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We survey the state of the art for the proof of the quantum Gaussian optimizer con-
jectures of quantum information theory. These fundamental conjectures state that
quantum Gaussian input states are the solution to several optimization problems
involving quantum Gaussian channels. These problems are the quantum counterpart
of three fundamental results of functional analysis and probability: the Entropy Power
Inequality, the sharp Young’s inequality for convolutions, and the theorem “Gaussian
kernels have only Gaussian maximizers.” Quantum Gaussian channels play a key role
in quantum communication theory: they are the quantum counterpart of Gaussian
integral kernels and provide the mathematical model for the propagation of electro-
magnetic waves in the quantum regime. The quantum Gaussian optimizer conjectures
are needed to determine the maximum communication rates over optical fibers and
free space. The restriction of the quantum-limited Gaussian attenuator to input states
diagonal in the Fock basis coincides with the thinning, which is the analog of the
rescaling for positive integer random variables. Quantum Gaussian channels provide
then a bridge between functional analysis and discrete probability. Published by AIP
Publishing. https://doi.org/10.1063/1.5038665

I. INTRODUCTION

Gaussian functions play a key role in both functional analysis and probability and are the solution
to several optimization problems involving Gaussian kernels. The most prominent among these
problems is determining the norms of the Gaussian integral kernels G that send a function f ∈ Lp(Rm)
to the function Gf ∈ Lq(Rn) with p, q ≥ 1. In the seminal paper “Gaussian kernels have only Gaussian
maximizers,”86 Lieb proved that these norms are achieved by Gaussian functions. A closely related
fundamental result is the sharp Young’s inequality for convolutions,7,8,11,18,41 stating that for any p, q, r
≥ 1, the ratio ‖f ∗ g‖r

/
‖f ‖p‖g‖q with f ∈ Lp(Rn) and g ∈ Lq(Rn) is maximized by Gaussian functions,

where f ∗ g denotes the convolution of f with g. This inequality has several fundamental applications,
such as a proof of the Entropy Power Inequality,19,36,85 of the Brunn-Minkowski inequality,19,45 and
Lieb’s solution85,87 of Wehrl’s conjecture,1,106 stating that coherent states minimize the Wehrl entropy.
The theorem “Gaussian kernels have only Gaussian maximizers” and the sharp Young’s inequality
for convolutions are among the most important inequalities of functional analysis (see, e.g., Ref. 84).

The Entropy Power Inequality36,99,101 states that the Shannon differential entropy of the sum
of two independent random variables with values in Rn and given Shannon differential entropies is
minimum when the two random variables are Gaussian and is a fundamental tool of information
theory.19 The Entropy Power Inequality was introduced by Shannon to provide an upper bound to
the information capacity of non-Gaussian channels99 and was later used to bound the information
capacity region of the Gaussian broadcast channel9 and the secret information capacity of the Gaussian
wiretap channel.83 The Entropy Power Inequality was also employed to prove the convergence in
relative entropy for the central limit theorem.6
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Quantum information theory64,70,90,109 is the theory of the transmission and the processing of the
information stored in quantum systems. Most of nowadays communications are made with electro-
magnetic signals traveling through optical fibers or free space. Quantum Gaussian channels13,17,71,105

are the quantum counterpart of Gaussian integral kernels, and an n-mode quantum Gaussian channel
provides the mathematical model for the propagation of n modes of the electromagnetic radiation
along an optical fibre or free space in the quantum regime. For this reason, quantum Gaussian channels
play a key role in quantum communication theory.

The subject of this review is the generalization of all the above inequalities for the convolution
and for Gaussian integral kernels to quantum Gaussian channels. The solutions to the resulting quan-
tum optimization problems are conjectured to be quantum Gaussian states, the quantum counterpart
of Gaussian probability measures. This Gaussian optimizer problem arose in quantum information to
determine the classical information capacity of phase-covariant quantum Gaussian channels.26,49,50,69

Indeed, proving that the coherent states constitute an optimal coding requires to prove a minimum
output entropy conjecture, stating that the coherent input states minimize the output entropy of n-
mode phase-covariant quantum Gaussian channels (Theorem IV.1). This conjecture implies that both
the minimum output entropy and the classical capacity of phase-covariant quantum Gaussian chan-
nels are additive with respect to the tensor product; i.e., that entanglement does not increase the
communication rate. Moreover, the conjecture also implies the optimality of Gaussian discord.91

While the minimum output entropy of any classical channel is trivially additive, this property does
not hold in general for quantum channels.62 The proof of the minimum output entropy conjec-
ture has then been a fundamental result, which required more than ten years43,44,46,48,51,88 (see
the review Ref. 71; see also Ref. 72 for the capacity of non-phase-covariant quantum Gaussian
channels).

Proving that the coherent states constitute an optimal coding for the Gaussian broadcast channel
requires a constrained version of the minimum output entropy conjecture. This constrained version
states that quantum Gaussian input states minimize the output entropy of n-mode quantum Gaussian
channels among all the input states with a given entropy54,56–58,93 (Conjecture V.1). The constrained
minimum output entropy conjecture also implies the converse theorems for the triple trade-off coding
with the quantum-limited attenuator and amplifier.93,107,108 The conjecture has been generalized to
the Entropy Photon-number Inequality,54,55 stating that quantum Gaussian input states minimize the
output entropy of the beam-splitter among all the couple of input states each with a given entropy
Conjecture V.15. Moreover, it has been realized33 that the constrained minimum output entropy
conjecture would follow from the generalization of the theorem “Gaussian kernels have Gaussian
maximizers” to n-mode quantum Gaussian channels (Conjecture V.4). Since the beam-splitter is
the quantum counterpart of the convolution, the Entropy Photon-number Inequality is the quantum
counterpart of the Entropy Power Inequality. Based on this relation, we conjecture for the first time
in this review the validity of a sharp Young’s inequality for the beam-splitter (Conjecture V.16).

The proof of all the above quantum inequalities has been completed only in some particular cases
and is currently an active field of research. The constrained minimum output entropy conjecture has
been proven only for one-mode quantum Gaussian channels21,32–34,94 or for input states diagonal
in some joint product basis.35 These results are based on a new majorization theorem for one-
mode quantum Gaussian channels32 (Theorem V.2). The majorization result has been extended to
single-jump lossy quantum channels,29 but unfortunately it fails for multi-mode quantum Gaussian
channels.29 The proof of the constrained minimum output entropy conjecture for one-mode quantum
Gaussian channels made possible the proof of the fundamental relation between the von Neumann
and the Wehrl entropy, stating that for any n, n-mode quantum Gaussian states have the minimum
Wehrl entropy among all the n-mode quantum states with a given von Neumann entropy.23 For generic
p, q ≥ 1, the theorem “Gaussian kernels have Gaussian maximizers” has been proven only for one-
mode quantum Gaussian channels,31 while for n-mode channels the theorem has been proven only for
p = 147,71 and p = q.42,73 A proof of the Entropy Photon-number Inequality has been attempted with
the quantum analog of the heat semigroup technique of the proof of the Entropy Power Inequality
by Blachman and Stam. This technique led instead to the proof of the quantum Entropy Power
Inequality21,27,28,78–80 (Theorem VII.1), which provides a lower bound to the output entropy of the
beam-splitter in terms of the entropies of the two inputs. This bound is strictly lower than the output
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entropy achieved by Gaussian input states; hence, the quantum Entropy Power Inequality is strictly
weaker than the Entropy Photon-number Inequality that is still an open conjecture. The same heat
semigroup technique led to the proof of the quantum conditional Entropy Power Inequality30,77

and of the quantum Entropy Power Inequality for the quantum additive noise channels both in the
unconditioned74 and conditional25 versions. The quantum conditional Entropy Power Inequality
(Theorem VII.3) determines the minimum quantum conditional von Neumann entropy of the output of
the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally
independent given the memory and have given quantum conditional entropies. This inequality has
been exploited to prove an uncertainty relation for the conditional Wehrl entropy.22 These Entropy
Power Inequalities have stimulated the proof of similar inequalities in different contexts, such as the
qubit swap channel3,14 and information combining.66 The implications among the main results and
conjectures for quantum Gaussian channels are summarized in Fig. 1.

As a possible approach toward the proof of the unsolved entropic inequalities for quantum
Gaussian channels, we mention that sharp functional inequalities in the commutative setting have
been recently studied using the theory of optimal transport.104 These methods led to, e.g., quantitative
stability results for isoperimetric39 and Sobolev and log-Sobolev37,40 inequalities. Ideas from optimal
transport are also implicit in the solution of Shannon’s problem on the monotonicity of entropy.2

Recently, transportation distances have been proposed in the quantum fermionic setting15,16 and have
then been extended to quantum Gaussian systems96,97 (see also Ref. 20).

An interesting particular case of the inequalities for quantum Gaussian channels is when the input
states are diagonal in the Fock basis.59,75 This provides a link between quantum Gaussian channels
and classical discrete probability theory. The restriction of the one-mode quantum-limited attenuator
to input states diagonal in the Fock basis is the linear map acting on discrete classical probability
distributions on N known as thinning.32 The quantum-limited attenuator is the quantum Gaussian
channel that models the attenuation of electromagnetic signals. The thinning has been introduced
by Rényi95 as a discrete analog of the rescaling of a continuous real random variable and has been
involved with this role in discrete versions of the central limit theorem,60,61,110 of the Entropy Power

FIG. 1. Implications among conjectures and results. Green = proven result; yellow = result proven in some particular cases;
red = open conjecture.
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Inequality,76,111 and of Young’s inequality.81 Most of these results require the ad hoc hypothesis of
the ultra log-concavity (ULC) of the input state. In particular, the Restricted Thinned Entropy Power
Inequality76 states that the Poisson input probability distribution minimizes the output Shannon
entropy of the thinning among all the ULC input probability distributions with a given Shannon
entropy. The results on quantum Gaussian channels presented in this review led to the proof of new
entropic inequalities for the thinning that apply to any probability distribution, regardless of whether
they satisfy the ULC assumption. Quantum Gaussian states correspond to geometric probability
distributions. The inequalities on quantum Gaussian channels imply that geometric input probability
distributions both achieve the norms of the thinning31 (Theorem VI.5) and minimize its output entropy
among all the input probability distributions with a given entropy34 (Theorem VI.4).

