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Abstract: The identification of Errors-in-variables (EIV) models refers to systems where the available
measurements of their inputs and outputs are corrupted by additive noise. A large variety of solutions are
available when dealing with this estimation problem, in particular when the corrupting noises are white
processes. However, the number of available solutions decreases when the output noise is assumed as
a colored process, which is a case of great practical interest. On the other hand, many applications
require estimation algorithms to work on-line, tracking a dynamical system behavior for control, signal
processing, or diagnosis. In many cases, they even have to take into account computational constraints.
In this paper, we propose an estimation method that is able to both lay out an algorithm to solve
the identification problem of EIV systems with arbitrarily correlated output noise and also provide an
efficient recursive version that does not make use of variable size matrix inversions.
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1. INTRODUCTION

Errors-in-variables (EIV) models, i.e models where both the
input and the output are corrupted by additive noise, find
application in a broad class of scientific disciplines (Van Huffel,
1997; Van Huffel and Lemmerling, 2002). For this reason, the
problem of identifying EIV models has received increasing
attention in the last three decades and many identification
algorithms are now available (Soderstrom, 2018).

As can be seen in (Soderstrom, 2018), most of the proposed
identification methods refer to the case of white additive noise
on both the input and the output sides. This assumption can
be unrealistic in many practical cases since the input noise
represents in general a measurement (sensor) noise while the
output noise often represents the effect of both measurement
noise and process disturbances. Indeed, a white process can
be a good representation of a sensor noise but the process
disturbance needs to be modelled by a correlated process.

The case of colored output noise is much less treated in the
literature. In (Zheng, 2002) a bias-eliminating least squares
algorithm is proposed whereas two extended Frisch scheme-
based approaches are described in (Soderstrom, 2008). In (Thil
et al., 2008) some methods based on instrumental variable tech-
niques are described by considering finitely correlated output
noise while the covariance matching method in (Mossberg,
2008) allows dealing with finitely correlated noise on both the
input and output. The paper (Song and Chen, 2008) deals with
EIV models corrupted by input and output ARMA noises but
the noise-free input signal is required to be an i.i.d. random
sequence. The EIV identification problem with colored output
noise is solved as a generalized eigenvalue problem in (Diversi
and Soverini, 2015). Some papers deal with the identification
of ARX, ARARX, and ARMAX models in the presence of
input noise (Diversi et al., 2010, 2011, 2013, 2014; Liu and

Zhu, 2017). The colored noise case has also been treated in the
frequency domain (Pintelon and Schoukens, 2007; Zhang and
Pintelon, 2021).

The paper’s objective is to develop a recursive identification
algorithm for EIV models corrupted by white input noise and
arbitrarily correlated output noise, without the use of variable-
size matrix inversions. Such algorithms are valuable in a large
variety of applications, from automatic control to signal pro-
cessing, and, in recent years, fault diagnosis and condition
monitoring (Isermann, 2006), because of their low demand for
computational resources. In particular, this family of recur-
sive algorithms is having an impact in our studies on edge-
computing applications for diagnostics and prognostics of au-
tomatic machine components (Barbieri et al., 2021).

The simplest way to develop a recursive algorithm is to
start from the basic instrumental variable (IV) estimator
(Soderstrom, 2018). When the output noise is arbitrarily corre-
lated, only delayed inputs can be used as instruments. This leads
to a set of high-order Yule-Walker (HOY W) equations that can
be directly exploited to get an estimate of the system parameters
(Soderstrom and Mahata, 2002; Soderstrom, 2018). However,
the accuracy of the obtained estimates is often poor. Better
results can be achieved by exploiting both the so-called com-
pensated normal equations and the HOYW equations, that is, a
set of equations where the unknowns are the system parameters
and the input-output noise statistics (Soderstrom, 2008; Diversi
and Soverini, 2015). Since our objective is the development of
a recursive method, we propose to use only part of the compen-
sated normal equations together with the HOYW equations. In
particular, we start from a system of equations involving the
system parameters and the variance of the input noise, thus
avoiding the autocovariances of the colored output noise. This
allows deriving an offline algorithm that can be put in a recur-
sive form by exploiting the so-called overdetermined recursive
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instrumental variable estimator (Friedlander, 1984; Soderstrom
and Stoica, 1989). In this formulation, the algorithm does not
require matrix inversions, except for a two-by-two one, and fits
within the previously mentioned paper objective.

