
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

RNN-Based Radio Resource Management on Multicore RISC-V Accelerator Architectures / Paulin G.; Andri
R.; Conti F.; Benini L.. - In: IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. -
ISSN 1063-8210. - STAMPA. - 29:9(2021), pp. 9481341.1624-9481341.1637.
[10.1109/TVLSI.2021.3093242]

Published Version:

RNN-Based Radio Resource Management on Multicore RISC-V Accelerator Architectures

Published:
DOI: http://doi.org/10.1109/TVLSI.2021.3093242

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/847015 since: 2022-01-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TVLSI.2021.3093242
https://hdl.handle.net/11585/847015

This is the final peer-reviewed accepted manuscript of:

G. Paulin, R. Andri, F. Conti and L. Benini, "RNN-Based Radio
Resource Management on Multicore RISC-V Accelerator
Architectures," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 9, pp. 1624-1637, Sept.
2021, doi: 10.1109/TVLSI.2021.3093242.

The final published version is available online at:

https://ieeexplore.ieee.org/document/9481341

Rights/License:
The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see
the publisher’s website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it)
When citing, please refer to the published version.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 1

RNN-Based Radio Resource Management on
Multi-Core RISC-V Accelerator Architectures

Gianna Paulin, Student Member, IEEE, Renzo Andri, Member, IEEE, Francesco Conti, Member, IEEE,
and Luca Benini, Fellow, IEEE

Abstract—Radio Resource Management (RRM) is critical in
5G mobile communications due to its ubiquity on every radio
device and its low latency constraints. The rapidly evolving RRM
algorithms with low latency requirements combined with the
dense and massive 5G base station deployment ask for an on-the-
edge RRM acceleration system with a trade-off between flexibility,
efficiency, and cost making Application-Specific Instruction-Set
Processors (ASIPs) an optimal choice. In this work, we start
from a baseline, simple RISC-V core and introduce instruction
extensions coupled with software optimizations for maximizing
the throughput of a selected set of recently proposed RRM
algorithms based on models using multi-layer perceptrons (MLP)
and recurrent neural networks (RNNs). Furthermore, we scale
from a single-ASIP to a multi-ASIP acceleration system to
further improve RRM throughput. For the single-ASIP system
we demonstrate an energy-efficiency of 218 GMAC/s/W, and a
throughput of 566 MMAC/s corresponding to an improvement of
10× and 10.6×, respectively, over the single-core system with a
baseline RV32IMC core. For the multi-ASIP system, we analyze
the parallel speedup dependency on the input and output feature
map size for Fully-connected and LSTM layers, achieving up
to 10.2× speedup with 16 cores over a single extended RI5CY
core for single LSTM layers and a speedup of 13.8× for single
fully-connected layers. On the full RRM benchmark suite, we
achieve an average overall speedup of 16.4×, 25.2×, 31.9× and
38.8× on two, four, eight, and 16 cores, respectively, compared
to our single-core RV32IMC baseline implementation. 1

Index Terms—ASIP, RISC-V, Machine Learning, Neural Net-
works, RNN, LSTM, Radio Resource Management, RRM

I. INTRODUCTION

PEOPLE’S demand for being mobile and continuously
connected with reliable high-speed internet (e.g., for

video streaming), and the increasing number of connected
Internet-of-Things (IoT) devices make the new 5G radio
communication standard a necessity for the advancement of the
digital revolution. However, these advancements heavily tighten
the already demanding requirements on the hardware (HW) and
software (SW) layers used in radio communication, pushing
industry and academia towards improving the efficiency of
Radio Resource Management (RRM) [1].

G. Paulin, R. Andri and L. Benini are with the Integrated System Laboratory
of ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland (e-mail: {pauling,
benini}@iis.ee.ethz.ch).

R. Andri is with Huawei Technologies, Zurich Research Center, Thurgauer-
strasse 40, 8050 Zürich, Switzerland (e-mail: renzo.andri@huawei.com).

F. Conti and L. Benini are with the Department of Electrical, Electronic and
Information Engineering of University of Bologna, Viale del Risorgimento 2,
40136 Bologna, Italy (e-mail: f.conti@unibo.it, luca.benini@unibo.it).

This project is funded by Huawei Technologies Sweden AB.
Manuscript received February 24, 2021; revised May 15, 2021.
1Hardware, software and benchmarks have been open sourced on GitHub

https://github.com/iis-eth-zurich/RNNASIP

RRM typically runs on a Radio Access Network (RAN)
SoC on every base station. The RAN optimizes various
tasks such as, e.g., limited radio-frequency communication
spectrum utilization, transmission power control, error coding,
beamforming within a very short time period. While doing so,
various constraints need to be considered: The communication
load needs to be appropriately balanced, every user device
needs to be served fairly, overall throughput should be high,
and ideally, everything should be performed with high energy
efficiency. Figure 1 gives a high-level overview of some essen-
tial RRM tasks with the most common performance metrics [2].
Traditionally used optimization algorithms for RRM include
exhaustive heuristic search methods, iterative algorithms [3],
[4], non-linear non-convex optimization problems [3], game
theory, or lagrangian relaxations [5].

Recently, however, algorithms based on Deep Learning (DL)
have revolutionized many time-series analysis problems such
as speech recognition [6], speech synthesis [7], automatic trans-
lation [8], biosignal analysis [9], and many more. Therefore,
it is no surprise that research has started to tackle RRM using
neural networks [10]–[20]. Compared to the aforementioned
traditional iterative algorithms, DL-based models are capable
of autonomously extracting high-level features and (non-linear)
correlations with a much smaller computational cost, making
their real-time implementation in the time range of milliseconds
much easier [10].

Up to now, RRM tasks addressed by DL models are at
the data-link layer of the OSI model [21]. Recurrent neural
networks (RNNs), often the long short-term memory (LSTM)
version, are successful at carrier sensing, collision detection,
and have the capability to learn and compensate nonlinearities
and imperfections that are invariant to the environment in RF
components at runtime [17]. Dynamic resource scheduling of
frequency bands, dynamic range control, and various other
network optimizations are successfully addressed by convolu-
tional neural networks (CNNs) and LSTM networks [11], [12].
Multi-layer perceptronss (MLPs) are used for optimal resource
allocation [10], [13], dynamic transmit power control [14],
dynamic multichannel access [15], beamformer design [10],
dynamic spectrum allocation, transmission power control [16],
and channel access optimizations [19].

RRM tasks are highly latency-critical and are ideally
performed in-situ at the base stations. However, since RRM
models and algorithms are typically rapidly evolving while
the costs of the base stations should be amortized over a long
time period, specialized hard-wired accelerators cannot provide
enough flexibility. Using FPGA fabrics for RRM acceleration

https://github.com/iis-eth-zurich/RNNASIP

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 2

Fig. 1: Overview of various RRM tasks with their most common optimization constraints and metrics [2]. The resource
categories are high-level and can include many fine-grained tasks, often also targeting metrics from other task categories.

Fig. 2: Overview of benefits and drawbacks of various HW
platforms for RRM. ’+’ corresponds to ‘high’ and ’-’ to ‘low’

would bring the needed flexibility, however, FPGAs are expen-
sive when targeting massive and dense deployment as required
in 5G networks and are hard to integrate into bigger Systems-
on-Chips (SoCs). In 5G network deployments, an approach
based on Application-Specific Instruction-Set Processors (ASIP)
achieves an excellent trade-off between efficiency, costs, and
flexibility. Furthermore, integrating an ASIP-based subsystem
in complex 5G Systems-on-Chips (SoCs) is a very widely
practiced approach. Additionally, the various high-quality open-
source cores based on the open and royalty-free RISC-V ISA
offer a widely supported standardized baseline to systematically
explore the architectural needs of DL-based RRM applications.
An overview of the benefits and drawbacks for various HW
platforms is shown in Figure 2.

This work is an extension of Andri et al. [22]. We evaluate
the architectural needs of DL-based RRM applications on an
RV32IMC RI5CY open-source core [23], introducing further
extensions and support for parallelization. We perform all
our evaluations on open-source single-core and multi-core
architectures based on the same core [24]. We make the
following contributions:

1) We define a benchmark suite with multiple MLP- and
RNN-based RRM applications running on a single-core
cluster configuration with RI5CY and apply various soft-
ware optimizations: xPULP extensions (4.0×), improved
data reuse through output feature map (OFM) tiling (1.7×),
and input feature map (IFM) tiling (3%).

2) We extend RI5CY with RRM-specific hardware instruc-
tions: custom activation (13% within LSTMs), a merged
load and compute instruction (1.5×) with minimal area
overhead (3.4%) and no increase of the critical path.

3) On a single-core configuration, our instruction extensions
achieve an energy-efficiency of 218 GMAC/s/W, and
a throughput of 566 MMAC/s in 22FDX technology
at 0.8 V, corresponding to an improvement of 10×
and 10.6×, respectively, over a baseline RISC-V IMC

core. Furthermore, we define a multi-core RRM cluster
configuration, showing that parallel speedups depend on
the input and output feature maps (FM) size for fully-
connected and LSTM layers. We achieve up to 10.2×
speedup with 16 cores over a single extended RI5CY
core for single LSTM layers, and up to 13.8× for single
fully-connected layers.

4) We provide a detailed analysis of parallelizing the RRM
benchmark suite on a range of cluster configurations taking
into account speedups, parallelization overhead (average
of only 2.55% on bigger RRM models), and memory
transfers. We achieve a total overall speedup of 193.7×,
110.4×, and 132.0× on 16 cores; and 101.9×, 81.5×,
and 93.4× on eight cores compared to the single-core
RV32IMC baseline implementation when the complete
models fit into 512 kB of L1 memory.

The paper is structured as follows. Section II describes the
related work and the selected benchmark suite. Section III
describes the system architecture and all microarchitectural
and software optimizations. In Section IV we define an upper
bound for the speedup on the multi-core system. Section V
discusses experiments on the single and multi-core system.

II. RELATED WORK

A. RNN for 5G

The expected benefits of 5G require a frequency band
utilization in the range of 3 – 300 GHz, which goes beyond the
previously utilized 300 MHz – 3 GHz spectrum. Using these
higher frequency bands incurs higher path losses, reflections,
and scattering, requiring an ultra-dense base station deployment.
Additionally, 5G will be used in combination with other radio
access technologies such as 2G, 3G, LTE-A resulting in higher
interference. With the tightened device power consumption
requirements and other equally essential requirements such as
fairness or load balancing, Radio Resource Management for
5G becomes extremely complex [2].