The review is structured as follows. In Sec. II, we present the classical results for Gaussian
optimizers in functional analysis. In Sec. III, we introduce Gaussian quantum systems and channels
and the necessary notions of quantum mechanics. In Sec. IV, we present the minimum output entropy
conjecture and its proof. In Sec. V, we present all the conjectures on Gaussian optimizers in quantum
information including the new sharp Young’s inequality for the beam-splitter, together with the state
of the art in their proofs. In Sec. VI, we present the thinning and its relation with the results for
quantum Gaussian channels. In Sec. VII, we present the quantum Entropy Power Inequality and its
proof. Moreover, we introduce the quantum conditional entropy and present the conditioned version
of the quantum Entropy Power Inequality. We conclude in Sec. VIII.

II. GAUSSIAN OPTIMIZERS IN FUNCTIONAL ANALYSIS

A. Gaussian kernels have only Gaussian maximizers

For any p ≥ 1, the Lp(Rn) norm of a function f :Rn→C is

‖f ‖p =

(∫
Rn
|f (x)|p dx

) 1
p

. (1)

Given p, q ≥ 1, let us consider a Gaussian integral kernel G from Lp(Rm) to Lq(Rn),

(G f )(x)=
∫
Rm

G(x, y) f (y) dy, x ∈Rn, f ∈ Lp(Rm), (2)

where G(x, y) is a Gaussian function on Rm+n, i.e., the exponential of a quadratic polynomial. The
norm of G is

‖G‖p→q = sup
0< ‖f ‖p<∞

‖G f ‖q
‖f ‖p

. (3)

In the seminal paper “Gaussian kernels have only Gaussian maximizers,”86 Lieb proved that under
certain fairly broad assumptions on G, p, and q, this operator is well defined, and the supremum in
(3) is attained on a Gaussian function f. If 1 < p < q < ∞, any function that attains the supremum
in (3) is a Gaussian function. The proof of this fundamental result is based on the multiplicativity of
the norm of generic integral kernels with respect to the tensor product.

Theorem II.1 (Refs. 67 and 86). The norms of integral kernels are multiplicative, i.e., for any
two (not necessarily Gaussian) integral kernels G1 : Lp(Rm1 )→Lq(Rn1 ) and G2 : Lp(Rm2 )→Lq(Rn2 ),

‖G1 ⊗ G2‖p→q = ‖G1‖p→q‖G2‖p→q. (4)

Moreover, if the ratios ‖G1f1‖q/‖f1‖p and ‖G2f2‖q/‖f2‖p are maximized by the unique functions
f1 = f̄1 ∈ Lp(Rm1 ) and f2 = f̄2 ∈ Lp(Rm2 ), the ratio ‖(G1 ⊗ G2)f ‖q/‖f ‖p is maximized by the unique
function f = f̄1 ⊗ f̄2 ∈ Lp(Rm1+m2 ).

B. The sharp Young’s inequality for convolutions

The convolution operation can be considered as a degenerate Gaussian integral kernel given by
a Dirac delta function centered in the origin. Indeed, the convolution of f ∈ Lp(Rn) with g ∈ Lq(Rn)
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is

(f ∗ g)(x)=
∫
R2n

f (y) g(z) δ0(y + z − x) dy dz, x ∈Rn. (5)

The sharp Young’s inequality for convolutions states that the supremum

sup
0< ‖f ‖p,‖g‖q<∞

‖f ∗ g‖r
‖f ‖p‖g‖q

(6)

is finite if and only if
1
p

+
1
q
= 1 +

1
r

, (7)

and in this case it is achieved by Gaussian functions. This result has been first proven by Beckner7

and by Brascamp and Lieb11 using a rearrangement inequality for integrals.12 A completely different
proof based on the heat semigroup has been provided by Toscani.103

C. The entropy power inequality

Let X be a random variable with values in Rn and whose probability law is absolutely continuous
with respect to the Lebesgue measure so that it admits a probability density f (x)dx. The Shannon
differential entropy19 of X is

S(X)=−
∫
Rn

f (x) ln f (x) dx (8)

and quantifies the noise contained in X. Let σ be a symmetric strictly positive n × n real matrix, and
let X be the centered Gaussian random variable with covariance matrix σ and density

f (x)=
e−

1
2 xTσ−1x

√
det(2πσ)

. (9)

The Shannon differential entropy of X is proportional to the logarithm of the determinant of the
covariance matrix

S(X)=
1
2

ln det(2πeσ). (10)

Let us consider the sum of two independent random variables X and Y with values in Rn. The
Entropy Power Inequality36,99,101 states that, if X and Y have Shannon differential entropy fixed to
the values S(X) and S(Y ), respectively, the Shannon differential entropy of X + Y is minimum when X
and Y have a Gaussian probability distribution with proportional covariance matrices. The covariance
matrix of the sum of two independent random variables is equal to the sum of their covariance
matrices

σX+Y =σX + σY . (11)

If σY = λ σX for some λ > 0, (10) and (11) imply

exp
2S(X + Y )

n
= exp

2S(X)
n

+ exp
2S(Y )

n
(12)

so that the Entropy Power Inequality has the form

exp
2S(X + Y )

n
≥ exp

2S(X)
n

+ exp
2S(Y )

n
. (13)

Two different proofs of the Entropy Power Inequality are known. The first is due to the work of
Blachman and Stam10,101 and is based on perturbing the inputs X and Y with the heat semigroup. The
second is due to the work of Lieb85 and is based on the sharp Young’s inequality for convolutions and
on the properties of the Rényi entropies. For any p > 1, the p-Rényi entropy of the random variable
X with values in Rn and density f is

Sp(X)=
p

1 − p
ln ‖f ‖p. (14)

The Rényi entropies are a generalization of the Shannon differential entropy, which is recovered in
the limit p→ 1,

S(X)= lim
p→1

Sp(X). (15)
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III. QUANTUM GAUSSIAN SYSTEMS

In this section, we introduce the elements of quantum information and quantum Gaussian systems
that are needed for presenting the entropic inequalities for quantum Gaussian channels. For a more
comprehensive introduction, we refer the reader to the books Refs. 70 and 98 and the review Ref. 71.

A. Quantum systems

Let H be a separable complex Hilbert space with not necessarily finite dimension. We adopt the
bra-ket notation, where a vector ψ ∈H is denoted as |ψ〉 and the scalar product between the vectors
φ and ψ is denoted as 〈φ|ψ〉, which is linear in ψ and antilinear in φ.

For any p ≥ 1, the p-Schatten norm of a linear compact operator X̂ on H is




X̂


p
=

(
Tr

(
X̂†X̂

) p
2
) 1

p

, (16)

where X̂† is the adjoint operator of X̂. The p-Schatten norm plays the role of the Lp norm of functional
analysis. The operators with a finite 1-Schatten norm are called trace-class operators. The∞-Schatten

norm ‖X̂ ‖∞ of a continuous linear operator X̂ is defined as the supremum of the spectrum of
√

X̂†X̂ .
Quantum states are the noncommutative counterpart of probability measures. A quantum state

is a positive trace-class operator with unit trace. Any quantum state ρ̂ can be diagonalized in an
orthonormal basis

ρ̂=

∞∑
k=0

pk |ψk〉〈ψk |, (17)

where {|ψk〉〈ψk |}k∈N denote the rank-one projectors onto the orthonormal vectors {ψk }k∈N and {pk }k∈N
are the eigenvalues of ρ̂. Since ρ̂ is positive and has unit trace, {pk }k∈N is a probability measure on
N. The quantum state ρ̂ is called pure if it is a rank-one projector, and mixed otherwise. With a
small abuse of nomenclature, we call pure state both the normalized vector ψ ∈H and the associated
rank-one projector |ψ〉〈ψ|. From (17), any quantum state can be expressed as a convex combination
of orthogonal pure states.

The von Neumann entropy of the quantum state ρ̂ in (17) is the Shannon entropy of its eigenvalues,

S( ρ̂)=−Tr
[
ρ̂ ln ρ̂

]
=−

∞∑
k=0

pk ln pk , (18)

and is the quantum counterpart of the Shannon differential entropy. As the Shannon entropy and in
contrast to the Shannon differential entropy, the von Neumann entropy is always positive and vanishes
if and only if ρ̂ is pure. If ρ̂ is a quantum state of the quantum system A with Hilbert space HA, we
use indistinctly the notation S( ρ̂) or S(A) for the entropy of ρ̂.

As in the case of classical probability measures, we can define for any p > 1 the p-Rényi entropy
of the quantum state ρ̂ as

Sp( ρ̂)=
p

1 − p
ln ‖ ρ̂‖p. (19)

The Rényi entropies are a generalization of the von Neumann entropy, which is recovered in the limit
p→ 1,

S( ρ̂)= lim
p→1

Sp( ρ̂). (20)

The observables of a quantum system are the self-adjoint operators on the Hilbert space, and the
expectation value of the observable Ô on the state ρ̂ is〈

Ô
〉
ρ̂
=Tr

[
Ô ρ̂

]
. (21)

If A and B are quantum systems with Hilbert spaces HA and HB, the joint system AB has Hilbert
space HA ⊗HB. A pure state ψ ∈HA ⊗HB is called product state if ψ = ψA ⊗ ψB for some ψA ∈HA

and ψB ∈HB. A fundamental difference with respect to classical probability is that not all pure states
are product states. A pure state that is not a product state is called entangled state. Let ρ̂AB be a
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quantum state of the joint quantum system AB. We define the reduced or marginal states on A and B
as

ρ̂A =TrB ρ̂AB, ρ̂B =TrA ρ̂AB, (22)

where TrA and TrB denote the partial trace over the system A and B, respectively. In other words, ρ̂A

is the quantum state of A such that

TrA

[
X̂A ρ̂A

]
=TrAB

[(
X̂A ⊗ ÎB

)
ρ̂AB

]
(23)

for any bounded operator X̂A on HA, and analogously for ρ̂B.