The paper is organized as follows. The EIV identification prob-
lem is stated in Section 2. Section 3 describes a set of noise-
compensated equations that can be exploited for identifying
EIV models with correlated output noise. These equations lead
to the iterative identification algorithm described in Section 4.
A recursive version of the identification algorithm is developed
in Section 5. The recursive algorithm has been tested employing
Monte Carlo simulations and compared with the offline version.
The simulation results are shown in Section 6.

2. STATEMENT OF THE PROBLEM

The linear, discrete-time and time-invariant errors-in-variables
model under investigation is represented in Figure 1. The
noise-free input ug(t) is linked to the undisturbed output y(¢)
through the difference equation

Az yo(t) = B(z1) uo(t) (1)
where A(z71), B(z7!) are the following polynomials in the
backward shift operator z~!

Az =14a 2z 4+ +a,, 27" )
Bz =bo+by 2z -4 by, 2 3)

The available observations u(¢),y(t) are corrupted by additive
measurement noises @(t), §(t) so that

u(t) = uo(t) + u(t) ©)
y(t) = yo(t) + 5(t). (5)
The following assumptions will be considered as satisfied.

Al. The dynamic system (1) is asymptotically stable.

A2. All system modes are observable and controllable, i.e.
A(z71) and B(2~!) have no common factor.

A3. The polynomial degrees n, and n; are a priori known.

Ad4. The noise—free input ug(t) is a zero—mean ergodic process
or a quasi—stationary bounded deterministic signal (Ljung,
1999). Moreover, ug(t) is assumed as persistently exciting
of sufficiently high order.

AS. The input noise %(t) is a zero—mean ergodic white process
with unknown variance 2.

A6. The output noise §(t) is an arbitrarily autocorrelated zero—
mean ergodic process with unknown autocovariances.

A7. 4(t) and §(t) are mutually uncorrelated and uncorrelated
with the noise—free signals ug(t), yo(t).

The problem to be solved is the following.

Problem 1. Let u(1),y(1),u(2),y(2),...,u(N),y(N) be a
set of noisy input—output observations. Determine a recursive
estimate of the system parameters a;, . ..,ay,,bo, . ..
Remark 1. Conditions guaranteeing the identifiability of the
EIV model (1)-(5) are discussed in (Anderson and Deistler,
1984; Aguéro and Goodwin, 2008; Soderstrom, 2018).

; bn,-

2.1 Notations

In the sequel, the autocovariance of a scalar random process
x(t) will be denoted as 7,(7) = Elx(r)z(t — 7)],7 =
0,£1,£2.... The covariance matrix of a random vector
x(t), the cross—covariance matrix between two random vec-
tors x(t) and y(t) and the cross-covariance vector between
a random vector z(¢) and a scalar random process z(t) are

B(z™1)

Az-1) l

<
o
—~
~
=
—
~

Fig. 1. EIV model

denoted as R,, = E[z(t)aT(t)], Ry = Elz(t)yT ()]
and r,, = E[z(t) z(t)]. The sample estimates of the above
matrices and vector that can be obtained from N measure-
ments will be denoted as R,, = + Zi\/:l z(t) 2T (t), Ryy =

N . N
LN a(t)yT () and 7. = £ S0 a(t) 2(D).
3. A SET OF NOISE-COMPENSATED EQUATIONS

The EIV model (1)-(5) can be rewritten in the form

yo(t) = o () fo ©)
@(t) = po(t) + (1). @)
where

o(t) = [—yt—1) - —y(t —na) ut) - u(t —ny)]"
S AGEAON (®)
@o(t) =[—yo(t —1) -+ —yo(t — na)uo(t) -+ uo(t —np)]"
= [pao(®) pro(®]” ©)

G(t) = [—g(t = 1) - =gt —na) at) --- a(t —ny)]"
= [pf (t) o7 ()T (10)

6= [a1 -+ an, bo - bn, | = [67 67 ]". (11)
By inserting (5) and (7) into (6) we get
y(t) = " (t) 6o + §(t) — @7 (t) bo. (12)

