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Abstract: The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes
(complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze
electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is
utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory
complexes are known to coexist in the membrane as single functional entities and as supramolecular
aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant
biomedical implications because defects in a single protein can derange the overall SC organization
and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in
detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic
alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of
the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major
metabolic disturbances associated with severe SCs perturbation due to defective complex III are
discussed along with interventions that may circumvent these deficiencies.

Keywords: respiratory complexes; respiratory supercomplexes; oxidative stress; mitochondrial DNA;
MTCYB mutations; cytochrome b; complex III; mitochondrial diseases

1. Introduction

The mitochondria are cytosolic organelles of eukaryotic cells in charge of ATP produc-
tion through the process of oxidative phosphorylation (OXPHOS). However, several other
important pathways are associated with mitochondria, such as the citric acid cycle [1,2],
the fatty acids oxidation [3] and lipid droplets formation [4], the iron–sulfur (Fe–S) protein
biogenesis [5] and amino acids catabolism [6]. Furthermore, mitochondria are implicated in
the buffering of cytosolic calcium concentration [7], in generation of reactive oxygen species
(ROS) [8], and in regulation and execution of different types of cell death [9]. They are
also involved in an array of adaptive responses triggered by perturbations of intracellular
homeostasis [10], orchestrating anabolic and catabolic reactions, which are finely adjusted
according to different cytosolic conditions. All these interconnected functions are sustained
by the activity of the “mitochondrial proteome”, estimated to contain at least 1000 (in
yeast) [11] to 1500 (in humans) [12] different proteins, 15% of which are directly involved
in energy metabolism and the OXPHOS system. Note that recent bioinformatics analysis
in yeast provided evidence for more proteins than expected, cryptically localized inside
mitochondria [13].

As typically described in the textbooks, mitochondria have two membranes, the outer
membrane, which acts a barrier separating mitochondria from the cytoplasm, and the inner
membrane surrounding the matrix, where soluble enzymes of intermediary metabolism,
ribosomes and the mitochondrial genome (mtDNA) are hosted. The inner mitochondrial
membrane is characterized by an extraordinarily high protein content and, in particular,
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encloses many copies of the respiratory chain components that together with the ATP
synthase (named also complex V, CV) form the molecular machinery of OXPHOS, i.e.,
the ATP production from ADP and inorganic phosphate. The mitochondrial respiratory
chain consists of four enzymatic multi-subunit complexes, namely the NADH-coenzyme
Q reductase (Complex I, CI), the succinate-Coenzyme Q reductase (Complex II, CII), the
ubiquinol-cytochrome c reductase (Complex III, CIII), and the cytochrome c oxidase (Com-
plex IV, CIV). Two mobile redox-active compounds, the lipophilic coenzyme Q (CoQ) and
the hydrophilic cytochrome c, connect the enzymatic complexes, thus allowing the electron
transfer from soluble reducing equivalents (NADH and FADH2) to molecular oxygen.

Unlike the oxidation of NADH which only occurs via CI, FADH2 can be oxidized at
the inner membrane mainly by CII, but also by other less abundant proteins such as the
glycerol-3-phosphate dehydrogenase [14], the electron transfer flavoprotein dehydroge-
nases [15–17], the dihydroorotate dehydrogenase [18], the choline dehydrogenase [19], the
sulfide CoQ reductase [20], and the proline dehydrogenase [21]. All these proteins are
able to feed electrons to CoQ and in turn to CIII, which therefore can be considered the
central collector delivering electrons through cytochrome c to CIV. The electron transport is
coupled to proton extrusion from the matrix into the intermembrane space generating a
transmembrane proton gradient at the level of CI, CIII and CIV, but not of CII. This later,
together with other FAD-linked enzymes, does not contribute to energy conservation.

2. Mitochondrial Proteins Are Encoded by Two Genomes

Most mitochondrial proteins are encoded in the nucleus, synthesized in the cytosol
and then imported into mitochondria by specific targeting mechanisms. However, these
organelles are characterized by the presence of an independent genome, the mtDNA.
This peculiarity is believed to be due to the evolutionary origin of mitochondria from
alpha-proteobacteria integrated into proto-eukaryotic host, of which the details are still
debated [22]. Most mitochondrial genes were then transferred to the nucleus, although
a few of respiration-competent genes were conserved as an independent genome. The
mtDNA is a circular double-stranded DNA, in humans of approximately 16.5 kb, encoding
for thirteen polypeptides, all essential subunits of the OXPHOS system, and also for two
ribosomal RNAs and twenty-two transfer RNAs, required for the intra-mitochondrial
translation of the thirteen proteins. The evolutionary pathways involved in maintaining
this transcriptionally active genome in addition to nuclear DNA are still poorly understood.
New system biology and bioinformatics approaches have confirmed that the very high
hydrophobicity of the proteins encoded by mtDNA is crucial to limit their translocation
from the cytoplasm to the mitochondrial membrane and to favour mistargeting to the
endoplasmic reticulum. In addition, the high CG content has been shown to increase
the thermodynamic stability of the mtDNA, protecting from environmental insults [23].
Of note is that the high GC content might be related also to the surprisingly very high
local temperature (about 50 ◦C) recently determined inside mitochondria [24]. Finally,
the preferential encoding of components essential for organelle function in the mtDNA
would allow localized control of gene expression and therefore the assembly of protein
complexes [25].

3. Both Genomes Contribute to the Onset of Mitochondrial Diseases

Mitochondrial diseases are genetically heterogeneous disorders caused by mutations
in nuclear genes encoding OXPHOS structural proteins or assembly factors, which are
proteins required for the correct maturation of the complexes, but not contributing to the
final structures. Mutations can also affect the molecular machineries of mtDNA replica-
tion and maintenance, of mitochondrial transcription and translation, as well as proteins
involved in cristae shaping, network dynamics and quality control, composition of mem-
brane lipids or mechanisms of antioxidant defences. Disorders can also be caused by
mutations in the mtDNA, encoding structural OXPHOS subunits. In this case the genetic
features are very peculiar, since the mtDNA inheritance mode follows the maternal lineage.
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Furthermore, each cell presents multiple copies (100–1000) of this genome, so that mutated
and non-mutated copies can co-exist in the same individual, generating a phenomenon
called heteroplasmy. Accordingly, the clinical phenotype and the severity of biochemical
dysfunctions are highly variable, and pathology only manifests when the percentage of
mutated mtDNA exceeds a threshold, which is variable for each kind of mutation. For a
recent exhaustive review on the genetic basis of primary mitochondrial diseases we refer
to Fernandez-Vizarra and Zeviani, 2020 [26].