B. Quantum channels

Quantum channels64,70,90,109 are the noncommutative counterpart of the Markov operators of
probability theory. A quantum channel Φ from the quantum system A with Hilbert space HA to the
quantum system B with Hilbert space HB is a linear completely positive trace-preserving map from
the trace-class operators on HA to the trace-class operators on HB. Precisely, a mapΦ is said to be

• positive if Φ(X̂) ≥ 0 for any trace-class operator X̂ ≥ 0;
• completely positive if the map Φ ⊗ Id is positive for any d ∈N, where Id denotes the identity

map on the operators on the Hilbert space Cd ;
• trace-preserving if TrΦ(X̂)=Tr X̂ for any trace-class operator X̂.

These properties ensure that for any d ∈N the map Φ ⊗ Id sends the quantum states on HA ⊗ Cd to
quantum states on HB ⊗Cd . Since any joint probability measure of two random variables is a convex
combination of product probability measures, the complete positivity of any Markov operator is a
trivial consequence of its positivity. On the contrary, the existence of entanglement makes complete
positivity a nontrivial requirement for quantum channels. For example, the transposition is a linear
positive trace-preserving map that is not completely positive.

Any quantum channel Φ from A to B can be realized by an isometry followed by a partial trace,
i.e., there exists an Hilbert space HE and an isometry V̂ :HA→HB ⊗ HE with V̂†V̂ = ÎA such that
for any trace-class operator X̂ on HA,

Φ
(
X̂
)
=TrE

[
V̂ X̂ V̂†

]
. (24)

The Hilbert space HE and the isometry V̂ are unique up to isometries on HE . The expression (24)
is called the Stinespring dilation of Φ. The quantum channel from A to E defined on trace-class
operators as

Φ̃
(
X̂
)
=TrA

[
V̂ X̂ V̂†

]
(25)

is called the complementary channel of Φ.70 We mention that the Stinespring dilation has a classical
analog that has found some applications in the commutative setting, e.g., in infinite-dimensional
stochastic analysis.63

Let Φ : A→ B be a quantum channel. The dual channel of Φ is the linear map Φ† from bounded
operators on HB to bounded operators on HA such that for any trace-class operator Â on HA and any
bounded operator B̂ on HB

Tr
[
B̂Φ

(
Â
)]
=Tr

[
Φ
†
(
B̂
)

Â
]
. (26)

For any 1 ≤ p, q ≤ ∞, the p→ q norm of a quantum channel Φ is defined as

‖Φ‖p→q = sup
0<‖X̂‖p<∞




Φ
(
X̂
)


q




X̂


p

. (27)

A fundamental question is whether the p→ q norm of a channel is multiplicative with respect to the
tensor product, i.e., whether




Φ
⊗n


p→q

= ‖Φ‖np→q, ∀n ∈N. (28)

This property holds for any classical integral kernel,67,86 but it is known to fail for generic quantum
channels.67
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C. Quantum Gaussian systems

A n-mode Gaussian quantum system is the mathematical model for n harmonic oscillators or n
modes of the electromagnetic radiation. For the sake of simplicity, we present one-mode Gaussian
quantum systems first.

The Hilbert space of a one-mode Gaussian quantum system is L2(R), the irreducible represen-
tation of the canonical commutation relation [see Refs. 98 or 70 (Chap. 12) for a more complete
presentation]

[
â, â†

]
= Î. (29)

The operator â is called ladder operator, plays the role of a noncommutative complex variable
and acts on ψ in a suitable dense domain in L2(R) as

(âψ)(x)=
x ψ(x) + ψ ′(x)

√
2

. (30)

The quantum states of a one-mode Gaussian quantum system are the quantum counterparts of the
probability measures on R2. Since each mode is associated with a complex noncommutative variable,
the number of real classical components is twice the number of quantum modes. We define the
Hamiltonian

N̂ = â†â, (31)

that counts the number of excitations or photons. The vector annihilated by â is the vacuum and is
denoted by |0〉. From the vacuum we can build the eigenstates of the Hamiltonian, called Fock states,

|n〉=

(
â†

)n

√
n!
|0〉, 〈m|n〉= δmn, N̂ |n〉= n|n〉, m, n ∈N, (32)

where 〈φ|ψ〉 denotes the scalar product in L2(R). An operator diagonal in the Fock basis is called
Fock-diagonal.

A quantum Gaussian state is a quantum state proportional to the exponential of a quadratic
polynomial in â and â†. The most important Gaussian states are the thermal Gaussian states, where
the polynomial is proportional to the Hamiltonian â†â. They correspond to a geometric probability
distribution for the energy,

ω̂(E)=
1

E + 1

∞∑
n=0

(
E

E + 1

)n

|n〉〈n|, E ≥ 0. (33)

For E = 0, we recover the vacuum state ω̂(0)= |0〉〈0|. The average energy of ω̂(E) is

E =Tr
[
N̂ ω̂(E)

]
(34)

and the von Neumann entropy is

g(E)B S(ω̂(E))= (E + 1) ln(E + 1) − E ln E. (35)

As Gaussian probability measures maximize the Shannon differential entropy among all the proba-
bility measures with a given covariance matrix, thermal quantum Gaussian states maximize the von
Neumann entropy among all the quantum states with a given average energy.

The Hilbert space of a n-mode Gaussian quantum system is the tensor product of n Hilbert
spaces of a one-mode Gaussian quantum system, i.e., the irreducible representation of the canonical
commutation relations

[
âi, â†j

]
= δij Î,

[
âi, âj

]
=

[
â†i , â†j

]
= 0, i, j = 1, . . . , n, (36)

where each ladder operator âi is associated with one mode. An n-mode thermal quantum Gaussian
state is the tensor product ω̂(E)⊗n of n identical one-mode thermal quantum Gaussian states.
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D. Quantum Gaussian channels

Quantum Gaussian channels are the quantum channels that preserve the set of quantum Gaussian
states. The most important families of quantum Gaussian channels are the beam-splitter, the squeezing,
the quantum Gaussian attenuators, and the quantum Gaussian amplifiers. The beam-splitter and the
squeezing are the quantum counterparts of the classical linear mixing of random variables and are the
main transformations in quantum optics. Let A and B be one-mode quantum Gaussian systems with
ladder operators â and b̂, respectively. The beam-splitter of transmissivity 0 ≤ λ ≤ 1 is implemented
by the unitary operator

Ûλ = exp
((

â†b̂ − b̂†â
)

arccos
√
λ
)

(37)

and performs a linear rotation of the ladder operators [see, e.g., Ref. 38 (Sec. 1.4.2)]

Û†λ â Ûλ =
√
λ â +

√
1 − λ b̂,

Û†λ b̂ Ûλ =−
√

1 − λ â +
√
λ b̂. (38)

The physical beam-splitter is a passive element and does not require energy for functioning. Indeed,
the mixing unitary operator preserves the Hamiltonian (31)

Û†λ
(
â†â + b̂†b̂

)
Ûλ = â†â + b̂†b̂. (39)

The two-mode squeezing5 of parameter κ ≥ 1 is implemented by the unitary operator

Ûκ = exp
((

â†b̂† − â b̂
)
arccosh

√
κ
)

(40)

and acts on the ladder operators as

Û†κ â Ûκ =
√
κ â +

√
κ − 1 b̂†,

Û†κ b̂ Ûκ =
√
κ − 1 â† +

√
κ b̂. (41)

The squeezing is an active operation that requires energy. Indeed, the squeezing unitary operator does
not preserve the Hamiltonian (31).

We define for any joint quantum state ρ̂AB on AB and any λ ≥ 0 the quantum channel from AB
to A

Bλ( ρ̂AB)=TrB

[
Ûλ ρ̂AB Û†λ

]
, (42)

where TrB denotes the partial trace over the system B. Bλ implements the beam-splitter for 0 ≤ λ ≤
1 and the squeezing for λ ≥ 1.

The quantum Gaussian attenuators model the attenuation and the noise affecting electromagnetic
signals traveling through optical fibers or free space. The quantum Gaussian attenuator Eλ,E can be
implemented mixing the input state ρ̂ with the thermal Gaussian state with average energy E ≥ 0
through a beam-splitter of transmissivity 0 ≤ λ ≤ 1,

Eλ,E( ρ̂)=Bλ( ρ̂ ⊗ ω̂(E)). (43)

The quantum Gaussian attenuators constitute a multiplicative semigroup with composition law

E1,E = I, Eλ,E ◦ Eλ′,E = Eλλ′,E , ∀E ≥ 0, 0 ≤ λ, λ ′ ≤ 1. (44)

The quantum Gaussian amplifiers model the amplification of electromagnetic signals. The quan-
tum Gaussian amplifier Aκ,E can be implemented performing a two-mode squeezing of parameter
κ ≥ 1 on the input state ρ̂ and the thermal Gaussian state with average energy E ≥ 0,

Aκ,E( ρ̂)=Bκ( ρ̂ ⊗ ω̂(E)). (45)

Also the quantum Gaussian amplifiers constitute a semigroup with composition law

A1,E = I, Aκ,E ◦Aκ′,E =Aκκ′,E , ∀E ≥ 0, κ, κ′ ≥ 1. (46)

The attenuator Eλ,E and the amplifier Aκ,E are called quantum-limited if E = 0, i.e., if they mix
the input state with the vacuum. Indeed, the vacuum as state of the environment adds the least possible
noise to the input state. In this case, since ω̂(0)= |0〉〈0| is a pure state, the expressions (43) and (45)
are the Stinespring dilations of the corresponding channels.
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IV. THE MINIMUM OUTPUT ENTROPY CONJECTURE

The minimum output entropy of a quantum channel plays a key role in the determination of
its classical information capacity. The following theorem has been a fundamental result in quantum
communication theory.

