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Abstract 

The European mantis, Mantis religiosa L. (Mantodea Mantidae), is distributed all over Southern Europe, Africa and Asia, and has 

been reported as alien species in North America. Here we present the mitogenome sequence of an Italian individual and compare it 

with previously sequenced Chinese and Canadian samples. The assembled mitogenome has a length of 15,530 nucleotides and in-

cludes 13 protein coding genes, two ribosomal RNA genes, 23 tRNA genes (including the additional Arginine tRNA already observed 

in other M. religiosa mitogenomes), and the control region. Based on the inferred phylogenetic relationships, the Canadian sample is 

more closely related to the Italian than to the Chinese one, in line with the putative European origin of the North American invasive 

population. Time-calibrated phylogeny dated the divergence among extant European Mantis lineages at 2.33 million years ago, con-

sistent with the first appearance of M. religiosa fossils. Our results support a European origin of the North American M. religiosa 

population and suggest that selective processes acting on mitogenome may have contributed to its adaptation in the new area. 

Key words: Mantidae, Mantis religiosa, mitogenome, time-calibrated phylogeny. 

Introduction 

The European mantis, Mantis religiosa L. (Mantodea 

Mantidae), is among the most common mantis species. It 

is widely distributed all over Southern Europe, Africa 

and Asia, and has been reported as having been intro-

duced in North America from Europe (Cannings, 2007; 

Battiston and Fontana, 2010). In the last decades, the 

warmer temperatures associated to the global climate 

changes also caused a northward range expansion of this 

species in Europe (Linn and Griebeler, 2015). M. religi-

osa is considered as of Least Concerns by the IUCN, alt-

hough specific threats are recognized locally: in fact, 

some European countries included this species in protec-

tion and conservation programs (Battiston, 2016). 

Understanding the genetic structure and the evolution-

ary history of threatened species could be important to 

better analyse the processes underlying the current popu-

lation distribution pattern and to manage conservation 

plans (Frankham, 2003). In fact, the analysis of genetic 

markers may help in understanding the extent of genetic 

diversity (including loss of variability or inbreeding), 

which may also inform about possible population bottle-

necks, the population size variation through time, the 

gene flow between populations or even the possibility of 

adaptive variations (Hedrick, 2001). Moreover, at the 

same time, DNA-based methods are also useful to iden-

tify and monitor alien/invasive species (Darling and 

Blum, 2007). Genetic analyses helped to identify and 

track invasions of some exotic/invasive insects such as, 

for example, termites (Scicchitano et al., 2018; Ghesini 

et al., 2020), flies (Kremmer et al., 2017; Rota-Stabelli et 

al., 2019) or the infamous brown-marmorated stink bug 

Halyomorpha halys (Stal) (Gariepy et al., 2014; Cesari et 

al., 2018). 

To this goal, however, it is necessary to develop spe-

cific genetic resources necessary to provide useful mark-

ers for population delimitation and genetic diversity in-

ferences. 

The complete mitogenome of M. religiosa has already 

been sequenced from a Chinese (Ye et al., 2016) and a 

Canadian (Jia et al., 2019) sample: they show the very 

same structure, including a specific additional Arginine 

tRNA (trnR). Samples from Europe are still missing, im-

pairing the understanding of inter-population divergence 

and the correct inference of the colonization route of the 

introduced North American population. Here we report 

the sequencing of the mitogenome from an Italian sam-

ple: our dated phylogenies and molecular evolution stud-

ies clarify the M. religiosa population structure and sug-

gest an episodic mitogenomic adaptation event. 