4. The OXPHOS System

The structures of individual mitochondrial respiratory chain complexes have been
determined by X-ray crystallography [27–30] or electron cryo-microscopy [31–35]. The
bovine or human mitochondrial CI contains 44 different subunits, forming an L-shaped
structure. The minimal functional unit of CI, which is conserved from bacteria to mammals,
comprises 14 subunits known as core subunits. Subunits ND1-ND6 and ND4L form the
hydrophobic membrane arm, the other seven core subunits form the hydrophilic arm
protruding into the matrix and comprising a flavin mononucleotide (FMN) and eight iron–
sulfur clusters as redox active prosthetic groups. This latter contains the NADH binding
and electron transfer sites, whereas the membrane arm performs the proton translocation.
The other supernumerary subunits play significant roles in the assembly, stabilization and
regulation of CI [35–37].

CII is composed of four subunits, forming a hydrophilic head, containing a FAD
binding protein and an iron–sulfur protein, and the hydrophobic arm with two membrane-
anchor proteins (CybL and CybS). Three kinds of prosthetic groups, FAD, heme and
iron–sulfur clusters, were recognized in CII, coupled with two Q-binding sites [38,39].

The mammalian CIII monomer is composed of three respiratory subunits (cytochrome
b/MTCYB, cytochrome c1/CYC1 and the Rieske iron–sulfur protein/UQCRFS1, two core
proteins (UQCRC1, UQCRC2) and six low-molecular-weight proteins (UQCRH/QCR6,
UQCRB/QCR7, UQCRQ/QCR8, UQCR10/QCR9, UQCR11/QCR10 and a cleavage prod-
uct of UQCRFS1). CIII is present as dimer (approx 450 kDa), although it is still controversial
whether the two monomers of CIII2 function cooperatively or independently [40,41].

The CIV monomer has a mass of approximately 200 kDa and is believed to occur
in the membrane both as a monomer and a dimer [42]. Each CIV monomer consists of
14 subunits [43], since NDUFA4, which was considered to be a subunit of CI, is actually a
subunit of CIV [44]. The four redox-active metal centres constituting the electron transport
pathway are heme a3 and CuB, forming the binuclear centre that binds oxygen, and heme
a, located in subunit COXI. The CuA center is incorporated in COXII [45]. The remaining
subunits (COX4, 5A, 5B, 6A, 6B, 6C, 7A, 7B, 7C, 8A) are thought to have a structural role in
the stabilization of the complex [46,47].

5. OXPHOS Optimization by the Inner Membrane Architecture

The general notion that the inner membrane is heavily folded to form the cristae has
been reconsidered after 3D electron microscopy (EM) tomographic analysis in mitochondria
from a wide variety of organisms, revealing that the cristae membrane opens toward
the intermembrane space through narrow tubular structures, the crista junctions [48].
The molecular components of these cristae junctions have been subsequently identified,
the most relevant being the mitochondrial contact site and cristae organizing system
(MICOS) [49–51] and the high-molecular-weight GTPase Optic atrophy 1 (OPA1) [52–54]
(Figure 1).

Furthermore, the observation of mitochondrial specimens in their native environment
by means of the immuno-EM and cryo-EM tomography allowed to demonstrate that
dimers of CV are arranged in long rows along the tightly curved ridges of the cristae
membrane [55] (Figure 1). These ribbons of CV dimers are involved in the folding of the
crista membrane [56]. It seems therefore that the intra-mitochondrial architecture is more
complex than initially believed, with MICOS, OPA1 and CV dimers playing a structural
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role, together with the abundance of non-bilayer cone-shaped phospholipids, such as
cardiolipin and phosphatidylethanolamine [53,57,58].
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Figure 1. Architecture of the inner membrane and unequal distribution of OXPHOS complexes. CI, CIII and CIV are in the
cristae membrane, CV dimers are at the cristae tip, whereas CII is also found in the inner boundary membrane. MICOS and
OPA1 stabilize the cristae junctions, providing constrains to membrane mobility of complexes.

Of note is that the presence of MICOS and other proteins at the cristae junctions
provides severe constraints to the mobility of protein complexes along the inner membrane,
and therefore two sub-compartments with unequal protein distribution and functions can
be envisaged: the cristae membrane, protruding in the matrix, and the inner boundary
membrane, facing the outer membrane. The respiratory complexes are mainly found in
the cristae membrane [56]. Further, sophisticated analysis of diffusion and directionality
of movement of single complexes by super resolution microscopy revealed that all the
complexes are trapped in the laminar part of cristae, except CII which is also found in the
inner boundary membrane [59] (Figure 1). It has to be noticed that CII is a rather small
complex and does not associate in supramolecular assemblies with other complexes. It
follows that the specific geometry of the inner membrane, dictated by the cristae junction
organization at the bottom and CV dimers on the top of crista, has a critical impact on the
energetic function of mitochondria. As summarized in Figure 1, protons ejected by CI,
CIII and CIV segregated on the laminar part of the cristae, are enriched in the intracristal
space and flow back into the matrix through CV. This arrangement was predicted to be
highly efficient in promoting energy conversion [56]. However, the intracristal membrane
geometry has not been shown to influence the local pH gradients [60,61], consequently
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it has been proposed that the tight packing of the OXPHOS machinery in the cristae
membranes favours the kinetic coupling between proton pumping and ATP synthesis [61].
The extraordinary power of super resolution live-cell imaging in combination with EM
tomography and genome editing will further illuminate the functional details and dynamic
aspects of this important microcompartment.

6. Supramolecular Organization of the Respiratory Complexes

The unequal protein complex distribution within the inner membrane subcompart-
ments is also favoured by their size and their ability to interact with other complexes to form
high-molecular-weight macromolecular aggregates. Differently form CII, which is always
found alone, the proton-pumping CI, CIII and CIV can assemble in non-covalent associa-
tions defined as respiratory supercomplexes (SCs). Respiratory SCs were first identified by
non-denaturing blue native gel electrophoresis (BN-PAGE) of mitochondrial membrane
extracts, using the mild detergents Triton X-100 and digitonin, as high-molecular-weight
gel bands, showing activity for CI, CIII and CIV [62,63]. The mammalian SCs containing
CI, CIII dimer (CIII2), and CIV with different stoichiometry are sometimes referred to
as respirasomes, because they contain all the components required to transfer electrons
from NADH to molecular oxygen [63–65]. In human cells, the respirasome comprises
most of CI (>90%), approximately 40–50% of CIII2 and 20–30% of CIV. Differently from
CI, significant amounts of CIII2 (50–60%) and CIV (70–80%) can be also found as isolated
complexes within the membrane. The CIII+CIV SC represents about 5% of total amount of
the complexes [66].