Therefore, finding more efficient RRM algorithms is crucial
for the successful deployment of 5G technology. With the
recent Deep Learning revolution, it comes as no big surprise
that industry and academia have started to tackle RRM with
neural networks, which are now considered the SoA approach.
The used DL models include deep MLPs [10], [13], CNNs,
LSTM RNNs [11], [12]. While attention-based models like
Transformer [25] have shown state-of-the-art results for all
kind of time-series predictions, to the best of our knowledge,
this new network type has not yet been applied to RRM tasks.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 3

TABLE I: Benchmark suite of typical models used for RRM: long short-term memory (LSTM) RNNs, and multi-layer perceptrons
(MLPs) which are built from multiple Fully-Connected Layers (FCLs).

#Params # Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Features NI Type NO Type NO Type NO Type NO Type NO Type NO

Model A [11] 30k 10 LSTM 70 FCL 70 LSTM 4 - - - - - -
Model B [12] 1k 8 LSTM 8 FCL 8 - - - - - - - -
Model C [16] 160k 6 FCL 500 FCL 250 FCL 120 FCL 6 - - - -
Model D [20] 150k 512 FCL 200 FCL 200 FCL 16 FCL 180 - - - -
Model E [10] 85k 16 FCL 200 FCL 200 FCL 200 FCL 4 - - - -
Model F [14] 37k 57 FCL 200 FCL 100 FCL 40 FCL 10 - - - -
Model G [19] 24k 100 FCL 64 FCL 64 FCL 64 FCL 64 FCL 64 FCL 2
Model H [13] 1k 4 FCL 32 FCL 16 FCL 4 - - - - - -
Model I [15] 9k 10×10×8 3x3-Conv 800 FCL 10 - - - - - - - -

In this work, we have selected a comprehensive set of DL-
based RRM models as a benchmark suite, see Table I. All
models are used in a deep reinforcement learning (DL-RL)
setup: We have an agent which interacts with an environment.
At every timestep, the agent decides based on an observed
state of the environment according to a policy what action to
take, thereby putting the environment in a new state. Based
on the new state, the agent receives a feedback. The policy is
typically implemented as a function approximation, and in our
case is implemented with MLP and/or LSTM models. Note
that, in general, RL allows to perform policy updates online
based on the received feedback. However, none of the selected
benchmarks make use of this feature. Instead, the models are
trained offline and are deployed on a base station (typically on a
RAN SoC). Online training support increases the computational
complexity from O(nlayers · n3) for the inference of an MLP
with NI = NO = n to O(ngradient iterations · nlayers · n3).
While this can get problematic for the highly latency-critical
RRM applications, offline training still allows updating the
models as needed periodically (e.g., once per week) [12].

Furthermore, DNN based policies are trained with algorithms
such as gradient-descent and backpropagation, which in contrast
to the inference part of DNNs, typically still require high
precision floating-point arithmetic. In contrast, inference works
well with low-precision fixed-point arithmetic, such as 16-
bit [26], 8-bit, or even fewer bits while keeping accuracy
high [27]. As RRM mainly uses MLP and LSTM layers [28],
the latter being well known for a quite high sensitivity to
numerical precision, we use for our implementation the rather
conservative 16-bit integer format, which requires only simple
or even no quantization-aware training methods.

Models A and B both combine LSTM and MLPs. Model A
maximizes throughput by adapting dynamic channel selection,
carrier aggregation, and spectrum access under fairness con-
straints [11], Model B focuses more on the dynamic spectrum
access for network utility maximization [12]. Model C is also a
MLP and minimizes interference under latency constraints via
channel selections and power control [16]. Model D targets a
multichannel access problem for throughput maximization [20].
Model E, and F tackle the problem of interference channel
power control and throughput maximization [10], [14]. Model
G optimizes the sum throughput and α-fairness in time slot
sharing among heterogeneous network nodes with different
applied MAC protocols [19]. Model H optimizes throughput
with a more general optimal resource allocation problem

formulation. Finally, model I is the only CNN based model.
It aims at maximizing throughput by power control [15]. For
more detailed information about the individual benchmarks we
refer the interested reader to the references of the corresponding
models.

Currently, these RRM tasks are mainly executed on general-
purpose processors on the 5G base stations [29]. The
application-specific customization of these processors can
cover the various needs of the RNN-based applications while
still being flexible enough for adapting to rapidly evolving
algorithms. In this work, we present the first, to the best of
our knowledge, dedicated ASIP-based subsystem for running
RNN-based RRM efficiently.

Up to now, all Radio Access Network (RAN) SoCs are
heavily proprietary and closed-source. These designs tend to
be offered by a very limited number of vendors and typically
require a complete replacement when upgrading to newer
protocols and standards as their HW and SW designs are
heavily coupled. The virtualization coming with OpenRAN
offers operators to run software-based network functions on
standard (COTS) servers, allowing them to upgrade software
code and hardware components more gradually [30]. General-
purpose hardware running software defined stacks, however, is
often suboptimal from a power viewpoint. Recently, a startup
called EdgeQ [31] has announced a developer-accessible RISC-
V based SoC with custom hardware instructions to accelerate
algorithms used for 4G and 5G communication and signal
processing. Our own approach is similar, but takes a further
step towards openness, relying on (i) open ISA, (ii) open-source
cores and compilers, (iii) open-source architecture [32].

B. ISA Extensions for Domain Specialization

The idea of extending general-purpose cores with application-
specific instructions is not new. ARM and Intel both offer
various matrix computation and vector processing extensions
in high-performance oriented general-purpose processors. E.g.,
ARM has introduced the AARCH64 Neon extensions with
the ARMv8-A processor series, including SIMD instruc-
tions for sum-dot-products (e.g., BFDOT) and 2×2 matrix-
matrix multiplications (e.g., BFMMLA) with 2-way SIMD
in brain floating-point format bfloat16. Note that this
processor series comes in various microarchitectures. So has,
e.g. the CORTEX-A55 (ARMv8.2-A) a in-order superscalar
microarchitecture, while, e.g., CORTEX-A75 (ARMv8.2-A)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 4

Fig. 3: ASIP RNN subsystem overview including its integration in a typical RAN SoC. The arrows in the RRM cluster show in
master-to-slave direction. The modules with the dashed line as a border are only used for the multi-core cluster configuration,
while the modules with the solid lines are used for the single-core and the multi-core cluster configuration.

incorporates an out-of-order superscalar pipeline. Intel’s out-of-
order SkyLake SP processors extend the x86 ISA with 512-bit
wide vector units called AVX512 enabling 16×32-bit SIMD
vector operation for multiplication in single-precision float
(FP16) and accumulations in double-precision float (FP32). In
2019 Intel announced its new x86 microarchitecture called
Cascade Lake, which introduces the AVX512 Vector Neural
Network Instructions (VNNI). AVX512 VNNI implements an
8-bit and 16-bit fixed-point vector product with 32-bit internal
accumulation [33]. While Intel focuses mostly on the high-
performance, high-cost processor market, ARM also offers
microcontrollers in the low-cost and low-power range with the
Cortex-M family. Recently, ARM introduced the Cortex-M55,
an ultra-low-power in-order microprocessor with the Vector
Extensions MVE (Helium). The Helium instructions support
various single instruction–multiple data (SIMD) instructions
(INT8/16/32, FP16/32), hardware loops, and interleaved post-
increment load/stores [34]. The Helium extension shows that
introducing custom ISA extensions is not only beneficial
for high-performance general-purpose out-of-order cores and
superscalar in-order cores, but also for small, energy-efficient,
in-order cores with an IPC close to one.

Several academic proposals also introduce specialized in-
structions: [35] introduces specialized SIMD instructions
optimized for biological sequence alignment algorithms. [36]
proposes a custom fast fourier transformation (FFT) instruction
for increased throughput on orthogonal frequency division
multiplexing (OFDM)-based communication standards. Oppor-
tunities for ASIPs in 5G networks are surveyed in [37]. The
authors also mention ASIPs for ML acceleration as a future
direction in 5G applications. Our work takes a major step
in this direction. We focus on RISC-V ISA extensions for
two key reasons. First, RISC-V is designed for extensibility
with significant parts of the opcode space reserved for custom
extensions. Second, with the growing community around the
open and royalty-free RISC-V ISA, the number of high-quality
RISC-V based open-source cores and microcontroller systems
has grown rapidly. Various open-source cores already support

custom instructions, e.g., the RI5CY core from the PULP
(Parallel Ultra Low Power) project supports custom xPULP
instructions such as SIMD, HW loops and post-increment
loads [23]. In this work, we use the open RISC-V ISA and
start as a baseline with a multi-core cluster system based on
the mentioned open-source RI5CY core.

C. Software Optimizations
The rise of previously described ISA extensions has led

industry and academia to develop highly optimized SW kernels
such as matrix-vector and matrix-matrix multiplications which
make the best use of these extensions. The used techniques
mainly include the utilization of parallel SIMD computations
and the data reuse within the local register file with appropriate
tiling for reduced memory data loads. The latter has been
commonly used for tiling the output feature maps, where loaded
input feature maps can be reused to compute multiple outputs
in parallel [38], [39]. CNN can exploit the im2col concept of
replicating and rearranging feature maps for being formulated
as a matrix-matrix multiplication problem [38], [39]. This
well researched reformulation enables the tiling of both the
input and output FM spatially in m×n-sized tiles, thereby
enabling the reuse of both weights and input FM pixels which
ultimately reduces the number of memory loads from O(mn)
to O(m + n). Since both the MLP and (non-convolutional)
LSTM layers are based on matrix-vector multiplications, this
2D tiling cannot be reused.

In contrast to CNNs, RNNs require the use of non-linear
activation functions such as hyperbolic tangent and sigmoid. As
their transcendental computation is computationally complex
various acceleration approaches have been proposed: (i) piece-
wise linear approximation (PLA) [38], (ii) low-order Taylor
series expansion (e.g., 2nd order [40]), (iii) look-up-table
(LUT) with adaptive value granularity [41], and (iv) small
neural network [42]. For our extension we apply the PLA
approach and exploit unlike other works the symmetry property
of tanh and sig. Additionally, we go a step further than, e.g.,
ARM’s CMSIS-NN library and evaluate the error introduced

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 5

by different numbers of interpolation intervals and take the
applied fixed-point quantization into account [38].