Theorem IV.1. For any n ∈N, the vacuum state minimizes the output entropy of the n-mode
quantum Gaussian attenuators and of the n-mode quantum Gaussian amplifiers, i.e., for any n-mode
quantum state ρ̂, any E ≥ 0, 0 ≤ λ ≤ 1 and κ ≥ 1

S
(
E⊗n
λ,E( ρ̂)

)
≥ S

(
E⊗n
λ,E

(
|0〉〈0|⊗n

))
= n S(Eλ,E(|0〉〈0|)),

S
(
A⊗n
κ,E( ρ̂)

)
≥ S

(
A⊗n
κ,E

(
|0〉〈0|⊗n

))
= n S(Aκ,E(|0〉〈0|)). (47)

Therefore, the minimum output entropy of the quantum attenuators and amplifiers is additive.

We stress that Theorem IV.1 is trivial for classical Gaussian channels, i.e., for Gaussian integral
kernels that send probability measures onRm to probability measures onRn. Indeed, for the concavity
of the entropy it is sufficient to prove Theorem IV.1 for pure input states. In the classical case, the
only pure probability measures are the Dirac delta functions and they all achieve the same output
entropy. As we will see, the Proof of Theorem IV.1 exploits tools of quantum information theory
that do not have a classical counterpart: the complementary channel and the decomposition of any
Gaussian channel as a quantum-limited attenuator followed by a quantum-limited amplifier.

The Proof of Theorem IV.1 is based on majorization theory.89

Definition 1 (majorization). We say that the quantum state ρ̂majorizes the quantum state σ̂ and
write ρ̂� σ̂, if and only if σ̂ can be obtained applying to ρ̂ a convex combination of unitary operators,
i.e., if and only if there exists a probability measure µ on the set of unitary operators such that

σ̂ =

∫
Û ρ̂ Û† dµ

(
Û

)
. (48)

The link between majorization and the entropy is provided by the following property.

Proposition IV.2. Let ρ̂ and σ̂ be quantum states such that ρ̂� σ̂. Then, f ( ρ̂) ≥ f (σ̂) for any
unitarily invariant convex functional f on the set of quantum states. In particular,

• ‖ ρ̂‖p ≥ ‖σ̂‖p for any p ≥ 1;
• S( ρ̂) ≤ S(σ̂).

Theorem IV.1 is a consequence of this more fundamental result.

Theorem IV.3 (majorization for quantum Gaussian channels). For any n ∈N and for all the
n-mode quantum Gaussian attenuators and amplifiers, the output generated by the vacuum input
state majorizes the output generated by any other input state, i.e., for any 0 ≤ λ ≤ 1, κ ≥ 1 and
E ≥ 0 and for any n-mode quantum state ρ̂,

E⊗n
λ,E

(
|0〉〈0|⊗n

)
� E⊗n

λ,E( ρ̂), A⊗n
κ,E

(
|0〉〈0|⊗n

)
�A⊗n

κ,E( ρ̂). (49)

Besides Theorem IV.1, a fundamental consequence of Theorem IV.3 is the following.

Corollary IV.4 (1 → p norms of quantum Gaussian channels). For any p ≥ 1 and any n ∈N,
the vacuum input state achieves the 1→ p norm of the n-mode quantum Gaussian attenuators and
amplifiers, i.e., for any 0 ≤ λ ≤ 1, κ ≥ 1 and E ≥ 0,




E
⊗n
κ,E




1→p
=




E
⊗n
κ,E

(
|0〉〈0|⊗n

)


p
= 

Eκ,E(|0〉〈0|)

n

p,




A
⊗n
κ,E




1→p
=




A
⊗n
κ,E

(
|0〉〈0|⊗n

)


p
= 

Aκ,E(|0〉〈0|)

n

p. (50)

Therefore, the 1→ p norms of the quantum Gaussian attenuators and amplifiers are multiplicative.
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Theorem IV.1 was first proven by Giovannetti, Holevo, and Garcı́a-Patrón.48 Shortly later, Mari,
Giovannetti, and Holevo realized that the same proof implies the more general Theorem IV.3, first for
one-mode quantum Gaussian channels,88 and then for multi-mode quantum Gaussian channels.47,68

We present here a sketch of the proof. For more details, the reader can also consult the review
Ref. 71.

The first step to prove Theorem IV.3 is the following observation.

Proposition IV.5. For any n, any n-mode quantum Gaussian attenuator or amplifier can be
decomposed as an n-mode quantum-limited attenuator followed by a n-mode quantum-limited
amplifier.

Theorem IV.3 is trivial for the quantum-limited attenuator, since the vacuum is a fixed point.
Thanks to Proposition IV.5, it is sufficient to prove Theorem IV.3 for the quantum-limited amplifier.
It is easy to see that it is sufficient to prove Theorem IV.3 for pure input states. The next step exploits
the following properties:

Proposition IV.6. Let Φ be a quantum channel and Φ̃ be its complementary channel. Then, for
any pure input state ψ, the quantum states Φ(|ψ〉〈ψ|) and Φ̃(|ψ〉〈ψ |) have the same spectrum.

From Proposition IV.6, the optimal input states for Φ and Φ̃ must coincide.

Proposition IV.7. The complementary channel of the quantum-limited amplifier is a quantum-
limited attenuator followed by the same quantum-limited amplifier followed by the transposition, i.e.,
for any κ ≥ 1,

Ãκ,0 =T ◦Aκ,0 ◦ E1−1/κ,0, (51)

where T is the transposition operation.

From Propositions IV.6 and IV.7, the optimal input states for the quantum-limited amplifier must
coincide with the optimal input states for a suitable quantum-limited attenuator composed with the
same quantum-limited amplifier. Since the optimal input states must be pure, they must be left pure
by the quantum-limited attenuator. The claim then follows from the following property.

Proposition IV.8. For any n ∈N and any 0 < λ < 1, the vacuum is the only n-mode quantum
state ρ̂ such that E⊗n

λ,0( ρ̂) is pure.

V. GAUSSIAN OPTIMIZERS FOR ENTROPIC INEQUALITIES IN QUANTUM INFORMATION

The problem of determining the information capacity region of the quantum Gaussian degraded
broadcast channel has led to a constrained minimum output entropy conjecture,58 which is a
generalization of Theorem IV.1 with a constrained input entropy.

Conjecture V.1 (constrained minimum output entropy conjecture). For any n ∈N, quantum
Gaussian input states minimize the output entropy of the n-mode Gaussian quantum attenuators
and amplifiers among all the input states with a given entropy. In other words, let ρ̂ be a generic
n-mode quantum state, and let ω̂ be the one-mode thermal Gaussian state with entropy S( ρ̂)/n, so
that ω̂⊗n is the n-mode thermal Gaussian state with the same entropy as ρ̂. Then, for any 0 ≤ λ ≤ 1,
κ ≥ 1 and E ≥ 0,

S
(
E⊗n
λ,E( ρ̂)

)
≥ S

(
E⊗n
λ,E

(
ω̂⊗n

))
= n S(Eλ,E(ω̂))= n g

(
λ g−1

(
S( ρ̂)

n

)
+ (1 − λ)E

)
,

S
(
A⊗n
κ,E( ρ̂)

)
≥ S

(
A⊗n
κ,E

(
ω̂⊗n

))
= n S(Aκ,E(ω̂))

= n g

(
κ g−1

(
S( ρ̂)

n

)
+ (κ − 1)(E + 1)

)
, (52)

where the function g has been defined in (35).
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Conjecture V.1 has been proven only in the one-mode case (n = 1) by De Palma, Trevisan, and
Giovannetti,33,34 and has been extended to one-mode gauge-contravariant quantum Gaussian channels
by Qi, Wilde, and Guha.94 The proof by De Palma et al. is based on the following fundamental
majorization result for one-mode quantum Gaussian channels,32 which extends Theorem IV.3.

Theorem V.2. For any 0 ≤ λ ≤ 1, κ ≥ 1, and E ≥ 0 and any one-mode quantum state ρ̂,

Eλ,E( ρ̂)≺ Eλ,E

(
ρ̂↓

)
, Aκ,E( ρ̂)≺Aκ,E

(
ρ̂↓

)
, (53)

where ρ̂↓ is the passive rearrangement of ρ̂, i.e., the passive state with the same spectrum as ρ̂.

We recall that a passive state is a quantum state that minimizes the average energy among all
the quantum states with the same spectrum.52,82,92 If ρ̂ is diagonalized in the orthonormal eigenbasis
{ψn}n∈N as

ρ̂=

∞∑
n=0

pn |ψn〉〈ψn |, p0 ≥ p1 ≥ . . . ≥ 0, (54)

ρ̂↓ is given by

ρ̂↓ =

∞∑
n=0

pn |n〉〈n|, (55)

where {|n〉}n∈N is the Fock basis.
From Theorem V.2, in the case of one mode the constrained minimization of the output entropy

of Conjecture V.1 can be restricted to passive input states. Unfortunately, an analog majorization
theorem does not hold for more than one mode.29

Conjecture V.1 has first been proven for the one-mode quantum-limited attenuator.34 The proof
is based on the following isoperimetric inequality that constitutes the infinitesimal version of the
conjecture.

Theorem V.3 (isoperimetric inequality for the one-mode quantum-limited attenuator). Among
all the input states with a given entropy, quantum Gaussian input states maximize the derivative
of the output entropy of the one-mode quantum-limited attenuator with respect to the attenuation
parameter. In other words, let ρ̂ be a one-mode quantum state and ω̂ the one-mode thermal Gaussian
state with the same entropy as ρ̂. Then,

d
dλ

S
(
Eλ,0( ρ̂)

) �����λ=1
≤

d
dλ

S
(
Eλ,0(ω̂)

) �����λ=1
= g−1(S( ρ̂)) g′

(
g−1(S( ρ̂))

)
. (56)

The adjective “isoperimetric” is due to the formal analogy between entropy and volume.36 Up to a
change of signs, the left-hand side in (56) plays the role of a perimeter and the function g�1(s)g′(g�1(s))
that of an isoperimetric profile.