Multiplying both sides of (12) by ¢(¢) and taking expectations
leads to

Toy = Ry 00 + o5 — Ryg 0o. (13)
From (7) and Assumptions A5-A7 it follows that
Ty = RWP 0y + Teg — R@@ 0o, (14)
where
rog = [ Togi ] Rys = Risos  Onux(np+1) 7
O(nb+1)><1 0(7Lb+1)><na 5’5 Inb+1
(15)
and
regp = [—15(1) —15(2) -+ —rg(na) " (16)
rg(0) (1) - rg(ng — 1)
ri(1
Rypjp; = y( ) ) . (I7)
rg(ne —1) rg(0)
Since
R R
— |Tewy| R | Tues Teueu 18
Ty [r%y] P ng o Rpor | (18)

by taking into account (15), relation (14) can be splitted into
two parts as follows
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Toyy = [Rsoy@y_ Rese; Rwy@u] 00 + o3 19)

Touy = [ngwu Ry~ 00 Ianrl} 0. (20)
The quantities appearing in (18) can be estimated directly from
the available observations so that (19) and (20) can be seen as
sets of equations where the unknowns are the model parameters
6o, the output noise autocovariances r;(0),75(1),...,r;(ng)
and the input noise variance &3. In particular, the set (19)
involves n, equations and 2n, + n; + 2 unknowns while the set
(20) involves ny + 1 equations and n, + np + 2 unknowns. The
set (19)-(20) is often called ‘compensated normal equations’
since its use for estimating 8y requires an estimate of the input-
output noise statistics. However, as we have more unknowns
than equations, a set of additional equations is required to solve
the EIV identification problem.

Let us define the g x 1 vector of delayed input observations
Ol (t) = [u(t—np—1) u(t—np—2) ... u(t—np—q)]*. 21)
Multiplying both sides of (12) by % (¢) and taking the expec-
tations we get
Tty = Ryap 00 + 715 — Rya g bo. (22)
Because of (4) and Assumptions A5-A7 we have rq; = 0 and
R a5 = 0 so that
Tty = Ry fo. (23)
Relation (23) represents a set of g high-order Yule-Walker
(HOYW) equations that can be used in conjunction with the
compensated normal equations (19), (20) in order to get a
system of n, + np + 1 + ¢ equations with 2n, + nb + 2
unknowns. Therefore, by properly choose ¢, the system (19),
(20), (23) becomes a set of noise-compensated equations that
can be exploited to solve Problem 1.
Remark 2. When the output noise §(t) is arbitrarily autocor-
related the choice of delayed inputs (21) is the only one leading
to a set of HOYW equations like (23). In fact, the use of delayed
outputs increases both the number of equations and the number
of unknowns (autocovariances of §(t)) (Séderstrom, 2008).
Remark 3. As r,q, and R,i, can be estimated from the
available observations, Eq. (23) could be used directly to solve
Problem 1 i.e. to to get an estimate of 0y provided that ¢ > n,+
ny + 1. This approach can also be seen as a basic instrumental
variable (IV) method using delayed noisy inputs as instruments
(Soderstrom and Mahata, 2002; Soderstrom, 2018). However,
it has been shown that the use of both the normal and the HOYW
equations leads to a better estimation accuracy (Soderstrom,
2008; Thil et al., 2008; Diversi and Soverini, 2015).

4. AN OFFLINE IDENTIFICATION ALGORITHM

Bearing in mind our final objective, that is a recursive iden-
tification algorithm, we will exploit (20) and (23) but not
(19), thus avoiding the use of the output noise autocovariances
r5(0),...,r5(ng). This choice will lead to an offline identifi-
cation algorithm that allows a recursive form, as shown in the
following. Moreover, the estimation of the output noise auto-
covariances is often bad so that their use does not necessarily
improve the estimate of 6 (Soderstrom, 2008).