III. ASIP-BASED RNN ACCELERATION

A. Baseline RISC-V Architecture
In this work, we propose an ASIP-based RNN RRM

acceleration system. We start with designing a single-core ASIP,
which we then integrate into a cluster with up to N = 16 ASIPs.
As a starting point for the ASIP, we use PULP’s RI5CY core ,
a 4-stage pipeline processor supporting the RISC-V standard
extended with custom instructions (i.e., RV32IMFCXpulp
ISA) [23]. We further extend the RI5CY core with a specialized
dot product, hyperbolic tangent, and sigmoid instructions for
efficient MLP and LSTM execution [22]. We evaluate these
custom instructions for throughput and energy-efficiency on the
selected RRM benchmark suite in an acceleration sub-system
of up to 16 RNN-enhanced RI5CY cores. An overview of the
proposed architecture and its integration into a state-of-the-
art Radio Access Network (RAN) System-on-Chip (SoC) is
shown in Figure 3. In the right half, we show the proposed
RRM acceleration cluster. We perform the evaluations on
a cluster configuration with a single RNN ASIP, in which
case the modules with a dashed border in Figure 3 would be
removed, and in a multi-core configuration where all shown
modules are used. For the integration of the proposed ASIP-
based acceleration sub-system into a large 5G RAN SoCs, we
propose to connect one of the proposed systems via a crossbar,
e.g., by connecting it to the system crossbar in Marvell’s Octeon
TX2 CN98xx architecture [29] as shown in the left side of
Figure 3.

The proposed RRM cluster is designed around a configurable
number (up to 16) of enhanced-RI5CY cores. The cluster has no
data cache-hierarchy in the traditional sense. Instead, all ASIP
cores share a single-cycle accessible L1 tightly-coupled data
memory (TCDM) with a banking factor of two, composed of
word-interleaved single-port SRAM macros as memory banks.
The programmer is responsible to ensure that the correct data
is loaded via DMA from the L2 memory before the ASIP cores
try to access them. The required synchronization schemes are
implemented by an event unit. We use three different cluster
configurations for our evaluations, in which we have 1, 8, or
16 ASIPs and a 1MB, 512KB, or 64KB L1 memory. The L2
memory is mapped into the last level cache (LLC) memory of
the RAN SoC.

A DMA engine is connected to the L1 memory via the
logarithmic interconnect, to manage data transfers between
L2 and the small L1 embedded within the RRM cluster. The
DMA can be controlled by a single core from the cluster
side and supports blocking and non-blocking 64-bit/cycle data
transactions in both direction concurrently. The ASIPs fetch
their instructions from a shared instruction cache. Multi-port
memory banks are used for the shared tag and instruction
memory. The I-Cache has access to the 64-bit AXI cluster bus
to fetch off-cluster data from the L2 in the case of a cache-miss.
The 64-bit AXI cluster bus also serves DMA data transfers
from L2 to L1 TCDM. Over a so-called peripheral interconnect,
the ASIPs can control and program the DMA engine, event
unit, or further peripherals like, e.g. timers.

B. Neural RRM Models

The selected set of benchmarks are based on two DL models:
multi-layer perceptrons (MLP) and long short-term memory
(LSTM) recurrent neural networks (RNNs). MLPs include
at least three layers: one input, at least one hidden, and
one output layer. These individual layers, also called Fully-
Connected Layers (FCL), are biased matrix-vector multiplica-
tions transforming NX input features xt at time t into NO

output activations yt with the weight Wx ∈ RNO×NX and
bias by ∈ RNO :

yt = Wxxt + by (1)
RNNs [43] are a linear superposition of multiple FCLs

activated by a non-linear activation function act (typically
hyperbolic tangent or sigmoid function) with a feedback over
the hidden state ht = (h1, h2, ..., hNH

) with NH elements:
ht = act(Wxhxt +Whhht−1 + bh) (2)

RNN networks can contain multiple RNN layers by feeding
the hidden state of one RNN layer as input state) to the next
RNN layer. The final output of the network is computed from
the hidden state of the last RNN layer:

yt = act(Whyht + by) (3)
LSTM neural networks [44] are a subclass of RNNs spe-

cialized in learning both short-term and long-term time-series
dependencies. Besides the hidden state ht LSTMs include
an internal cell state c = (c1, c2, ..., cNH

). Their computation
include matrix-vector multiplication, point-wise vector-vector
additions/multiplications and point-wise applied sigmoid and
hyperbolic tangent activation functions:

it = σ(Wxixt +Whiht−1 + bi), (4)
ft = σ(Wxfxt +Whfht−1 + bf), (5)
c̃t = tanh(Wxcxt +Whcht−1 + bc), (6)
ct = ft � ct−1 + it � c̃t, (7)
ot = σ(Wxoxt +Whoht−1 + bo), (8)
ht = ot � tanh(ct), (9)

including the input gate i, forget gate f , output gate o, the
cell state c.

C. Enhanced RISC-V ISA

In this section, we summarize our custom ISA extensions
used in our ASIP cluster. For more details, we refer the
interested reader to [22].

1) xPULP Extensions: The baseline RI5CY core already
supports various specialized HW instructions such as SIMD,
HW loops, and post-increment loads under the name xPULP,
which we leverage in the first optimization step.

2) Tanh and Sigmoid Extension (HW): The two non-linear
activation functions used for neural networks such as LSTM
networks are sigmoid sig and hyperbolic tangent tanh. Their
execution is often emulated in software with the help of a
linear approximation technique requiring multiple iterations
until the required precision is reached. This emulation can
quickly become a major contributor to the overall execution

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 6

Fig. 4: Assembly Code comparison baseline+output FM tiling,
+pl.sdotsp.h instruction, +input FM tiling.

time of LSTM networks as, for example, [11] and [12] show
that the calculation of tanh and sig require together 10.3%
and 33.6% of the overall computation cycles.

Therefore, we introduce two new single-cycle HW instruc-
tions pl.tanh rD, rA and pl.sig rD, rA. They are
implemented as linear function approximation within certain
intervals. The pre-computed approximation parameters m, q
are loaded from look-up tables (LUTs) for a certain interval.
After the linear approximation, the result is mirrored if needed
(symmetry property). For more details on the implementation
and an error evaluation, we refer the interested reader to [22].

3) Load and Compute VLIW Instruction (HW): An eval-
uation of instruction counts in the benchmarks (see Ta-
ble IIIc) shows that the two xPULP instructions lw! and
pl.sdotsp.h are by far the two most executed instructions
within our benchmark suite. Thus, we introduce a new in-
struction which combines the two instructions within a single
pl.sdotsp.h instruction which is capable of loading data
and of calculating the 16-bit packed SIMD sum-dot-product:

rD[31:0] += rA[31:16]*rB[31:16]

+ rA[15:0]*rB[15:0]

rA contains the memory address, loaded from memory
by the load/store unit (LSU) and is incremented for the
next data access. The instruction makes use of two special-
purpose registers SPR which are written and read in an alter-
nating way (using pl.sdotsp.h.0 and pl.sdotsp.h.1
instructions), which helps to avoid a 2-cycle latency and thus
unnecessary stalling. As the presented customized instructions
were implemented for the RI5CY core, Figure 6 shows the
extended RI5CY datapath where the datapath for the extended
pl.sdotsp.h instruction is highlighted in blue.

A comparison between the assembly code with (middle)
and without (left), including the output feature map tiling of
size d = 4 is shown in Figure 4. In the middle, the first two
pl.sdotsp.h instructions before the HW loop pre-load the
two SPR with the first two weights. The corresponding input
feature map is loaded in line 4, followed by a bubble caused
by the latency of the load word instruction and the following
instructions’ data-dependency.

Algorithm 1 Fully-Connected Layer with Output FM Tiling
Require: All weights wmn, biases bn and input activations xm for all input

channels m ∈ NI and output channels n ∈ NO in memory
1: for all d in {8, 4, 2, 1} do
2: for all remaining d-sized output channel tiles ỹk =

{yk·d, . . . , y(k+1)·d} do
3: for all output channels ys in d-sized tile ỹk do
4: temp out[s] = Mem(bs)
5: end for
6: for all input channels xr in x do
7: temp in=Mem(xr)
8: #unroll following loop
9: for all output channels ys in d-sized tile ỹk do

10: w=Mem(ws,r)
11: temp out[s] += temp in * w
12: end for
13: for all output channels ys in d-sized tile ỹk do
14: temp out[s] = temp out[s] >> 12 // quantize
15: Mem(ys) = temp out[s]
16: end for
17: end for
18: end for
19: end for

D. Loop Tiling and Double Buffering

1) Baseline: As a baseline, we have developed a straight-
forward implementation for the FCL and LSTM kernels.
E.g., the matrix-vector multiplication makes use of a double
nested loop over all inputs and output. All weights and
activations are encoded into the 16-bit Q3.12 fixed-point
format, and all computations were validated against a 32-bit
floating-point implementation. The 16-bit quantization can
be applied on the benchmark suite without fixed-point aware
retraining, and therefore offers a good compromise between
accuracy/robustness and energy-efficiency/throughput.

2) Output Feature Map Tiling (SW): A single MAC opera-
tion requires two inputs, which need two memory loads: one
for the input feature and one for the weight. While the weights
differ for each input feature, the input features can be reused
for several outputs. The next improvement step exploits this
fact by reorganizing the output features in tiles of d output
features over which a loaded input feature is reused. The
partial sums of the d output features are kept in d processor
registers. They are written back to the memory once all input
features have contributed their part to the corresponding results.
Algorithm 1 gives a high-level overview of the aforementioned
output feature map tiling.

The loaded input feature (line 7) can be used by d
pl.sdotsp instructions (line 11) each performing two mac
operations on 16-bit data. In total, this results in O(1 + 1/N)
loads needed per pl.sdotsp instruction. The feature map tile
size d is optimally smaller or equal to the number of available
processor registers, as in these cases, the partial results can
be kept locally. Going beyond this limitation would decrease
efficiency because the intermediate results have to be pushed
back into the memory before being reused.

Additionally, the compiler can rearrange the instructions and
hide the load latency. We empirically determined an optimal
tile size of doptimal = 8 for our implementation, which means
that each core works on multiple rounds of tiles of size d ∈
{8, 4, 2, 1} until no remainder is left. The input features of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 7

Fig. 5: Example of the tiling for a linear layer which is
distributed on a 4-core ASIP cluster.

convolutional layers can be rearranged and replicated (i.e.,
im2col) in such a way that its computation is mapped on a
matrix-matrix multiplication (as shown by [38], [39]) enabling
the same tiling optimization.

3) Input Feature Map Tiling (SW): To get rid of the bubble
as shown in Figure 4, another optimization was implemented
where the loop loads two input data words, which corresponds
to four 16-bit input features. This doubles the number of
pl.sdotsp.h instructions in the innermost loop as shown
on the right side in Figure 4.

4) Multi-Core Tiling: For the evaluation of the cluster-based
configuration on up to 16× enhanced RI5CY cores, the kernels
and computations are tiled and distributed along the output
dimension, which results in every core working on ÑO output
features in parallel, as shown in Equation (10).

