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Growing evidence suggests that biodiversity mediates parasite prevalence.
We have compiled the first global database on occurrences and prevalence
of marine parasitism throughout the Phanerozoic and assess the relationship
with biodiversity to test if there is support for amplification or dilution of
parasitism at the macroevolutionary scale. Median prevalence values by era
are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to
10% for the Cenozoic. We calculated period-level shareholder quorum
sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T)
origination rates, and 3T extinction rates for the most abundant host clades
in the Paleobiology Database to compare to both occurrences of parasitism
and the more informative parasite prevalence values. Generalized linear
models (GLMs) of parasite occurrences and SQS diversity measures support
both the amplification (all taxa pooled, crinoids and blastoids, and molluscs)
and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of
prevalence and SQS diversity measures support the amplification hypothesis
(all taxa pooled andmolluscs). Though likely scale-dependent, parasitism has
increased through the Phanerozoic and clear patterns primarily support the
amplification of parasitism with biodiversity in the history of life.

This article is part of the theme issue ‘Infectious disease macroecology:
parasite diversity and dynamics across the globe’.
1. Introduction
How have biotic interactions and biodiversity related to one another through the
history of life? This question has been a fundamental topic of research since
Darwin articulated natural selection in 1859. Numerous studies have indicated
the importance and complexities of antagonistic interactions in maintaining
or promoting diversity over ecological time scales and a variety of spatial scales
[1–7]. How these biotic interactions scale up to influence macroevolutionary
trends has been discussed extensively in the literature and Hembry & Weber [8]
and Fraser et al. [9] have provided timely reviews of the history of and recent
advances in answering such questions. Defining the distribution in time and
space and the intensity of antagonistic biotic interactions as well as assessing their
evolutionary implications has been a prominent theme in palaeobiological research
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of the marine invertebrate fossil record over the last four
decades. Predator–prey interactions have received the lion’s
share of attention, which has highlighted the escalating inten-
sity of predation through the Phanerozoic that may have
shaped some macroevolutionary trends [10–21]. Huntley &
Kowalewski’s [14] compilation of predation frequencies
among marine invertebrates was positively correlated with
Sepkoski’s [22,23] estimate of global genus-level diversity of
marine animals throughout the Phanerozoic. They suggested
three end-member explanations for the pattern including a cau-
sative linkage between biotic interactions and diversity over
geologic time scales, the passive diffusionofpredation complex-
itywith increasingdiversity, and the spurious result of sampling
artefacts.

Parasitism is also pervasive in modern marine ecosystems
[24,25], but has received far less attention than predation in
the fossil record [24]. Among well-studied animal groups,
all species host parasites and upwards of 40% of described
species are parasitic [26]. Nevertheless, the evolutionary his-
tory of parasitism remains poorly constrained [24,27–29].
This fact is not surprising as the fossilization potential of
soft-bodied parasites is low and they are often small, which
has resulted in a patchy fossil record [30,31]. Host organisms
with decay-resistant tissues, however, have a more continu-
ous and homogeneous fossil record and provide a unique
window on the evolution of parasitic relationships in the
form of characteristic traces or, more rarely, direct associations
with their skeletonized parasites [32,33]. Although the fossil
record of unicellular pathogens is low, 80% (12/15) of
metazoan parasitic interactions with their bivalve hosts
have a fossilization potential and at least 53% (8/15) have
been regularly reported [34]. The maximum estimates for the
appearance of metazoan parasites lie in the latest Precambrian
when their animal hosts first appeared [33], but, as parasitism
is derived, it most likely appeared later. Metazoan fossils
document the appearance of predation in the terminal Edia-
caran Period [35–37], and the appearance of the earliest
parasitic relationships are preserved slightly later amongCam-
brian brachiopods [38–41] during the explosive radiation of
animal body plans [42,43]. Presumably, the occurrence and
prevalence of parasitic interactions have increased since the
Early Paleozoic [32,44,45], but this assumption has not been
extensively tested across host taxonomic groups and geologic
time. Predation is a common evolutionary pathway to parasit-
ism [28] and we might expect to find a similar positive
relationship between parasitism and biodiversity as for
predation [46].

