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Abstract A nonlinear analysis of the effect of viscous dissipation on the Rayleigh–Bénard instability in a
fluid saturated porous layer is performed. The saturated medium is modelled through Darcy’s law, with the
layer bounded by two parallel impermeable walls kept at different uniform temperatures, so that heating from
below is supplied. While it is well known that viscous dissipation does not influence the linear threshold to
instability, a rigorous nonlinear analysis of the instability when viscous dissipation is taken into account is still
lacking. This paper aims to fill this gap. The energy method is employed to prove the nonlinear conditional
stability of the basic conduction state. In other words, it is shown that a finite initial perturbation exponentially
decays in time provided that its initial amplitude is smaller than a given finite value.

Keywords Porous medium · Rayleigh–Bénard instability ·Viscous dissipation ·Nonlinear stability · Energy
method · Darcy’s law

1 Introduction

The effects of viscous dissipation on fluid flow have been widely investigated from different perspectives. It
is well known that viscous dissipation can be a significant heat source when a forced flow is imposed. Its
strength can be sufficient to yield important changes for the temperature field and for the heat transfer rate.
In the case of natural convection, when the flow is induced only by the buoyancy force, the internal heating
caused by viscous dissipation is less intense and, in most cases, it can be neglected [1]. In this framework,
an important question arises on whether the viscous dissipation effect can cause, or influence, the onset of
convective instability when a fluid layer, or a fluid-saturated porous layer is subject to a downward-oriented
temperature gradient. In this regard, an important difference occurs between basic states where the fluid is at
rest and situations where a basic steady flow exists [2]. A basic state with a fluid at rest and heated from below
is typical of the Rayleigh–Bénard system [3], or of its saturated porous medium version, well known as the
Darcy–Bénard system [4–7].

The effect of viscous dissipation cannot modify the basic downward temperature gradient which triggers
the Darcy–Bénard instability as the fluid is at rest in the basic state. However, when a disturbance acts on
the basic state inducing a transient flow, then viscous dissipation may play a role. This is not the case if
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a linearised scheme for the analysis of the instability is carried out. In fact, the viscous dissipation in the
perturbed flow would be quadratic with respect to the perturbation amplitude and, hence, negligible in this
scheme. The scenario may markedly change when a fully nonlinear approach to the dissipation Darcy–Bénard
system is pursued. This approach can be based on the energy method [3,4], where the growth or decay of
a disturbance acting on the basic state is established by employing norm inequalities based on functional
analysis results relative to disturbance fields having compact support. The compact support is usually due to
the finite periodicity cell characterising the disturbances. In fact, this analysis scheme presumes a periodic
cellular pattern tiling the horizontal plane.

The aimof this paper is the application of the energymethod to investigate the nonlinear instability threshold
when the Darcy–Bénard system is modelled by including the effect of viscous dissipation. The result proved
through this study is that there is a nonlinear conditional stability in the subcritical domain. This means that
finite disturbances decay in time whenever the energy functional expressing their amplitude is smaller than a
threshold value. We mention a previous study of the effect of viscous dissipation in the Darcy–Bénard system
instability [8]. These authors performed a two-dimensional numerical study where the existence of subcritical
instability caused by the viscous dissipation effect was ruled out. Another recent numerical study regarding
the nonlinear instability of the Darcy–Bénard system including the effect of viscous dissipation was carried
out in [9]. This study is focussed on the weakly nonlinear approach to the investigation of the convection
patterns and, in particular, to the formation of hexagonal cells. We believe that the present paper provides both
a validation and a consolidation of the conclusions drawn in [8], as well as in [9]. In fact, the analysis carried
out here is not based on numerical results relative to the special two-dimensional case, but on an entirely
analytical procedure relative to general three-dimensional disturbances.

2 Mathematical model

Let us consider a horizontal porous layer with infinite horizontal width and vertical thickness H , bounded
by two impermeable isothermal planes at temperatures T0 + �T (lower boundary), �T > 0, and T0 (upper
boundary). The z� axis is vertical with the origin on the lower boundary plane, while the x� and y� axes are
horizontal. Here, the stars denote the dimensional time, coordinates and fields. We write the dimensionless
governing equations for a fluid saturated porous medium, according to Darcy’s law and to the Oberbeck–
Boussinesq approximation, and including the viscous dissipation contribution in the local energy balance
equation,

ui,i = 0,

ui = −p,i + RT ẑi ,

T,t + ui T,i = T,i i + Buiui , (1)