The set of equations (20), (23) can be written in the compact

form .
[Twuy] — |:Rtpy</9u Rgautpu:| 90 —|—6’ZJ90 (24)
Toly Ryae
where
J = |:O(nb+1)><na I’m,-l-l:l ) (25)
qu(na+nb+l)

The number of equations is nb + 1 + ¢ while the number of
unknowns is n, + ny + 2, the parameters 6, and the input noise
variance 2. Then, the integer ¢ in (21) must be chosen such
that ¢ > n, + 1. Let us rewrite (24) as follows

p= RO+ 5270, (26)

with obvious meaning of the terms p and R. If an estimate 3’5
of 55 were available, an estimate 6 of 6y could be computed

6= (R-52J)"p Q7)
where RT denotes the pseudoinverse of R. Conversely, if an

estimate # were known, the input noise variance could be
estimated by exploiting the first n;, + 1 relations of (24):

22 _ ebT (ngsau 0o + Ry, 06 — Tsauy)

u égﬂéb
where § = [é,f or ] T (see (11)). The system (24) can thus be
seen as a set of noise-compensated equations because the effect
of the additive input noise is compensated in (27) by using the
estimate (28). Relations (27) and (28) lead to the following

iterative identification algorithm.
Algorithm 1.

; (28)

(1) Starting from the available observations u(1), ..., u(N)
and y(1),...,y(N), compute the sample estimates 7.,
Ry o Rpyous Tpiy and Ry, ,. Then, define

A [fsouy] R= nggou Ry, 0.
p=1. = u
Toly Ry,

(2) Compute an initial estimate 6o of 0y and set ok = 90 =
[éakT O,k T T

(3) Compute the following estimate of the input noise vari-

ance
2ok o eka(nggﬂuos + R¢1I,Wu6llf - ftpuy)
52 = Al )
B FT )
(4) Update the parameter estimate as follows
. .. +
g+t — (R _ G2k J) P (30)
(5) Set 6% = 01 and go 10 step (3).
(6) Repeat steps 3—5 until
gk+1 _ gk
[16%+4]

where ¢ is an assigned convergence threshold.

Remark 4. A possible initial estimate 6° can be obtained from
Tty = Rs@ﬁs@ 6 (32)

by choosing q > n, + np + 1, see Remark 3.

Remark 5. While iterating steps 3-5 it is advisable to perform

a check on the estimation of 5% and keep it within the range

(0,62), where 62 is the top left element of }AE%%, i.e. an
estimate of the noisy input variance 2. This condition is easily
obtained since the value of 2 is surely positive and from (4)
and Assumptions A7 we have 0% = o2 , T 0

Remark 6. Note that Eq. (26) is bilinear in the unknowns
0y and 63 and steps (3) and (4) of Algorithm 1 represents
the solution of two separate least squares problems. Therefore,
Algorithm I leads to the minimization of the loss function ||p —
(R — &2 J)00||% with respect to 0y and G2.
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5. RECURSIVE EIV IDENTIFICATION

The recursive formulation of Algorithm 1 starts from equation
(26), which is reformulated as follows:
0=R"p—G2RTJ0. (33)
Equation (33) can be seen as the iteration of the computation of
0 at time ¢ given its value at time ¢ — 1:
0(t) = RT(t) p(t) — G2(t) RY () JO(t —1).  (34)
For the sake of compactness the time index is indicated as
superscript from now on (e.g. 6(t) = 0*,y(t) = y'). The main
goal now is to get suitable recursive update of the quantities
at time t involved in (34) starting from their values at time
t — 1, with particular attention to the pseudo-inverse R
(Friedlander, 1984) provides the tools to update the pseudo-
inverse without an actual inverse computation, only using the
inversion of a two-by-two matrix, a well-known formulation. It
was introduced to provide a recursive version of the standard
overdetermined recursive instrumental variable (ORIV) and in
the following we will adapt the calculation to our estimation
problem. Firstly, we redefine (34) by splitting the pseudo-
inverse into its components

0t = PR pt — 52 PIRY g6, (35)
with P~! = RTR. The original ORIV method does not take
into account sample covariance matrices and vectors like R
and p, that are required by Algorithm 1 in order to solve the

identification problem. Then, the update of all of the terms
involved becomes:
t

_ 1
S*nb+q+1

=S ,,8

m 29

:t_nb_q Z Foy’ + Poy’

s=np+q+1
T—1, _
=—0'+ so;yt, (36)
with 7 = ¢t — np — ¢, and the (ny + q) x 1 vector containing
T
all the involved samples of wu(t), ¢!, = [‘PZT 90?; ]T. The

computations for ! are analogous and produce the following
recursive update:

