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Bayesian conditional mean estimation in log-normal linear

regression models with finite quadratic expected loss

ENRICO FABRIZI
DISES, Università Cattolica, Piacenza

CARLO TRIVISANO
DS, Università di Bologna

Abstract

Log-normal linear regression models are popular in many fields of research. Bayesian
estimation of the conditional mean of the dependent variable is problematic as many choices
of the prior for the variance (on the log-scale) lead to posterior distributions with no finite
moments. We propose a generalized inverse gaussian prior for this variance and derive the
conditions on the prior parameters that yield posterior distributions of the conditional mean
of the dependent variable with finite moments up to a pre-specified order. The conditions
depend on one of the three parameters of the suggested prior; the other two have an influence
on inferences for small and medium sample sizes. A second goal of this paper is to discuss
how to choose these parameters according to different criteria including the optimization of
frequentist properties of posterior means.

Keywords: Generalized inverse Gaussian, Generalized hyperbolic distribution, efficient esti-
mation, prior specification

1 Introduction

Log-normal linear regression models are common in many fields of applied research including

environmental sciences (El-Shaarawi and Viveros, 1997), medicine (Olin et al., 2007; Ahn et al.,

2006), economics (Zellner et al., 1966; Mankiw et al., 1992), life testing and reliability studies

(Nelson, 1990). In its simplest form, that we consider in this paper, the log-normal regression

model may be described as follows. Let (yi,xi), i = 1, . . . , n, be a random sample, y the dependent

variable and xi a (p+ 1)× 1 vector of covariates. We assume that

yi ∼ Logn(xTi β, σ
2) (1)

that implies a linear specification for the conditional expectation of the logarithmic transformation

of the dependent variable z = log(y), that is zi ∼ N(xTi β, σ
2) or equivalently zi = xTi β+ui where

ui
ind∼ N(0, σ2).

Given a new point x0 in the covariates’ space, a researcher may be interested in estimating the
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Bayesian log-normal linear regression

conditional mean of the response variable:

θ(x0) = E(y0|x0) = exp
(
xT0 β +

1

2
σ2
)

(2)

This estimation problem has been considered by many authors in the literature (Finney, 1941;

Bradu and Mundlak, 1970; El-Shaarawi and Viveros, 1997; Shen and Zhu, 2008).

If, in line with many applications, we assume a flat prior on the regression coefficients, i.e.

p(β) ∝ 1, it easily follows that xT0 β|y, σ2 ∼ N(xT0 β̂, h00σ
2) where β̂ =

(
XTX

)−1
XT z, X =

(x1, . . . ,xn)T , z = (z1, . . . , zn), y = (y1, . . . , yn) and h00 = xT0 (XTX)−1x0. Similarly, for η(x0) =

log{θ(x0)} we have that η(x0)|y, σ2 ∼ N(xT0 β̂ + 1
2σ

2, h00σ
2), so it follows that θ(x0)|y, σ2 ∼

Logn(xT0 β̂ + 1
2σ

2, h00σ
2) a posterior distribution that may be summarized using a quadratic loss

function or a relative quadratic loss function, as suggested by Zellner (1971), in order to obtain

a point predictor with smaller frequentist MSE. A problem closely related to that of estimating

(2) is the prediction of y0 = exp(x0β + u0) that is relevant for instance in finite population

inference (Karlberg, 2000). We note that since xt0β|y, σ2 ∼ N(xt0β̂, h00σ
2) then xt0β + ε0|y, σ2 ∼

N(xt0β̂, (1 + h00)σ2). For this reason, our results on the estimation of (2) readily extends to the

problem of predicting y0.

If a reference prior p(σ2) ∝ σ−2 is assumed for the residuals’ variance we obtain that xT0 β|y ∼

t
(
n− p,x0β̂, S

2h00

)
where S2 =

∑n
i=1(zi − xTi β̂)2/(n− p− 1). As a consequence

exp{xT0 β}|y ∼ logt
(
n− p− 1,x0β̂, S

2h00

)
. (3)

Moments of all orders of the logt distribution do not exist, making impossible to summarize this

posterior using popular loss functions, such as the quadratic. Similarly, moments of θ(x0)|y do not

exist as well, as noted also by Zellner (1971, footnote n. 9). This problem, that we illustrated for

the reference prior p(β, σ2) ∝ σ−2, remains for other popular prior choices including informative

normal priors for β, Jeffrey’s, Inverse Gamma prior for σ2, as it will be shown later on. Moreover it

is not specific to Bayesian analysis of the model. We note that the marginal sampling distribution of

ẑ0 = xT0 β̂, the ordinary least square predictor is t so its exponential transform will be characterized

by non-existing sampling moments.