ÑO =

⌈
NO

Ncores

⌉
(10)

In contrast to tiling along the input dimension, this method
does not require any additional overhead for combining partial
results across multiple cores. Figure 5 shows conceptually how
the computation on the output feature map tiles of a linear
layer are distributed on an exemplary cluster with four RNN
ASIPs. Our tiling approach is commonly used [38], however,
we adapt the tiling to overlap as many DMA transfers with
computation phases for optimal performance. As a first
step, every core has to compute its assigned tile size, the
start address, and their tile size of the assigned weights and
features, which cost us up to 14 instructions.

5) Storing Weights with Address Offset: When multiple
cores access the cluster memory, various cores may want to
access the same memory bank at the same time to load the
weights or features of the model. When this happens, only
one of the cores gets its request granted and receives the
requested data, while the other cores’ memory load requests
get stalled and have to wait. These so-called banking conflicts
can result in many wasted cycles and should be prevented.
As a counter-measure, we implemented an offset in weight
storage in memory, allowing every core to start at a different
address. Table II shows the cycles lost due to TCDM banking
conflicts with a weight offset of six against no weight offset.

6) Double Buffering: The double-buffering concept
uses two buffers to store input data. While the data in
the first buffer is being processed (e.g., weights of current
network layer), new data (e.g., weights of next network

TABLE II: TCDM contention in % with all single core
optimizations enabled with a weight offset of 6 against no
weight offset on a FCL layer with NI = NO = 64 evaluated
on a 16-core cluster configuration with 32× L1 memory banks.

Weight Offset 1 Core 2 Cores 4 Cores 8 Cores 16 Cores

0 0.0% 27.5% 10.9% 14.8% 14.3%
6 0.0% 0.1% 1.9% 2.7% 14.5%

layer) is loaded into the second buffer. This alternating
buffer usage allows for overlapping the computation and
DMA transaction phases and reduces overall run time.
However, entirely hiding the DMA transaction is only possible
if the computation time of a network tile is longer than
the DMA data transfer time for loading the next tile parameters.

7) Batching: If the DMA transaction outlasts the compu-
tation time, the cores need to wait and are stalled, thereby
reducing the speedup. We increase the computation time by
batching the input activations, which means that the parameters
of a layer or model are loaded once and are consumed by
computing not only on one feature but also on one or multiple
following input features. However, introducing this form of
batching increases the latency, which consequently might
violate the tight timing constraints for RRM decisions. Hence
batching can be applied to a limited extent.

IV. MULTI-CORE SPEEDUP MODEL

To verify the optimality of the parallelized implementation,
we introduce an upper bound model for the speedup based on
Amdahl’s Law and the innermost loop behavior. Amdahl’s
Law, shown in Equation (11), describes the theoretical speedup
SU , which can be achieved by running a model on multiple
cores in parallel. P is the fraction of the code that can be
parallelized with a speedup S.

SU =
1

(1− P) + P
S

(11)

Out of these parameters, P is static and can be measured,
whereas S depends on the computational load. For example, if
the load is perfectly dividable by the number of available cores,
the speedup achieves its maximum Sideal = Ncores. However,
any load imbalance can cause a non-ideal speedup Sestimate

which we estimate with our model. The following evaluation
targets the FCL kernel. For simplicity reasons, we assume that
NI and NO are even numbers.

As the multi-core implementation follows the second level
of Output FM tiling, each core works on ÑO output features,
as described in Equation (10). Following the first level of
Output FM tiling performed on the ÑO of a single core, each
core works on a round of tiles of size d ∈ {8, 4, 2, 1} until
no remainder is left. Equation (12) defines Id, the number of
instructions in the parallelizable part P of the kernel for a
single tile of size d. The total amount of instructions can then
be computed by following Equations (12) to (15).

Id =

(
2 · d︸︷︷︸

preload bias
& get address

+
NI

4︸︷︷︸
2× data

in form of v2s

·
(
2 · d+ 2

)
+ 2 · d︸︷︷︸

shift
& store

)
(12)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 8

IF
ID

ID
EX

EX
WB

D
eb

u
g
 I

n
te

rf
ac

e

TC
D

M
 -

 L
og

.
In

te
rc

on
n
ec

t

I$

LS
U

PC

WB

IM

RF

EX

WB
IM

RF
EX

RF
GPR

DIB

rB
rA

DA
DB
DC

DIA

rC

128

CSROpA
OpB

RD

ALU
DIV

OpB

OpC
RD

OpA

OpD

OpB

OpA

addr_o
rdata_i

Prefetch
Buffer

hwloop
control

Controller

Debug Unit

PC

h
w

lp
_
ta

rg
et

d
b
g
_
h
al

t

nPC
insn

rA

rD

rB

MULT
MAC

RD

wdata_o
addr_o

rdata_i

SPR
SR
DISR

DSR
SR
WB

Decoder

tanh/sig

SR

rA+=4

rD+=SR[1]*rB[1]+SR[0]*rB[0]

SR=mem[rA]

RNN RISC-V core

pl.sdotsp.h.SR rD,rA,rB
pl.tanh/sig rD, rA

Fig. 6: RNN RISC-V Core with extensions to RI5CY core [23] in blue and datapath
for pl.sdotpsp instruction marked in bold lines.

4 64 128 192 256 320 384 448 512

2

4

6

8

10

12

14

16

NO

S
e
s
ti
m

a
te

16 cores
8 cores
4 cores
2 cores

Fig. 7: Sestimate for various NO and for
various number of active cores.

TABLE III: Cycle and instruction count for the entire RRM benchmark suite (RISCY in bold, new extensions in blue)

a) w/o opt (RV32IMC) b) +SIMD/HWL (Xpulp) c) +Out-FM Tile./tanh/sig d) +pl.sdotsp instruction e) +Input FM Tiling

Instr. kcycles kinstrs Instr. kcyc. kinstrs Instr. kcyc. kinstrs Instr. kcyc. kinstrs Instr. kcyc. kinstrs

addi 3’269 3’269 lw! 2’432 1’621 lw! 894 893 pl.sdot 811 811 pl.sdot 817 817
bltu 3’248 1’627 pv.sdot 811 811 pv.sdot 811 811 lw! 166 83 lw! 83 83

lh 3’248 3’248 addi 22 22 lw 9 9 lw 9 9 lw 39 35
sw 1’627 1’627 jal 10 5 sw 8 8 sw 8 8 sw 16 16
lw 1’627 1’627 sh 10 10 add 7 6 add 7 6 d.srai 8 8

mac 1’621 1’621 srai 10 10 tanh,sig 0.4 0.4 tanh,sig 0.4 0.4 tanh,sig 0.4 0.4

oth. 43 32 oth. 28 27 oth. 26 26 oth. 30 29 oth. 17 10

Σ 14’683 13’051 Σ 3’323 2’506 Σ 1’756 1’753 Σ 1’028 943 Σ 980 969

Impr. Baseline (1×) Impr. 4.4× Impr. 8.4× (1.9×) Impr. 14.3× (1.7×) Impr. 15.0× (1.05×)

Average A [11] B [12] C [16] D [15] E [10] F [14] G [19] H [13] I [20]

1

5

10

15

20

1

4.0
6.7 6.9

10.310.6

LSTM/FC/CNN LSTM/FC Fully-Connected NN CNN

Legend: Xpulp extensions (HW) +Output FM Tiling (SW) +tanh/sig extensions (HW) +VLIW extension(HW) +Input FM Tiling (SW)

4
.3

2.
8 4.
8

4
.8

4.
6

3.
34.
4

2
.8

4
.9

7.
1

3

9 8.
9

8
.2

4.
3

8
.4

6.
3

9.
1

8

3.
4

9 8
.9

8.
2

4.
3

8.
4

6
.3

9
.110
.4

3
.4

15
.5

15
.2

13

5.
4

14
.6

9.
4

15
.7

10
.3

3.
3

16
.7

16
.2

13
.6

5
.4

15
.3

9
.5

16
.9

Sp
ee

du
p

vs
.R

IS
C

-V
IM

C

Fig. 8: Speedup with respect to the RISC-V IMC baseline implementation for a typical Neural Networks workload in RRM.

Itot,Ncores
=

∑
d∈{8,4,2,1}

Ntiles,d · Id (13)

Ntiles,d =
⌊NO,d

d

⌋
(14)

NO,d =

{
ÑO, if d = dmax = 8

(ÑO%(2 · d)), if d ∈ {4, 2, 1}
(15)

With the help of these equations the number of instructions
of the parallelizable part P can be estimated for the number
of used cores Ncores ∈ {1, 2, 4, 8, 16}, which allows to
estimate a more accurate achievable speedup Sestimate,Ncores

by following Equation (16).

Sestimate,Ncores
=

Itot,1
Itot,Ncores

(16)

We analyzed Sestimate for two configurations:
• NI ∈ {4, 5, . . . , 512} and NO = 128
• NO ∈ {4, 5, . . . , 512} and NI = 128

As the speedup is independent from the number of input
features NI we only show the dependency of Sestimate on the

number of output features NO of the FCL kernel in Figure 7.
We define the following properties:

1) NI -independency: Sestimate is independent from NI .
2) NO-dependency: Sestimate depends on NO.

a) Saturation: A minimum amount of output features NO

is needed to fill up the various cores.
b) Optimality Condition: Once a core is saturated, opti-

mal Sestimate = Sideal = Ncores can be achieved when
NO

Ncores
%doptimal = ÑO%doptimal

!
= 0 is fulfilled

where doptimal = 8.
Following these properties, for a single-core, a multiple of

8 output features are optimal. Other configurations behave
similarly, 2 cores with a multiple of 16, 4 with 32, 8 with 64,
and 16 cores with 128.

V. EVALUATIONS AND RESULTS

First, we discuss the results for the single-core acceleration
system. We introduce three different cluster configurations for
the evaluation of the multi-core acceleration system. Finally, we
present the HW impacts of the ISA extensions. All performance

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 9

numbers were obtained from an event-based C++ virtual
platform implementation called GVSoC whose cycle-accuracy
was calibrated with RTL simulation measurements [45].

A. Single-Core Evaluation

The single-core configuration has an L1 memory size of 1MB
and only one core, meaning that the modules with a dashed
border in the RRM cluster on the right side of Figure 3 are non-
existent (N = 1 in Figure 3). The performance results for this
cluster configuration are presented in the same order in which
we applied them. After every step, we focus on the largest
cycle and instruction count of the optimized implementation
to optimize the highest contributors in the next optimization
step (see Table III). The straight-forward C-implementation is
compiled with standard GCC 7.1.1 for RISC-V RV32IMFC
ISA and run on the single-core cluster configuration with the
unoptimized baseline RI5CY core and an L1 memory size
of 1MB. With this rather large L1 memory size, all models
can be stored locally, allowing an evaluation of a single ASIP
independent of any model tiling effects. The instruction count
for the entire benchmark suite is shown in Table IIIa and serves
as a baseline for all HW and SW optimizations implemented on
the single-core cluster configuration. Table IIIb shows that the
three optimization techniques SIMD, HWL, and post-increment
load as described in Section III-C1 achieve a 4.0× reduction
in the number of instructions w.r.t. to the unmodified RISC-V
IMC baseline.