Materials and methods 

The sample (stored under the accession praySGP13 at 

MoZoo Lab, Department BiGeA, University of Bologna) 

was collected in San Giovanni in Persiceto (44°38'27"N 

11°11'06"E), Italy. Total DNA was isolated from legs 

with Stratec DNA Isolation Kit (Invisorb) and subjected 

to Next Generation Sequencing with the Illumina 

HiSeq2000 platform. Two libraries with 350 bp and 

550 bp insert size, respectively, were sequenced to pro-

duce 125 bp pair ends. Raw reads were trimmed with 

Trimmomatic using default settings (Bolger et al., 2014) 

and assembled with Platanus Genome Assembler 

(Kajitani et al., 2014). The mitogenome was deposited in 

NCBI Genbank under the accession number MZ153073. 

We obtained full mitogenomes of Mantidae species 

available from NCBI Genbank (last accessed in December 
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2020) as well as the sequence of the cryptic mantis          

Sibylla pretiosa Stal, which was used as outgroup. We 

then extracted the protein coding genes (PCGs) se-

quences from each mitogenome and aligned them using 

the Clustal W algorithm implemented in Mega X (Kumar 

et al., 2018). Finally, Maximum Likelihood and Bayesian 

phylogenetic analyses were carried out on the concate-

nated PCGs nucleotide alignments using IQ-Tree (Trifi-

nopulos et al., 2016), with 1000 ultrafast bootstrap repli-

cates, and with BEAST v. 1.8 (Drummond and Rambaut, 

2007), ran for 20 × 106 generations, respectively. Both 

analyses were performed using the GTR+G+I substitu-

tion model. The Bayesian tree was time calibrated using 

the first appearance of a Mantidae fossil, namely            

Eobruneria tessellata Cockerell, dated at 35.5 million 

years ago (Cockerell, 1913) (Mya; Paleobiology Data-

base at http://fossilworks.org/, last accessed December 

2020): the calibration was implemented with an exponen-

tial distribution and a soft maximum bound at 150 Mya. 

The likelihood ratio test, as implemented in Mega X, re-

jected (P = 1.9 × 10−44) the hypothesis of substitution rate 

constancy among branches; therefore, a lognormal re-

laxed clock was used to model the substitution rate het-

erogeneity across lineages. The Birth-Death model was 

used as tree prior. 

We used the branch-site test implemented in PAML 

(Yang, 2007) to evaluate whether the mitochondrial 

PGCs underwent positive selection along the Canadian 

M. religiosa lineage. In this test (branch-site model A, 

test 2; Yang et al., 2005), the level of selective pressure 

ω = dN/dS can vary both among sites in the coding region 

and across branches on the tree (model = 2, NSsites = 2). 

The null model fixed ω2 = 1 (fix_omega = 1, omega = 1), 

whereas the positive selection model allowed ω2 > 1 

(fix_omega = 0, omega = 1) in the foreground species, 

i.e. in the Canadian M. religiosa lineage. A Likelihood 

ratio test (LRT) was subsequently used to test for the best 

fitting model. Moreover, aBSREL test (Smith et al., 

2015) was also used to check for episodic positive selec-

tion events on the Canadian M. religiosa branch. The 

aBSREL test implements a branch-site model and infers 

the optimal number of ω categories to which sites on par-

ticular branches are assigned. 

Results and discussion 

The assembled mitogenome is 15,530 base pairs (bp) 

long and includes 13 PCGs, two ribosomal RNA genes, 

23 tRNA genes (thus, including the additional trnR), and 

the control region (figure 1). The same structure and gene 

order was also found in previous M. religiosa sequencing 

(Ye et al., 2016; Jia et al., 2019). Nucleotide content is 

highly AT-rich (76.8%), as commonly reported in insects 

Figure 1. Map of the sequenced Mantis religiosa mitochondrial genome. 
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Figure 2. Time-calibrated phylogenetic tree of Mantidae based on concatenated mitochondrial genes. Number at nodes 

represent Maximum Likelihood bootstrap/Bayesian posterior probability (dash indicates bootstrap values <50). 