Two hypotheses have been proposed regarding the
relationship between parasite diversity and biodiversity in
living communities. The amplification hypothesis predicts
that the evolutionary accumulation of parasite–host inter-
actions is positively correlated with biodiversity and has
resulted in increasingly complex life cycles and interlinked
food webs [47–49]. Kamiya et al.’s [50] meta-analysis of
parasite–host interactions in modern ecosystems, including
multiple phyla of hosts and parasites from a broad range of
spatial scales of observation, found significant support for a
positive correlation between parasite diversity and host diver-
sity. For the fossil record, Baumiller & Gahn’s [32] survey of
parasitic interactions through the Phanerozoic suggested a
positive correlation between the number of parasitism occur-
rences and diversity of Paleozoic echinoderms and, possibly
more generally, marine animal diversity.
Conversely, the dilution (or decoy) hypothesis, documen-
ted in many modern ecosystems [51], predicts a negative
correlation between diversity and prevalence of parasitism.
The dilution hypothesis was first articulated through the
analysis of Lyme disease, an infection by the bacterium
Borrelia burgdorferi that is transmitted from its reservoir hosts
(a variety of mammals) through its vector, the black-legged
tick (Ixodes scapularis), to humans. The ability of a reservoir
host to transmit the pathogen to a vector is known as reservoir
competence, which varies among host species. The central
tenet of the dilution hypothesis, as described by Schmidt &
Ostfeld [51], is that host communities with a high species rich-
ness and/or evenness will experience lower prevalence of
parasitic infection because they have a higher proportion of
low reservoir competence hosts, a prediction supported by
empirical data and modelling simulations. Johnson &
Thieltges [52] expanded the concept of the dilution hypothesis
to include complex life cycle parasites. They reviewed the evi-
dence for mechanisms through which community diversity
and structure could influence disease, including parasite
decoys, predators and low competency hosts. Though the gen-
erality of the dilution hypothesis is still debated [53–57], this
negative relationship between parasitism and diversity
seems especially clear in cases of biodiversity loss [58] but it
is likely a scale-dependent phenomenon as are many other
patterns [59,60]. At larger spatial scales of observation, one
can find evidence for a positive relationship between diversity
and parasitism [61,62]. Other factors like the transmission
mode (density-dependent versus frequency transmitted or
directly versus trophically transmitted) of the involved para-
sites [52,63] and the type of predation (intraguild versus
non-intraguild predation) [64,65] have also been implicated
to modulate the dilution effect, but are difficult to constrain
for historical or fossil assemblages. Before we can analyze
other factors, we document the dominant patterns on large
timescales [66].

What then can we learn from the fossil record of parasit-
ism through geologic time? Given the nature of the fossil
record of parasite–host interactions, only rarely is it possible
to ascertain the taxonomic identity of parasites precisely
[30,33,67]. Therefore, it is nearly impossible to quantify para-
site diversity, but it is possible to reconstruct relative changes
in parasitism through geologic time in two alternative ways
[68,69]. While we cannot directly test the amplification
and dilution hypotheses in deep time in the same way as in
living systems, we can test the relationships between the
occurrence of parasitic traces (and the prevalence of parasitic
traces) with the diversity of their hosts through the history of
animal life. There is at least some support that diversity
patterns in parasites might be closely linked to that of their
hosts [70]. How have the number of occurrences of parasitism
within geologic periods and the prevalence of parasitism
changed since the first known occurrence in the early
Cambrian? How are these variables related to host diversity
throughout the Phanerozoic? We have compiled data from
the published literature on fossil marine ectotherms display-
ing evidence of parasitic interactions and diversity indices of
these hosts to test the following hypotheses:

(1) Parasitic interactions, as measured by the number of
occurrences within a geologic time bin (period) and
prevalence in species collections, have increased through
the Phanerozoic.
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(2) There is a positive association between host diversity and
parasitic interactions over long evolutionary timescales
(analogous to amplification) rather than a negative
association (analogous to dilution).

