta 
du.

Regarding the exponential subleading terms we have to analyze

(7.15) I\beta (T ) :=

\int \infty 

 - \infty 

e(\mathrm{i}u+1/2) \mathrm{l}\mathrm{o}\mathrm{g}(K)e - T\psi X(u+\mathrm{i}/2)

(u2 + 1/4)\psi X(u+ i/2)1 - \beta 
du,

which can be treated using the saddle point method as in Andersen and Lipton (2013). From
the previous discussion, \psi X(\cdot + i/2) has a stationary point in 0 and further by \psi \prime \prime 

X(i/2) > 0
by (2.2), so that for large T

(7.16) I\beta (T ) \sim 
\surd 
2\pi 4

\surd 
K

\psi X(i/2)1 - \beta 
\sqrt{} 
\psi \prime \prime 
X(i/2)T

,

3The asymptotic behavior of complex-valued functions can be different in different regions of the complex
plane, which is normally referred to as Stokes phenomenon. A complex-valued function has a limit along a
direction if it eventually takes values in only one of such areas.D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1157

which yields the second term in (7.9) with

(7.17) c\beta =
4
\surd 
K

\psi X(i/2)1 - \beta 
\sqrt{} 
2\pi \psi \prime \prime 

X(i/2)
.

When \beta = 1 the whole proof collapses to the well-known steepest descent argument An-
dersen and Lipton (2013, section 7) for the L\'evy models price representation integral.

In the SL model we have, for any given \beta < 1, that so long as \pi \beta /2 < \theta < min\{ \pi , \pi \beta \} the
asymptotic series for E\beta is given by (Haubold, Mathai, and Saxena (2011, Equation 6.5))

(7.18) E\beta (z) =

\left\{           
ez

1/\beta 

\beta 

n - 1\sum 
k=1

1

\Gamma (1 - \beta k)

1

zk
+\scrO 

\bigl( 
z - n

\bigr) 
for | arg(z)| < \theta ,

n - 1\sum 
k=1

1

\Gamma (1 - \beta k)

1

zk
+\scrO 

\bigl( 
z - n

\bigr) 
for \theta < | arg(z)| \leq \pi .

Since \Re (\Psi X(u+i/2)) > 0, for all \alpha in the line \Im (z) = 1/2 there exist T0 big enough such that

\pi \beta < | arg( - \psi X(u+i/2)T \beta 0 )| , so that for T > T0 the Stokes lines are not crossed. The correct
expression is thus the second line in (7.18), and we can repeat what we argued in the DRD
case.

Remark 7.2. The second term in (7.9) is clearly negligible for large T compared to the
leading order, when \beta is smaller than 1. However for fixed T , as \beta approaches one its con-
tribution cannot be neglected. This term has been included to clarify the convergence to the
L\'evy model. Such a correction is not present in the SL model and, as \beta = 1, the price approx-
imation simply breaks down (however, by dominated convergence we still have convergence
of prices).

Theorem 7.2 clarifies the aforementioned slower convergence of call prices compared to
L\'evy (or exponentially affine stochastic volatility) models. As already remarked, it can be
thought of as a direct consequence of the slow, subdiffusive time spread of the asset returns.
More specifically, the nature of the distribution implies that the pricing integral does not obey
the Laplace decay rate, since the integrand is not of the form exp( - Tf(x))g(x). One instead
obtains a vanishing long-term volatility, and hence by Lemma 7.1 a persistent long-term skew,
as we illustrate below.

Corollary 7.3. For \beta \in (0, 1), the leading-order asymptote for large T of the implied volatil-
ity in both the DRD and SL models satisfies

(7.19) \sigma \beta (K,T ) \sim 2

\sqrt{} 
1

T
W0

\biggl( 
2K T 2\beta \Gamma (1 - \beta )2

\pi C\beta 

\biggr) 
,

where W0 is the Lambert function and C\beta > 0. Furthermore, for all K, \alpha > 1/2,

(7.20) lim
T\rightarrow \infty 

T - \alpha 

\scrS \beta (K,T )
= 0 and lim

T\rightarrow \infty 

\scrS \beta (K,T )\surd 
T

= 0.D
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Proof. Using k = logK, the first-order expansion of the Black--Scholes price is simply

(7.21) C\mathrm{B}\mathrm{S}(K,T, \sigma ) = 1 - 4
\surd 
K

exp
\Bigl( 
 - \sigma 2T

8

\Bigr) 
\sigma 
\surd 
2\pi T

\biggl( 
1 +\scrO 

\biggl( 
1

T

\biggr) \biggr) 
.