Thanks to Theorem V.2, it is sufficient to prove Theorem V.3 for passive states. The proof is
then performed through the Lagrange multipliers. Since the Hilbert space of a one-mode Gaussian
quantum system has infinite dimension, a generic passive state has infinite parameters. This issue is
solved restricting to a finite dimensional subspace with bounded maximum energy, and then proving
that the maximum of the left-hand side of (56) for passive input states supported in the subspace
tends to the right-hand side in the limit of infinite maximum energy.

Conjecture V.1 for the one-mode quantum-limited attenuator then follows integrating the
isoperimetric inequality (56) thanks to the semigroup property (44) of the quantum-limited attenuator.

The generalization of Theorem V.3 to all the one-mode quantum Gaussian attenuators and ampli-
fiers would have implied Conjecture V.1 for n = 1. However, for any one-mode quantum Gaussian
channel other than the quantum-limited attenuator, the infinite dimension of the Hilbert space is
really an issue. Indeed, for any quantum state ρ̂ with a support of finite dimension d

dλS
(
Eλ,E( ρ̂)

) ���λ=1

is infinite for any E > 0 and d
dκ S

(
Aλ,E( ρ̂)

) ���κ=1
is infinite for any E ≥ 0, and nothing can be proven

restricting to a finite dimensional subspace. If one tries to use the Lagrange multipliers directly for
the infinite dimensional problem, the Gaussian state is not the only solution94 so that a new approach
is needed. This approach is based on the p→ q norms and is presented in Subsection V A below.
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A. Quantum Gaussian channels have Gaussian maximizers

The theorem “Gaussian kernels have Gaussian maximizers” has been conjectured to apply also
to quantum Gaussian channels.

Conjecture V.4 (quantum Gaussian channels have Gaussian maximizers). For any n ∈N and any
p, q ≥ 1, quantum Gaussian input states achieve the p→ q norm of the n-mode Gaussian quantum
attenuators and amplifiers. In other words, for any 0 ≤ λ ≤ 1, κ ≥ 1 and E ≥ 0,




E
⊗n
λ,E




p→q
= sup

E′≥0




E
⊗n
λ,E

(
ω̂(E ′)⊗n

)


q




ω̂(E ′)⊗n


p

= *
,

sup
E′≥0



Eλ,E(ω̂(E ′))

q

‖ω̂(E ′)‖p
+
-

n

,




A
⊗n
κ,E




p→q
= sup

E′≥0




A
⊗n
κ,E

(
ω̂(E ′)⊗n

)


q




ω̂(E ′)⊗n


p

= *
,

sup
E′≥0



Aκ,E(ω̂(E ′))

q

‖ω̂(E ′)‖p
+
-

n

, (57)

where ω̂(E ′) is the one-mode thermal Gaussian state with average energy E ′ as in (33). Therefore,
the p→ q norms of the quantum Gaussian attenuators and amplifiers are multiplicative.

Remark V.5. The suprema in (57) are

• finite and achieved for a finite E ′ ≥ 0 if 1 ≤ p < q;
• finite and asymptotically achieved in the limit E ′→∞ if 1 < p = q;
• infinite and asymptotically achieved in the limit E ′→∞ if 1 ≤ q < p.

Remark V.6. Conjecture V.4 can be extended to any linear and completely positive map that
preserves the set of unnormalized quantum Gaussian states, i.e., the operators proportional to a
quantum Gaussian state. These maps include all quantum Gaussian channels and all the probabilistic
maps resulting from the conditioning on the outcome of a Gaussian measurement performed on a
subsystem.70,98 The generalized conjecture states that quantum Gaussian input states achieve the
p → q norms of all such maps. In this more general setup, the analog of the optimization in the
right-hand side of (57) cannot be restricted to the thermal Gaussian states but has to be performed
over all quantum Gaussian states.

Conjecture V.4 has been proven only in some particular cases. As we have seen in Corollary
IV.4, the majorization result Theorem IV.3 implies Conjecture V.4 for any n in the case p = 1. De
Palma, Trevisan, and Giovannetti proved Conjecture V.4 in the case of one-mode quantum-limited
channels, i.e., n = 1 and E = 0.31 Frank and Lieb proved Conjecture V.4 for any n in the case p = q,42

and Holevo extended the result to any n-mode quantum Gaussian channel (still for p = q).73

1. The proof of Conjecture V.4 for one-mode quantum-limited Gaussian channels

First, De Palma et al. prove Conjecture V.4 for the one-mode quantum-limited attenuator. From
the following Lemma, it is sufficient to prove Conjecture V.4 for positive input operators.

Lemma V.7 (Ref. 4). For any p ≥ 1, any quantum channel Φ and any operator X̂ ,




Φ
(
X̂
)


p
≤





Φ
(√

X̂†X̂
)



p

. (58)

The Proof of Conjecture V.4 is then based on the following new logarithmic Sobolev inequality
that constitutes the infinitesimal version of Conjecture V.4 (in the same way as Gross’ logarithmic
Sobolev inequality is the infinitesimal version of Nelson’s Hypercontractive theorem53).

Theorem V.8 (logarithmic Sobolev inequality for the quantum-limited Gaussian attenuator).
Let us fix p ≥ 1. Let ρ̂ be a one-mode quantum state, and let ω̂ be the thermal Gaussian state such
that ω̂p/Trω̂p has the same entropy as ρ̂p/Tr ρ̂p. Then,

d
dλ

ln 

Eλ,0( ρ̂)

p

�����λ=1
≥

d
dλ

ln 

Eλ,0(ω̂)

p

�����λ=1
. (59)
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Thanks to Theorem V.2, it is sufficient to prove Theorem V.8 for passive input states. As in
the case of Theorem V.3, the proof is then performed through the Lagrange multipliers, restricting
to a finite dimensional subspace with bounded maximum energy. Conjecture V.4 for the one-mode
quantum-limited attenuator follows integrating (59) thanks to the semigroup property of the attenuator
(44).

Conjecture V.4 for the one-mode quantum-limited amplifier follows from the following duality
Lemma for the Schatten norms.

Lemma V.9. For any p > 1 and any positive operator X̂,




X̂


p
= sup

{
Tr

[
X̂ Ŷ

] /


Ŷ


 p
p−1

: Ŷ ≥ 0, rank Ŷ <∞

}
. (60)

Lemma V.9 implies the following duality for the norms of quantum channels.

Lemma V.10. For any quantum channel Φ and any p, q ≥ 1,

‖Φ‖p→q =



Φ
†


 q

q−1→
p

p−1
. (61)

The norms of the quantum-limited amplifier can then be determined from the norms of the
quantum-limited attenuator thanks to the following property.

Lemma V.11. The dual of the quantum-limited Gaussian amplifier is proportional to a quantum-
limited Gaussian attenuator, i.e., for any κ ≥ 1,

A†
κ,0 =

1
κ
E 1

κ ,0. (62)

2. The proof of Conjecture V.1 for all the one-mode attenuators and amplifiers

De Palma, Trevisan, and Giovannetti have exploited the proof of Conjecture V.4 for the one-mode
quantum-limited amplifier to prove Conjecture V.1 for all the one-mode attenuators and ampli-
fiers.33 First, they prove Conjecture V.1 for the one-mode quantum-limited amplifier. The first step
is rephrasing Conjecture V.4 for the one-mode quantum-limited amplifier in the following way.

Theorem V.12. Let us fix κ ≥ 1. Let ρ̂ be a generic one-mode quantum state, and let ω̂ be the
one-mode thermal Gaussian state with the same entropy as ρ̂. Then, for any q > 1 there exists 1 ≤ p
< q such that the p→ q norm of Aκ,0 is achieved by ω̂, and

‖Aκ,0( ρ̂)‖q
‖ ρ̂‖p

≤ ‖Aκ,0‖p→q =
‖Aκ,0(ω̂)‖q
‖ω̂‖p

. (63)

Rewriting (63) in terms of the Rényi entropies, we get

Sq(Aκ,0( ρ̂)) ≥ Sq(Aκ,0(ω̂)) +
p − 1
q − 1

q
p

(
Sp( ρ̂) − Sp(ω̂)

)
. (64)

Taking the limit q→ 1 and recalling (20) we get the claim

S(Aκ,0( ρ̂)) ≥ S(Aκ,0(ω̂)). (65)

This result implies Conjecture V.1 for all the one-mode attenuators and amplifiers since any of these
channels can be decomposed as a one-mode quantum-limited attenuator followed by a one-mode
quantum-limited amplifier (Proposition IV.5), for which Conjecture V.1 holds.

3. The proof of Conjecture V.4 for p = q

The proof by Frank and Lieb is completely different from the proof by De Palma et al. and is
based on the following theorem.
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Theorem V.13. For any p > 1 and any quantum channel Φ,

‖Φ‖p→p ≤



Φ

(
Î
)




p−1
p

∞




Φ
†
(
Î
)




1
p

∞
. (66)

Conjecture V.4 follows directly applying Theorem V.13 to quantum Gaussian channels. The
proof of Theorem V.13 is based on Hadamard’s three line lemma.100

Theorem V.14 (Hadamard’s three line lemma). Let f be analytic in the strip {z : 0 <<z < 1}
and continuous and bounded on its closure. Let

Mt(f )= sup
y∈R
|f (t + iy)| (67)

for 0 ≤ t ≤ 1. Then

Mt ≤M1−t
0 M t

1. (68)

Theorem V.13 follows applying Theorem V.14 to

f (z)=Tr
[
Ŷp 1−z

p−1Φ
(
X̂pz

)]
, (69)

where X̂ and Ŷ are positive and Ŷ has finite rank, and recalling the duality relation for the Schatten
norms (Lemma V.9).