The optimal OFM Tiling into tiles of size doptimal = 8 as
described in Section III-D2 brings an additional improvement
of 1.89× on the RRM benchmark suite, as shown in Table IIIc.
A more detailed insight into the various benchmarks is given in
Figure 8. While most networks improved between 1.79× [19]
and 1.87× [15], those with smaller OFM sizes NO suffer from
the higher overhead and achieve a less speedup, e.g., 1.07×
[13] and 1.30× [12]. The first HW extensions for tanh and
sig as described in Section III-C2 are only used by the LSTM
based benchmarks [11], [12]. They allow a further cycle count
reduction from 51.2 to 44.5 kcycles which results in a 13.0%
improvement. The Load and Compute HW instruction described
in Section III-C3 can again be exploited by all benchmarks
and reduces the overall cycle count again by 1.7×, as can be
seen in Table IIId. The additional IFM Tiling, described in
Section III-D3, gives and additional modest gain of 1.05× (or
4.9%), see Table IIIe, since loads and stores from the stack
increase by 1.4× as more registers are needed.

In summary, the achieved overall speedup of 10.6× w.r.t.
the RISC-V IMC baseline come from using SIMD and HWL
from the xPULP extension (4.0×), the OFM tiling (1.7×),
the activation function instruction (3.0%), the merged load
and compute instruction (1.5×) and the IFM tiling (3.0%).
In total we achieve an additional speedup of 3.4× compared
to the XPulp implementation. The relative benefits of each
optimization step for the full benchmark are shown in Figure 8.
While the input FM tiling had a positive effect for most
networks, benchmarks with smaller FM need slightly more
cycles caused by the increased stack operations.

B. Multi-Core Evaluation

1) Multi-Core Cluster Configurations: We evaluate the
individual kernels and the benchmark suite on three multi-
core cluster configurations:

1) Evaluation Cluster - 16×ASIPs, 1MB L1, min. 1MB L2
2) Large Cluster - 16× ASIPs, 512KB L1, min. 1MB L2
3) Small Cluster - 8× ASIPs, 64KB L1, min. 512KB L2

The first evaluation cluster configuration is only used to
analyze the speedups for the LSTM and FCL kernels. Note
that the large L1 memory, if brought on silicon, would impose
a large cost in term of area in a 5G SoC. The second large
cluster configuration allows to keep most of the benchmark
suite locally in the L1 memory. For optimal allocation of
the various resources for wireless communication, often
multiple models are run on the same platform. Therefore,
being capable of loading a complete model at a time comes
in handy. Anyway, an evaluation on this configuration will
give an upper limit for the achievable speedup for smaller
cluster configurations where some form of tiling is either
needed to adjust the load of imbalanced layer sizes, or
simply because the complete model does not fit into L1.
The memory size of the small cluster configuration is the
most affordable in term of silicon real-estate in a 5G SoC,
and furthermore has in similar form already been taped-out
successfully [24], [46] making it a reasonable choice for
a final evaluation of the RRM benchmark suite. As the
parallelization of convolutional neural networks are already
analyzed thoroughly in related work [39], we will ignore the
CNN-based model I [15] for the following experimental results.

2) Multi-Core - Standalone Kernel - Evaluation Cluster: The
following results of our parallelized LSTM and FCL kernels
are measured on the evaluation cluster configuration. The
complete evaluation for the FCL kernel as shown in Figures 9a
to 9d covers a sweep over the input and output FM sizes
NI , NO ∈ {32, 64, . . . , 384}. When only two (Figure 9a) or
four cores (Figure 9b) in the cluster are enabled (while the
others are shut off), the achieved speedup on the FCL kernel
saturates for already rather small NI and/or NO towards its
upper limit of SUideal = Ncores. In contrast, when eight or
16 cores are active, it needs a higher output FM size NO

than an input FM size NI for the achieved speedup to incline
towards the ideal speedup. These observations are aligned
with the Saturation and the NI -independency property of our
simplified model in Section IV. The latter property shows itself
in the smooth increase of SUmeasured in NI -direction. The NO-
dependency of the stated Saturation gets visible for all plots,
however, the Optimality property for the NO-dependency can
be observed better for eight or 16 active cores, see Figures 9c
and 9d. Over the complete sweep of the FCL kernel, the highest
speedups are 2×, 4×, 7.7×, and 13.8× for respectively two,
four, eight and 16 cores.

The same properties can again be observed in Figures 9e
to 9h for the sweep of the LSTM kernel over the IFM and
OFM sizes NI , NO ∈ {2, 34, . . . , 162}. The highest used FM
size for the LSTM sweep are smaller than those used for the
FCL sweep since a LSTM kernel is larger than a FCL kernel

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 10

32 64 96 128
160

192
224

256
288

320
352

384
Output size

384

352

320

288

256

224

192

160

128

96

64

32

In
pu

t s
ize

1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.8 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.8 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.8 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.7 1.8 1.9 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0

1.6 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Speedup of Single-Layer FCL
on 2x Ri5cy Cores wrt. 1x Ri5cy Core

1.65 1.70 1.75 1.80 1.85 1.90 1.95
Speedup

(a) FCL - Speedup for 2 cores.

32 64 96 128
160

192
224

256
288

320
352

384
Output size

384

352

320

288

256

224

192

160

128

96

64

32

In
pu

t s
ize

3.6 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 4.0 4.0 4.0

3.6 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 4.0

3.6 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

3.5 3.7 3.8 3.9 3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9

3.5 3.7 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

3.4 3.7 3.8 3.8 3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9

3.4 3.6 3.7 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9

3.3 3.6 3.7 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9

3.1 3.5 3.6 3.7 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9

3.0 3.4 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.9

2.7 3.1 3.4 3.5 3.6 3.7 3.7 3.7 3.8 3.8 3.8 3.8

2.3 2.8 3.1 3.3 3.4 3.4 3.5 3.5 3.6 3.6 3.7 3.7

Speedup of Single-Layer FCL
on 4x Ri5cy Cores wrt. 1x Ri5cy Core

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Speedup

(b) FCL - Speedup for 4 cores.

32 64 96 128
160

192
224

256
288

320
352

384
Output size

384

352

320

288

256

224

192

160

128

96

64

32

In
pu

t s
ize

5.7 6.8 6.7 7.3 7.0 7.5 7.5 6.9 7.5 7.7 7.6 7.7

5.3 6.7 6.6 7.1 7.0 7.4 7.1 7.3 7.4 7.5 7.4 7.5

5.5 6.7 6.5 7.3 6.9 7.5 7.4 6.8 7.4 7.7 7.5 7.6

5.1 6.6 6.5 7.0 6.9 7.3 7.1 7.3 7.3 7.5 7.4 7.5

5.2 6.5 6.4 7.1 6.8 7.4 7.3 6.8 7.3 7.6 7.4 7.6

4.8 6.3 6.2 7.1 6.7 7.2 7.0 7.2 7.2 7.4 7.3 7.4

4.9 6.2 6.1 7.0 6.6 7.2 7.1 6.7 7.2 7.5 7.3 7.5

4.4 6.0 5.9 6.9 6.5 7.1 6.8 7.1 7.0 7.3 7.1 7.3

4.3 5.8 5.6 6.6 6.3 7.0 6.8 6.6 7.0 7.3 7.1 7.4

3.8 5.4 5.3 6.4 6.0 6.8 6.4 6.9 6.7 7.1 6.9 7.1

3.3 4.9 4.8 6.0 5.6 6.4 6.1 6.3 6.4 6.9 6.6 7.0

2.6 4.0 3.8 5.2 4.8 5.8 5.3 6.1 5.7 6.3 5.9 6.5

Speedup of Single-Layer FCL
on 8x Ri5cy Cores wrt. 1x Ri5cy Core

3 4 5 6 7
Speedup

(c) FCL - Speedup for 8 cores.

32 64 96 128
160

192
224

256
288

320
352

384
Output size

384

352

320

288

256

224

192

160

128

96

64

32

In
pu

t s
ize

5.6 10.4 8.7 13.210.912.411.113.412.013.212.013.8

5.5 9.9 8.5 12.211.012.011.212.912.212.711.913.4

5.4 10.0 8.5 12.910.712.210.913.211.912.912.113.6

5.3 9.5 8.2 11.910.711.610.512.611.912.511.813.2

5.1 9.5 8.1 12.510.411.710.912.811.712.611.813.4

5.0 8.8 7.9 11.510.011.310.112.311.612.211.513.1

4.7 8.8 7.6 11.8 9.9 11.210.112.211.212.111.213.0

4.5 8.0 7.3 10.9 9.6 10.6 9.6 11.911.111.811.112.8

4.1 7.6 6.8 10.8 9.0 10.3 9.2 11.410.711.410.512.6

3.7 6.7 6.6 9.9 8.3 9.5 8.8 11.010.011.010.012.2

3.1 5.9 5.5 8.9 7.4 8.6 7.9 10.3 9.2 10.1 9.3 11.8

2.4 4.4 4.3 7.2 6.0 7.1 6.5 9.1 7.9 8.7 8.0 10.6

Speedup of Single-Layer FCL
on 16x Ri5cy Cores wrt. 1x Ri5cy Core

4 6 8 10 12
Speedup

(d) FCL - Speedup for 16 cores.

2 18 34 50 66 82 98 114
130

146
162

Output size

162
146
130
114
98
82
66
50
34
18
2

In
pu

t s
ize

1.0 1.6 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.0 1.5 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.0 1.5 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.0 1.5 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.0 1.5 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.0 1.5 1.7 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9

1.0 1.5 1.6 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9

1.1 1.5 1.6 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9

1.0 1.5 1.6 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9

1.0 1.5 1.6 1.7 1.8 1.8 1.8 1.8 1.9 1.9 1.9

1.0 1.4 1.6 1.7 1.7 1.8 1.8 1.8 1.9 1.9 1.9

Speedup of Single-Layer LSTM
on 2x Ri5cy Cores wrt. 1x Ri5cy Core

1.2 1.4 1.6 1.8
Speedup

(e) LSTM - Speedup for 2 cores.