In this article we suggest the use of a generalized inverse Gaussian prior for σ2. This rich

family of distributions includes gamma, inverse gamma, inverse Gaussian and many others as

special cases. In the analysis of the regression model it has been considered by several authors
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(Tabane and Haq, 2008; Griffin et al., 2010; Li and Lin, 2010), while Fabrizi and Trivisano (2012)

use it in the analysis of the special case of (1) obtained xTi β = ξ. We derive the conditions on its

parameters that guarantee the existence of posterior moments of order r, (r > 0) for θ(x0). This

result extends the one in Fabrizi and Trivisano (2012) to the multivariate regression setting.

The choice of prior parameters may have a considerable impact on the posterior distribution

of quantities of interest in the analysis of the log-normal linear model for small and moderate

sample sizes. A second objective of this paper is to discuss how these parameters can be chosen

to achieve specific inferential goals. A first choice is based on the idea of resuming posterior mean

and variance we would get for p(β|y) under a reference prior p(σ2) ∝ σ−2. We consider also choice

criteria based on minimization of frequentist mean square error (MSE) of θ̂B(x0) = E{θ(x0)|y},

the ‘Bayes estimator’ of θ(x0) under quadratic loss. This choice leads to estimators that compare

favourably with known alternatives in the literature (Shen and Zhu, 2008) in terms of frequentist

MSE.

The paper is organized as follows. In section 2, we shortly review the generalized inverse

Gaussian and the generalized hyperbolic distributions; the latter is involved as p{η(x0)|y)} is

whithin this class. In section 3, we present the analysis of the log-normal regression model under

the proposed prior distribution for σ2. Section 4 is about prior parameters choice. In section 5,

θ̂B(x0) is compared to alternative estimators of θ(x0) in terms of frequentist properties using a

simulation exercise similar to that considered in Shen and Zhu (2008). Section 6 considers an

empirical application from the field of accelerated life testing. Section 7 offers some conclusions.

The proofs of the theorems (Appendix A) and additional results from the simulation exercise

(Appendix B) are available in the on-line supporting information file.

2 The generalized inverse Gaussian and generalized hyper-

bolic distributions

In this section we introduce the generalized inverse Gaussian (GIG) and generalized hyperbolic

(GH) distributions, establish the notation and list some properties that will be used in subsequent

sections. For more details on these distributions, see Bibby and Sørensen (2003) and Eberlein and

von Hammerstein (2004), among others.
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The density of the GIG distribution may be written as follows:

p(x) =
(γ
δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{
− 1

2

(
δ2x−1 + γ2x

)}
1R+ (4)

The permitted parameters are δ > 0, γ ≥ 0 if λ < 0; δ, γ < 0 if λ = 0; δ ≥ 0, γ > 0 if λ > 0.

The moments of the GIG can be expressed as functions of the modified Bessel functions of the

third kind (the Bessel-K function from now on):

E(Xj) =

(
δ

γ

)j
Kλ+j(δγ)

Kλ(δγ)
. (5)

Fabrizi and Trivisano (2012) show that, for γ > 0, the approximation

E(X) ∼=
λ+

√
(λ2 + δ2γ2)

γ2
(6)

is adequate in most cases. Many important distributions may be obtained as special cases of the

GIG. For λ > 0 and γ > 0, the gamma distribution emerges as the limit when δ → 0. The

inverse-gamma is obtained when λ < 0, δ > 0 and γ → 0 and an inverse Gaussian distribution is

obtained when λ = − 1
2 .

Barndorff-Nielsen (1977) introduce a general class of multivariate distributions, the mul-

tiviariate generalized hyperbolic (MVGH) distributions as scale mixtures of Gaussian vectors.

Specifically, if (X|W = w) ∼ MVNd(µ + wψ∆, w∆) and W ∼ GIG
(
λ, δ,

√
α2 −ψT∆ψ

)
then

X ∼MVGHd(λ, α,µ,∆, δ,ψ) which is characterized by the density

f(x) =
(α2 −ψT∆ψ)λ/2

(2π)d/2
√
|∆|αλ−1/2

Kλ− d2

(
α
√
δ2 + (x− µ)T∆−1(x− µ)

)
e−ψ

T (x−µ)

Kλ

(
δ

√
α2 −ψT∆ψ

)(√
δ2 + (x− µ)T∆−1(x− µ)

) d
2−λ

(7)

The parameters domain is: λ ∈ R, α > 0, δ ≥ 0 ψ ∈ {u ∈ Rd : α2 − uT∆u > 0}; ∆ is a

semi-positive definite matrix. Sometimes the constraint |∆| = 1 is added to solve identifiability

problems in estimation but it is unnecessary here. We have that: E(X) = µ + E(W )∆ψ and