By definition of implied volatility, to determine the leading order of \sigma in the DRD (respec-
tively, SL) model, we need to equate the above, respectively, to the call option price expan-
sions (7.9) (resp., (7.10)) and then solve for \sigma . We have

(7.22) exp

\biggl( 
 - \sigma 

2T

8

\biggr) 
4
\surd 
K

\sigma 
\surd 
2T\pi 

=
C2
\beta 

\Gamma (1 - \beta )
T - \beta 

with C\beta = C\beta i , i = 1, 2, as in Theorem 7.2, depending on the model. Setting z = \sigma 2T/4,
M =

\surd 
2K\Gamma (1  - \beta )/(C\beta 

\surd 
\pi ), w = M2 T 2\beta , then the equality (7.22) reads ezz = w. Since

w > 0 the inversion in z can be performed along the real axis so that W0 is well-defined,
and (7.19) follows. Since W0(T ) \sim log(T ) as T tends to infinity, then

(7.23) \sigma \beta (K,T ) \sim 2

\sqrt{} 
log(M2T 2\beta )

T
,

therefore T\alpha \sigma \beta (K,T ) converges to zero for all \alpha < 1/2, which means that the first term
of (7.3) tends to zero slower than T - \alpha for all \alpha > 1/2, but faster than T - \alpha .

Studying the asymptotics of the last term in (7.3), similar arguments to those of Theo-
rem 7.2 imply that the long-term price decay for the digital option I\{ ST\geq K\} is identical to

that of the call option, namely, c/T \beta for some c > 0. Then substituting (7.23) together with
d(x) \sim x/2, in the second term of (7.9), the proof follows from the asymptotic equivalence

(7.24)
\BbbQ (ST \geq K)\surd 

Tn(d(
\surd 
T\sigma \beta (K,T )))

\sim c
exp

\Bigl( 
T\sigma \beta (K,T )

2

8

\Bigr) 
T \beta +1/2

= c
exp

\Bigl( 
\mathrm{l}\mathrm{o}\mathrm{g}(M2T 2\beta )

2

\Bigr) 
T \beta +1/2

=
cM\surd 
T
.

In light of the corollary above, persistence of the skew is to be interpreted as follows:
the skew declines slower than any power of T - 1 bigger than 1/2 (thus, in particular, slower
than 1/T ) but always faster than T - 1/2. It is then natural to ask if these structural differences
in the implied volatility of anomalous diffusion models also affect the small-maturity limit.
This turns out not to be the case, at least for the DRD model, and the underlying L\'evy model
asymptotics are maintained. More precisely, we have the following for digital option prices.

Proposition 7.4. If the underlying L\'evy process X is such that

(7.25) \BbbQ (S0
t \geq 1) = c0 + c\varepsilon t

\varepsilon + o(t\varepsilon )

for some c0, c\varepsilon , as t tends to zero, with 0 < \varepsilon \leq 1
2 , then, with c\beta ,\varepsilon :=

\Gamma (\beta +\varepsilon )
\Gamma (\beta )\Gamma (1+\varepsilon ) ,

(7.26) \BbbQ 
\bigl( 
SDRDt \geq 1

\bigr) 
= c0 + c\beta ,\varepsilon c\varepsilon t

\varepsilon + o(t\varepsilon ).D
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Proof. Proposition 4.2 allows us to write

(7.27) \BbbQ 
\bigl( 
Y DRD
t \geq 0

\bigr) 
=

\int t

0
\BbbQ (Xs \geq 0)

s\beta  - 1(t - s) - \beta 

\Gamma (\beta )\Gamma (1 - \beta )
ds.

Now, notice that \BbbE [\scrB a\beta ,1 - \beta ] =
\Gamma (\beta +a)

\Gamma (\beta )\Gamma (1+a) for all a > 0, and that for t sufficiently small,

(7.28) \BbbQ (Xt \geq 0) = c0 + c\varepsilon t
\varepsilon + f(t),

where f(t) = o(t\varepsilon ) is a bounded function in a neighborhood of the origin. The zero- and
first-order terms of (7.26) are then clear, and by dominated convergence,

(7.29) lim
t\rightarrow 0

\BbbE [f(t\scrB \beta ,1 - \beta )]t - \varepsilon =
\int 1

0
lim
t\rightarrow 0

f(ts)

t\varepsilon 
s\beta  - 1(1 - s) - \beta 

\Gamma (\beta )\Gamma (1 - \beta )
ds = 0,

which yields the small-o order \varepsilon of the remainder.