2. Methods
We compiled data on the occurrences of parasite–host interactions
as evidenced by parasitic remains or traces (including character-
istic pathologies) in skeletons of Phanerozoic marine metazoan
hosts from the published literature focusing primarily on, but
not solely, invertebrates. Our database contains screened host
remains, identified to the genus or species level, that show evi-
dence of parasitic interactions in the form of characteristic traces
(positive observations) as well as data on available co-occurring
taxa that lack evidence for parasitic interactions. To meaningfully
evaluate the occurrence (i.e. presence of traces) andprevalence (i.e.
the proportion of affected individuals in a sample) of parasitism
through Earth’s history, we need a biologically meaningful defi-
nition of parasitism that can also be applied in the fossil record.
Here we define parasitism as a long-term close interaction
between individuals of two species wherein one benefits to the
detriment of the other, though generally not resulting in the lat-
ter’s death [32]. Irrespective of the identity of the culprits,
comparisons with the behaviour of modern parasites with similar
behaviour as well as population data of the impact on their hosts
allow us to assess their impact on host populations and therefore
infer a parasitic relationship even in now-extinct parasite–host
associations [41,71–73]. We compiled all interactions which have
been attributed to parasitism and assign certainty categories to
them. The gold standard, our category 1, are interactions where
a benefit for the parasite taxon can be plausibly demonstrated
and a negative effect of infested host has been quantitatively
demonstrated within host samples derived from a particular
locality and stratigraphic unit. Category 2 refers to interactions
preserved in the fossil record, where similar interactions involving
the same parasite taxa have been shown to lead to negative impact
today and/or in the past. Category 3 refers to interactions that
showa clear negative impact on the individual host specimen con-
sistentwith our definition of parasitism but the culprit is unknown
or a wide negative impact of this interaction still needs to be more
widely modelled. Category 4 refers to interactions that could be
consistent with parasitism but also other interactions and, there-
fore, are excluded from further analyses. The position and
characteristic morphology of these parasitic remains and traces
can indicate the type and behaviour of the parasites which also
allows us to identify the culprit in multiple systems. Model sys-
tems include the gastropod–echinoderm, isopod–decapod and
trematode–bivalve interactions [72,74–78]. Variables collected
include the sample size of the occurrence, taxonomic data on
hosts and parasites (when available), and lithostratigraphic and
geochronological contexts of the samples. Only parasitism data
from fossil occurrences and Holocene death assemblages (but
not live-collected samples) were analysed in this study. Preva-
lence, the proportion of individuals bearing evidence of
parasitism, was calculated for each occurrence comprising 10 or
more (fossil) remains. Median prevalence values and boot-
strapped 95% confidence intervals were calculated for each era.

Genus-level occurrence data for each host class were
downloaded from the Paleobiology Database (PBDB) via the
FossilWorks website (16 November 2020 for all groups except
the Actinopteri and Anthozoa, which were downloaded on 25
and 22 January 2021, respectively). To minimize potential
biases in constructing diversity curves, the occurrence data
were sub-sampled using Alroy’s [79,80] shareholder quorum
sub-sampling (SQS). The sampling quorum per time interval
(period) was 0.6 with 50 trials to calculate mean sampled
diversity, three-timer (3T) origination rate and 3T extinction
rate [79,80].

Two indices of parasitismwere related to diversity data via gen-
eralized linear models (GLM): (i) the number of species (or genus)
level occurrences of hosts showing evidence of parasitism per
period, and (ii) species-level occurrence prevalence values. The
number of occurrences per period was related to the three SQS
diversity indices (mean sampled diversity, 3T origination rate and
3T extinction rate) and the midpoint age of the geologic period in
millions of years ago (Ma) weighted by the log10-transformed
number of specimens in a GLM using a Poisson link function. Indi-
vidual prevalence values of host taxa with at least 10 specimens
were related to the SQS diversity indices and best estimate age for
each sample (Ma) weighted by the log10-transformed number of
specimens in a GLM using a binomial link function.

All statistical analyses were conducted and figures assembled
usingR freeware (v. 4.0.3) and the followingpackages: ggplot (Wick-
ham, 2016), ggthemes (Arnold, 2019), dplyr (Wickham et al., 2020),
rcompanion (Mangiafico, 2020) and viridis (Garnier, 2018). R scripts
are available in the electronic supplementary material. An α-value
of 0.05 is assumed for statistical significance in all analyses and
p < 0.10 is described as marginally significant in GLMs.
3. Results
The compiled dataset contains 2118 observations (species-
level occurrences) of biotic interactions reported to be parasit-
ism, ranging in age from Cambrian to Holocene. Evidence for
parasitism occasionally derives from parasites being pre-
served in situ on hosts but most evidence is in the form of a
variety of borings, pits, blisters, pearls, growth responses
and other malformations preserved on hosts (figure 1; elec-
tronic supplementary material, table S1). We interpret that
1424 of the 2118 observations unambiguously represent para-
sitism (categories 1–3 as defined above) as they coincide with
morphological evidence for a clear negative impact on their
host during life and a benefit for the parasitic organism
based on their position, orientation and mode of life. Host
phyla include Arthropoda (17.8% [72,77,78,81–85]), Brachio-
poda (4.8% [38,39,41,86–93]), Bryozoa (2.0% [94–97]),
Chordata (1.9% [98–101]), Cnidaria (2.7% [102–108]), Echino-
dermata (21.2% [75,109–117]), Hemichordata (1.9% [118]),
Mollusca (47.3% [76,77,119–133]) and Porifera (less than 1%
[134,135]). Parasite phyla include Annelida (12.1%
[123,136,137]), Arthropoda (17.3% [72,77,78,113,116,117,138–
140]), Brachiopoda (less than 1% [141]), Bryozoa (1.0% [142]),
Cnidaria (1.2% [143]), Echinodermata (less than 1%), Forami-
nifera (less than 1% [144,145]), Mollusca (14.2% [109,146–
149]), Nematoda (less than 1% [81]), Phoronida (less than 1%
[150]), Platyhelminthes (11.5% [76,151–153]), Porifera (1.8%)
and parasites of unknown taxonomic affinity (39.0% [154]).
There are peaks in the density of parasitism occurrences
among the three Phanerozoic eras occurring in the Devonian,
Jurassic and Neogene periods, respectively (figure 2).