B. The entropy photon-number inequality

The Entropy Photon-number Inequality is the quantum counterpart of the Entropy Power Inequal-
ity for the beam-splitter. Guha, Erkmen, and Shapiro conjectured it55 as a generalization of Conjecture
V.1, and De Palma, Mari, and Giovannetti extended the conjecture to the squeezing.27

Conjecture V.15 (Entropy Photon-number Inequality). For any n, n-mode thermal quantum
Gaussian states minimize the output entropy of the n-mode beam-splitter or squeezing among all
the n-mode input states where the two inputs have given entropies. In other words, let ρ̂A and ρ̂B

be two n-mode quantum states, and let ω̂A and ω̂B be the one-mode thermal Gaussian states with
entropies S( ρ̂A)/n and S( ρ̂B)/n, such that ω̂⊗n

A and ω̂⊗n
B are the n-mode thermal Gaussian states with

the same entropy as ρ̂A and ρ̂B, respectively. Then, for any 0 ≤ λ ≤ 1,

S
(
B⊗n
λ ( ρ̂A ⊗ ρ̂B)

)
≥ S

(
B⊗n
λ

(
ω̂⊗n

A ⊗ ω̂
⊗n
B

))
= n g

(
λ g−1

(
S( ρ̂A)

n

)
+ (1 − λ)g−1

(
S( ρ̂B)

n

))
, (70)

and for any κ ≥ 1,

S
(
B⊗n
κ ( ρ̂A ⊗ ρ̂B)

)
≥ S

(
B⊗n
κ

(
ω̂⊗n

A ⊗ ω̂
⊗n
B

))
= n g

(
κ g−1

(
S( ρ̂A)

n

)
+ (κ − 1)

(
g−1

(
S( ρ̂B)

n

)
+ 1

))
, (71)

where the function g has been defined in (35).

For any n-mode quantum state ρ̂, the n-mode thermal Gaussian state with the same entropy as ρ̂
has average photon number per mode g−1(S( ρ̂/n)). This quantity is called the entropy photon-number
of ρ̂, hence the name Entropy Photon-number Inequality.

In the case where the second input ρ̂B of the beam-splitter or of the squeezing is a thermal
Gaussian state, Conjecture V.15 reduces to Conjecture V.1. The only other particular case where
the Entropy Photon-number Inequality has been proven is when the two inputs are (not necessarily
thermal) Gaussian states.21
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C. The sharp Young’s inequality for the beam-splitter

The similarity between the Entropy Photon-number Inequality and the Entropy Power Inequality
together with the proof of the latter through the sharp Young’s inequality for convolutions leads to
conjecture a quantum version of Young’s inequality, here formulated for the first time.

Let us define for any n ∈N, any p, q, r ≥ 1, and any λ ≥ 0

Cn(p, q, r, λ)= sup
0< ‖X̂ ‖p,‖Ŷ ‖q<∞




B
⊗n
λ

(
X̂ ⊗ Ŷ
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Ŷ


q

. (72)

Conjecture V.16 (Quantum sharp Young’s inequality). For any n ∈N, any p, q, r ≥ 1, and any
λ ≥ 0, the supremum in (72) can be restricted to thermal Gaussian states, i.e.,

Cn(p, q, r, λ)= sup
EA, EB≥0
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‖ω̂(EA)‖p‖ω̂(EB)‖q

+
-

n

=C1(p, q, r, λ)n. (73)

Therefore, the constants Cn are multiplicative.

Remark V.17. We conjecture that the supremum in (73) is

• finite and achieved by finite EA, EB ≥ 0 if 1
p + 1

q > 1 + 1
r ;

• finite and asymptotically achieved in the limit EA, EB →∞ if 1
p + 1

q = 1 + 1
r ;

• infinite and asymptotically achieved in the limit EA, EB →∞ if 1
p + 1

q < 1 + 1
r .

The striking difference with respect to the classical case is that the supremum in (73) is finite when
1
p + 1

q > 1 + 1
r . The divergence in the classical Young’s inequality when 1

p + 1
q > 1 + 1

r is asymptotically
achieved by a sequence of Gaussian probability measures that tends to a Dirac delta and can be
ascribed to the fact that a probability density can have arbitrarily high L∞ norm. The divergence
disappears in the quantum scenario since ‖ ρ̂‖∞ ≤ 1 for any quantum state ρ̂.

The quantum sharp Young’s inequality provides a multiplicative upper bound to the p→ q norms
of the quantum Gaussian attenuators and amplifiers. Indeed, assuming Conjecture V.16, we have for
any n ∈N, p, q ≥ 1, 0 ≤ λ ≤ 1, and E ≥ 0,




E
⊗n
λ,E




p→q
= sup

0< ‖X̂ ‖p<∞




E
⊗n
λ,E

(
X̂
)


q




X̂


p

= sup
0< ‖X̂ ‖p<∞




B
⊗n
λ

(
X̂ ⊗ ω̂(E)⊗n

)


q




X̂


p

≤

(
inf
r≥1

C1(p, r, q, λ)‖ω̂(E)‖r
)n

, (74)

and the same holds for the Gaussian quantum amplifiers. Since the conjectured quantum sharp Young’s
inequality is saturated by quantum Gaussian states, we conjecture that the upper bound (74) is sharp
and coincides with (57), i.e., that

sup
E′≥0



Eλ,E(ω̂(E ′))

q

‖ω̂(E ′)‖p
= inf

r≥1
C1(p, r, q, λ)‖ω̂(E)‖r . (75)

Moreover, the quantum sharp Young’s inequality provides a lower bound to the output entropy of the
beam-splitter and of the squeezing. Indeed, rewriting (73) in terms of the Rényi entropies we get for
any n ∈N, λ ≥ 0, p, q, r ≥ 1 and any n-mode quantum states ρ̂A and ρ̂B

Sr

(
B⊗n
λ ( ρ̂A ⊗ ρ̂B)

)
≥

r
r − 1

(
p − 1

p
Sp( ρ̂A) +

q − 1
q

Sq( ρ̂B) − n ln C1(p, q, r, λ)

)
. (76)

We choose 0 ≤ α, β < r
r−1 and set

p= p(r, α)=
r

r + α − α r
, q= q(r, β)=

r
r + β − β r

(77)
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so that (76) becomes

Sr

(
B⊗n
λ ( ρ̂A ⊗ ρ̂B)

)
≥ α Sp(r,α)( ρ̂A) + β Sq(r,β)( ρ̂B) −

n r
r − 1

ln C1(p(r, α), q(r, β), r, λ). (78)

Finally, taking the limit r → 1 and the supremum over α, β ≥ 0, we get

S
(
B⊗n
λ ( ρ̂A ⊗ ρ̂B)

)
≥ sup
α,β≥0

(
α S( ρ̂A) + β S( ρ̂B) − n

d
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C1(p(r, α), q(r, β), r, λ)
�����r=1

)
, (79)

where we used that

lim
r→1

p(r, α)= lim
r→1

q(r, β)= 1, C1(1, 1, 1, λ)= 1. (80)

Since the conjectured quantum Young inequality is saturated by quantum Gaussian states, we con-
jecture that the lower bound (79) is sharp and coincides with the bound provided by the Entropy
Photon-number Inequality (70).

VI. THE THINNING

The thinning95 is the map acting on probability distributions on N that is the discrete analog of
the continuous rescaling operation on R+.

Definition 2 (Thinning). Let N be a random variable with values in N. The thinning with
parameter 0 ≤ λ ≤ 1 is defined as

Tλ(N)=
N∑

i=1

Bi, (81)

where the {Bn}n∈N+ are independent Bernoulli variables with parameter λ (also independent of N);
i.e., each Bi is 1 with probability λ and 0 with probability 1 � λ.

From a physical point of view, the thinning can be understood as follows. Let p be the probability
distribution of the number N of photons that are sent through a beam-splitter with transmissivity λ
such that for any n ∈N the probability that n photons are sent is pn. Each photon has probability λ
of being transmitted and probability 1 � λ of being reflected. Then, Tλ(N) is the random variable
associated with the number of transmitted photons and has probability distribution

[
Tλ(p)

]
n =

∞∑
k=n

(
k
n

)
λn(1 − λ)k−n pk , ∀n ∈N. (82)

The thinning coincides with the restriction of the one-mode quantum-limited Gaussian attenuator
to input states diagonal in the Fock basis.

Theorem VI.1 [Ref. 32 (Theorem 56)]. For any 0 ≤ λ ≤ 1 and any probability distribution p
on N,

Eλ,0*
,

∞∑
n=0

pn |n〉〈n|+
-
=

∞∑
n=0

[
Tλ(p)

]
n |n〉〈n|. (83)

We recall that for any E ≥ 0, the thermal quantum Gaussian states ω̂(E) correspond to the
geometric probability distribution ω(E) for the energy given by

ω(E)n =
1

E + 1

(
E

E + 1

)n

. (84)

We can then extend to the thinning of all the results on the quantum-limited attenuator.
Let p and q be two probability distributions on N. We say that p majorizes q and write p � q, if

and only if there exists a doubly stochastic infinite matrix A such that89

qn =

∞∑
k=0

Ank pk , ∀n ∈N. (85)
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The infinite matrix A is doubly stochastic if and only if

Amn ≥ 0, ∀m, n ∈N,
∞∑

k=0

Ank =

∞∑
k=0

Akn = 1, ∀n ∈N. (86)

The link with the majorization for quantum states of Definition 1 is the following.

Theorem VI.2. The quantum state ρ̂majorizes the quantum state σ̂ if and only if the probability
distribution on N associated with the spectrum of ρ̂ majorizes the probability distribution on N
associated with the spectrum of σ̂.

Theorem V.2 implies then

Theorem VI.3. For any 0 ≤ λ ≤ 1 and any probability distribution p on N,

Tλp≺ Tλp↓, (87)

where p↓ is the decreasing rearrangement of p, i.e., p↓n = pσ(n) for any n ∈N, where σ :N→N is a
bijective function such that pσ (0) ≥ pσ (1) ≥· · · ≥ 0.