By combining this result with Lemma 7.1 we have the desired analogy of the short-term
at-the-money (ATM) skew of the DRD and L\'evy volatility asset pricing models.

Corollary 7.5. Under the assumptions of Proposition 7.4 the DRD model and its underlying
L\'evy model have the same short-term ATM skew rate.

Proof. Substituting respectively (7.25) and (7.26) into (7.4) yields the claim.

As extensively discussed in Gerhold, G\"ul\"um, and Pinter (2016), (7.25) essentially encom-
passes all the popular L\'evy models and features very different behaviors: for example, c0 = 1
if the process has finite variation, whereas c0 = 1/2 and c\varepsilon = 1/2 + d/(\sigma 

\surd 
2\pi ), \varepsilon = 1/2 for a

jump diffusion with volatility \sigma and risk-neutral drift d (Gerhold, G\"ul\"um, and Pinter (2016,
Theorem 1 and Lemma 2)). As it emerges, the critical value for which higher-order terms
are needed is c0 = 1

2 . In the DRD model, introducing c\beta ,\varepsilon does not change the asymptotic
analysis, as c0 remains the same.

Corollary 7.6. If X satisfies (7.25), then the DRD model and the underlying exponential
L\'evy model S0 have the same short-maturity ATM skews.

In the next section we bring together all these results and see how they lead to model
calibration improvements when a persistent implied volatility skew is observed.

8. Numerical analysis.

8.1. Volatility skew and term structure. We visualize the volatility surfaces extracted
from the DRD and SL models in Figures 4 to 7. For X, we use a Brownian motion (Figures 4
and 5) and a CGMY process with parameters taken from Carr et al. (2001) (Figures 6 and 7),
and consider moneynesses \pm 40\% ATM and maturities up to two years. In each figure, the
smile of the anomalous diffusion is compared to that of its underlying L\'evy model S0.

First and foremost the slow decay of the volatility skew in anomalous diffusion models
predicted by Theorem 7.2 and Corollary 7.3 is apparent in all cases. Even though our results
only predict an asymptotic rate of skew vanishing, our numerical tests, at least in the DRD
case, indicate that such a slower rate manifests itself already very early on. More research is
necessary to see whether and how Theorem 7.2 can be improved.D
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1160 ANTOINE JACQUIER AND LORENZO TORRICELLI

In Figures 4 and 5 the volatility smile and skew of the anomalous diffusion model are
present even if the L\'evy generating returns process is a Brownian motion. In other words,
this confirms that introducing infinite-mean trade durations in a standard CTRW is alone
sufficient to generate a smile, consistently with Proposition 5.2. The smile appears rather
symmetric, in line with the intuition that trade duration should have little skew impact, as
it does not influence out-of-the-money prices any differently than in-the-money ones. This
already suggests some orthogonality between \beta and the L\'evy parameters. In the Brownian
motion case, \beta is thus ``overloaded,"" being responsible for both the smile convexity and its
decay rate. This is relaxed in Figures 6 and 7 by endowing X with a proper L\'evy structure
(CGMY); there a short-term skew arises while the skew term structure maintains its slower
flattening rate, dictated by \beta .

Figure 4. SL implied volatility surface based on geometric Brownian motion; \sigma = 0.4, \beta = 0.7.

Figure 5. DRD implied volatility surface from geometric Brownian motion; \sigma = 0.4, \beta = 0.7.

Figure 6. SL implied volatility surface based on a CGMY L\'evy model, with C = 6.51, G = 18.75,M =
32.95, Y = 0.5757, \beta = 0.7.D
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1161

Figure 7. DRD implied volatility surface based on a CGMY L\'evy model, with C = 6.51, G = 18.75,M =
32.95, Y = 0.5757, \beta = 0.7.

Figure 8. Time sections from Figure 6.

In Figures 4 and 6 we observe the repercussion on the implied volatilities of the ``cross-
over"" phenomenon (Figure 3) generated by the Mittag--Leffler and exponential types of the
characteristics functions of the SL and pure L\'evy models. The level of the SL surfaces transi-
tions from a short-term regime where the implied volatilities are higher to a long-term one in
which they are lower than those of the underlying L\'evy models (eventually tending to zero).
Such a transition seems to be very sharp.