V (X) = V (W )∆ψψT∆+E(W )∆. More details about this distribution can be found in Breymann

and Lüthi (2013).
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3 Analysis of the log-normal regression model using gener-

alized inverse Gaussian prior for σ2

As anticipated in the Introduction, let (yi,xi), i = 1, . . . , n, be a random sample y the dependent

variable and xi a p× 1 vector of covariates. Let’s assume that yi ∼ Logn(xTi β, σ
2) or equivalently,

once defined zi = log(zi), zi ∼ N(xTi β, σ
2). We are interested in making inference on the model

parameters (β, σ2) and the conditional mean θ(x0) (see 2). We assume the following priors for

(β, σ2):

p(β|σ2) = MVNp+1

(
β0, σ

2V0

)
(8)

where β0 is (p+1)×1 vector and V0 a (p+1)×(p+1) positive definite matrix of known constants.

The popular Zellner’s g-priors are within this class provided that we set V0 = g(XTX)−1. The

smaller g is, the more weight the prior receives, while the case of non informative flat prior on β

is recovered for g → +∞. As for σ2 we assume:

p(σ2) = GIG
(
λ, δ, γ

)
(9)

which encompasses many important special cases as explained in section 2.

Conditionally on σ2, the following results follow from standard Bayesian analysis of the lin-

ear model: i) p(β|σ2,y) = MVNp+1

(
β?,V?

)
where β? = V?

(
XT z + V−1

0 β0

)
and V? =

(
XTX +

V−1
0

)−1
; ii) p(xT0 β|σ2,y) = N

(
xT0 β?, σ

2h0?

)
; with h0? = xT0 V?x0; iii) p{η(x0)|σ2,y} = N

(
xT0 β?+

1
2σ

2, σ2h0?

)
. The main results on the posterior distributions obtained integrating out σ2 are sum-

marized in the following

Theorem 3.1. If the log-normal regression model (1) is assumed and (8), (9) are specified as

priors for β and σ2 then:

i) p
(
σ2|y

)
= GIG

(
λ̄, δ̄?, γ

)
(10)

where λ̄ = λ − n−p−1
2 , δ̄? =

√
RSS + δ2 + (β̂ − β0)TXTXV?V

−1
0 (β̂ − β0) and RSS = (n − p −

1)S2;

ii) p
(
β|y

)
= MVGHp+1

(
λ̄, γ,β?,V?, δ̄?, 0

)
(11)

iii) p{η(x0)|y} = GH
(
λ̄, ᾱ, µ̄, δ̄, ψ̄

)
(12)
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where ᾱ =

√
h0?γ2+ 1

4

h0?
, h0? = xT0 V?x0, µ̄ = xT0 β?, δ̄ =

√
h0?δ̄?, ψ̄ = (2h0?)

−1. Moreover γ̄2 =

ᾱ2 − ψ̄2 = γ2/h0?.

Proof. See appendix A in the online Supporting Information.

Formula (10) states that the GIG prior on σ2 is conjugate to the normal likelihood and leads to

a very easily manageable posterior distribution. In particular, assuming λ̄ < 0, using (6) and a first

order expansion of the square root around λ we have that E
(
σ2|y

) ∼= δ̄2
?(2|λ̄|)−1 Using formulas

for the moments of the multivariate generalized hyperbolic distribution we get that E
(
β|y

)
= β?

and approximately that V
(
β|y

)
= V?

δ̄2?
2|λ̄| .

If we assume an improper flat prior on β (i.e. we set V0 = kIp+1 and let k → +∞) we have

that δ̄2
? =
√
RSS + δ2 and

E
(
σ2|y

) ∼= RSS + δ2

n− p− 1− 2λ
(13)

For the same prior choice, we have that β? = β̂, V? =
(
XTX

)−1
and in view of (13) we obtain

V
(
β|y

) ∼= (XTX
)−1 RSS + δ2

n− p− 1− 2λ
(14)

From (12) it follows that the posterior distribution of θ(x0) will be a log-generalized hyperbolic

distribution, whose moment of order r exists whenever the moment generating function is defined

for that r. We can state the following

Theorem 3.2. If the log-normal regression model (1) is assumed and (8), (9) are specified as

priors for β and σ2, we have that E
{
θ(x0)|y

}r
< +∞ if and only if the parameter γ in (9) is such

that:

γ2 > h0?

(
r2 +

r

h0?

)
(15)

Proof. See appendix A in the online Supporting Information.