2 18 34 50 66 82 98 114
130

146
162

Output size

162
146
130
114
98
82
66
50
34
18
2

In
pu

t s
ize

1.0 2.1 2.6 2.8 3.1 3.1 3.3 3.3 3.4 3.4 3.5

1.0 2.0 2.6 2.7 3.1 3.1 3.3 3.3 3.4 3.4 3.5

1.0 2.0 2.5 2.7 3.1 3.1 3.3 3.3 3.4 3.4 3.5

1.1 2.0 2.5 2.7 3.0 3.0 3.3 3.3 3.4 3.4 3.5

1.0 2.0 2.5 2.7 3.0 3.0 3.2 3.2 3.4 3.4 3.5

1.0 2.0 2.5 2.6 3.0 3.0 3.2 3.2 3.4 3.4 3.5

1.0 1.9 2.4 2.6 2.9 3.0 3.2 3.2 3.3 3.4 3.5

1.0 1.9 2.4 2.5 2.9 2.9 3.2 3.2 3.3 3.3 3.4

1.0 1.8 2.3 2.5 2.8 2.9 3.1 3.1 3.3 3.3 3.4

1.0 1.8 2.3 2.4 2.8 2.9 3.1 3.1 3.3 3.3 3.4

1.0 1.7 2.2 2.3 2.8 2.8 3.1 3.1 3.3 3.3 3.4

Speedup of Single-Layer LSTM
on 4x Ri5cy Cores wrt. 1x Ri5cy Core

1.5 2.0 2.5 3.0 3.5
Speedup

(f) LSTM - Speedup for 4 cores.

2 18 34 50 66 82 98 114
130

146
162

Output size

162
146
130
114
98
82
66
50
34
18
2

In
pu

t s
ize

1.0 3.2 3.4 4.6 4.7 5.4 5.0 5.7 5.7 6.1 5.8

1.0 3.2 3.3 4.6 4.6 5.3 5.0 5.7 5.7 6.1 5.8

1.0 3.1 3.3 4.5 4.6 5.3 5.0 5.7 5.7 6.1 5.7

1.0 3.1 3.2 4.5 4.5 5.2 4.9 5.6 5.6 6.0 5.7

1.0 3.0 3.2 4.3 4.4 5.1 4.8 5.5 5.5 6.0 5.7

1.0 2.9 3.1 4.2 4.4 5.1 4.8 5.5 5.5 6.0 5.6

1.0 2.9 3.0 4.1 4.3 5.0 4.7 5.4 5.5 5.9 5.6

1.1 2.8 3.0 4.0 4.2 4.9 4.6 5.3 5.4 5.9 5.5

1.0 2.6 2.9 3.9 4.1 4.8 4.6 5.2 5.3 5.8 5.5

1.0 2.6 2.8 3.7 4.0 4.7 4.5 5.2 5.3 5.7 5.4

1.0 2.4 2.6 3.5 3.9 4.6 4.4 5.0 5.2 5.7 5.4

Speedup of Single-Layer LSTM
on 8x Ri5cy Cores wrt. 1x Ri5cy Core

1 2 3 4 5 6
Speedup

(g) LSTM - Speedup for 8 cores.

2 18 34 50 66 82 98 114
130

146
162

Output size

162
146
130
114
98
82
66
50
34
18
2

In
pu

t s
ize

1.0 3.6 5.2 7.1 5.8 7.0 8.1 10.2 8.4 9.2 9.7

1.0 3.5 5.1 6.9 5.8 7.0 8.1 10.1 8.3 9.2 9.5

1.0 3.4 5.0 6.8 5.8 6.9 8.0 10.1 8.3 9.1 9.6

1.0 3.3 4.9 6.6 5.6 6.8 7.8 9.9 8.1 9.0 9.4

1.0 3.3 4.8 6.5 5.6 6.6 7.7 9.7 8.1 8.8 9.4

1.0 3.1 4.7 6.2 5.4 6.5 7.6 9.6 7.9 8.8 9.2

1.0 3.0 4.5 6.0 5.2 6.4 7.4 9.5 7.9 8.6 9.1

1.0 3.0 4.3 5.9 5.1 6.2 7.3 9.2 7.7 8.6 9.0

1.0 2.8 4.1 5.6 5.0 6.0 7.0 9.0 7.5 8.3 8.9

1.0 2.7 3.9 5.3 4.8 5.8 6.9 8.9 7.5 8.1 8.7

1.0 2.4 3.6 5.0 4.6 5.6 6.6 8.5 7.3 8.0 8.6

Speedup of Single-Layer LSTM
on 16x Ri5cy Cores wrt. 1x Ri5cy Core

2 4 6 8 10
Speedup

(h) LSTM - Speedup for 16 cores.

Fig. 9: Speedup on the evaluation cluster of a single FCL or LSTM layer for various IFM and OFM sizes.

TABLE IV: Achieved Op/Cycle for the larger models on the large cluster configuration and the small cluster configuration with
and without batching. The relative difference is compared to the achieved operations/cycle on the large cluster configuration.

Operation/Cycle

Large Cluster Small Cluster - w/o Batching Small Cluster - with Batching

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

Model C [16] 3.22 6.05 10.94 19.52 2.84 / -11.8% 5.47 / -9.6% 6.94 / -36.6% - 3.03 / -5.9% 6.03 / -0.3% 10.17 / -7.0% -
Model D [20] 3.31 6.46 11.55 18.08 2.97 / -10.3% 4.85 / -24.9% 6.58 / -43.0% - 3.17 / -4.2% 5.62 / -13.0% 8.36 / -27.6% -
Model E [10] 3.14 6.01 10.60 15.59 2.98 / -5.1% 5.10 / -15.1% 6.40 / -39.6% - 2.99 / -4.8% 5.44 / -9.5% 8.55 / -19.3% -
Model F [14] 2.93 5.29 8.14 11.49 2.69 / -8.2% 4.29 / -18.9% 5.55 / -31.8% - 2.80 / -4.4% 5.06 / -4.3% 7.73 / -5.0% -

Average 3.15 5.95 10.31 16.17 2.87 / -8.9% 4.93 / -17.2% 6.37 / -38.2% - 3.00 / -4.8% 5.54 / -7.0% 7.95 / -15.6% -

and therefore saturate faster the L1 memory of the evaluation
cluster configuration. Over the complete sweep of the
LSTM kernel, the highest achieved speedups are 1.9×, 3.5×,
6.1×, and 10.2× for respectively two, four, eight, and 16 cores.

3) Multi-Core - Benchmark Suite - Large Cluster: When
using the large cluster configuration instead of the single-
core configuration, the implementation was extended with the
necessary synchronization and tile offset computation (see
Section III-D4) implementation. The already mentioned Table V
compares the achieved MAC/cycle for the implementations
when only one core in the large cluster configuration is
active, including synchronization and tile offset computation,

against the single-core configuration. On average, we lose 0.08
Operations/Cycle due to the parallelization overhead, which
corresponds to approximately 2.6%. Taking this overhead into
account, Figure 10 shows the achieved speedups in relation
to the speedups achieved on the single-core implementation,
including the synchronization and tile offset computation.

A first observation shows that model B [12] and model
H [13] achieve no or even a worse speedup when using more
cores. As listed in Table I all layers of these models have an
output FM size of 32 or even mostly less, resulting in highly
starved cores achieving a maximum speedup of 1.4× against
the ”parallelized” single-core version. Again, this starvation is
corresponds to the Saturation property as stated in Section IV.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 11

Average A [11] B [12] C [16] D [15] E [10] F [14] G [19] H [13]
1

25

50

75

100

125

150

175

200

225

9.3 16.4 25.2 31.9 38.8

LSTM/FC LSTM/FC Fully-Connected NN

Legend: 1 core 2 cores 4 cores 8 cores 16 cores

9.
9

1.
5 16
.2

1
5
.8

1
3
.4

4.
51
4
.8

16
.6

1
7.
9

2.
6

30
.9

3
0
.7

2
4.
3

6.
2

2
7
.4

2
8
.9

26
.5

2
.7

56
.2

5
4
.5

4
0
.9

6
.8

4
4.
160
.1

34
.4

1.
6

10
1
.9

8
1.
5

60
.8

6.
8

61
.4

9
3.
4

3
9
.6

1.
6

19
3
.7

1
1
0
.4

6
5
.7

6.
2

7
2
.2

1
32

Sp
ee

du
p

vs
.1

R
IS

C
-V

IM
C

C
or

e

Fig. 10: Speedup when using multiple cores for typical Neural Networks workload in RRM when the whole model fits into L1.
The single core speedup corresponds to the achieved speedup with all single-core implementations.

Layer 1 Layer 2a Layer 2b Layer 3a Layer 3b Layer 4

5k

10k

15k

20k

25k

Legend: DMA 1 core 2 cores 4 cores

5.
2

5.
2

5.
2

5
.2

0.
5 1

3
.7

12
.5

12
.5

12
.5

12
.5

0.
92.
1

6
.7

6
.7

6.
7

6.
7

0
.81.
3

4.
3

4
.3

4
.3

4.
3

1.
2

C
yc

le
s

(a) Model E with tiling.

Layer 1 Layer 2a Layer 2b Layer 3a Layer 3b Layer 4

5k

10k

15k

20k

25k

Legend: DMA 1 core 2 cores 4 cores

5
.2 5.
2

5.
2

5
.2

0.
5 1

8

25
.1

25
.1

25
.1

25
.1

1.
4

4.
3

13
.4

13
.4

13
.4

13
.4

1
.22.
4

8.
2

8
.2

8
.2

8.
2

2.
1

C
yc

le
s

(b) Model E with tiling and batching.

Fig. 11: Layerwise breakdown of the computation time of each layer including the DMA transactions time for model E [10].

TABLE V: Measured operations/cycle on a optimized single-
core implementation against a parallelizable single-core im-
plementation, showing the parallelization overhead such as
synchronization, tile determination etc.

1 Core 1 Core Parallelization
single-core large cluster Reduction
[Op/Cycle] [Op/Cycle] [Op/Cycle]

Model A [11] 1.92 1.85 0.07
Model C [16] 3.31 3.22 0.09
Model D [20] 3.37 3.31 0.06
Model E [10] 3.21 3.14 0.07
Model F [14] 3.04 2.93 0.11
Model G [19] 2.68 2.63 0.05

Average 2.92 2.85 0.08 (2.6%)

For these model sizes, only two cores in the large cluster
configuration should be enabled as using more cores brings
very limited performance gain while consuming more power.

The medium-sized models A [11], F [14], and G [19] with
24k–37k parameters achieve slightly higher speedups of 3.9×,
4.8×, and 4.7× when making use of all 16 available cores,
respectively. The small speedup gain when using 16 PEs instead
of 8 PEs clearly shows that using 16 PEs is again a waste of
energy and area for these medium-sized models.