The time sections from Figures 6 and 7 are shown in Figures 8 and 9 and further highlight
the remarks above. Figures 10 to 13 highlight the convergence of the time sections to those of
the underlying L\'evy model as \beta approaches one. For the SL model this convergence is from
above, while it is from below for the DRD model. Note also that the DRD model exhibits a
sharper ATM skew than the SL model.

8.2. Calibration. Corollary 7.3 and Proposition 7.4 suggest that, from a calibration view-
point, the models should behave as follows: the L\'evy parameters have a short-time scale
effect, unaffected when introducing \beta , and they should hence absorb the short-time skew and
smile. However, \beta is the very component governing the long-term structure of the surface,
where the L\'evy structure is flat and has no impact, and should thus allow one to pick up the
long-term skew. To test this we generate 3-month and 6-month volatility skews from a givenD
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1162 ANTOINE JACQUIER AND LORENZO TORRICELLI

Figure 9. Time sections from Figure 7.

Figure 10. Convergence of the SL skew to the CGMY one as \beta tends to one with T = 0.25.

Figure 11. Convergence of the DRD skew to the CGMY one as \beta tends to one with T = 0.25.

Figure 12. Convergence of the SL model to the BS volatility as \beta tends to one for T = 0.75.
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ANOMALOUS DIFFUSIONS IN OPTION PRICES 1163

Figure 13. Convergence of the DRD skew to the BS volatility as \beta tends to one for T = 0.75.

L\'evy model S0, which represent our baseline synthetic market data. In order to generate two
scenarios of persistent volatility skew, while keeping the 3-month fixed, we shift the 6-month
skew forward to make it coincide, respectively, with the 1-year and 18-month skews. We then
cross sectionally calibrate S0, SSL, and SDRD to the 3-month and 6-month skews in the base-
line scenario, and the 3-month and 1-year (respectively, 18-month) sections in the first and
second scenarios.

The calibration problem has been set up as follows. Let C(K,T ;\beta ,\Gamma ) be the theoretical
call prices from the SL or DRD models, where \Gamma denotes the L\'evy parameters for X, and by
C(K,T ) the synthetic market prices obtained with the procedure described above. The goal
is to minimize the root mean squared error (RMSE) on a set of quoted prices of n maturities
and m strikes. The calibration parameters are then

(8.1) argmin
\beta ,\bfGamma 

\sqrt{}    1

m\times n

m,n\sum 
i,j=1

| C(Ki, Tj ;\beta ,\Gamma ) - C(Ki, Tj)| 2 .

We used m = 8, corresponding to \pm 20\% moneyness from S0 = 100 and a step size of
\Delta K = 5. Further n = 2 with Tj chosen according to the scenarios illustrated above.

To solve the optimization problem above we use the differential evolution global minimiza-
tion algorithm. Its core MATLAB implementation, from Gilli and Schumann (2011), is freely
available at the GitLab repository https://gitlab.com/NMOF/NMOF2-Code. This code uses
the Heston (Heston (1993)) characteristic function and its integral form for the call price to be
used in the objective function (8.1). The numerical quadrature method is Gauss--Legendre.
We thus only need to replace it with our characteristic function \Phi T , which consists of the
functions Ea (for the SL model) and 1F1 (for the DRD model), whose .m-files are available
from the Mathworks website, and the characteristic exponent \psi X of the underlying driving
returns L\'evy process X. We make two distinct choices for X: a normal inverse Gaussian
(NIG; Barndorff-Nielsen (1997)) process, with the parametrization from Cont and Tankov
(2004); and a variance gamma (VG; Madan, Carr, Chang (1998)) process. We therefore
calibrate a total of four anomalous diffusion models, namely, SL-VG, SL-NIG, SL-VG, and
DRD-VG, plus the two underlying L\'evy models VG and NIG (using the obvious modification
of (8.1)).D
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Table 1
Calibration to the 1-month L\'evy smile generated by the base model S0. The parameters (\kappa , \sigma , \theta ) =

(0.2, 0.3, - 0.3) for the VG model and (0.3, 0.2, - 0.1) for the NIG model.