From theorem 3.2 we get that the conditions on the parameters of the GIG prior for σ2 that

guarantee E
{
θ(x0)|y

}r
< +∞ reduce to a single condition on the γ parameter. In fact, the

parameter γ rules the weight of the right tail of the GIG distribution. Although we keep a (0,+∞)

support for the prior of σ2, the idea is that of specifying a prior with a very light tail. In fact the

smaller γ, the heavier the right tail of the GIG is. The popular inverse-gamma prior is a limit

case as it can be obtained as a special case of the GIG for λ < 0, δ > 0 and γ → 0. Thereby this

choice leads to E
{
θ(x0)|y

}r
= +∞ ∀r. The same happens to the reference prior mentioned in the

Introduction that may be approximated by p(σ2) = Invgamma(ε, ε) for some ‘small’ ε. Similarly,
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the uniform prior over the range (0, A) for σ (Gelman , 2006) implies that p(σ2) ∝ 1
σ1(0,A), which

may be seen as an approximation to a Gamma( 1
2 , ε) (where ε = (4A2)−1) truncated at A2. For

λ > 0, γ > 0 and δ → 0, GIG(λ, δ, γ) → Gamma(λ, γ2/2). If we let A → ∞, therefore, p(σ) ∝ 1

is equivalent to a GIG prior with γ → 0 and thus implies non-existent posterior moments.

Condition (15) depends also on h0?. Suppose we adopt a Zellner’s g-prior (V0 = g(XTX)−1)

then h0? reduces h0g = g
g+1h00 and (15) to γ2 > g

g+1h00r
2+r. The more information we incorporate

in p(β), i.e. the smaller g, the milder will be condition (15), even though we need γ2 > r even

when g → 0.

4 Choice of the generalized inverse Gaussian prior parame-

ters

Posterior distributions derived in theorem 3.1 are sensitive to the choice of prior parameters

(β0,V0) and (λ, δ, γ). As the impact of prior information on β on related posteriors has been

widely studied in the literature, in this section we focus on the choice of the GIG prior parameters

assuming β0 = 0 and V0 = kIp+1, k → +∞.

We discuss three different choices of the GIG prior parameters. The first choice represents a

default or ‘reference’ option that leads to posterior mean and variance of p(β|y) matching the

least square frequentist estimator of β and its variance (approximately in this latter case). The

remaining choices are based on the minimization of the frequentist mean square error of the Bayes

estimator θ̂B(x0). The resulting priors are x0-specific. The second choice of priors parameters we

suggest, eliminates this dependence using average values or other conservative elicitations, while

the third exploits this prediction specificity to obtain a Bayes estimator which is very competitive

in terms of efficiency with respect to other frequentist alternatives. In all cases γ will be chosen to

be big enough to guarantee finite quadratic loss for the estimation of the conditional mean θ(x0),

i.e. finite posterior expectation and variance.

4.1 Reference choice of prior parameters

We propose to choose λ = 0, δ = ε for some ‘small’ ε (such as ε = 0.01 or ε = 0.001) and

γ = γm =
√
m
(
4 +m−1

)
+ ε (16)

7



4.2 Choice of prior parameters Bayesian log-normal linear regression

where m = max{hii} and hii = xi
(
XTX

)−1
xi, i ranging over sample observations. We note that

m < 1 but it is much smaller than 1 in most practical situations.

The choice of λ = 0, δ = ε leads to E(σ2|y) = S2 according to (13) and V (β|y) ∼=
(
XTX

)−1
S2

according to (14), that is those obtained under the same flat improper prior for β and the ref-

erence prior p(σ2) ∝ σ−2 mentioned in the introduction. Moreover, since E{η(x0)|y} = xT0 β̂ +

ψ̄E(h00σ
2|y) and h00σ

2|y ∼ GIG
(
λ̄,
√
h00δ̄0, γ/

√
h00

)
(with δ̄0 =

√
RSS) then E{η(x0)|y} ∼=

xT0 β̂ + S2/2 which is a frequentistically unbiased estimator of η(x0), a property that is helpful

when building posterior probability intervals with good frequentist properties.

The suggested choice for γ is aimed at getting finite expectations and variances for p{θ(x0)|y}

for any h00 < m, a conservative choice that may be modified for specific prediction purposes.

4.2 Choice of prior parameters based on frequentist optimality criteria

In this section we discuss how the parameters of p(σ2) = GIG(λ, δ, γ) can be chosen in order to

minimize the frequentist mean square error (MSEs) of

θ̂B(x0) = exp(µ̄)

{
γ̄2

ᾱ2 − (ψ̄ + 1)2

}λ̄/2
Kλ̄

(
δ̄
√
ᾱ2 − (ψ̄ + 1)2

)
Kλ̄(δ̄γ̄)

= exp
(
xT0 β̂

){ γ2

γ2 −
(
h00 + 1

)}( 2λ−n−p−1
4 )K{λ−n−p−1

2 }

(√
(RSS + δ2){γ2 − (h00 + 1)}

)
K{λ−n−p−1

2 }

(√
(RSS + δ2)γ2

) .