Models with bigger layers such as model C [16], D [20],
and E [10] which each have multiple layers with ≥ 100
OFM sizes gain much more by using more cores and achieve
speedups of 11.7×, 6.9× and 7.8× when using all 16 cores
and speedups of 6.2×, 5.1× and 5.5× when using 8 cores
against using the parallelized implementation on a single core.

Layer 1 Layer 2 Layer 3 Layer 4

5k

10k

15k

20k

25k

Legend: DMA 1 core 2 cores 4 cores 8 cores

3.
7

24
.4

2
4
.4

0
.92.
1

12
.5

12
.5

0
.81.
3

6.
7

6.
7

1
.2

1

4.
3

4.
3

1
.2

C
yc

le
s

Fig. 12: Layerwise breakdown of the computation time of
each layer including the DMA transcation time, which are
overlapped with the computation for model E [10].

Directly comparing them against our baseline single RISC-V
IMC core implementation, this corresponds to total speedups
of 193.7×, 110.4×, and 132.0× on 16 cores and 101.9×,
81.5×, and 93.4× on eight cores.

4) Multi-Core - Benchmark Suite - Small Cluster: With the
smaller cluster configuration including eight cores and only
64KB L1 memory, some form of model tiling is necessary.
The first straight forward approach of tiling on the layer-level
means that the model is loaded and computed in a layer-by-
layer fashion with the double-buffering approach described in
Section III-D6. However, model C [16], D [20], and E [10]
have layers that do not entirely fit into the L1 memory and thus
require further tiling. As most models are highly unbalanced,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 12

any form of tiling is improving load balance. We focus on the
OFM tiling because IFM tiling causes additional overhead for
combining results across the cores.

In an exemplary case study, we show a detailed analysis
of the applied tiling with its consequences on model E [10],
covering both cases of layer imbalance and too big layer
sizes. The first layer-wise computation cycle breakdown with
staggered DMA transaction cycles (see Section III-D6) is
shown in Figure 12. As the individual layers would be too big
for the small cluster configuration, these specific measurements
were taken from the evaluation cluster configuration. A first
look on layer 1 shows clearly that the DMA transaction
for the second layer (which is progressed in parallel to the
layer 1 computation) is much higher than the computation
time for the layer. As layers 2 and 3 are both too big to fit
into L1, their necessary tiling coincidentally improves this
load imbalance. Figure 11a shows that even with tiled layers,
the aforementioned DMA transaction for the second layer
cannot be hidden, and we are bandwidth-limited. When using
more than two cores, the situation even gets worse, and we
are bandwidth limited over almost all layers, making the
usage of four or more cores questionable. We have applied
similar tiling to all reasonable big models and have listed the
achieved operations/cycles in Table IV. We count 1× MAC
as 2× Operations. Overall we achieve up to 6.94 Op/cycle,
5.42 Op/cycle, and 2.98 Op/cycle for four, two, and one core,
respectively. With the peak DMA bandwidth of 8 B/cycle,
we lose on average 8.9%, 17.2%, 38.2% to the achieved
optimal Op/Cycle on one, two, and four cores due to the
heavy load-imbalance of the RRM benchmarks. We conclude
that using four or more cores brings very limited gain unless
the data bandwidth can be extended to >8 B/cycle.

5) Multi Core - Benchmark Suite Batching - Small Cluster:
One possibility to improve the situation is batching. Meaning
that we are computing on multiple IFM at the same time,
allowing us to reuse the loaded parameters. As this doubles
the computation time while keeping the DMA transaction
time constant, we can push our example model E for most
layers from bandwidth-limited into computation-limited
operation. Figure 11b shows the tiled model E, where
each layer is working simultaneously on two batched IFM.
Batching solves the bandwidth limitations completely when
using only a single core and almost entirely when using
two or four cores. Additionally, the fully bandwidth-limited
situation shifts from four cores to eight cores. Only for the
single-core implementation, we reach the optimal case as
in the large cluster configuration. However, it improves the
situation significantly, as shown in Table IV. We achieve
up to 10.17 op/cycle, 6.03 op/cycle, and 3.17 op/cycle for
four, two, and one core correspondingly. The batching,
therefore, enables an average loss of only 15.6% on the
average optimal 10.3 op/cycle, making the usage of four
cores in combination with a data bandwidth of 8 B/cycle
reasonable. It should be noted, that this form of batching
increases the latency of the model, which might violate the
tight timing constraints for RRM decisions at the physical layer.

LSU (2.1%)

CSR (6.2%)

Instruction Fetch (8.6%)

Instruction Decode /
incl. Output Regs (12.9%)

Instruction Decode/
GPR (21.5%)

Execution (45.2%)
RNN Ext. (3.4%)

Fig. 13: Area Distribution of extended RI5CY core.

C. Hardware Implementation

To analyze the implementation of the extended RI5CY core,
an 8-track low-threshold (LVT) standard cell library of the
Globalfoundries 22 nm FDX technology was used. We used
Synopsys Design Compiler 18.06 for synthesis and Cadence
Innovus 18.11 for the back-end flow. The gate-level simulations
with back-annotated delays for the power estimates were run
with Modelsim Questa v2019.1 on the final layout.

The implemented extensions have no influence on the critical
path which lays between the load-store unit and the memory in
the write-back stage. The extended RI5CY achieves 380 MHz at
0.65 V at typical conditions at room temperature. However, the
extensions introduce a small area overhead of 2.3 kGE which
corresponds to 3.4% of the total core area. The area breakdown,
shown in Figure 13 results from the final placed-and-routed
layout. From the performance perspective, a single extended
core performs the relevant benchmarks on average 10.6× faster
than the standard RISC-V core with RV32-IMC instructions
and achieves 566 MMAC/s instead of 21 MMAC/s. When the
core is using the extensions, the power consumption rises from
1.73 mW to 2.61 mW (51% total increase). While the decoder
contributes little more power (approx. 5 µW), the higher power
consumption is mainly due to the higher utilization of the
compute units (ALU and MAC unit, i.e., 0.57 mW/33% of
the total power), the increased GPR usage (0.16 mW/9%), and
the higher use of the load-store unit (0.05 mW/3%). However,
the overall energy efficiency at 218 GMAC/s/W shows a 10×
improvement. The power consumed by the memories L1, L2,
an the rest of the system is not taken into account. Taking
these energy costs into account would most likely result in
energy-efficiency gains closer to the observed performance
gains. The given 10× energy-efficiency improvement can be
taken as a safe lower bound on the overall energy-efficiency
improvements for the RRM acceleration system.

D. Comparison with Related Work

Table VI compares performance and energy efficiency
numbers of various related work: a hardwired accelerator [47],
a GPU [48], a vector processor [49], our baseline RV32IMC
core and our proposed RRM-ASIP. The GPU comes with
the highest performance and slightly lower energy-efficiency
than the hardwired accelerator. However, with our complete
benchmark set of 3.2 MOp (an average of 320 kOp per model),
the compute throughput of 11 TOp/s is disproportionately large.
The vector processor supports floating-point operations, offering
more numerical precision than needed by our applications,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 13

resulting in an increased area cost and lower energy efficiency
than our RRM ASIP. The hardwired accelerator provides the
highest energy efficiency, however, hardwired accelerators are
not flexible to adapt to the rapidly changing RRM field as new
algorithms would require a costly HW redesign [37]. Even
though our implementation focuses on 16 bits instead of 8 bits,
on a single-ASIP system, we achieve >2× higher OP/cycle
than a comparable commercially available dual-issue core
(STM32H743). Adapting our HW and SW optimizations for 8-
bit could be promising for less arithmetic sensitive applications.
Overall, our customized ISA instructions are tailored to the
needs of the targeted LSTM and MLP RRM models, while
maintaining flexibility. Additionally, the number of compute
units is adequately scaled to the average benchmark size.

TABLE VI: Comparison with related work.

Tech. Area Arith. Freq. Perf. Perf. En.Eff.
[nm2] [mm2] [MHz] [OP

cyc] [GOP
s] [GOP/s

W]

GPU a[48] 12 <350 int8 1’377 - 11k 733.6
GPU a[48] 12 <350 fp16 1’377 - 22k 366.6

Vector P. [49] 22 0.44 fp64 1’250 - 4.91 35.6
Vector P. [49] 22 2.16 fp64 1’040 - 32.4 40.8

ASIC [47] 65 14.4 int8 200 - 409.6 1’060

STM32 [50] 40 <49 int8 480 1.42 0.68 2.92

RV32IMC 22 0.91 / 0.0128 c int16 380 0.11 0.042 24.3 b

RRM ASIP 22 0.92 / 0.0133 c int16 380 2.98 1.13 433.7 b

a 8x64 tensor cores b power: core-only c complete system area / core-only area

VI. CONCLUSION

In this work we have identified a selected set of recently
proposed real-world RRM-targeted benchmarks based on
multi-layer perceptrons (MLP) and recurrent neural networks
(RNNs). Starting from a baseline, simple RISC-V core, we
first introduce instruction extensions coupled with software
optimizations for the selected RRM benchmarks, and evaluate
them on a single-core and multi-core cluster acceleration
system. For the single-core acceleration system we demonstrate
an energy-efficiency of 218 GMAC/s/W, and a throughput of
566 MMAC/s corresponding to an improvement of 10× and
10.6×, respectively, over the single-core system with a baseline
RV32IMC core. For the multi-core acceleration system, we
analyze the parallel speedup dependency on the input and output
FM size for Fully-connected and LSTM layers, achieving up
to 10.2× speedup with 16 cores over a single extended RI5CY
core for single LSTM layers, and a speedup of 13.8× for single
fully-connected layers. On the full RRM benchmark suite, we
achieve an average overall speedup of 16.4×, 25.2×, 31.9× and
38.8× on two, four, eight, and 16 cores, respectively, compared
to our single core RV32IMC baseline implementation.

ACKNOWLEDGMENT

We thank Matteo Spallanzani for the valuable discussions.

REFERENCES

[1] N. D. Tripathi, J. H. Reed, and H. F. VanLandingham, Radio resource
management in cellular systems. Springer Science & Business Media,
2006, vol. 618.

[2] S. Manap, K. Dimyati, M. N. Hindia, M. S. Abu Talip, and R. Tafazolli,
“Survey of Radio Resource Management in 5G Heterogeneous Networks,”
IEEE Access, vol. 8, pp. 131 202–131 223, 2020.

[3] M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, and M. Jaseemuddin,
“Optimal power allocation for green cognitive radio: fractional program-
ming approach,” IET Communications, vol. 7, no. 12, pp. 1279–1286,
2013.