Prevalence values were calculated for 373 single species
occurrences whose sample sizes were 10 or greater, represent-
ing 99 232 specimens. Prevalence values ranged from 0 to 1
with mean and median values of 0.16 and 0.06, respectively.
Median prevalence values were 0.05 or 5% for the Paleozoic
(n = 112), 0.04 or 4% for the Mesozoic (n = 144) and 0.10 or
10% for the Cenozoic (n = 117). Median prevalence values for
the Paleozoic andMesozoic were statistically indistinguishable
from one another ( pMann–Whitney = 0.19) but the Cenozoic value
was significantly greater than the first two (pMann–Whitney =



(a) (b)

(c)

(d) (e)

5 mm

5 mm

5 mm

5 mm5 mm

Figure 1. Examples of parasite–host interactions preserved on marine animal
host skeletons. (a) Modern isopod-infested decapod (as indicated by swelling
on right side), Galathea sp. Camiguin, Philippines (Klompmaker et al. [77];
Creative Commons Attribution License). (b) Middle Devonian crinoid,
Arthroacantha carpenteri, infested by platyceratid gastropod (placed on the
topmost side of the picture), Silica Shale, Sylvania, Ohio, US (Baumiller &
Gahn [32]; reproduced with permission). (c) Holocene trematode-induced circular
pits on interior of bivalve Chamelea gallina, specimen 129 from 13.10 m depth
sample of core 240S8, Po River plain, Italy (photomicrograph by JWH). (d )
Modern death assemblage spionid polychaete-induced mudblister (right side)
on bivalve Clinocardium nuttalli, Monroe Landing, Whidbey Island, Washington,
USA (transmitted and reflected light photomicrograph; JWH collections: photo-
micrograph by Gabriel S Jacobs). (e) Early Cambrian encrusting tubes of unknown
kleptoparasite on the brachiopod Neobolus wulongqingensis, Guanshan Konser-
vat-Lagerstatte, Wulongqing Formation, eastern Yunnan, China (Zhang et al.
[41]; Creative Commons Attribution 4.0 International License).
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0.00017 versus Paleozoic and pMann–Whitney = 1.055 × 10−07

versus Mesozoic; figure 2 inset). This temporal pattern was
robust to only using the 311 singles species occurrences where
sizes were 20 or greater, representing 98 382 specimens: Paleo-
zoic median prevalence = 0.04, Mesozoic median prevalence =
0.03 and Cenozoic median prevalence = 0.07 (pMann–Whitney =
0.16 Paleozoic versus Mesozoic; pMann–Whitney = 0.02 Paleozoic
versus Cenozoic; pMann–Whitney = 5.31×10−5 Mesozoic versus
Cenozoic).

The results of the GLMs comparing the number of
species-level occurrences of parasitism per period to SQS
mean sampled diversity values, SQS 3T origination rates,
SQS 3T extinction rates and the median age of the geologic
time period are presented in tables 1 and 2 (electronic sup-
plementary material, table S2). The GLM including data for
all host classes resulted in positive coefficients correlating
occurrences to mean sampled diversity (p < 0.001) and
origination rates (p < 0.01) and negative coefficients correlat-
ing occurrences to extinction rates (p < 0.001) and geologic
age (p < 0.001). Similarly, parasitism occurrences are signifi-
cantly and positively correlated to mean sampled diversity
for stalked echinoderms (crinoids and blastoids), molluscs
in general and cephalopods, specifically. Conversely, parasit-
ism occurrences and mean sampled diversity are significantly
and negatively correlated for arthropods and echinoids.
Negative and marginally significant (p < 0.10) relationships
between parasitism occurrences and mean standing diversity
were found for cnidarians and bivalves. The GLMs for Bra-
chiopoda (Linguliformea + Rhynchonelliformea) revealed no
significant correlations between parasitism occurrences and
the other variables (table 1).