where ui is the velocity, T is the temperature, p is the pressure, (x̂i , ŷi , ẑi ) are the unit vectors along the (x, y, z)
axes, R is the Darcy–Rayleigh number, and B is the Brinkman number. When B � 1, the viscous dissipation
contribution, Buiui , becomes negligible. The dimensionless quantities are defined through the scaling

t� = σH2

α
t, (x�, y�, z�) = H (x, y, z), u�

i = α

H
ui , p� = μα

K
p,

T � = T0 + T�T, R = ρgβ�T K H

μα
, B = μα

Kc�T
, (2)

where ρ is the reference fluid density, α is the thermal diffusivity,μ is the dynamic viscosity, β is the coefficient
of thermal expansion, g is the modulus of the gravitational acceleration, K is the permeability of the porous
medium, c is the specific heat of the fluid, and σ is the ratio between the average volumetric heat capacity of the
saturated porous medium, (ρc)m , and the volumetric heat capacity of the fluid, ρc. Hereafter, the components
of ui are also denoted as (u, v, w).

The boundary conditions are

z = 0: w = 0, T = 1,

z = 1: w = 0, T = 0. (3)

In (1) and in the following, we use Einstein’s notation for the sums over repeated indices.
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3 The basic solution and the disturbances

A stationary solution of (1) subject to the boundary conditions (3) is

ūi = 0, T̄ = 1 − z, p̄ = Rz
(
1 − z

2

)
. (4)

We now express the disturbances relative to the basic solution (4) as

ui = ūi +Ui , T = T̄ + θ, p = p̄ + P. (5)

On substituting (5) into (1) and (4), we obtain the governing equations for the disturbances

Ui,i = 0,

Ui = −P,i + Rθ ẑi ,

θ,t − W +Uiθ,i = θ,i i + BUiUi ,

z = 0, 1: W = 0, θ = 0, (6)

where W is the z-component of Ui . Equation (6) are the starting point for a nonlinear stability analysis of
the basic solution (4). If we neglect the nonlinear terms, Ui θ,i and BUiUi , in (6)3 we obtain the linearised
eigenvalue problem

Ui,i = 0,

Ui = −P,i + Rθ ẑi ,

θ,t − W = θ,i i ,

z = 0, 1: W = 0, θ = 0. (7)

The solution of (7) yields the linear stability bound R = R	, such that the instability is defined by the values
of R greater than R	. We note that the viscous dissipation contribution is absent in (7), and hence it has no
effect in the linear stability analysis. Therefore, we conclude that the well-known result of the linear stability
analysis of the Darcy–Bénard problem [4–6,10–13], namely R	 = 4π2, is not altered if the effect of viscous
dissipation is taken into account.

Due to the possible existence of the subcritical instability, R < R	 generally does not ensure the stability
of the basic solution. This is the motivation of the nonlinear stability analysis, based on (6). The study of
(6) through the energy method allows one to ascertain if there exists a nonlinear stability bound RE ≤ R	,
implying the existence of a subcritical instability [3,4]. The condition R < RE ensures the stability of the
basic solution.

We know that, if the effect of viscous dissipation is neglected, RE = R	 and hence no subcritical instability
occurs [4].

Because of the presence of the quadratic term BUiUi , here we investigate if the inequality R < R	 will
imply conditional nonlinear stability. If this is the case, then RE = R	.

4 The energy method

We assume that the convective instability implies the onset of periodic patterns tiling the horizontal plane
(x, y). Let V be the spatial periodicity cell, V = � × [0, 1], where � is the general tile in the plane (x, y).
At the vertical boundaries of V we assume the symmetry conditions Ui n̂i = 0 and θ,i n̂i = 0, where n̂i is the
unit normal to these boundaries. We will use henceforth the notations

〈F〉 =
∫

V
F dV, ‖F‖2 = 〈

F2〉 ,
‖∇F‖2 = 〈

F,i F,i
〉
, ‖S‖2 = 〈Si Si 〉 , ‖∇S‖2 = 〈

Si, j Si, j
〉
, (8)

where F ∈ L2(V ) and Si ∈ L2(V ) are any square-integrable scalar and vector functions over V .
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We will also assume that Ui ∈ L2(V ) (Ui is square-integrable over V ), and that θ ∈ H1(V ) (both θ and
θ,i are square-integrable over V ). BothUi and θ satisfy the symmetry conditions on the boundary ∂�, as well
as the conditions (7)4 at z = 0 and z = 1. Use will be made of the Poincaré inequality [14–16]