This expression is obtained using the moment generating function of the univariate generalized

hyperbolic distribution; in view of (15) θ̂B(x0) is defined only if γ2 > h00 + 1.

We look for theMSEs-minimizing prior parameters first restricting the class of Bayes estimators

to those in the form

θ̃(x0) = exp
(
xT0 β̂

)
g(RSS) (17)

with g(RSS) > 1. The starting point of our discussion is the following result that is in line with

the approach of Rukhin (1986, section 2):

Theorem 4.1. Given θ̃(x0) = exp
(
xT0 β̂

)
g(RSS) with g(.) a real function of Y such that g(RSS) >

1, then g(RSS) minimizing MSEs
{
θ̃(x0)

}
is the same that minimizes Es

{
g(RSS)− exp

(
cRσ

2
)}

where

cR =
1

2
(1− 3h00) (18)

Proof. See appendix A in the online Supporting Information.
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4.2 Choice of prior parameters Bayesian log-normal linear regression

The presence in (17) of the Bessel-K functions makes the minimization of of Es
{
g(RSS) −

exp
(
cRσ

2
)}

analytically untractable. To circumvent this problem we propose to use a ‘small

argument’ approximation to the ratio of Bessel-K function in the (17), following an argument of

Fabrizi and Trivisano (2012, theorem 4.1). This approximation leads to a much simpler expression.

Theorem 4.2. Under the assumptions that i) (RSS + δ2)γ2 < 1, ii) 0 < (RSS + δ2){γ2 − (h00 +

1)} < 1, iii) λ < n−p−1
2 , we have that:

θ̂B(x0) ∼= exp
(
xT0 β̂

)
exp

{
(RSS + δ2)(h00 + 1)

4
(
n−p−3

2 − λ
) }

= θ̂b(x0) (19)

Proof. See appendix A in the online Supporting Information.

Although conditions i and ii are quite restrictive, Fabrizi and Trivisano (2012) and also simula-

tions applied in our context show that θ̂b(x0) approximates θ̂B(x0) adequately also when they are

not satisfied. We note that (19) is free of γ. This is in line with the fact that γ is a shape parameter

that rules the weight of the right tail of the GIG distribution; consistently (15) is expressed as a

function of γ only. The main result of this section can now be stated.

Theorem 4.3. Under the assumptions of theorem 4.2, the value of λ in (19) that minimizes

Es
{
g(RSS)− exp

(
cRσ

2
)}

is given by

λopt =
n− p− 3

2
− (h00 + 1)(n− p− 1)

4cR
− (h00 + 1)

4cR

δ2

σ2
(20)

Proof. See appendix A in the online Supporting Information.

We note that although g(RSS) in (19) is a function of (λ, δ) the minimum of Es
{
g(RSS) −

exp
(
cRσ

2
)}

is not a single point but a set of pairs described by (20). We propose to choose δ = ε

with ε ‘small’ (e.g. ε = 0.01 or ε = 0.001), for the following reasons: i) a ‘small’ δ removes the

dependence of λopt on the unknown σ2 so that

(λopt|δ = ε) ∼=
n− p− 3

2
− (h00 + 1)(n− p− 1)

2(1− 3h00)
; (21)

ii) the choice of a ‘small’ δ is line with section 4.1. Moreover if we replace λopt calculated according

to (21) and δ = ε into (19) it easy to show that

θ̂b(x0) ∼= exp

{
xT0 β̂ +

S2

2
(1− 3h00)

}
(22)

9



Bayesian log-normal linear regression

that is exactly the same predictor suggested by Zellner (1971) under relative quadratic loss function,

with the assumed known σ2 replaced by S2. We note that δ = 0 is not viable: this choice would

require a strictly positive λ which is unconsistent with (21) (see section 2 of this paper and Bibby

and Sørensen , 2003, p. 213, for more details). From (22) it is apparent that h00 >
1
3 would lead to

g(RSS) < 1 and λ > n−p−1
2 , a violation of the hypotheses of theorem 4.2. Moreover for h00 = 1

3

λopt is not defined. For this reason, values of h00 >
1
3 cannot be considered in the hyperparameters

choice strategy that we are illustrating.