The results of the second set of GLMs comparing the
prevalence values of individual species-level occurrences of
parasitism to the period-level SQS mean sampled diversity,
3T origination rate, and 3T extinction rate, and age of the
sample are available in tables 3 and 4. When considering
all taxa, prevalence is significantly and positively correlated
to mean sampled diversity and significantly and negatively
correlated to origination rates and extinction rates. Among
Mollusca, there is a significant negative correlation between
parasite prevalence and extinction rates.
4. Discussion
(a) Increase of parasitism through time
It is reasonable to assume that parasitism has become more
severe since its first occurrence on an animal host, sometime
between the terminal Ediacaran to early Cambrian periods,
but, until now, few studies have systematically and quantitat-
ively addressed this assumption. Vermeij [46,155] proposed
the hypothesis of escalation, which states that enemies (pre-
dators, parasites, dangerous prey, competitors, etc.) are
likely the primary agents of natural selection that influence
macroevolutionary patterns. Our analyses demonstrate an
increase in parasite–host interactions throughout the Phaner-
ozoic (figure 2a). When considering all 1424 occurrences of
parasitism in the compilations, we see a step-wise increase
in the number of occurrences among the three eras of the Pha-
nerozoic Eon. This increase is even starker as an increase in
occurrences per era corresponds with a decrease in temporal
duration of the same eras. Specifically, 481 occurrences over
the 289 million years (Myr) of the Palaeozoic (1.66 Myr−1),
492 occurrences over the 185 Myr of the Mesozoic (2.66
Myr−1) and 451 occurrences over the 66 Myr of the Cenozoic
(6.83 Myr−1). One caveat to a strictly biological interpretation
of this pattern is the first-order prediction that taphonomic
processes have reduced the quality of preservation with age
[156,157], though this is not always the case [158,159]. For
example, molluscs preserved in geologically younger non-
lithified sediments are easily extracted and examined for para-
site-induced traces. By contrast, older specimens are often
preserved in, as well infilled by, lithified sediment, which
impedes thorough examination. Moreover, original shell
material often dissolves leaving only an internal mould,
though such fossil preservation has provided evidence for
parasitic interactions as far back as the Silurian [76,120,137].

Prevalence values (figure 2b) provide more insight into the
ecological importance of parasitism than occurrence values
alone because they are calculated as a proportion of the
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Figure 2. Phanerozoic history of parasitism occurrence and prevalence among marine animals. (a) Rug plot (along x-axis) and density plot of the temporal dis-
tribution of single host taxon occurrences through geologic time. (b) Prevalence values of occurrences with at least 10 specimens through geologic time colour-coded
by host phylum. Inset plot, median prevalence values by era.

Table 1. Results of generalized linear models for occurrence of infected hosts binned by period.

host phylum host class
SQS mean
sampled diversity

SQS 3T
origination rate

SQS 3T
extinction rate

midpoint
age (Ma)

all — 0.0029*** 0.0842** −0.3335*** −0.0013***
Arthropoda — −0.0178*** 1.0185*** −0.4812* −0.0022*
Brachiopoda — −0.0126 1.4809 0.4522 0.0085

Cnidaria Anthozoa −0.2329# −0.2205 6.4477# −0.0044
Echinodermata — 0.0019 −1.0181*** 0.3450*** 0.0074***

— Echinoidea −0.9116*** 8.0950*** 10.6561*** —

— Crinoidea and Blastoidea 0.0237*** −0.3511*** −0.1124 —

Mollusca — 0.0126*** −0.1033* −0.4983*** −0.0020***
— Bivalvia −0.0188# −0.5956 3.3853** −0.0209***
— Cephalopoda 0.0434*** −0.9186*** −1.2428*** —

#p<0.10, *p<0.05, **p<0.01, ***p<0.001 (#, GLM not weighted by the number of individuals due to inadequate sample size data available).
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sample and are less prone to taphonomic or sampling hetero-
geneities. Only 26% of the observations in our compilation
reported sample sizes of 10 or more, allowing us to calculate
a prevalence value. This could be because instances of parasit-
ism have often been seen as an oddity or their description was
not the primary purpose of the research. Nevertheless, we
were able to construct an unprecedented record of parasite
prevalence among marine invertebrates with observations
from the Paleozoic (n= 112, 0.39 Myr−1), Mesozoic (n = 144,
0.78 Myr−1) and Cenozoic (n = 117, 1.77 Myr−1). Similar to the
number of occurrences through time, prevalence values indicate
an increase of parasitism throughout the Phanerozoic, though