Timescale (Million years ago, Mya) is reported below the tree; the fossil-calibrated node is indicated by the black 

dot. Bars at nodes represent the age 95% high posterior density. Branches are colored based on the substitution rate, 

as indicated in the upper left legend which indicates the number of nucleotide substitutions/site/million years. NCBI 

Genbank accession numbers of mitogenomes are also reported; presently sequenced sample is highlighted in bold. 

(Cameron, 2014). The start codon of most PCGs is ATN 

(with N being any nucleotide) but for the cox1, where it 

is TTG. Stop codon was always TAA, except for cox2 

and nad5, where it was incomplete (T--) and likely com-

pleted after the addition of AA upon transcription (Boore 

et al., 1999). The overall nucleotide variability, calcu-

lated as the proportion of different nucleotides between 

sequences, across PCGs of the three M. religiosa samples 

was 1.68%, the most variable gene being the nad6 

(3.20%) and the least variable being the nad5 (1.20%). 

The Italian mantis was slightly more similar to the Cana-

dian sample, with a divergence of 1.63%, than to the Chi-

nese one (divergence = 1.73%). 

Maximum Likelihood and Bayesian tree shared the same 

topology, although two nodes were not supported by the 

Maximum Likelihood analysis (figure 2). The phyloge-

netic relationships are in line with previous analyses (Ye 

et al., 2016; Zhang et al., 2018); the three M. religiosa 

samples are correctly clustered together, in sister relation-

ship with the Statilia maculata (Thunberg) mitogenome. 

Timing of cladogenetic events indicated the divergence of 

M. religiosa from its sister lineage at about 36.7 Mya, in 

full agreement with previous analyses (Vidal-García et al., 

2020). Moreover, the divergence among extant European 

mantis linages was dated back to 2.55 Mya with a 95% 

high posterior density of 1.95 Mya - 4.14 Mya. This is con-

sistent with the first appearance of M. religiosa fossils that 

occurred between 3.6 Mya and 2.6 Mya (Beier, 1967). 

The Italian and the Canadian M. religiosa samples re-

sulted more closely related to each other, confirming a 

European origin of the Canadian population (Cannings, 

2007; Battiston and Fontana, 2010). It is interesting to 

note that along the branch leading to the Canadian sam-

ple there is an increase of the nucleotide substitution rate 

rate
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Table 1. Maximum likelihood estimates of ω for the site classes ω0 (under purifying selection in both background and 

foreground branches), ω1 (under neutral evolution in both background and foreground branches), ω2a (under neutral 

evolution in the background and positive selection in the foreground branches) and ω2b (under purifying selection in 

the background and positive selection in the foreground branches). The foreground branch is the Canadian M. relig-

iosa lineage and values were estimated by the Branch-site model A. 

Site class ω0 ω1 ω2a ω2b 

Proportion 0.98509 0.01446 0.00044 0.00001 

Background ω 0.01524 1.00000 0.01524 1.00000 

Foreground ω 0.01524 1.00000 236.5 236.5 

(figure 2). Additional results of the PAML analysis indi-

cate that this rate acceleration is associated with an in-

crease in non-synonymous substitution rate due to the ac-

tion of positive selection (P < 0.001; table 1). The aB-

SREL test confirmed this finding, indicating episodic 

positive selection on the Canadian M. religiosa branch 

(P < 0.01; ω1 = 0.036; ω2 = 0.044; ω3 = 382.0). Positive 

selection on mitochondrial PCGs has been correlated 

with local adaptation, with special regard to temperature 

conditions (Florencia Camus et al., 2017; Lajbner et al., 

2018; Li et al., 2018; Coyle et al., 2019), including in 

introduced insect populations that experience novel envi-

ronmental conditions (Li et al., 2016). We can thus hy-

pothesize that after its recent introduction in Canada from 

Europe, the M. religiosa population underwent a phase of 

adaptation to a colder environment. 

Overall, our results provide evidence for a European 

origin of the Canadian M. religiosa population and sug-

gest that selective processes may have contributed to the 

fast spread of the introduced population. 
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