The Shannon entropy of the probability measure p on N is the counterpart of the von Neumann
entropy,

S(p)=−
∞∑

n=0

pn ln pn. (88)

The Proof of Conjecture V.1 for the one-mode quantum-limited attenuator34 implies

Theorem VI.4. Geometric input probability distributions minimize the output Shannon entropy
of the thinning among all the input probability distribution with a given Shannon entropy. In other
words, let p be a generic probability distribution on N and let ω be the geometric probability
distribution with the same Shannon entropy as p. Then, for any 0 ≤ λ ≤ 1,

S(Tλ(p)) ≥ S(Tλ(ω))= g
(
λ g−1(S(p))

)
. (89)

For any p ≥ 1, the lp norm of the sequence of complex numbers {xn}n∈N is

‖x‖p = *
,

∑
n∈N
|xn |

p+
-

1
p

. (90)

For any p, q ≥ 1, the p→ q norm of the thinning is

‖Tλ‖p→q = sup
0< ‖x ‖p<∞

‖Tλx‖q
‖x‖p

. (91)

The Proof of Conjecture V.4 for the one-mode quantum-limited attenuator31 implies then

Theorem VI.5. For any p, q ≥ 1, the p → q norm of the thinning is achieved by geometric
probability distributions, i.e., for any 0 ≤ λ ≤ 1,

‖Tλ‖p→q = sup
E≥0

‖Tλω(E)‖q
‖ω(E)‖p

. (92)

Remark VI.6. The supremum in (92) is

• finite and achieved for a finite E ≥ 0 if 1 ≤ p < q;
• finite and asymptotically achieved in the limit E →∞ if 1 < p = q;
• infinite and asymptotically achieved in the limit E →∞ if 1 ≤ q < p.
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VII. QUANTUM CONDITIONING AND THE QUANTUM ENTROPY POWER INEQUALITY

A. The quantum entropy power inequality

The first attempt to prove the Entropy Photon-number Inequality was through the quantum
counterpart of the heat semigroup technique of the proof of the Entropy Power Inequality by Blachman
and Stam. However, this technique only leads to the quantum Entropy Power Inequality,27,79,80 which
has the same expression as the Entropy Power Inequality and provides a lower bound to the output
entropy of the beam-splitter or of the squeezing in terms of the entropies of the two inputs. Since
this bound is strictly lower than the output entropy achieved by thermal Gaussian input states, the
quantum Entropy Power Inequality is strictly weaker than the Entropy Photon-number Inequality.

Theorem VII.1 (quantum Entropy Power Inequality). For any λ ≥ 0 and any two n-mode
quantum states ρ̂A and ρ̂B with a finite average energy,

exp
S
(
B⊗n
λ ( ρ̂A ⊗ ρ̂B)

)
n

≥ λ exp
S( ρ̂A)

n
+ |1 − λ | exp

S( ρ̂B)
n

. (93)

Remark VII.2. The factors of 2 in the exponents in the classical Entropy Power Inequality (13)
do not appear in (93) because an n-mode quantum state is the counterpart of a random variable onR2n.
The coefficients in front of the exponentials in the right-hand side of (93) come from the coefficients
in the transformation rules for the ladder operators (38) and (40).

The quantum Entropy Power Inequality was proposed by König and Smith,79 who proved it in
the case λ = 1

2 .79,80 De Palma, Mari, and Giovannetti extended the proof to any λ ≥ 0.27 De Palma
et al. proposed and proved an Entropy Power Inequality for the most general linear transformation of
bosonic modes.28 Huber, König, and Vershynina proposed and proved an Entropy Power Inequality
for the quantum additive noise channels.74

B. Quantum conditioning

In the classical scenario, the Shannon entropy of the random variable A conditioned on the
“memory” random variable M with law p is defined as the expectation value of the Shannon entropy
of A conditioned on the values assumed by M,19

S(A|M)=
∫

S(A|M =m) dp(m). (94)

Let now A and M be quantum systems, and let us consider a quantum state ρ̂AM on the joint system
AM. The definition (94) cannot be brought to the quantum setting when A is entangled with M since
conditioning on the values assumed by M is not possible. However, (94) can be rewritten as

S(A|M)= S(AM) − S(M), (95)

that is the right definition for the quantum conditional entropy64,70,90,109 (see Ref. 102 for a broad
discussion). We write S(A|M)ρ̂AM when the joint quantum state to which the conditional entropy refers
is not clear from the context. A striking feature of the quantum conditional entropy is that it can be
negative, while the quantum entropy is always positive.

The correlation between two random variables or two quantum systems A and B are quantified
by the (quantum) mutual information64,70,90,109

I(A : B)= S(A) + S(B) − S(AB). (96)

Both the classical and quantum versions of the mutual information are positive as a consequence of
the subadditivity of the entropy.64,70,90,109 The classical mutual information vanishes if and only if A
and B are independent random variables. Analogously, the quantum mutual information vanishes if
and only if ρ̂AB = ρ̂A ⊗ ρ̂B.

The conditional mutual information between A and B conditioned on the memory M is

I(A : B|M)= S(A|M) + S(B|M) − S(AB|M). (97)
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The classical conditional mutual information is positive as a consequence of the expression (94) for the
conditional entropy and of the positivity of the mutual information.19 Also the quantum conditional
mutual information is positive.64,70,90,109 Since the quantum conditional entropy cannot be written as
in (94), this result is highly nontrivial. The classical conditional mutual information vanishes if and
only if A and B are conditionally independent given the value of M. The quantum conditional mutual
information vanishes for all the joint quantum states of the following form:65

ρ̂ABM =

∞⊕
n=0

pn ρ̂AM(n)
A
⊗ ρ̂BM(n)

B
, (98)

where p is a probability distribution on N and each ρ̂AM(n)
A

or ρ̂BM(n)
B

is a quantum state on the Hilbert

space HA ⊗HM(n)
A

or HB ⊗HM(n)
B

, respectively, and where

HM =

∞⊕
n=0

HM(n)
A
⊗HM(n)

B
. (99)

If A, B, and M have finite dimension, all the quantum states with vanishing conditional mutual
information are of the form (98). The same property is believed to hold for infinite dimension, but
this has not been proven yet.

A fundamental consequence of the positivity of the quantum conditional mutual information
is the associated data-processing inequality, stating that discarding a subsystem always decreases
the quantum conditional mutual information, i.e., for any quantum state on a joint quantum system
ABCM,

I(AC : B|M) ≤ I(A : B|M). (100)

C. The quantum conditional entropy power inequality

Let X and Y be random variables with values in Rn, and let M be a random variable such that X
and Y are conditionally independent given M. Then, the expression (94), the Entropy Power Inequality
(13) and Jensen’s inequality imply the conditional Entropy Power Inequality30

exp
2S(X + Y |M)

n
≥ exp

2S(X |M)
n

+ exp
2S(Y |M)

n
. (101)

The inequality (101) is saturated by any joint probability measure on ABM such that, conditioning on
any value m of M, A and B are independent Gaussian random variables with proportional covariance
matrices, and the proportionality constant does not depend on m.

Since the quantum conditional entropy cannot be expressed as in (94), the above proof does
not go through in the quantum setting. However, the following quantum conditional Entropy Power
Inequality follows adapting the proof of the quantum Entropy Power Inequality.

Theorem VII.3 (quantum conditional Entropy Power Inequality). Quantum Gaussian states
minimize the output quantum conditional entropy of the beam-splitter and of the squeezing among
all the input states where the two inputs are conditionally independent given the memory. In other
words, let A and B be n-mode Gaussian quantum systems and let M be a generic quantum system.
Let ρ̂ABM be a joint quantum state with finite average energy on AB, finite S( ρ̂M ) and with I(A: B|M)
= 0, and let

ρ̂CM =
(
B⊗n
λ ⊗ IM

)
( ρ̂ABM ), (102)

where λ ≥ 0 and A and B are the two inputs of the beam-splitter or of the squeezing. Then,

exp
S(C |M)

n
≥ λ exp

S(A|M)
n

+ |1 − λ | exp
S(B|M)

n
. (103)

Moreover, let M be a 2n-mode Gaussian quantum system of the form M = MAMB, where MA and MB

are n-mode Gaussian quantum systems. Then, for any a, b ∈R there exists a sequence { ρ̂(k)
ABM }k∈N of

4n-mode quantum Gaussian states of the form ρ̂(k)
ABM = ρ̂

(k)
AMA
⊗ ρ̂(k)

BMB
such that

S(A|M)
ρ̂

(k)
ABM
= a, S(B|M)

ρ̂
(k)
ABM
= b (104)
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for any k ∈N, and

lim
k→∞

exp
S(C |M)

ρ̂
(k)
CM

n
= λ exp

a
n

+ |1 − λ | exp
b
n

. (105)

If M is trivial, (103) becomes the quantum Entropy Power Inequality. The quantum conditional
Entropy Power Inequality was first conjectured by König, who proved it in the case 0 ≤ λ ≤ 1 for
Gaussian input states.77 The general case was proven by De Palma and Trevisan.30 De Palma and
Huber proved a conditional Entropy Power Inequality for the quantum additive noise channels.25 The
proofs of Refs. 25 and 30 settled some regularity issues that affected the previous proofs of Refs. 27,
28, 77, and 79.