Table 2. Summary of evidence for the dilution hypothesis and amplification hypothesis by the occurrence of infected hosts binned by period. Italic text
indicates the primary mechanism in a given host phylum or class.

host phylum host class dilution amplification mechanism

all — supported (+) origination rate; (−) extinction rate; minor
(−) age influence

Arthropoda — supported (+) origination rate; (−) extinction rate; minor
(−) age influence

Brachiopoda — ? ? no significant relationships

Cnidaria Anthozoa marginally supported marginal (+) extinction rate

Echinodermata — supported (−) origination rate; (+) extinction rate; minor
(+) age influence

— Echinoidea supported (+) origination rate and (+) extinction rate

— Crinoidea and Blastoidea supported (−) origination rate
Mollusca — supported (−) origination rate; (−) extinction rate; minor

(−) age influence
— Bivalvia supported (+) extinction rate; minor (−) age influence
— Cephalopoda supported (−) origination rate; (−) extinction rate

Table 3. Results of generalized linear models for species occurrence level prevalence values of infected hosts versus diversity values and age weighted by
sample size.

host phylum host class
SQS mean
sampled diversity

SQS 3T
origination rate

SQS 3T
extinction rate

best age
(Myr)

all — 0.0112** −0.4600* −0.7476** 0.0015

Brachiopoda — −0.1529 −8.8259 — 0.0591

Echinodermata — −0.0234 −0.1048 0.0479 0.0088

— Echinoidea 1.0390 – – 0.0472

— Crinoidea and Blastoidea −0.0882 −1.8123 1.4897 0.0254

Mollusca — 0.0185 −0.4793 −1.0626** 0.0008

— Bivalvia −0.0633 2.0956 −0.2988 −0.0270
— Cephalopoda 0.1233# −1.9609 1.2845 +0.0438**

#p<0.10, *p<0.05, **p<0.01, ***p<0.001.

Table 4. Summary of evidence for the dilution hypothesis and amplification hypothesis by species occurrence level prevalence values of infected hosts versus
diversity values of host class by period. Italic text indicates the primary mechanism in a given host phylum or class.

host phylum host class dilution amplification mechanism

all — supported (−) origination rate; (−) extinction rate
Brachiopoda — ? ? no significant relationships

Echinodermata — ? ? no significant relationships

— Echinoidea ? ? no significant relationships

— Crinoidea and Blastoidea ? ? no significant relationships

Mollusca — supported (−) extinction rate
— Bivalvia ? ? no significant relationships

— Cephalopoda marginally supported minor (+) age influence
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with a difference in timing. Themedian prevalence value for the
Cenozoic was significantly higher than the statistically indistin-
guishable median prevalence values of the preceding eras
(figure 2b inset). We hypothesize that the Phanerozoic history
of parasite-induced traces among marine animal hosts reflects
an escalation of parasite–host interactions (figure 2). This same
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time interval witnessed numerous mass extinctions, evolution-
ary radiations and biotic turnover across a variety of temporal
and spatial scales. Next, we will examine the relationship
between parasitism and diversity at course temporal binning
over the last 540 Myr.

(b) Relationships between parasitism and diversity
There is ample evidence that metazoan biodiversity has waxed
and waned through the last 541 Myr, though the nature of the
overall pattern has been extensively debated [79,160–163].
Though incomplete in preservation and sampling to varying
degrees through time, the fossil record provides physical
evidence for ancient life that would not otherwise have
been known from the evolutionary analysis of living clades. Sep-
koski’s [23,162] estimates of diversity through time were based
on a compilation of the first and last occurrences of marine
animal genera and the assumption that each ranged through
their entire interval. While it is not unreasonable to assume
that these genera existed between their first and last occurrences,
including taxon occurrences in time bins from which they have
not been sampled results in a variety of problematic biaseswhen
constructing diversity curves through geologic time [80]. For this
reason, we used Alroy’s [79,80] shareholder quorum sub-
sampling procedure on genus occurrence data for each host
class derived from the PBDB to produce diversity estimates
that include a fairer representation of uncommon genera.