. -1 1
R = R 4 gl (37)

p
On the other hand, P? is computed with a similar concept in
mind, but in this case we start from the decomposition of its
inverse:

Nl 1 _
R 4 =gl et
+ =

u

T—1., 7 1 | |7—1
_ Bt L Lt
+T§0‘p

tT

O e | r T-—1
_ p-17 - ot + o

72 2 72
+ ithtth (ptT
2 u ru
_ (T 721)2Pt—1
T
1 " 0 7-1 ntT
N w)&=4¢f%><wT
T—1)2 ., 1 ~1 T
_ ( 7_2 ) Pt 4 ﬁd)tAt ¢t (38)

where nt = RV L ¢t = (nt ') and A is

- 0 7-1
A = .
(T—l@ff@i)

Therefore, by applying the inverse operator and the well-known

matrix inversion lemma, we obtain
pt — > pt-1 1 If)t—l(bt
(T —1)2 (1 —1)2
2

1 T A4 g -t T
e ] T

(39)

¢tT Pt— 1 (40)

where given
U A S N T VR
(r—1)2 T—1 0 (r—1)2
we have the update of P*:
pt — 7 (Ptfl
C(r—1)2

% [¢tTpt—1¢t _i_]\t}*l (thpt—l)_ (42)

Finally, with all the updates computed, the whole recursive
algorithm can be summarised as follows

o Pt71¢t

Algorithm 2.
(1) o' —Rt et
(2) ¢ = (o' so;)
—tT —t
At = Py Pu T 1
(3) ( u T

—tT ~t—1
- ()

(5) Kt = Pt [¢tTf3t—l¢t +At:|_
(6) p' =T+ 200y

(7) Rt _ T*lRtfl + IQZQO
(8) Pt = - 1)2 <Pt 1 Kt¢tTpt—1)
T T ~ ~ .
A e N W ek )
" 0" ot
(10) gt — pthT ot _ A2t pthT Jot-1

The initial step may be defined in the following way
9° = al, = wjna—&-nby
Y =0, RY =0,
with v and 1 any small and large positive number, respectively,
and 1 a vector of all ones with the same size of 6.
Remark 7. The algorithm requires the inverse of a 2 X 2 matrix
at point (5). This can be easily tackled during the algorithm
implementation by defining

r= [T 0P - Do) + Aw)] = [ 1112,
21 122
and then, by the well known formula obtain the inverse:
1 [ T2 —F12}
F1Tge —Tyoley | —T21 ' |7
Remark 8. While iterating the algorithm it is advisable to

perform a check on the estimation o' and keep it within the
range (0,52), with the latter being one of the diagonal elements

of R%% (see Remark 5).

(43)

=

The algorithm in this formulation is not able to track parameters
changes online when 7 becomes bigger and bigger. Typically, a
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forgetting factor is inserted in the various updates to avoid this
issue, however in our case it would invalidate the estimation of
2. The simplest way to implement a behaviour similar to the
insertion of a forgetting factor in this recursive form is to fix 7
to a predefined time window.

6. SIMULATION RESULTS

The proposed identification algorithm in both offline and re-
cursive form is tested on input-output sequences generated
by the following second-order EIV models, one considered in
(Soderstrom and Mahata, 2002; Thil et al., 2008), and the other
one proposed by us. They are model 1

271 40.5272
Yo(t)

= t
1-152"14+0.722 uo(?)
and model 2

1.5271 - 0.9272 )
(v
1-022"1-048272 "
where the noiseless input is an autoregressive process given by

1
£ = ¢
wlt) = g5 11052 W

and e(t) is a white process with variance o2 = 1. Then, the
input noise %(t) is a white process whereas the output noise
7(t) is a first order ARMA process given by