6.1. The CI+CIII2+CIV SC or Respirasome

The structures of the CI+CIII2+CIV SC isolated from different mammalian mitochon-
dria have been determined by single-particle electron cryo-EM at resolutions ranging from
~30 to ~4 Å [67–70] or by electron cryotomography (cryo-ET) at ~30 Å resolution [71,72].

In the structure of respirasome, CIII2 borders the concave arc of CI membrane arm,
and CIV is located near CIII2 at the distal end of the CI membrane arm, with cardiolipin
molecules filling the gaps between the individual complexes [67,71]. In the respirasome,
two distinct arrangements have been identified, a major “tight” and a minor “loose” form,
which mainly diverge for the position of CIV. As illustrated in the cartoon of Figure 2, the
most extensive and stable interactions take place between CI and CIII2.
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Two are the major interaction points: in the inner membrane between CI subunit
NDUFA11 and the CIII subunits UQCRB, UQCRQ and UQCRH, and at the matrix between
the CI subunits NDUFB4 and NDUFB9 and CIII subunits UQCRC1 and UQCRFS1 [69].
Another important interaction occurs between CI subunit NDUFB7 and subunit UQCRH
on CIII2. Of note is that both subunits contain disulphide bonds, suggesting that redox
regulation might modulate the interactions between the respiratory complexes [69].

Few interactions occur between CI and CIV, the most important linking the CI ND5
subunit to COX7C at the interface between matrix and inner membrane, the other between
NDUFB3 subunit and COX8B. The contacts between CIII and CIV mainly involve the CIV
COX7A subunit with the UQCRC1 and UQCR11 subunits and COX5B subunits with the
UQCRC1 subunit [69].

Interestingly, high-molecular-weight bands above the CI+CIII2+CIV SC were previ-
ously described by BN-PAGE analysis [63]. More recently, mass spectrometry analysis has
suggested that the main components of these bands are subunits of CI, CIII and CIV, and
EM analysis detected a minor population of particles with circular arrangements. This
led to proposing a higher oligomeric state named megacomplex CI2+CIII2+CIV2. This
assembled structure is shaped by a central CIII2 surrounded by two copies each of CI
and CIV. This arrangement may be an oligomerization form of respiratory complexes
operating under the most efficient emergency conditions, because both monomers of the
CIII dimer could receive CoQH2 from each CI and pass reduced cytochrome c to one
adjacent CIV. Further analysis by cryo-EM allowed to better define the architecture of the
megacomplex [73], although these results were intensely debated, mainly due to limitations
of cryo-ET technology in the reconstruction of supramolecular assemblies.

6.2. The CI+CIII2 SC

CI can also assemble with the CIII dimer alone to form the CI+CIII2 SC. Recently, a
functional CI+CIII2 SC has been isolated from ovine heart mitochondria and characterized
by cryoEM, demonstrating that the contacts between CI and CIII2 are evolutionarily
conserved [72] and are similar to those of the respirasome, confirming the stabilizing
role of CIII2 on CI [69,74].

6.3. The CIII2+CIV SC

Isolated CIII2 and CIV coexists with the CIII2+CIV SC, which has not been structurally
characterized in mammalian tissues, likely due to its low relative abundance. Cryo-EM
studies on yeast, which lacks CI, detected a CIII dimer at the core of the SC flanked by a
CIV monomer on either side. The CIII–CIV interface revealed protein-protein interactions
on either side of the membrane and with lipids within the membrane. The majority of
interactions occur on the matrix side between Cor1/UQCRC1 and the N-terminus of
COX5A, whereas the C-terminal domain of COX5A interacts with both Qcr6/UQCRH
and cytochrome c1 on the intermembrane space. Within the membrane, COX5A contacts
the N-terminal helix of Rip1/UQCRH and Qcr8/UQCRQ via a cardiolipin molecule and
another lipid modelled as phosphocholine. Two other cardiolipins indirectly support the
CIII–CIV interface highlighting again their crucial role in SC formation [75].

7. SCs Assembly Factors

Several molecules able to directly or indirectly promote mitochondrial SCs assembly
and stability have been identified, such as cardiolipins, stomatin-like protein 2, prohibitin
1 and 2, and others (for a recent review, see [76]). Here we consider the protein factors
involved in SCs assembly, the most studied being HIGD2A (hypoxia inducible domain
family member 2A) [66,77–80] and COX7A2L [81]. HIGD2A mainly functions in CIV
assembly [77,82] and mediates CIV integration within the respirasome, as well [66,80].
The mammalian homologous HIGD1A has been reported to assist the assembly of CIII
and CIII-containing SCs biogenesis, having overlapping functions with HIGD2A [82].
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These findings suggest the involvement of multiple pathways to assemble the respiratory
complexes and to gather the SCs [82–84].

COX7A2L (also called SCAF1) has been the subject of various studies with contradic-
tory results, due to the presence of two variants (long and short forms) differently expressed
in mouse strains and tissues [81]. There is an agreement that long COX7A2L can bind to
both CIII2 and CIV and is required for formation of the CIII2+IV SC [79,83,84], as well as
for the assembly of the megacomplexes [73], but is dispensable for the respirasome [66,80].

Assembly factors specifically interacting with CIII were identified in yeast and their
orthologs validated in human cells, namely, Cbp3 (UQCC1) and Cbp6 (UQCC2) [85] and
Cbp4 (UQCC3) [86]. The best-characterized is UQCC3 (ubiquinol-cytochrome c reductase
complex assembly factor 3; also known as C11orf83), which is involved in the early phase of
CIII assembly and in the stabilization of CIII-containing SCs [86,87]. Interestingly, UQCC3
was reported to be indispensable for simultaneously maintaining both OXPHOS and
glycolysis during hepatocarcinoma cells hypoxia adaption, suggesting a role in energetic
reprogramming [88].