Parameter
L\'evy SL DRD

VG NIG VG NIG VG NIG

\kappa 0.2037 0.2822 0.2037 0.2828 0.2037 0.2827

\sigma 0.3002 0.1994 0.3002 0.1989 0.3002 0.1994

\theta -0.2983 -0.1039 -0.2984 -0.1036 -0.2984 -0.1038

\beta - - 1.0000 0.9977 0.9999 0.9999

RMSE 0.0084 0.0191 0.0084 0.0191 0.0084 0.0191

Table 2
Calibration to the 1-month and 1-year shifted L\'evy smile generated by the base model S0. The parameters

(\kappa , \sigma , \theta ) are (0.2, 0.3, - 0.3) for VG and (0.3, 0.2, - 0.1) for NIG.

Parameter
L\'evy SL DRD

VG NIG VG NIG VG NIG

\kappa 1.4474 7.6080 1.5482 6.7626 0.9033 2.5647

\sigma 0.3298 0.2635 0.3218 0.2525 0.3758 0.3102

\theta -0.1696 -0.0556 -0.1739 -0.0546 -0.2824 -0.0995

\beta - - 0.8669 0.8837 0.7224 0.6271

RMSE 0.3681 0.2061 0.2651 0.1729 0.2952 0.1791

Table 3
Calibration to 1-month and 18-month shifted L\'evy smiles generated by S0. The parameters (\kappa , \sigma , \theta ) are

(0.2, 0.3, - 0.3) for the VG model and (0.3, 0.2, - 0.1) for the NIG model.

Parameter
L\'evy SL DRD

VG NIG VG NIG VG NIG

\kappa 4.5443 42.5059 3.2555 30.5836 2.0265 9.5124

\sigma 0.3952 0.4022 0.3661 0.3404 0.4628 0.4011

\theta -0.1354 -0.0785 -0.1571 -0.0711 -0.2566 -0.1104

\beta - - 0.8305 0.8634 0.6546 0.5704

RMSE 0.4857 0.2705 0.3612 0.2307 0.4157 0.2442

The parameters of the differential evolution algorithm have been chosen as follows (for
details see (Gilli and Schumann (2011)). A total of nG = 100 number of generations (the
halting condition) is produced, each with a population of nP = 10d individuals spanning the
search space, where d is the number of parameters to be estimated. Therefore nP = 40 for
both the DRD and SL models, and nP = 30 for the L\'evy models. We used a mutation factor
F = 0.5 determining the deviation of the new population individuals from the current one,
and a crossover probability CR = 0.95 of a mutation surviving before the selection test is
applied. Further, every 10 generations we perform a direct search for solution improvement,
each consisting of two searchers running a maximum of 100 iterations with a tolerance level
of 0.001. This choice of parameters follows commonly applied rules of thumb which seem to
work well for all models. The integral truncation for the Gauss--Legendre method is at \pm 200
and the integrand is evaluated at 50 nodes.

The results are shown in Tables 1 to 3. In Table 1 we represent the baseline scenario: all
three models perfectly fit the synthetic L\'evy market data. As expected, the \beta parameter in theD
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SL and DRD models calibrates to one, and produces no improvement on the S0 calibration.
In the scenarios with a persistent long-term skew, the total error for the L\'evy model is greater
than that of both the SL and DRD models with \beta < 1. Comparing among them the two
scenarios we observe as expected that for both models, \beta is smaller in the second scenario
than in the first one, owing to a steeper long-term skew in the latter case. This can be
interpreted as an asset with a more prolonged trade duration.

Comparing errors across the models, the SL model shows a better fit in all cases. However
this should not necessarily be interpreted as an overall superiority: the better calibration
might be only due to the synthetic market data generated by a L\'evy model, and the SL
distributions being closer to L\'evy.

9. Conclusion. We have proposed the use of anomalous diffusion processes in the context
of option pricing, which allows one to naturally incorporate trade durations between price
moves. Using limits of CTRWs whose interarrival time distributions obeys a power law to
model asset returns, we analyzed the impact on the term structure of the returns distribution
and on the corresponding implied volatility. More specifically, the observed volatility skew
persistence on the market can be explained by a nonnegligible impact of trade time randomness
even in the long-term price evolution.

We analyzed both cases when the price innovations are either dependent or independent
from the waiting times between trades. Both models are consistent with the econometric
observation that shorter duration generates sharper variations in the price revisions. Finally,
we remarked that even though the two models lead to similar large-maturity implied volatility
properties, their different distributional properties produce rather different shapes of volatility
surfaces. Numerical experiments confirm that for option pricing, anomalous diffusion models
have the potential to capture the slow decay of the volatility skew while retaining the short-
term good properties of pure L\'evy models.
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