‖F‖2� 1

π2 ‖∇F‖2, ∀F ∈ H1(V ), (9)

and of the arithmetic–geometric mean inequality,

〈FG〉 � 1

2γ
‖F‖2 + γ

2
‖G‖2, ∀F,G ∈ L2(V ), ∀γ > 0. (10)

We now multiply (6)2 by Ui and integrate over V . Thus, we write

‖U‖2 = − 〈
Ui P,i

〉 + R 〈θW 〉 . (11)

After an integration by parts and use of (6)1, (6)4, as well as of the symmetry conditions Ui n̂i = 0 at the
vertical boundaries of V , we obtain

‖U‖2 = R 〈θW 〉 . (12)

We now multiply (6)3 by θ and integrate over V . We write

1

2

d

dt
‖θ‖2 − 〈θW 〉 + 〈

Uiθθ,i
〉 = 〈

θθ,i i
〉 + B 〈θUiUi 〉 . (13)

After an integration by parts and use of (6)1, (6)4, as well as of the symmetry conditionsUi n̂i = 0 and θ,i n̂i = 0
at the vertical boundaries of V , we conclude that

〈
Uiθθ,i

〉 =
∫

∂V
Ui n̂iθ

2 dS − 〈
Ui,iθ

2〉 − 〈
Uiθ,iθ

〉 = − 〈
Uiθ,iθ

〉 
⇒ 〈
Uiθθ,i

〉 = 0,

〈
θθ,i i

〉 =
∫

∂V
θθ,i n̂i dS − ‖∇θ‖2 = −‖∇θ‖2, (14)

where ∂V is the boundary of V . As a consequence, (13) can be rewritten as

1

2

d

dt
‖θ‖2 = 〈θW 〉 + B 〈θUiUi 〉 − ‖∇θ‖2. (15)

It is now convenient to define the scaling

R = √
R, � = Rθ, (16)

so that (12) and (16) now read

‖U‖2 = R 〈�W 〉 , (17)
1

2

d

dt
‖�‖2 = R 〈�W 〉 + BR 〈�UiUi 〉 − ‖∇�‖2. (18)

We sum (17) and λ times (18), where λ is a real positive coupling parameter [4]. Thus, we obtain

dE

dt
= RI − D + N , (19)

where

E(t) = λ

2
‖�‖2, (20)

I (t) = (1 + λ) 〈�W 〉 , N = λBR 〈�UiUi 〉 , (21)

D(t) = ‖U‖2 + λ‖∇�‖2. (22)
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The nonlinear stability bound,RE , can be determined so that

1

RE
= max

{ I

D

}
, (23)

where the maximum is evaluated over all the possible Ui ∈ L2(V ), � ∈ H1(V ) fulfilling the constraint
Ui,i = 0, the boundary conditions � = 0 = W at z = 0, 1, and the symmetry conditions Ui n̂i = 0 and
�,i n̂i = 0 at the vertical boundaries of V . In order to justify (23), we mention that the optimal definition of
the stability bound is obtained when RE is at its maximum. In fact, the condition (23) means that RE is the
maximum positive real number such that I/D < 1/RE .

4.1 The Euler–Lagrange equations for the nonlinear stability analysis

In order to determine the nonlinear stability bound RE = R2
E , we must obtain the maximum of I/D, as stated

in (23). This has been done by Straughan [4]. For completeness, we here report his calculations. We evaluate
the variation of I/D,

δ
{ I

D

}
= δ I

D
− I δD

D2 . (24)

The maximum is determined by setting δ{I/D} = 0. By taking into account (23), we obtain

REδ I − δD = 0. (25)

It is now convenient to rescale � by replacing it with �/
√

λ. Then, (21) and (22) yield

I = f (λ) 〈�W 〉,
D =‖U‖2 + ‖∇�‖2, where f (λ) = 1 + λ√

λ
.

Therefore,

δD = d

dε
〈(Ui + εhi ) (Ui + εhi )〉

∣∣∣
ε=0

+ d

dε

〈(
�,i + εη,i

) (
�,i + εη,i

)〉 ∣∣∣
ε=0

, (26)

where (hi , η) are arbitrary fields that satisfy the same boundary conditions as (Ui , �) on ∂V .
The constraint Ui,i = 0 can be taken into account by incorporating an additional term in the definition of

I , so that

I = f (λ) 〈�W 〉 + 2

RE

〈
�Ui,i

〉 = f (λ) 〈�W 〉 − 2

RE

〈
�,iUi

〉
,

δ I = f (λ)
d

dε
〈(� + εη) (W + εh3)〉

∣∣∣
ε=0

− 2

RE

d

dε

〈
�,i (Ui + εhi )

〉 ∣∣∣
ε=0

.