Table 1 summarizes the genetic alterations affecting CIII structural subunits and
assembly factors, which will be considered in the following paragraphs, also indicating the
redox activities and the assembly state of complexes/SCs.

8. Models of SC Organization

The question of the organization of the respiratory chain has been debated since the
pioneering studies aimed at identifying the molecular components and catalytic mech-
anisms [89,90]. Hackenbrock et al. (1986) described the ”fluid” or “random collision
model” of electron transfer, where each complex acts as an individual entity, CoQ and
cytochrome c freely diffuse within the lipid bilayer, and electron transfer occurs during
random and transient collision events [91]. The alternative solid-state model derives from
the early observations reporting that CI and CIII preferentially associated in the native
membranes [92]. Since 2000, the solid-state model has received strong support from isola-
tion of SCs by BN-PAGE and then by development of protein crystallography and cryo-EM
approaches. According to the solid model, a unique multicomplex unit is able to execute all
the steps of respiration. More recently, the two models have been merged in the so-called
“plasticity” model [64,93], based on the coexistence of individual CIII and CIV complexes,
with a variable combination of SCs. Dynamic SC association/dissociation can be triggered
under physiological conditions by availability of different substrates (NADH and FADH2),
determining a variety of different structural options that allow to adapt the efficiency of
the respiratory chain to metabolic demands. One consequence of the possibility to pref-
erentially use NADH- or FADH2-dependent substrates through isolated complexes and
SCs is the presence of partially dedicated pools of the mobile electron carrier CoQ [81,94].
However, demonstrating the presence of two CoQ pools is experimentally difficult and
therefore this issue has been disputed [95,96]. According to the working model proposed
by the Enriquez group, under normal circumstances, the superassembly in the respirasome
generates a CoQ fraction within the SCs functionally dedicated to NADH oxidation. Given
that also individual CIII2 co-exist with the SC, CoQH2 generated by CII or by other FADH2-
dependent enzymes can be oxidized by the free CIII out of respirasome. Under conditions
of block/lack of CIII or CIV, all CIII is associated with CI and CoQH2 can diffuse out and be
oxidized outside the SCs, and, on the other hand, the ubiquinol generated by CII can diffuse
in and be oxidized by CI+CIII2 SC [81,94]. Additionally, for cytochrome c the existence of a
unique pool is also unlikely, given that this protein, besides transferring electrons between
CIII and IV, can interact with many mitochondrial and non-mitochondrial components,
exerting a variety of roles, among them the trigger of apoptotic cell death. SCAF1, which
has been shown to be required for CIII and CIV interaction, plays an important role in the
cytochrome c pool functional segmentation and likely in the efficient use of respiratory
substrates. For a detailed discussion on CoQ and cytochrome c segmentation in SCs, we
refer to [97].
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9. Functional Roles of the SCs and CIII Involvement

Even if the evidence in support of SCs in detergent extracts is beyond question and
the SCs in situ arrangement in the mitochondrial inner membrane has been defined, their
physiological functional significance is still debated. The hypothesis of a catalytic advantage
provided by SCs [67,81,98] has been questioned [65,72,95,96,99]. Catalytic advantage would
imply substrate channelling, i.e., a defined conduit for the hydrophobic quinol from its
reduction site in CI to CIII, where it is oxidized. However, no structural evidence for such
a protein-defined conduit between CI and CIII2 was obtained [100].

As alternative hypotheses, it has been proposed that SC organization could support
CI assembly and stability [101,102], preventing dangerous casual protein aggregations
within the membrane [100,103]. Finally, it has to be recalled that CI and CIII2 are the
main sources of reactive oxygen species (ROS) in the mitochondrial matrix and in the inner
membrane [104–107], and that experimental dissociation of the SCs results in increased ROS
production from CI [108]. It was, therefore, proposed that SCs organization could reduce
ROS generation and subsequent oxidative damage to membrane components [108,109],
although the molecular mechanism was not clearly defined. Analysis of recent structural
data allowed to propose that in the respirasome, the interactions of CIII2 with CI and CIV
break the symmetry of CIII2, ensuring efficient oxidation of QH2 and allowing CI to operate
at full rate, thus helping to reduce ROS formation at CI [100].

The relationship between SCs and ROS is intriguing, because it is difficult to dissect
how important SCs are to prevent ROS production and how ROS production depends on
SCs disassembly. There is evidence that the production of ROS due to CIII dysfunction
plays a role in the stability of SCs. It has been reported that some pathogenic mutations
in BCS1L, the chaperone protein needed to incorporate the UQCFRS1 protein in CIII,
affected CIII activity, inducing ROS production and secondary CI and CIV activity/stability
alteration [110]. Furthermore, in a mouse cellular model lacking UQCFRS1 protein, the
increase of ROS production due to CIII deficit induced a general reduction in the assembly
and stability of CI, CIV, and in turn of SCs; however, this latter defect was partially rescued
in presence of antioxidants treatment or hypoxia [111].

In addition to a direct ROS production by CIII due to its defective activity, it has
been shown that the lack of CIII, by increasing the CoQH2/CoQ ratio, could promote the
backflow of electrons from CoQH2 to CI by the reverse electron transfer (RET) reaction
through CI. RET produced the oxidation of cysteine residues of CI, triggering its degra-
dation and in turn hampering SC formation [94]. Although in this study the occurrence
of RET and ROS production was not directly demonstrated, the ROS involvement was
suggested by partial rescue of CI assembly after treatment with the CI inhibitor rotenone
and under hypoxic conditions, all interventions that prevent RET. The overexpression of
SOD2, however, was not effective [94]. An interesting finding has been recently reported,
showing that Na+ modulates ROS production during acute hypoxia through the regulation
of inner membrane fluidity [112]. Noticeably, this increased ROS production was associated
with reduction in combined CII+CIII enzymatic activity and respiratory capacity, whereas
combined CI+CIII activity and respiration remained unchanged. This finding reinforces
the general idea of that formation of the CI+CIII2 SC limits the production of ROS.

Finally, in a human cellular model carrying an 18-bp frame deletion in MTCYB associ-
ated with a severe impairment of CIII, CI and CIV assembly and ROS production, treatment
with the antioxidant N-acetyl cysteine partially rescued respirasome formation [113]. Taken
together, these data indicate that ROS production may affect respiratory complexes and
SCs assembly, thus, it is reasonable to speculate that the correct assembly of SCs could be
useful to reduce ROS production in a healthy respiratory chain.