(i) Evidence for the amplification hypothesis
The significant, positive relationship between mean sampled
diversity and the number of parasitism occurrences for all
taxa and prevalence is consistent with the amplification
hypothesis (tables 2 and 4). The number of parasitism occur-
rences and prevalence is also significantly and negatively
correlated to extinction rates, suggesting that extinction
suppressed parasitism, though, without data on parasite
diversity, these results do not allow us to distinguish between
co-extinction of parasites and hosts or merely the extinction
of hosts. Origination rates have a more complex relationship
with parasite occurrence and prevalence. The occurrence of
parasite hosts increases with host origination rates, support-
ing amplification, but prevalence values decrease, perhaps
suggesting that even though parasitism is becoming more
common as host diversity increases, its prevalence decreases,
consistent with dilution. Consistent with the results pre-
sented in figure 2, the occurrence of parasitism strongly
increased through geologic time. These pooled results include
a variety of phyla and classes with very different body plans,
life modes, parasitic interactions and proportional represen-
tation in the dataset, so it is beneficial to dissect the data
into more finely resolved taxonomic groups.

The consistent positive relationship between both indica-
tors of parasitism and extinction rate for molluscs is striking
for several reasons (tables 2 and 4). First, SQS measures of
diversity, origination rate and extinction rate do not suffer
from the same taphonomic factors and limitations of Sepkos-
ki’s [23] compilation and are currently among the best
proxies for constructing relative changes in bivalve biodiver-
sity through the Phanerozoic at period-scale of observation.
The second is that the prevalence of parasitism within a
sample is not subject to the same factors related to differences
in sampling effort or availability as counting the number of
occurrences of parasitism within a bin. The consistent positive
relationship between parasitism and extinction rate of mollusc
hosts, which make up approximately 47% of host occurrences
and approximately 58% of prevalence values, is likely a robust
pattern (table 3). As with Huntley & Kowalewski [14], inter-
preting the meaning of this pattern can be more tricky. The
prevalence of parasitism in all examined taxa is mostly low
(less than 1–5%), although they can likely reach very high
numbers in specialist parasites or particular environmental
circumstances [119]. One can imagine a scenario similar to
escalation [155], the Red Queen [164] or other hypotheses
[165] where parasitism acts as a selective force that promotes
the evolution of their hosts [27,120,165]. Alternatively, as bio-
diversity generally increases, new life modes and biotic
interactions, parasitism included, are likely to evolve; a pas-
sive increase in ecological life modes with increasing diversity.

On longer timescales, an increase of parasitism might at
first glance be the dominant factor as there is good evidence
for a step-wise increase of modern groups of marine parasites
[28] with some appearing in the Paleozoic [137,166], the Meso-
zoic [167] or Cenozoic [102]. This would also be consistent with
the positive correlation with origination rates (tables 1 and 3).
However, there is also support for the extinction of specialized
parasite–host associations in the past [69,115,154,168] and it
has been argued that co-extinction with hosts might be an
important driver of extinction for parasites and symbionts
more generally [169–173]. An important role of diversity loss
has also been postulated for themodern dilution effect hypoth-
esis [58]. We cannot entirely rule out that changes in both
diversity and parasitism are being affected by an independent
process such as sample availability, though, again, this is unli-
kely given that the pattern holds for prevalence and the fact
that it is robust against possible biases produced by differences
in sample size (figures 3 and 4; tables 1 and 2).

Our results (tables 2 and 4) seem to indicate that the dom-
inatingmechanismsmight differ evenwithin the samephylum
with the class Cephalopoda being consistent with the results
obtained for Mollusca as a whole, while the class Bivalvia
rather seems to support dilution by showing a marginally sig-
nificant negative correlation with diversity and a positive
correlation with extinction rates at least for occurrences.