Here � is an arbitrary scalar field playing the role of a Lagrange multiplier. In (27)1, an integration by parts
has been done, and use has been made of the boundary condition Ui n̂i = 0 on ∂V . From (26) and (27) we
obtain

δ I = f (λ) 〈�h3〉 + f (λ) 〈Wη〉 − 2

RE

〈
�,i hi

〉
, (27)

In (27), an integration by parts has been done, and use has been made of the condition�,i n̂i = 0 on the vertical
boundaries of V , and of the condition η = 0 on z = 0, 1.

We now substitute (??) and (27) into (25). The resulting integral equation is satisfied for arbitrary (hi , η)
if and only if

−2�,i − 2Ui + RE f (λ)�ẑi = 0, (28)

RE f (λ)W + 2�,i i = 0. (29)
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Thus, we may write the system of differential equations

Ui,i = 0,

Ui = −�,i + RE

2
f (λ)�ẑi ,

RE

2
f (λ)W + �,i i = 0,

z = 0, 1: W = 0, � = 0. (30)

It is easy to see that the optimal value of λ is 1. With this value, provided that one identifies θ with �/RE , the
stationary linear perturbation equation (7) coincide with Eq. (30) for RE = R	, where R	 = 4π2 is the critical
Rayleigh number for linear instability.

4.2 Conditional nonlinear stability in the energy norm for R < RE

From (19) and (23), we obtain the inequality

dE

dt
= RD

I

D
− D + N � RD

1

RE
− D + N = −RE − R

RE
D + N = −β D + N , (31)

where

β = RE − R
RE

.

We now use first the Schwarz inequality and, then, the Hölder inequality [3] to write

〈�UiUi 〉 � ‖�‖ ‖U‖24 � C1 ‖�‖ ‖U‖26, (32)

where ‖·‖4 and ‖·‖6 are the usual norms in L4(V ) and in L6(V ), and C1 = |V |1/6 (|V | is the measure of
V ). Then, we apply the Sobolev inequality and the generalised Poincaré inequality (see [17] or Lemma 2.1
in [18])

‖U‖6 � C2‖U‖H1(V ) � C3‖∇U‖. (33)

where C2 is a positive constant and C3 is a positive constant depending on V . Our next step is to prove the
inequality

‖∇U‖ � R‖∇�‖. (34)

To obtain (34), we take the Laplacian of (6)2:

Ui, j j = −P,i j j + Rθ, j j ẑi . (35)

Multiplying by −Ui and integrating over V , we have

− 〈
Ui, j jUi

〉 = 〈
P,i j jUi

〉 − R
〈
θ, j jW

〉
. (36)

We note that U = (U1,U2,W ) is a divergence free vector and that the boundary conditions on z = 0, z = 1,
as well as the symmetry conditions at the vertical boundaries, imply that the normal component of the velocity
vanishes on the whole boundary of V . Then, the first term on the right hand side of (36) vanishes. Moreover,
the second term integrates to obtain R

〈
θ, jW, j

〉
. It is more difficult to employ the integration by parts for the

term− 〈
Ui, j jUi

〉
as the boundary conditions yieldW = 0 at z = 0 and z = 1, while no boundary conditions on

U1 and U2 are imposed there. Integrating the left hand side of the previous identity, because of the boundary
conditions and the symmetry conditions, we have

− 〈
Ui, j jUi

〉 = ‖U1,1‖2 + ‖U1,2‖2 + ‖U2,1‖2 + ‖U2,2‖2 + ‖∇W‖2
− 〈

U1U1,33
〉 − 〈

U2U2,33
〉
. (37)
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From (6_1,2) we have U1 = −P,1, U2 = −P,2, W = −P,3 + Rθ. From this we deduce

− 〈
U1U1,33

〉 − 〈
U2U2,33

〉 = − 〈
P,1P,133 + P,2P,233

〉

= 〈
P,11P,33 + P,22P,33

〉

= 〈
(−U,1 −U,2)P,33)

〉 = 〈
W,3(−W,3 + Rθ,3)

〉

= −‖W,3‖2 + R
〈
W,3θ,3

〉
. (38)