The fact that the mutual arrangement of CI and CIII2 is essentially conserved from ob-
ligate aerobic yeast to mammals, and plants seems to favour the hypothesis that specifically
these two complexes have a functional role in maintaining the respiratory chain stability
reducing ROS production [51]. Further structural and biochemical work is needed, also
considering that in some cases a slight increase of ROS was detected, but the assembly of
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respiratory complexes and SCs was normal, suggesting that ROS levels could modulate
the response to this supermolecular organization [114–116]. The influence of tissue-specific
subunit isoforms is also to be taken into account [83].

10. SCs Biogenesis and Role of CIII

An important issue to be elucidated concerns the SCs biogenesis, i.e., how CI, CIII and
CIV interact in the respirasome formation. Currently, two models have been presented.
The first model proposes that the close interplay among the three complexes favours
better structural stability, implying that the isolated forms of respiratory complexes, in
particular CI, are more prone to degradation. Accordingly, the complexes are supposed
to follow separate assembly pathways to build mature individual complexes and to form
SCs in a second step [93,117]. The second model suggests a central role of CI acting as a
scaffold for the sequential incorporation of CIII2 and CIVn subassemblies to form mature
SCs [102]. However, this latter model does not rule out the occurrence of a dynamic
exchange of CIII2 and CIV once the respirasome assembly has been completed, allowing
the formation of the other SCs and the co-existence with free complexes [66]. Both models
have been developed from data obtained in experiments in which SCs biogenesis was
studied following the time-course of respiratory complexes assembly after mitochondrial
translation inhibition, by using diverse antibiotics and different experimental conditions,
and this may explain some conflicting results. Recently, interesting information obtained
by combining the Stable Isotope Labelling by Amino acids in Cell culture (SILAC) and
complexome profiling techniques, suggested a new main role of CIII in SCs formation as a
structural and functional platform for the overall respiratory chain biogenesis [118,119]. In
particular, Protasoni et al., 2020 [118] analyzed human cells bearing a 4-bp MTCYB deletion
that induced a frameshift with the loss of the encoded protein and of CIII2, associated
with hampered CI biogenesis due to the stall in N-module incorporation and decreased CI
stability. Furthermore, the CIV assembly was also defective because some CIV subunits
were recruited within the accumulated CIII subassemblies. A similar analysis was carried
out by Páleníková et al. (2021) [119], in cells bearing a 18-bp frame deletion in MTCYB
gene that produced a protein shortened of six amino acids and induced a strong defect of
CIII2 activity/assembly as well as of CI and CIV [113,120,121]. These cells, differently from
those with the 4-bp deletion, exhibited some amount of isolated CIII2 and CI, that were
associated in the enzymatically active CI+III2 SC [113,121], in agreement with structural
data demonstrating the existence of multiple interactions between the two complexes [74].
However, Páleníková et al. (2021) showed that several sub-complexes with mixed CIII, CI
and CIV subunits were also present, indicating that the decreased CIII2 assembly leads the
formation of intermediates that trap other respiratory complex subunits impairing their
assembly [119]. Taken together, these data support a cooperative assembly model in the
respiratory chain structural and functional maturation and in SCs biogenesis, highlighting
the central role of CIII2 as scaffold for the ordered association with mixed CI and CIV
subunits. Exhaustive studies focused on the mechanisms of SCs biogenesis in presence of
CIII deficiency are still lacking; however, after reviewing literature it appears that mutations
that disrupt CIII assembly also induce an impairment of CI and CIV and of SCs formation as
well. Indeed, severe mutations in both CIII structural subunits or in early assembly factors
strongly affect CIII structure and reduce CI and CIV stability [85,86,111,112,118,122–128]
(Table 1). Unfortunately, several reported mutations that could be relevant for CIII structure,
such as truncating mutations in cytochrome b, were poorly or not at all investigated for CIII
assembly and related influence on CI, CIV and SCs structure (Table 1). However, it appears
that most MTCYB missense mutations affect neither the assembly of CIII nor CI and CIV
(Table 1), except for the p.Y278C mutation that was associated with a slight reduction of
CI activity only and a reduced amount of the CIII2 +CIV SC [129], and the p.E373K that
disassembled CIII and CI, but not CIV [130]. Taken together, these findings indicate that the
assembly of CI and CIV depends on the physical presence of assembled CIII species and not
on their catalytic activity, although ROS production could play a role in specific cases [111].
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However, the role of CIII structure in SCs biogenesis is far from being clarified; for instance,
some authors suggested that the complete formation of the CIII2+CIV SC is important
to safely activate CI only when the respiratory chain is fully assembled [102], but some
data show that CI could interact with a pre-CIII to form enough SC to ensure sufficient
respiratory chain activity [115,131]. These data suggest that regardless of the mutation,
there is a tendency to maintain respiratory complex stability and SC assembly to mitigate
CIII dysfunction. This latter piece of evidence is supported by recent papers showing that
missense mutations in MTCYB that induce defective CIII enzymatic activity when detected
in the isolated complex, are mitigated when CIII activity is measured under conditions
in which the respiratory complex is organized into SCs [129,132]. Although further work
is clearly needed, recent structural details obtained from cryo-EM analysis of active SC
particles from sheep mitochondria highlighted the specific involvement of cytochrome b in
the crosstalk between CI and CIII2, confirming its role in structural/functional interactions
between the two complexes [74].

11. Metabolic Disturbances and Treatment Options

Defective CIII and associated perturbation of the supramolecular organization of
CIII-containing SCs result in several significant metabolic alterations, which are briefly
summarized in Figure 3 and discussed in detail below, providing also some hints on
experimental treatments specifically aimed at improving these metabolic disturbances. For
an extensive recent review of the therapeutic strategies to treat mitochondrial disease, we
refer to [133].
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11.1. Unbalanced Intracellular Redox Homeostasis