_ 1403271

y(t) - 1— 0.62’_1 ’UJ(t),

where w(t) is a white process. The variances G2 and G2, are
chosen in order to test the algorithms with SNR of 10dB and
5dB. The corresponding input noise variance values and the
algorithm estimation performances are presented in Table 1
showing the parameters mean and standard deviation obtained
after a Monte Carlo simulation of 1000 runs with N = 3000
samples each. The number of HOYW equations is set to g = 10.
Algorithm 1 is initialised as stated in Remark 4, while Algo-
rithm 2 is initialised with « = 0.01 and v = 10. The table
shows very promising results concerning the models parameter
estimation, producing reliable estimations at both SNRs with
both algorithms. Besides, the estimation of the noise input
variance is weaker, but still reliable and within the standard
deviation range. However, the result highlight is that Algorithm
2 has almost the same estimation performance as Algorithm 1,
suggesting an acceptable trade-off between computation effi-
ciency and estimation accuracy when deploying the recursive
version. Figure 2 presents the evolution of the recursive algo-
rithm (Algorithm 2) estimation during a run of the Monte Carlo
test with model 1. It shows the convergence of the parameter
estimation with just N = 3000 samples at 5 dB SNR. Also,
it shows how limiting 53 into its physical boundaries affects
the quantity evolution during the iterations. Finally, Figure 3
presents the tracking behaviour of the recursive estimator when
the time window is fixed to 7 = 3000 samples. It shows that
the step change from model 1 to model 2 does not impair the
estimation and after a transient the algorithm is back on track.

Yo(t) =

7. CONCLUSION

In this paper, we presented a novel estimation algorithm for
the identification of EIV models under the presence of white
input noise and colored output noise in both its batch and
recursive form. The method makes use of a combination of
part of the noise compensated normal equations and HOYW

0 500 1,000 1,500 2,000 2,500 3,000
Time
[
0.6 -
0.4 - Tl
0.2 ai —
0 | | | |
0 500 1,000 1,500 2,000 2,500 3,000
Time

Fig. 2. Estimation of Model 1 under SNR of 5dB with Algo-
rithm 2, 6 and 55 evolution over time.

40,000

20,000

Time

Fig. 3. Estimation of the parameter vector when changing from
model 1 to 2 under SNR of 5dB with Algorithm 2 with

T = 3000, 6 and 33 evolution over time.

equations involving delayed samples of the noisy input to esti-
mate the underlying model parameters. This structure permits
the derivation of an “inverse-free” recursive form of the algo-
rithm, evolved from the overdetermined recursive instrumental
variable method proposed in (Friedlander, 1984). Finally, the
presented simulation results show promising performances in
model estimation for both the batch and recursive form, even
in scenarios with low SNR, validating our proposition. In this
regard, the recursive version of the algorithm results useful for
practitioners in applications where online, real-time tracking
is required or computational constraints are involved: signal
processing, control, and system diagnostics are the first that
comes to mind.
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Table 1. True and estimated values of the model coefficients and of the input noise variance. Monte Carlo
simulation of 1000 runs performed with N = 3000 and ¢ = 10.

2

ail a2 b1 bo os
Model 1 10 dB-5 dB
True —-1.5 0.7 1 0.5 0.13-0.4
Algorithm 1 10dB —1.497 £ 0.020 0.698 £ 0.016 0.995 £ 0.072 0.498 £ 0.027 0.117 £ 0.081
Algorithm 1 5dB —1.490 + 0.036 0.692 & 0.029 0.979 4+ 0.123 0.499 + 0.044 0.358 & 0.153
Algorithm 2 10dB —1.497 + 0.020 0.698 & 0.016 0.995 4 0.071 0.498 4 0.026 0.117 4 0.081
Algorithm 2 5dB —1.490 + 0.037 0.692 £ 0.031 0.977£0.124 0.499 £ 0.043 0.356 £+ 0.156
Model 2 10 dB-5 dB
True ‘ —0.2 —0.48 1.5 —-0.9 0.15-0.4
Algorithm 1 10dB ‘ —0.200 £ 0.048 —0.471 +0.031 1.482 £0.077 —0.888 + 0.062 0.136 £ 0.048
Algorithm 1 5dB ‘ —0.201 £ 0.090 —0.450 + 0.059 1.444 £0.121 —0.860 £ 0.117 0.357 £ 0.093
Algorithm 2 10dB ‘ —0.199 £+ 0.046 —0.470 £ 0.020 1.481 £0.078 —0.885 £ 0.057 0.135 £ 0.017
Algorithm25dB | —0.191 +0.100 —0.443 + 0.063 1.437 £0.143 —0.844 + 0.126 0.354 £ 0.049
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