We now compute

‖U1,3‖2 + ‖U2,3‖2 = 〈
U1,3U1,3

〉 + 〈
U2,3U2,3

〉 = 〈
P,13P,13

〉 + 〈
P,23P,23

〉

= − 〈
P,3P,113

〉 − 〈
P,3P,223

〉 = 〈
P,3(U1,13 +U2,23)

〉 = − 〈
P,3W,33

〉

= 〈
(W − Rθ)W,33

〉 = −‖W,3‖2 + R
〈
W,3θ,3

〉
. (39)

By employing (37)–(39) we finally infer

‖∇U‖2 = R
〈
W,iθ,i

〉
. (40)

Then, by using the Schwarz inequality and (16), we obtain (34). From (32)–(34), we have

〈�UiUi 〉 � C1C
2
3R2‖�‖ ‖∇�‖2 = C4‖�‖ ‖∇�‖2, (41)

where C4 = C1C2
3R2. From the last inequality, by recalling that the optimal value of λ is 1, one obtains

N � C5E
1/2D, (42)

where C5 = √
2C4BR. By employing (31) and (42), one may write the energy differential inequality

dE

dt
� D(−β + C5E

1/2). (43)

Now, assuming that

E(0) <

(
β

C5

)2

, (44)

by a recursive argument (see [19]), we prove that dE/dt < 0, ∀t ≥ 0, and that

dE

dt
� D[−β + C5E(0)1/2], ∀t ≥ 0. (45)

We denote with α the quantity −β + C5E1/2(0), and we observe that α < 0 and dE/dt � αD. Since
‖∇�‖2 � D, on using the Poincaré inequality (9), namely π2‖�‖2 � ‖∇�‖2, one has

αD � α‖∇�‖2 � απ2‖�‖2 = 2απ2E . (46)

From (43) and (46) we infer

dE

dt
� 2απ2E . (47)

Finally, an integration yields

E(t) � E(0) e2απ2t . (48)

IfR < RE , so that β > 0, and if (44) holds, then α < 0 and the exponential time decay of E(t)means the time
decay of ‖�‖2. This implies the nonlinear conditional stability, at least for the temperature field. The conditional
stability of the velocity field holds as well. In fact, we can start from (17) and use the arithmetic–geometric
mean inequality (10), with γ = 1/R,

‖U‖2 = R 〈�W 〉 � R2

2
‖�‖2 + 1

2
‖W‖2 � R2

2
‖�‖2 + 1

2
‖U‖2, (49)

so that we obtain

‖U‖2 � R2‖�‖2. (50)

As a consequence, the time decay of ‖�‖2 yields the time decay of ‖U‖2.
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5 Conclusions

A nonlinear analysis of the onset of the Rayleigh–Bénard instability in a porous layer has been carried out. The
porous medium is described through the Oberbeck–Boussinesq approximation, by assuming a non-negligible
effect of viscous dissipation. Momentum transfer is modelled by employing Darcy’s law. The layer is assumed
to be bounded by impermeable planes where uniform unequal temperatures cause heating of the layer from
below. The energy method is adopted as a tool for the investigation of the growth or decay of perturbations
superposed to the basic state. The latter is one of zero velocity and a uniform downward-oriented temperature
gradient.

A suitable energy functional is defined whose time evolution captures the stable or unstable nature of
the perturbations. Euler–Lagrange equations are employed to build an inequality for the time-derivative of
the energy functional. Further information has been gained by employing a chain of inequalities based on
functional analysis. The final conclusion is that, in the subcritical regime, there is a nonlinear conditional
stability of the basic state.

The nonlinear stability condition obtained here is to be expected because of the cubic term N =
BR 〈�UiUi 〉 that could increase when Ui and � are sufficiently large (the same happens for the cubic terms
in other Bénard problems [19]). Nevertheless, conditions (44) and (45) imply conditional stability.

There are opportunities for further developments of the study performed in this paper. In fact, a significant
feature not investigated in our study is the presence of a basic horizontal throughflow in the porous layer. The
throughflow triggers the effect of viscous dissipation in such a way as to alter the basic state. These conditions
have been envisaged by [20,21] and reconsidered, within a numerical nonlinear scheme, by [8]. The energy
method can add new important insights into the Rayleigh–Bénard instability with throughflow, where the effect
of viscous dissipation may affect significantly the critical value of the Darcy–Rayleigh number at the onset of
the linear instability.
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