It is widely accepted that even under physiological conditions the electron flow
through the mitochondrial respiratory chain results in mild ROS production [134,135], with
CI and CIII being the main redox components responsible for molecular oxygen reduction
to superoxide anions [104–107,136]. As mentioned above (point 9), one of the proposed
roles of the supramolecular organization into SCs is to limit ROS formation, avoiding the
diffusion of free radicals with damaging effects at protein and lipid levels [100,137,138].
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Accordingly, different experimental conditions causing disruption or prevention of the
association between CI and CIII were shown to increase ROS production, supporting the
view that dissociation of SCs may strictly link oxidative stress and energy failure [108].
Furthermore, pathological conditions leading to dismantling the SCs organization, such
those described in cells with 4- and 18-bp MTCYB deletions, were also shown to enhance
ROS generation [94], and, due to up-regulation of intracellular efficient antioxidant defences
in both cytosol and mitochondrial compartments, to cause a significant unbalance in the
redox homeostasis [113,121,139]. Of note, mild to moderate increase in oxidative stress
associated with parallel SCs depletion was detected in different brain areas of neuron-
specific mice KO for the UQCRFS1 gene, demonstrating that ROS can modulate the SCs
architecture to cope with a high level of ROS [140]. This conclusion is further supported by
previous finding that a superoxide dismutase mimetic compound and SOD2 overexpression
induced a partial increase in SCs in the UQCRFS1 KO cells [111,140]. Moreover, the
prolonged treatment of cells bearing the 18-bp MTCYB deletion with N-acetyl cysteine
(NAC) significantly increased the rate of ATP synthesis driven by CI substrates as well
as the amount of free CI, CIII and CIV and of the respirasome. It is likely that NAC
may provide optimal redox conditions for respiratory complexes interactions and SCs
re-organization [113], also considering that both CI subunit NDUFB7 and CIII subunit
UQCRH contain disulphide bonds [69].

11.2. Accumulation of the Reduced Form of Pyridine Nucleotides and CoQ

Direct consequences of defective CIII are energy failure and metabolic derangements,
as indicated by a huge number of case reports describing lactic acidosis and hypoglycaemia
as recurrent clinical phenotypes of patients bearing mutations in different CIII-related genes,
i.e., MTCYB [120,141], UQCRC2 [127,142], UQCC3 [86] and others. Metabolomics analyses
in liver of the mouse model of CIII dysfunction (Bcs1lc.232A>G mutant) revealed a decrease
in carbohydrate intermediates, demonstrating an increase in glycolysis to compensate for
the reduced mitochondrial ATP production [143]. Subsequently, targeted metabolomics
detected increases in glucogenic and ketogenic amino acids in circulation, supporting a
starvation-like condition [144]. Of note is that this mouse model, despite the severe CIII
dysfunction, does not present significant perturbations in the SCs organization [115].

On the other hand, when the assembly of CIII-containing SCs is compromised, in
addition to CIII, the amount of CI collapses as well, leading to elevation of the cellular ratio
of reduced and oxidized pyridine nucleotides (NADH/NAD+). The inability to oxidize
NADH in the mitochondrial matrix affects not only the efficiency of OXPHOS but also the
flux of metabolites through the Krebs cycle. As a consequence, the cells become heavily
dependent on aerobic glycolysis for survival. The glycolytic flux relies on the activity of
glyceraldehyde-3-phosphate dehydrogenase which requires NAD+, generated from NADH
oxidation by the cytosolic lactate dehydrogenase enzyme. In agreement with this notion,
we found that the amount of lactate released into the growth medium by the homoplasmic
cells bearing the 18-bp MTCYB deletion was significantly greater than WT cells. Noticeably,
cells bearing the p.278Y>C MTCYB mutation impairing CIII activity without affecting SCs
organization failed to increase lactate release [121], in accord with the clinical phenotype of
patients, presenting lactic acidosis in the patient bearing the 18-bp MTCYB deletion [120],
but not in that with the p.278Y>C mutation [145]. The molecular mechanism underlining
this metabolic switch is unknown, although the possible role for UQCC3 may be worth
investigating [88].

Interestingly, previous studies described benefits in lifespan and energetic func-
tion of defective CI by interventions targeting NADH elevation, such as supplemen-
tation with NAD-precursor [146] inhibition of mTOR [147] and of mitochondrial serine
catabolism [148], as well as hypoxia treatment [149]. To circumvent the CI deficiency,
some studies took advantage of the xenotopic expression of the single-subunit yeast en-
zyme NADH dehydrogenase (Ndi1) [150–152]. In yeast, Ndi1 catalyses the oxidation of
NADH in the matrix like CI, but is unable to restore the proton pumping. Ndi1 protein
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expression in human cultured cells lacking CI restored the NADH-dependent respiration
as well as the growth in glucose-free medium containing galactose [153,154]. Recently,
McEllroy et al. (2020) generated a mouse that conditionally expresses Ndi1, confirming that
its expression dramatically prolong lifespan, but was unable to significantly improve motor
function in a mouse model of Leigh syndrome due to loss of the NDUFS4 CI subunit [155].
In the absence of structural data showing Ndi1 association with SCs, it is reasonable to
speculate that the ability of Ndi1 to ameliorate the cell viability does not depend on asso-
ciation with other respiratory complexes, rather it depends on the restoration of NADH
oxidation allowing for a compensatory increase in glycolysis and sufficient metabolite flux
in the Krebs cycle.

At cellular level, the primary consequence of the specific drop/lack of CIII is the block-
ade of CoQH2 oxidation, preventing the NADH and FADH2 oxidation by CI and CII. As
mentioned above, elevation of CoQH2/CoQ ratio causes reverse electron transport through
CI, with local generation of superoxide, triggering CI subunits degradation and tuning
the amount of this complex [94]. This is in agreement with previous data showing that
CIII can be released from CI-containing SCs under metabolic conditions (e.g., starvation)
when electron flux from FAD overwhelms the oxidation of CoQ, supporting the plasticity
model of SCs organization [81]. The alternative oxidase (AOX) is a single-protein electron
transport system present in bacteria, lower eukaryotes and plants that can perform CoQH2
oxidation instead of CIII and CIV, by transferring electrons directly from quinols to oxygen
without proton translocation [156]. The xenotopic expression of tunicated AOX in mouse
was recently investigated, failing to show any association of AOX with SCs. This finding
supports the notion that xenotopically expressed AOX acts as a freely diffusible redox
partner [157]. Of note is that the expression of AOX from Emericella nidulans in MTCYB
KO cells induced CoQH2 oxidation, thus reducing the oxidative stress and inhibiting CI
degradation. Despite the increased CI amount, the SCs were not restored due to the lack
of CIII [94], further corroborating the central role of CIII as a scaffold for incorporation of
CI and CIV [118]. Furthermore, AOX was reported to provide a full functional rescue of
the cardiomyopathy of the Bcs1lc.232A>G mutant mice, by restoring respiration to wild-type
level. Noticeably, the CIII and CI+CIII2+CIV assembly was partially rescued in cardiac
mitochondria, likely secondary to the general improvement in mitochondrial structure and
function [144].