As anticipated, λopt depends on x0 through h00. To avoid a prior that is prediction-specific we

may replace h00 with h̄ = n−1(p+1). As h̄ = n−1
∑n
i=1 hii, the average of the leverages associated

to sample observations, this choice may heuristically be motivated as optimal with respect to a

prediction associated to the unknown vector x? for which we assume a priori distribution that

matches the empirical distribution of in-sample xi. Note that h̄ < 1
3 whenever n > 3(p + 1), a

condition that is not very restrictive, even in small samples. According to this choice we obtain:

(λopt|δ = ε, h00 = h̄) ∼=
n− p− 3

2
− (n+ p+ 1)(n− p− 1)

2{n− 3(p+ 1)}
= λopt1. (23)

If we are willing to accept a x0-specific prior, or considering θ̂B(x0) as a frequentist estimator of

θ(x0), we can set λ according to (21). To respect the constraint g(RSS) > 1 and the assumptions

underlying theorem 4.2 we introduce the truncated leverage htr00 = min(h00,
1
3−ε) and consequently

suggest:

(λopt|δ = ε, h00 = htr00) ∼=
n− p− 3

2
− (htr00 + 1)(n− p− 1)

2(1− 3htr00)
= λopt2; (24)

We note that the threshold of 1/3 is very large and seldom crossed in most applications. In case

of p = 1, this crossing would imply that (x0 − x̄)2 > 1
3

∑n
i=1(xi − x̄)2 (with x̄ = n−1

∑n
i=1 xi).

Moreover the constraint h00 <
1
3 is imposed only in the choice of the GIG prior parameters, with

h00 appearing in (17) remains that specific to the prediction at hand.

5 A simulation exercise to assess the frequentist properties

of θ̂B(x0)

In this section we discuss a simulation exercise aimed at assessing the frequentist properties of

θ̂B(x0). As benchmarks we consider two proposals by Shen and Zhu (2008), that look for estimators

10
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of θ(x0) within the class (17) and assume g(RSS) = exp
(
c
2RSS

)
with c = (n− a)−1, a < n and

thus g(RSS) > 1. They consider a minimum-MSEs estimator θ̂SMM (x0) and a minimum bias

estimator θ̂SMB(x0).

Shen and Zhu (2008), section 4, prove that θ̂SMM compares favorably in terms of MSEs to many

alternatives popular in the literature and especially so in small samples. In particular it turns out

to be more efficient than the näıve back-transform, the restricted maximum-likelihood (REML)

estimator, uniformly minimum variance unbiased estimator (UMVU, see Finney, 1941; Bradu

and Mundlak, 1970), the bias-corrected REML estimator (El-Shaarawi and Viveros, 1997). Shen

and Zhu (2008) note by simulation that θ̂SMB behaves closely to the UMVU estimator in most

situations but it is much easier to calculate.

We use a synthetic population similar to that considered in Shen and Zhu (2008) but we

extend their setting to include other meaningful scenarios. We assume that, in the population yi ∼

Logn(β0 + β1xi, σ
2) where (β0, β1) = (1, 1) and the values xi are fixed constants and distributed

uniformly between 0 and 1. We consider three sample sizes n = (10, 20, 50) and four different

variances σ2 = (0.1, 0.25, 0.5, 1) that correspond to expected R2 of (0.46, 0.25, 0.15, 0.075) in the

log scale. With respect to Shen and Zhu (2008), we added the case σ2 = 0.1 to cover a situation

where the covariate have a good predictive power; higher values of R2 are not interesting, since

all estimators tend to behave very similarly. We consider estimation of θ(x0), x0 = (1, x0) for

x0 ∈ {0, 0.1, 0.2, . . . , 1.2}.

The estimators we compare are θ̂SMM (x0), θ̂SMB(x0) introduced by Shen and Zhu (2008)

and θ̂B(x0) for three different choices of the hyperparameters. Specifically we consider θ̂B1(x0) =

E{θ(x0)|y, λ = 0, γ = γm, δ = ε} as suggested in section 4.1; θ̂B2(x0) = E{θ(x0)|y, λ = λopt1, γ =

γm, δ = ε} and θ̂B3(x0) = E{θ(x0)|y, λ = λopt2, γ = γm, δ = ε} according to the MSEs-optimizing

argument of section 4.2, with non-x0-specific and x0-specific λs, respectively.

The Monte Carlo exercise is based on T = 500, 000 replicates. Computations are made by the

software R (version 3.0.2).

[Figure 1 about here.]

Results are summarized in Figure 1 and 2. Specifically, in Figure 1 we reported, for the various

x0, the ratios of the MSEs of the various estimators to the those of the MSE-optimal estimator

of (Zellner, 1971, formula 3.9) that assumes σ2 known and is therefore useful as a benchmark

but does not represent an alternative to the estimators being considered. We note that for small

and moderate sample sizes the choice of hyperparameters has a relevant impact on the frequentist

11
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performances of the various predictors. This is true with the exception of γ: provided it is chosen

according to (15) in order to guarantee the existence of posterior means and variances, different

choices of its value over a reasonable range does not affect the frequentist properties of Bayes

estimators considerably. The choice parameter λ, or equivalently that of δ is the one that really

impacts on the frequentist properties of the Bayes estimators. Moreover, we note that the posterior

distribution of θ(x0) under the various prior choices, tracks closely that of the associated Bayes

estimators with respect to repeated sampling.