The proof of the quantum conditional Entropy Power inequality of Ref. 30 is the quantum
counterpart of the proof of the classical Entropy Power Inequality by Blachman and Stam based
on the evolution with the heat semigroup. Let A be a n-mode Gaussian quantum system with ladder
operators â1, . . ., ân. The displacement operator D̂(z) with z ∈Cn is the unitary operator that displaces
the ladder operators,

D̂(z)
†

âi D̂(z)= âi + zi Î i= 1, . . . , n. (106)

The quantum heat semigroup is the quantum Gaussian channel generated by a convex combination
of displacement operators with a Gaussian probability measure

Nt( ρ̂)=
∫
Cn

D̂
(√

t z
)
ρ̂ D̂

(√
t z

)†
e−|z |

2 dz
πn , N0 = I, Nt ◦Nt′ =Nt+t′ , ∀ t, t ′ ≥ 0. (107)

This is the quantum counterpart of the classical heat semigroup acting on a probability density function
f on Cn,

(Nt f )(w)=
∫
Cn

f
(
w −
√

t z
)

e−|z |
2 dz
πn , w ∈Cn. (108)

Let ρ̂AM be a joint quantum state on AM. The quantum conditional Fisher information of the state
ρ̂AM is the rate of increase of the quantum conditional mutual information between A and Z when
the system A is displaced by

√
t Z according to (107). In other words, for any t > 0, let σ̂AMZ (t) be

the probability measure on Cn with values in quantum states on AM such that

dσ̂AMZ (z, t)= D̂
(√

t z
)
ρ̂ D̂

(√
t z

)†
e−|z |

2 dz
πn ,

∫
Cn

dσ̂AMZ (z, t)= (Nt ⊗ IM )( ρ̂AM ). (109)

Then, the quantum conditional Fisher information of ρ̂AM is

J(A|M)ρ̂AM =
d
dt

I(A : Z |M)σ̂AMZ (t)

�����t=0
. (110)

The quantum de Bruijn identity links the quantum conditional Fisher information to the time derivative
of the conditional entropy along the heat semigroup.

Lemma VII.4 (quantum de Bruijn identity).

J(A|M)ρ̂AM =
d
dt

S(A|M)(Nt ⊗IM )(ρ̂AM )

�����t=0
. (111)

The first part of the proof of the quantum conditional Entropy Power Inequality is proving the
following quantum conditional Stam inequality, which provides an upper bound to the quantum
conditional Fisher information of the output of the beam-splitter or of the squeezing in terms of the
quantum conditional Fisher information of the two inputs.

Theorem VII.5 (quantum conditional Stam inequality). Let ρ̂ABM be a quantum state on ABM
with finite average energy, finite S(M) and I(A: B|M) = 0, and let ρ̂CM be as in (102). Then, for any
λ ≥ 0 the quantum conditional Stam inequality holds

1
J(C |M)ρ̂CM

≥
λ

J(A|M)ρ̂AM

+
|1 − λ |

J(B|M)ρ̂BM

. (112)
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The quantum conditional Stam inequality follows from the data processing inequality for the
quantum conditional mutual information (100) and implies that the quantum conditional Entropy
Power Inequality does not improve along the evolution with the heat semigroup. Then, the proof of
the Entropy Power Inequality is concluded if we show that it becomes asymptotically an equality
in the infinite time limit. This is achieved by proving that the quantum conditional entropy has a
universal scaling independent on the initial state in the infinite time limit under the evolution with
the heat semigroup.

Lemma VII.6. For any joint quantum state ρ̂AM with finite average energy and finite S(M),

S(A|M)(Nt ⊗IM )(ρ̂AM ) = n ln t + n + o(1) for t→∞. (113)

The proof of this scaling is based on the following more general result.

Theorem VII.7. Let A, B be quantum Gaussian systems with m and n modes, respectively, and
let Φ: A→ B a quantum Gaussian channel. Then, for any quantum system M and any quantum state
ρ̂AM on AM with finite average energy and finite S(M),

S(B|M)(Φ⊗IM )(ρ̂AM ) ≥ lim
E→∞

S(B|A′)(Φ⊗IA′ )(τ̂AA′ (E)), (114)

where A′ is a Gaussian quantum system with m modes and for any E ≥ 0, τ̂AA′(E) is a pure state such
that its marginal on A is the thermal Gaussian state ω̂(E)⊗m.

We mention that a result similar to Theorem VII.7 has been proven in the scenario with a
constraint on the average energy of the system A.24

VIII. CONCLUSIONS AND PERSPECTIVES

The optimization problems of functional analysis whose solutions are Gaussian functions have
stimulated to conjecture that quantum Gaussian states are the solution to the quantum counterparts of
these optimization problems. These conjectures play a key role in quantum information theory since
they are necessary to prove the converse theorems for many communication scenarios with quantum
Gaussian channels. We have reviewed the state of the art in the proof of these conjectures. In the
case of one-mode quantum Gaussian channels, they are almost all solved, with the exceptions of the
Entropy Photon-number Inequality and the sharp Young’s inequality for the beam-splitter. On the
contrary, there are only very few results for multi-mode quantum Gaussian channels. In this scenario,
both the constrained minimum output entropy conjecture (Conjecture V.1) and the multiplicativity
of the p→ q norms with 1 < p < q (Conjecture V.4) are still completely open challenging problems
and we hope that this review will set the ground for their solution.

Quantum Gaussian channels also constitute a bridge between continuous and discrete classical
probability. Indeed, on the one hand their properties are very similar to the properties of Gaussian
integral kernels, with quantum Gaussian states playing the role of Gaussian probability measures.
On the other hand, the quantum states diagonal in the Fock basis of a one-mode Gaussian quantum
system is in a one-to-one correspondence with the probability measures on N. This correspondence
establishes a bridge between Gaussian quantum system and discrete probability. The role of quantum
Gaussian states is here played by the geometric probability distributions. These distributions turn out
to be the solution to many optimization problems involving the thinning, which is the discrete analog
of the rescaling of a real random variable.

We then hope that this review will stimulate even more cross-fertilization among functional
analysis, discrete probability, and quantum information.
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61 P. Harremoës, O. Johnson, and I. Kontoyiannis, “Thinning, entropy, and the law of thin numbers,” IEEE Trans. Inf. Theory

56(9), 4228–4244 (2010).
62 M. B. Hastings, “Superadditivity of communication capacity using entangled inputs,” Nat. Phys. 5(4), 255–257 (2009).
63 E. Hausenblas and S. Jan, “A note on maximal inequality for stochastic convolutions,” Czech. Math. J. 51(4), 785–790

(2001).
64 M. Hayashi, Quantum Information Theory: Mathematical Foundation, Graduate Texts in Physics (Springer Berlin

Heidelberg, 2016).
65 P. Hayden, R. Jozsa, D. Petz, and A. Winter, “Structure of states which satisfy strong subadditivity of quantum entropy

with equality,” Commun. Math. Phys. 246(2), 359–374 (2004).
66 C. Hirche and D. Reeb, “Bounds on information combining with quantum side information,” IEEE Trans. Inf. Theory

64(7), 4739–4757 (2018).
67 A. S. Holevo, “Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information

theory,” Russ. Math. Surv. 61(2), 301 (2006).
68 A. S. Holevo, “On the proof of the majorization theorem for quantum Gaussian channels,” Russ. Math. Surv. 71(3), 585

(2016).
69 A. S. Holevo and R. F. Werner, “Evaluating capacities of bosonic Gaussian channels,” Phys. Rev. A 63(3), 032312 (2001).
70 A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, De Gruyter Studies in Mathematical

Physics (De Gruyter, 2013).
71 A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory,” Russ. Math. Surv. 70(2),

331 (2015).
72 A. S. Holevo, “On the constrained classical capacity of infinite-dimensional covariant quantum channels,” J. Math. Phys.

57(1), 015203 (2016).
73 A. S. Holevo, “On quantum Gaussian optimizers conjecture in the case q = p,” Russian Math. Surveys 72(6), 1177 (2017).
74 S. Huber, R. König, and V. Anna, “Geometric inequalities from phase space translations,” J. Math. Phys. 58(1), 012206

(2017).

https://doi.org/10.1007/s00222-010-0261-z
https://doi.org/10.1007/s00222-010-0261-z
https://doi.org/10.1016/j.aim.2013.04.007
https://doi.org/10.2140/pjm.1977.72.383
https://doi.org/10.1063/1.4989809
https://doi.org/10.1103/physrevlett.108.110505
https://doi.org/10.1063/1.4903108
https://doi.org/10.1090/s0273-0979-02-00941-2
https://doi.org/10.1038/nphoton.2014.216
https://doi.org/10.1007/s11232-015-0262-6
https://doi.org/10.1007/s11232-015-0262-6
https://doi.org/10.1007/s00220-014-2150-6
https://doi.org/10.1103/physreva.70.032315
https://doi.org/10.1063/1.1834373
https://doi.org/10.1088/1751-8113/43/41/415305
https://doi.org/10.1007/bf00943428
https://doi.org/10.1103/physreva.76.032303
https://doi.org/10.1109/tit.2010.2053893
https://doi.org/10.1038/nphys1224
https://doi.org/10.1023/a:1013717013421
https://doi.org/10.1007/s00220-004-1049-z
https://doi.org/10.1109/TIT.2018.2842180
https://doi.org/10.1070/rm2006v061n02abeh004313
https://doi.org/10.1070/rm9705
https://doi.org/10.1103/physreva.63.032312
https://doi.org/10.1070/rm2015v070n02abeh004949
https://doi.org/10.1063/1.4928050
https://doi.org/10.1070/RM9790
https://doi.org/10.1063/1.4974224


081101-25 De Palma et al. J. Math. Phys. 59, 081101 (2018)

75 O. Johnson and S. Guha, “A de Bruijn identity for discrete random variables,” in 2017 IEEE International Symposium on
Information Theory. ISIT 2017 (IEEE, 2017), pp. 898–902.

76 O. Johnson and Y. Yu, “Monotonicity, thinning, and discrete versions of the entropy power inequality,” IEEE Trans. Inf.
Theory 56(11), 5387–5395 (2010).

77 R. König, “The conditional entropy power inequality for Gaussian quantum states,” J. Math. Phys. 56(2), 022201 (2015).
78 R. König and G. Smith, “Limits on classical communication from quantum entropy power inequalities,” Nat. Photonics

7(2), 142–146 (2013).
79 R. König and G. Smith, “The entropy power inequality for quantum systems,” IEEE Trans. Inf. Theory 60(3), 1536–1548

(2014).
80 R. König and G. Smith, “Corrections to ‘the entropy power inequality for quantum systems,’” IEEE Trans. Inf. Theory

62(7), 4358–4359 (2016).
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