The observation that expression of a single enzyme, such as AOX, can bypass defective
oxidative reactions carried out by dozens of proteins is intriguing. Besides representing
a useful tool for detecting the contribution of ATP requirement from the NAD+ and
CoQ regeneration, the oxidase may be of potential use for respiratory chain deficiencies,
although a gene therapy approach seems quite problematic at present. In fact, it has to be
considered that correction of the mutated gene in affected tissue of monogenic diseases by
CRISPR/CAS9 genome editing, already shown to be promising in animal models, requires
sophisticated gene-specific tools and is still under development for mtDNA interventions.
Conversely, the expression of one protein such AOX might be, in theory, beneficial for
restoring most of the metabolic stress induced by OXPHOS impairment caused by a wide
variety of mutations.

11.3. Elevation of Succinate and Effects on Gene Expression Regulation

The lack of CIII and the extremely limited availability of oxidized CoQ results in the
inability of the Krebs cycle to progress from succinate to fumarate, as demonstrated by the
markedly increased levels of succinate and reduction of fumarate and malate detected by
us in cells with the 18-bp MTCYB deletion [121] and also in cells bearing the 4-bp MTCYB
deletion [158]. In cells with the p.278Y>C MTCYB mutation, with normal SCs organization,
we also detected a weak increase of succinate, but increased malate and normal fumarate,
suggesting that some succinate can be oxidized to fumarate which in turn produces malate,
likely as a consequence of CIII assembly in the respirasome, that can preserve significant
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electron transport [121]. Elevation of succinate and fumarate was reported in the liver of
Bcs1lc.232A>G mutant mouse, in line with the blockade of the Krebs cycle flux [159].

Succinate accumulation in the cytosol has been shown to have a strong impact in gene
expression regulation, by inhibiting the 2-oxoglutarate-dependent dioxygenases, which
catalyse hydroxylation reactions on various types of substrates. In particular, succinate,
competing with 2-oxoglutarate, inhibits the activity of prolyl hydroxylases, leading to
stabilization of Hypoxia Inducible Factor-1α (HIF-1α) under normoxia, defined as a pseudo-
hypoxic condition [160]. HIF-1α can then translocate from cytoplasm to the nucleus where
it associates with HIF-1β, to activate transcription of HIF-1α-target genes, among which
are those encoding glycolytic enzymes [161]. It is likely that the huge increase of succinate
levels determined in cells with the 18-bp MTCYB deletion may be at least in part responsible
for the glycolytic switch revealed by increased extracellular lactate production [121].

In addition to succinate and fumarate, the levels of the oncometabolite 2-hydroxyglutarate
(L-2-HG) were increased in RISP/ UQCRFS1 KO cells [162] and also in cells bearing the 4-bp
MTCYB deletion [158]. All these Krebs cycle metabolites competitively inhibit the activity of 2-
oxoglutarate-dependent dioxygenases, including also JmJC domain-containing histone lysine
demethylases and ten-eleven translocation TETs family of 5-methlycytosine hydroxylases,
involved in oxidizing 5-methylcytosine into 5-hydroxymethylcytosine [163]. Accordingly,
the DNA and histone methylation were increased upon loss of RISP in fetal hematopoietic
stem cells, impairing their differentiation and maintenance of stemness [162]. The increase in
these metabolites, through inhibition of the histone and DNA demethylases, can therefore
represent a very important factor affecting the epigenetic landscape of the cells and causing
wide-ranging effects on cell physiology (for a review on Krebs metabolites and epigenetics,
see [164]).

12. Conclusions and Perspectives

The development of cryo-EM technology has provided a powerful tool to analyse at
atomic level the specific associations of CI, CIII and CIV into the respirasome, the CI+CIII2
and the CIII2+CIV1-2 SCs. However, these techniques suffer from some limitations, mainly
associated with the mitochondrial purification procedures and the type/amount of deter-
gent. In this regard, the development of the “in situ” reconstruction of SCs in eukaryotic
cells in vivo by using the proximity-dependent labeling followed by mass spectrometry
will open the possibility to identify potentially interacting proteins and their subcellular
spatial localization [165,166]. Dynamic rearrangements between individual complexes and
SCs have been demonstrated to occur (Table 1). It is necessary to identify the functional
consequences of these arrangements as well as their implications in the regulation of the
respiratory function under different physiological conditions. More biochemical and bio-
physical experiments, in combination with advances in super-resolution light microscopy
are needed for clarify the functional mechanism of the SCs. This information will be crucial
to elucidate the pathogenic mechanisms underlying the mitochondrial disorders associated
with both nuclear and mtDNA mutations, and, hopefully, to identify effective treatments.
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Table 1. Disease genes encoding structural subunits and assembly factors associated with CIII deficiency.

Mutated Gene
Mutation Enzymatic Activity Isolated Complexes Assembly Supercomplexes Assembly

Refs.
CIII CIII CI CIV CIII CI CIV CI+CIII+CIV CI+CIII CIII+CIV

Structural subunits

MTCYB

p.14I> * ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [118,167,168]

p.34G>S ↓ mild ↓ = n.d. n.d. n.d. n.d. n.d. n.d. [169]

p.35S>P ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [170]

p.40C>R mild ↓ mild ↓ mild ↓ n.d. n.d. n.d. n.d. n.d. n.d. [171]

p.113W> * ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [169]

p.135W> * ↓ n.d. n-d ↓ n.d. n.d. n.d. n.d. n.d. [172]

p.141W> * ↓ = = n.d. n.d. n.d. n.d. n.d. n.d. [169]

p.142G> * ↓ ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. [173]

p.151S>P ↓ n.d. n.d. ↓ n.d. n.d. n.d. n.d. n.d. [172]

p.166G> * ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [174]

p.166G>E ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [175]

p.∆251-258 ↓ mild ↓ = n.d. n.d. n.d. n.d. n.d. n.d. [169]

p.271E>K mild ↓ = = = = = = = = [132]

p.278Y>C ↓ mild ↓ n.d. = = = mild↑ mild↑ ↓ [129,145]

p.290G>D ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [176,177]

p.297S>P ↓ = = ↓ = = n.d. n.d. n.d. [178]

p.∆300-305 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [113,120]

p.318K>P ↓ ↓ = ↓ ↓ = n.d. n.d. n.d. [122]

p.326W> * ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [169]

p.339G> * ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [179]

p.339G>E ↓ n.d. n.d n.d. n.d. n.d. n.d. n.d. n.d. [180]

p.352Q> * ↓ ↓ ↓ n.d. n.d. n.d. n.d. n.d. n.d. [123]

p.373E>K ↓ ↓ = ↓ ↓ = n.d. n.d. n.d. [130]

UQCRB Change at C-term ↓ ↓ ↓ n.d. n.d. n.d. n.d. n.d. n.d. [124]

UQCRQ p.45S>F; p.45S>F ↓ ↓ = n.d. n.d. n.d. n.d. n.d. n.d. [125]
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Table 1. Cont.