The three Bayes estimators and the two proposed by Shen and Zhu (2008) perform differently

when σ2 is large and much less so when it is small. In relative terms, the impact of sample size n

looks minor; when σ2 = 0.1 all estimators being considered perform quite closely to that of Zellner

(1971) under known σ2 even in small samples, with the only partial exception of θ̂B1(x0).

The Bayes estimators based on frequentistically optimal choice of hyperparameters, i.e. θ̂B2(x0)

and θ̂B3(x0) perform closely to θ̂SMM (x0) for all x0 ranging from 0.1 to 0.9. Values outside this

range are associated to h00 >
1
3 when n = 10 while h00 <

1
3 in all cases for other sample sizes. For

‘extreme’ x0, θ̂B2(x0) outperforms all competitors, inlcuding θ̂SMM (x0).

The Bayes estimator θ̂B1(x0) is less efficient in terms of MSEs especially when σ2 is large and,

in relative terms, regardless of the sample size. It performs comparably to others when σ2 is small

(i.e. R2 ‘large’).

In Figure 2 we plotted the ratio of the Bias to square root of the MSEs of each estimator. In

this case we included the mentioned estimator of Zellner (1971) (notation: θ̂ZEL(x0)) in the set of

those being compared.

From Figure 2 we note that θ̂SMB(x0) has a negligible bias in all cases, while all the remaining

estimators exhibit a negative bias except θ̂B1(x0) whose bias is always positive. When estimating

θ(x0), a smaller MSEs than that of the UMVU estimator can be obtained only at the price of a

negative bias, that is accepting of systematically underestimating the target parameter.

The bias is relevant for all estimators except θ̂SMB(x0) and can reach nearly half of the square

root of the MSEs for ‘extreme’ x0.

[Figure 2 about here.]

The estimator θ̂B3(x0) exhibit a bias that tracks that of θ̂ZEL(x0) closely when h00 <
1
3 but

with a less variable ‘share’ of the square root of the MSEs over the range of the x0. For h00 >
1
3

its bias is a considerably smaller part of the square root MSEs when compared to θ̂ZEL(x0); in

the same setting θ̂B3(x0) is more biased than θ̂SMM (x0): its greater efficiency seems to bought at

12
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the price of some additional bias.

As far as θ̂B2(x0) is concerned, we note that the shape of the ratio of the bias on the root MSEs

changes with x0 differently from the same quantity calculated for θ̂B3(x0): heavier for intermediate

values, close to 0 on the right and left extremes. Altough designed to minimize MSEs the choice

of the hyperparameters is in this case insensitive to x0. When h00 is large, we end up choosing a

λ that is intermediate between 0 (that leads to positive bias) and λopt2 that entails a pronounced

negative bias.

We consider also the frequentist coverage of posterior probability intervals based on quantiles

(a 1 − π interval (π ∈ (0, 1)), will range between the quantiles π/2 and 1 − π/2 of the posterior

distribution). The small frequentist bias of θ̂B1(x0) leads to coverage probabilities close to the

nominal ones, while performances of θ̂B2(x0) and θ̂B3(x0) are less good, at least in some cases. A

more detailed account of the simulation results on the frequentist coverage of posterior probability

intervals can be found in Appendix B.

6 An application to real accelerated life testing data

In this section we present an application of the methodology illustrated in previous sections to a

real example from the field of accelerated life testing. We consider a data set discussed in Upadhyay

and Peshwani (2008), but initially reported in Nelson (1984). The data consists on a sample of

specimens for which a pseudo stress factor x (the specimen’s Young’s modulus times its strain) and

the number of test cycles y are measured. The sample points in the original application are 26,

but as we are not interested in censoring problems, we consider just 22 uncensored observations.

We use 19 out of them as a ‘training sample’, while three (labelled as a, b, c and corresponding

to observations 13, 22, 1 in (Upadhyay and Peshwani, 2008, table 2) are left out and used for

conditional mean estimation. These observations are chosen as follows: we generated all possible

samples that can be obtained excluding 3 out the 22 of the sample and calculate for each of

these cross-validation samples the leverage scores for the out-of-sample units. For each of the 22

observations in the original sample, we calculated the median leverage score over all cross-validation

samples in which they are not included. We select the three observation with the minimum, average

and maximum median leverage score.

The model that we consider is

log yi = β0 + β1 log xi + β2(log xi)
2 + ei
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with i = 1, . . . , n = 19 and ei
ind∼ N(0, σ2). We assume that this model holds also for the out-of-

sample units. Upadhyay and Peshwani (2008) study alternative models, where σ2 is allowed to

depend on x. Here, for simplicity, we do not consider heteroskedastic regression models on the log-

scale; this choice is acceptable as the hypothesis of homoskedastisticity is not rejected at α = 0.05

significance level using Breusch-Pagan or other popular homoskedasticity tests. The three selected

observations for out-of-sample the estimation of θ(xa), θ(xb), θ(xc) have leverage scores equal to

haa = 0.087, hbb = 0.137, hcc = 0.552.