The occurrences of parasitism in crinoids and blastoids
might also support the amplification hypothesis, though
likely through a differentmechanism than that controllingmol-
luscs. These stalked echinoderms display significant negative
relationships between parasite occurrence and origination
rates, which results in a positive relationship with mean
sampled diversity indicated by a positive coefficient an order
of magnitude smaller than those of the evolutionary rates.
One difference between the stalked echinoderms and molluscs
is the predominant type of parasitism for each group. Crinoids
and blastoids were typically infested by external parasites
(such as platyceratid gastropods) or gall-forming parasites
boring into the stems from the outside [32]. Molluscs, on the
other hand, often suffered from parasites infesting their viscera
[76,87,119,120] with the occasional external kleptoparasites
[41]. Their different types of parasites would have rather differ-
ent transmission modes and would also be affected by
predation differently, but it is difficult to predict from the
fossil record alone. Platyceratid gastropods, for example,
might have spent a large part of their life on a single host
and there is good evidence that they might have been specifi-
cally targeted by ‘non-intraguild’ predators rather than their
hosts [20]. It is tempting to attribute the amplification to the
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density-dependent mode of transmission as the non-intraguild
predation should have diluted rather than amplified its effects.
In the case of internal parasites with complex life cycles,
increased intraguild predation might be a possible explanation
for their amplification with diversity as frequency-dependent
transmission is expected to lead to a dilution effect. Peculiarly,
there is some support for the dilution effect in bivalve molluscs
when looking at occurrences of parasitism but this does not
seem to hold when looking at prevalences of parasitism. It
should be noted in this context that the raw median prevalence
values are lower in the Paleozoic and Mesozoic than in the
Cenozoic for bivalves, which would be consistent with amplifi-
cation but these do not seem to hold up when weighting for
sample size which is an order of magnitude greater in the
Cenozoic than in the Paleozoic and Mesozoic. This highlights
that more work is necessary to understand the impact of par-
ticular mechanisms and as our analyses focus on large-scale
temporal scales—where amplification might be the dominant
model as our results suggest.

(ii) Evidence for the dilution hypothesis
Contrary to our initial hypothesis, we also found evidence
supporting a significant negative relationship between parasit-
ism occurrences and mean sampled diversity in arthropods
(mainly decapods approx. 81% and trilobites approx. 19%;
tables 1 and 2) and echinoids as well as marginally in bivalves
and Anthozoa, but varying relationships with origination and
extinction rates. In arthropod and echinoid hosts, dilution of
parasitic interactions is associated with the increase in orig-
ination rate, but they are variably related with extinction rate.
In anthozoan, bivalve and echinoid hosts, parasitism is associ-
ated with a positive association with extinction rate, while it is
associated with a negative correlation with extinction rate for
arthropods. These are organisms with drastically different
body plans, life modes and means of securing nutrition. Gen-
eralizations of parasitic interactions in these groups are more
difficult to make as their impacts (e.g. disease) are dependent
on environmental conditions [174–176] as well as modulation
by non-intraguild predation and density are not directly
studied or complex [25,177], which makes them even harder
to predict for past interactions and our scale of analysis.
More prevalence data for these groups are necessary to better
establish the mechanisms behind these differences.
(c) Closing thoughts and future prospects
We have presented the first synthesis of marine parasite–host
interactions among 10 host phyla and at least 13 parasite
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phyla across the Phanerozoic. The counts of occurrences and
prevalence values among individual samples indicate an
increase of parasitism over the last 541 Myr. Comparisons of
the fossil record of parasitism with SQS estimates of host
mean sampled diversity, three-timer origination rates and
three-timer extinction rates reveal significant correlations that
primarily support the amplification hypothesis. For all taxa
pooled, we find significant, positive correlations between
diversity and parasitism, and origination rate and parasitism;
and significantly negative correlations between extinction
rate and parasitism, regardless of the proxy used for parasit-
ism. The most consistent of these relationships on the
phylum-level are found among mollusc hosts with a negative
correlation with extinction rate.

This work represents a sizable step in establishing the
Phanerozoic pattern of parasitism and a step toward under-
standing the processes relating parasitism with diversity
across the broad history of marine animal life. Admittedly,
we have used large temporal bins in these initial analyses.
This approach was necessary to maintain a reasonable
number of observations per bin. We are seeking to increase
temporal resolution in ongoing and future analyses of our
expanding dataset. Additionally, we aim to incorporate climate
and environmental proxies as well as data related to parasite
transmission mode and impact of predation in our models to
assess the roles of abiotic and other biotic factors. We hope
that researchers will gain more interest in not only screening
their fossils for signs of parasitism but also reporting the num-
bers of individuals bearing evidence of parasite–host
interactions, the total numbers of individuals in the examined
samples, and comparable information for samples in which no
evidence of parasitism was found. This will allow us to better
understand themechanisms driving changes in parasite preva-
lence [33,178], and modelling might contribute to further
understanding the patterns once larger datasets become avail-
able [179]. We have shown after spending much of the last
decade investigating parasite–host interactions among a
diverse group of marine invertebrates that these traces are
much more common in the fossil record than we previously
knew. It is likely that many more discoveries to be made will
provide important insights on the links between ecology, life
history and environmental factors in driving the evolution of
parasite–host associations.
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