Mutated Gene
Mutation Enzymatic Activity Isolated Complexes Assembly Supercomplexes Assembly

Refs.
CIII CIII CI CIV CIII CI CIV CI+CIII+CIV CI+CIII CIII+CIV

CYC1 p.96W>C; p.215L>F ↓ ↓ ↓ n.d. n.d. n.d. n.d. n.d. n.d. [126]

UQCRC2
p.183R>W; p.183R>W ↓ ↑ ↓ ↓ ↓ = ↓ ↓ n.d. [127]

p.183R>W; p183R>W ↓ ↓ = ↓ ↓ n.d. n.d. n.d. n.d. [142]

UQCRFS1

p.14V>D; p.204R> * reduced overall respiration ↓ n.d. n.d. n.d. n.d. n.d. [181]

p.72V>T81del10;
p.72V>T81del10 reduced overall respiration ↓ n.d. n.d. n.d. n.d. n.d. [181]

mouse KO ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [111]

Assembly Factors

BCS1L

p.35G>R; p.184R>C ↓ n.d. n.d. ↓ n.d. n.d. = n.d. ↓ [182]

p.45R>C; p.56R> * ↓ ↓ = ↓ ↓ ↓ n.d. n.d. n.d. [110,183]

p.50T>A; p.50T>A mild ↓ n.d. n.d. mild↓ = n.d. n.d. n.d. n.d. [110,184]

p.R56 *;
g1181A>G/g1164C>C ↓ = ↓ ↓ = ↓ n.d. n.d. n.d. [110,183]

p.R56 *; p.327V>A = = = n.d. n.d. n.d. n.d. n.d. n.d. [185]

p.R56 *; p.69R>C = = = ↓ = = n.d. n.d. n.d. [186]

p.73R>C; p.368F>I ↓ = = = = = = = = [187]

p.78S>G; p.144R>Q = = = n.d. n.d. n.d. n.d. n.d. n.d. [185]

p.99P>L; p.99P>L ↓ ↓ ↓ ↓ ↓ ↓ n.d. n.d. n.d. [110,188,189]

p.109R>W; p.109R>W = = = ↓ = ↓ n.d. n.d. n.d. [186]

p.129G>R; p.129G>R ↓ n.d. n.d. ↓ n.d. n.d. n.d. n.d. n.d. [190,191]

p.155R>P; p.353V>M ↓ n.d. = n.d. n.d. n.d. n.d. n.d. n.d. [188]

p.183R>C; p.184R>C ↓ = = = = = = = = [187]

p.184R>C; g1892A>G ↓ = = = mild ↓ = = n.d. ↓ [110]

p.184R>C; p.280L>F n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [192]

p.277S>N; p.277S>N ↓ n.d. = n.d. n.d. n.d. n.d. n.d. n.d. [188]

decreased levels BCS1L ↓ n.d. ↓ ↓ = = n.d. n.d. n.d. [193]

mouse p.78S>G: p.78S>G ↓ = = ↓ = = mild ↓ mild ↓ mild ↓ [115]

mouse KO [116]
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Table 1. Cont.

Mutated Gene
Mutation Enzymatic Activity Isolated Complexes Assembly Supercomplexes Assembly

Refs.
CIII CIII CI CIV CIII CI CIV CI+CIII+CIV CI+CIII CIII+CIV

TTC19

p.54P>A * ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [194]

p.77Q>R *; p.77Q>R * ↓ n.d. n.d. = n.d. n.d. n.d. n.d. n.d. [195]

p.173Q> * ↓ = = ↓ n.d. n.d. n.d. n.d. n.d. [196]

p.185L>P n.d. n.d. n.d. = n.d. n.d. n.d. n.d. n.d. [197]

p.186W> *; p.322G>M * ↓ n.d. ↓ n.d. n.d. n.d. n.d. n.d. n.d. [198]

p.194R>N * n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [199]

p.219L> * ↓ = = ↓ n.d. n.d. n.d. n.d. n.d. [196]

p.261E>G *; p.261A>G * n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [200]

p.277Q> *; p.277Q> * n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [201]

p.313Q> * ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [202]

p.321A> *; p.321A> * ↓ n.d. n.d. ↓ n.d. n.d. n.d. n.d. ↓ [114]

p.324L>P n.d. n.d. n.d. = n.d. n.d. n.d. n.d. n.d. [197]

mouse and human KO ↓ = = mild ↓ = = = = = [203]

UQCC2
Protein absent ↓ ↓ ↓ ↓ mild ↓ mild↑ ↓ ↓ ↓ [85]

p.[8R>P;10L>F];[8R>P;10L>F] ↓ ↓ = ↓ ↓ = ↓ ↓ ↓ [128]

UQCC3 p.20V>E; p.20V>E ↓ mild ↓ = ↓ ↓ = n.d. n.d. n.d. [86]

LYRM7 p.13T>H *; p.13T>H * ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [204]

LYRM7

p.18R>D *; p.18R>A * ↓ mild ↓ mild ↓ ↓ mild ↓ mild ↓ n.d. n.d. n.d. [205]

p.25D>N; p25D>N ↓ n.d. n.d. ↓ n.d. = n.d. n.d. n.d. [206]

p.25D>N; p25D>N ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [204]

p.72Q> *; p72Q> * ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [204]

p.82K>N *; p.82K>N * ↓ n.d. n.d. ↓ n.d. n.d. n.d. n.d. n.d. [204]

Protein absent ↓ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. [207]

*, a stop in the protein synthesis; ↓, decrease; ↑, increase; =, no change; n.d., not determined.
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