We assume p(β, σ2) = p(σ2), p(σ2) = GIG(λ, δ, γ) and compare alternative choices of hyper-

paremeters. Posterior distributions are in known form. Required calculations may be performed

using for instance the package ghyp (Breymann and Lüthi, 2013) running under R.

[Figure 3 about here.]

Posterior densities of p{θb(xa)}, p{θb(xb)}, p{θb(xc)}, b = B1, B2, B3 are plotted in figure

3 (left). The vertical line corresponds to the actual value of the dependent variable. The three

posterior distributions tend to be close when the leverage is small (xa and xb cases), while in the

case xc they are different and p{θB3(xc)} is much more peaked, consistently with θ̂B3(xc) being a

more MSEs-efficient estimator; we note also that p{θB1(x∗)} is in all cases shifted to the right and

has a heavier right tail, as it may be expected from θ̂B1(x∗) being a positively biased estimator,

in costrast with the other two Bayes estimators that are negatively biased.

To shed more light on the impact hyperparameters of p(σ2) may have on posterior inference

when the sample size is small, in the right panel of figure 3 we plotted the posterior densities of the

regression parameter β1 under the alternative choices considered so far for the prior on σ2 and that

we label for short as B1, B2, B3(xa), B3(xb), B3(xc), along with that obtained under the reference

prior p(σ2) ∝ σ−2. As expected from (14), we have that when λ = 0, δ = ε (B1), the posterior

density is very close to that obtained under the reference prior. It appears slightly less peaked;

this is also expected as the prior choice B1 is characterized by lighter tails than the reference prior

as the first implies finite posterior variance for the conditional mean while the second does not.

Posterior densities associated to MSEs-optimal choices are more peaked (although characterized

by the same location); this effect is more pronounced as far as the h00 value substituted in (21)

gets high.

In summary, using the theory from section 4, we learned that a careful choice of hyperprior

parameters may lead to very efficient estimators of θ(x0) in terms of MSEs; when the sample size

is small the pursuit of this goal may on the other hand have undesired impacts on other aspects of
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inference, such as a deterioration of the frequentist properties of posterior distribution summaries.

7 Concluding remarks

In this paper we considered the problem of estimating the conditional mean of the dependent

variable in the log-normal linear regression model. We showed that many prior distributions for

the variance parameter (on the log-scale) lead to posteriors without finite moments, thus impossible

to summarize using common loss functions. We motivated the recourse to the generalized inverse

gaussian prior, derived the constraints on its parameter that allow for finite posterior moments of

a pre-specified order and discussed how to choose the remaining parameters of this distribution.

We introduced ‘reference’ choices that lead to posterior distributions for the regression coefficients

very close to those obtained under the usual reference prior; nonetheless the posterior expectation

of the conditional mean, when considered as frequentist ‘Bayes’ estimator, is suboptimal with

respect to known alternative estimators. Moreover, we adopted a frequentist optimality criterion,

i.e. minimizing the MSEs of the (approximated) posterior mean. The search for estimators of the

conditional mean with minimum MSEs has a long tradition in the literature, from Finney (1941)

to Shen and Zhu (2008). In this line we obtained a ‘Bayes’ estimator that compares favourably to

known alternatives in the frequentist literature.

The model we considered is very simple and can be generalized in many directions, namely

assuming dependent and/or heteroskedastic residuals. Nonetheless, the problem we focused on,

the non-existence of posterior moments for the conditional mean under many popular priors for

the residuals’ variance (on the log-scale), affects more general models in the same way as it affects

ours, i.e. every time we need to take the exp tranformation of a t distribution in the estimation

process. We developed a solution in an analytically tractable case, leaving extensions to more

general models for future research.

Supporting information

Additional Supporting Information may be found in the online version of this article.

Appendix A contains the proofs of theorems 3.1, 3.2, 4.1, 4.2, 4.3.

Appendix B is about the frequentist coverage of posterior probability intervals, discussed by

means of a simulation exercise as mentioned in section 5.
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Figure 1: Ratios of the MSEs of various estimators of θ(x0) to that of minimum-MSEs estimator
suggested by Zellner (1971) that assumes σ2 known
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Figure 2: Ratios of the Bias of various estimators of θ(x0) to the square root of their MSEs
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Figure 3: Posterior densities of conditional means θ(xa), θ(xb), θ(xc) (left); Posterior densities of
β1 under different priors for the σ2 parameter (right).

21