[4] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” in 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2011, pp. 3060–3063.

[5] K. I. Ahmed, H. Tabassum, and E. Hossain, “Deep Learning for Radio
Resource Allocation in Multi-Cell Networks,” IEEE Network, 2019.

[6] A. Y. Hannun and Others, “Deep Speech: Scaling up end-to-end speech
recognition,” Computing Research Repository, vol. abs/1412.5, 2014.

[7] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech synthesis
using deep neural networks,” in IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2013, pp. 7962–
7966.

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation,” arXiv, pp. 1–23, 2016.

[9] M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini,
“Robust real-time embedded emg recognition framework using temporal
convolutional networks on a multicore iot processor,” IEEE transactions
on biomedical circuits and systems, vol. 14, no. 2, pp. 244–256, 2019.

[10] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless resource
management,” in 2017 IEEE 18th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC). IEEE,
2017, pp. 1–6.

[11] U. Challita, L. Dong, and W. Saad, “Proactive Resource Management
for LTE in Unlicensed Spectrum: A Deep Learning Perspective,” arXiv,
2017.

[12] O. Naparstek and K. Cohen, “Deep Multi-User Reinforcement Learning
for Distributed Dynamic Spectrum Access,” IEEE Transactions on
Wireless Communications, vol. 18, no. 1, pp. 310–323, 2019.

[13] M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro,
“Learning Optimal Resource Allocations in Wireless Systems,” IEEE
Transactions on Signal Processing, vol. 67, no. 10, pp. 2775–2790, 2019.

[14] Y. S. Nasir and D. Guo, “Multi-Agent Deep Reinforcement Learning for
Dynamic Power Allocation in Wireless Networks,” arXiv, 2018.

[15] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit
power control scheme based on convolutional neural network,” IEEE
Communications Letters, vol. 22, no. 6, pp. 1276–1279, 2018.

[16] H. Ye and G. Y. Li, “Deep reinforcement learning for resource allocation
in V2V communications,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–6.

[17] M. Yao, M. Sohul, V. Marojevic, and J. H. Reed, “Artificial Intelligence
Defined 5G Radio Access Networks,” IEEE Communications Magazine,
vol. 57, no. 3, pp. 14–20, 2019.

[18] E. Ghadimi, F. Davide Calabrese, G. Peters, and P. Soldati, “A
reinforcement learning approach to power control and rate adaptation in
cellular networks,” in IEEE International Conference on Communications.
Institute of Electrical and Electronics Engineers Inc., jul 2017.

[19] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” ieeexplore.ieee.org, 2017.

[20] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Transactions on Cognitive Communications and Networking, 2018.

[21] International Organization for Standardization/International Electrotech-
nical Commission and others, “Information Technology—Open Systems
Interconnection—Basic Reference Model: The Basic Model,” ISO/IEC,
vol. 427, 1994.

[22] R. Andri, T. Henriksson, and L. Benini, “Extending the RISC-V ISA for
Efficient RNN-based 5G RAdio Resource Management,” in Proceedings
of the 57th Annual Design Automation Conference 2020. ACM, 2020.

[23] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, FEBRUARY 2021 14

[24] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf: An
Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge
Processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7, pp.
1970–1981, jul 2019.

[25] I. Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit,
Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, Lukasz and
Polosukhin, “Attention is all you need,” Advances in Neural Information
Processing Systems, vol. 30, pp. 5998–6008, 2017.

[26] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849–2858.

[27] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[28] G. L. Santos, P. T. Endo, D. Sadok, and J. Kelner, “When 5G meets
deep learning: A systematic review,” p. 208, sep 2020.

[29] Marvell, “Marvell OCTEON TX2 DPDK Overview,” Tech. Rep., 2020.
[30] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “Openran: a software-

defined ran architecture via virtualization,” ACM SIGCOMM computer
communication review, vol. 43, no. 4, pp. 549–550, 2013.

[31] “EdgeQ.” [Online]. Available: edgeq.io
[32] “OpenHW.” [Online]. Available: www.openhwgroup.org
[33] Intel Corp., “Intel®Architecture Instruction Set Extensions and

Future Features Programming Reference,” 2019. [Online]. Available:
https://software.intel.com/en-us/download/intel-architecture-instruction-
set-extensions-and-future-features-programming-reference

[34] J. Yiu, “Introduction to Armv8.1-M architecture,” ARM, no. February,
pp. 1–14, 2019.

[35] N. Neves, N. Sebastiao, D. Matos, P. Tomas, P. Flores, and N. Roma,
“Multicore SIMD ASIP for Next-Generation Sequencing and Alignment
Biochip Platforms,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 7, pp. 1287–1300, jul 2015.

[36] X. Guan, Y. Fei, and H. Lin, “Hierarchical design of an application-
specific instruction set processor for high-throughput and scalable FFT
processing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 3, pp. 551–563, mar 2012.

[37] O. S. Shahriar Shahabuddin, Aarne Mämmelä, Markku Juntti, “ASIP
for 5G and Beyond: Opportunities and Vision,” IEEE Transactions on
Circuits and Systems II: Express Briefs68, vol. 68, no. 3, pp. 851 – 857,
2021.

[38] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” 2018 International Conference on
Hardware/Software Codesign and System Synthesis, pp. 1–2, 2018.

[39] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-NN:
accelerating quantized neural networks on parallel ultra-low-power RISC-
V processors,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190155, 2020.

[40] C.-W. Lin and J.-S. Wang, “A digital circuit design of hyperbolic tangent
sigmoid function for neural networks,” in 2008 IEEE International
Symposium on Circuits and Systems. IEEE, 2008, pp. 856–859.

[41] K. Leboeuf, A. H. Namin, R. Muscedere, H. Wu, and M. Ahmadi, “High
speed VLSI implementation of the hyperbolic tangent sigmoid function,”
in 2008 Third International Conference on Convergence and Hybrid
Information Technology, vol. 1. IEEE, 2008, pp. 1070–1073.

[42] C.-H. Tsai, Y.-T. Chih, W. H. Wong, and C.-Y. Lee, “A hardware-efficient
sigmoid function with adjustable precision for a neural network system,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62,
no. 11, pp. 1073–1077, 2015.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[44] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997.

[45] É. F. Zulian, G. Haugou, C. Weis, M. Jung, and N. Wehn, “System
simulation with pulp virtual platform and systemc,” in Proceedings
of the Conference on Rapid Simulation and Performance Evaluation:
Methods and Tools, 2020, pp. 1–7.

[46] VentureBeat.com, “GreenWaves Technologies unveils Gap8 processor
for AI at the edge,” 2018.

[47] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu,
and S. Wei, “A High Energy Efficient Reconfigurable Hybrid Neural
Network Processor for Deep Learning Applications,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 4, pp. 968–982, apr 2018.

[48] NVidia Corporation, “Jetson AGX Xavier Developer Kit,” Nvidia, pp.
1–36, 2019. [Online]. Available: https://developer.nvidia.com/embedded/
jetson-agx-xavier-developer-kit

[49] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
“Ara: A 1-ghz+ scalable and energy-efficient risc-v vector processor with
multiprecision floating-point support in 22-nm fd-soi,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 530–
543, 2019.

[50] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F. Conti,
“DORY: Automatic End-to-End Deployment of Real-World DNNs on
Low-Cost IoT MCUs,” aug 2020.

Gianna Paulin received her B.Sc. and M.Sc. degrees
in Electrical Engineering and Information Technology
from the Swiss Federal Institute of Technology Zurich
(ETHZ), Switzerland, where she started as a Ph.D.
student with the Integrated Systems Laboratory at
the beginning of 2019. Her main interests lay in
reduced precision deep learning from the algorithmic
and hardware acceleration aspect with a focus on
time series applications and low power embedded
systems.

Renzo Andri received the B.Sc., M.Sc. and Ph.D.
degree in Electrical Engineering and Information
Technology at ETH Zurich in 2013, 2015, and 2020,
respectively. His research focuses on energy-efficient
machine learning acceleration from embeeded system
design to full-custom IC design. He is currently
working as senior researcher at the Computing
Systems Laboratory, Zurich Research Center, Huawei
Technologies Switzerland. In 2019, he has won the
IEEE TCAD Donald O. Pederson Award.

Francesco Conti received the Ph.D. in electronic
engineering from the University of Bologna, Italy,
in 2016. He is an Assistant Professor in the DEI
Department of the University of Bologna. From
2016 to 2020, he was a postdoctoral researcher at
the Integrated Systems Laboratory of ETH Zürich
in the Digital Systems group. He focuses on the
development of deep learning based intelligence
on top of ultra-low power, ultra-energy efficient
programmable Systems-on-Chip – from both the
hardware and software perspective. His work has

resulted in 40+ publications in international conferences and journals and has
been awarded several times, including the 2020 IEEE TCAS-I Darlington Best
Paper Award.

Luca Benini is the Chair of Digital Circuits and
Systems at ETH Zürich and a Full Professor at
the University of Bologna. He has served as Chief
Architect for the Platform2012 in STMicroelectronics,
Grenoble. Dr. Benini’s research interests are in
energy-efficient system and multi-core SoC design.
He is also active in the area of energy-efficient smart
sensors and sensor networks. He has published more
than 1’000 papers in peer-reviewed international
journals and conferences, four books and several
book chapters. He is a Fellow of the ACM and of

the IEEE and a member of the Academia Europaea.

edgeq.io
www.openhwgroup.org
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-and-future-features-programming-reference
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-and-future-features-programming-reference
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

	Introduction
	Related Work
	RNN for 5G
	ISA Extensions for Domain Specialization
	Software Optimizations

	ASIP-based RNN Acceleration
	Baseline RISC-V Architecture
	Neural RRM Models
	Enhanced RISC-V ISA
	xPULP Extensions
	Tanh and Sigmoid Extension (HW)
	Load and Compute VLIW Instruction (HW)

	Loop Tiling and Double Buffering
	Baseline
	Output Feature Map Tiling (SW)
	Input Feature Map Tiling (SW)
	Multi-Core Tiling
	Storing Weights with Address Offset
	Double Buffering
	Batching

	Multi-Core Speedup Model
	Evaluations and Results
	Single-Core Evaluation
	Multi-Core Evaluation
	Multi-Core Cluster Configurations
	Multi-Core - Standalone Kernel - Evaluation Cluster
	Multi-Core - Benchmark Suite - Large Cluster
	Multi-Core - Benchmark Suite - Small Cluster
	Multi Core - Benchmark Suite Batching - Small Cluster

	Hardware Implementation
	Comparison with Related Work

	Conclusion
	References
	Biographies
	Gianna Paulin
	Renzo Andri
	Francesco Conti
	Luca Benini

