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Abstract
Let � be a torsion-free lattice of PU(p, 1)with p ≥ 2 and let (X , μX ) be an ergodic standard
Borel probability �-space. We prove that any maximal Zariski dense measurable cocycle σ :
�×X −→ SU(m, n) is cohomologous to a cocycle associated to a representation of PU(p, 1)
intoSU(m, n),with 1 ≤ m ≤ n. The proof follows the line ofZimmer’ SuperrigidityTheorem
and requires the existence of a boundary map, that we prove in a much more general setting.
As a consequence of our result, there cannot exist maximal measurable cocycles with the
above properties when 1 < m < n.

1 Introduction

Given � ≤ L a torsion-free lattice of a semisimple Lie group, a fruitful way to study repre-
sentation spaces of � is based on numerical invariants coming from bounded cohomology.
Typically those invariants have bounded absolute value and representations attaining the
maximum (that is maximal representations) are all conjugated to some fixed representa-
tion of the ambient group. For instance, in the particular case of surface groups, Goldman
[15] studied the relation between the Teichmüller space and the maximality of the Euler
invariant. Indeed the maximality of the latter corresponds to the choice of a specific compo-
nent of the PSL(2,R)-character variety. By substituting PSL(2,R) with any Hermitian Lie
group G, Burger, Iozzi and Wienhard [9] gave a structure theorem for tight representations
of locally compact groups into G. A representation is called tight if the map induced in
bounded cohomology preserves the norm of the Kähler class κb

G associated to G. Later, the
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same authors focused their attention on surface groups (also with boundary components)
and studied systematically maximal representations into Hermitian Lie groups leading to a
complete characterization of such representations [10].

In this paper we are going to focus our attention on complex hyperbolic lattices, that
is torsion-free lattices of PU(p, 1), with p ≥ 2. The theory of maximal representations
of complex hyperbolic lattices has been widely studied so far. For instance, when � is a
non-uniform lattice, Koziarz and Maubon [21] showed that maximal representations into the
group PU(q, 1), where q ≥ p ≥ 2, must be conjugated to the standard lattice embedding
� → PU(p, 1), possibly modulo a compact subgroup when q > p. This result was obtained
by using techniques relying on the theory of harmonic maps, whereas Burger and Iozzi [7]
proved the same result using a bounded cohomology approach.

Also some superrigidity phenomena are given. For instance, Pozzetti [29] proved that
maximal representations into SU(m, n) with Zariski dense image must be induced by repre-
sentations of the ambient group PU(p, 1). In particular, this suggests that when 1 < m < n
such representations cannot exist. Additionally, she gave also a structure theorem formaximal
representations, following the line of some previous works by Hamlet and herself [17,18,20].
More recently Koziarz andMaubon [22] refined such a characterization with the use of Higgs
bundles.

Inspired by the work by Bader, Furman and Sauer [5] for couplings and by Burger and
Iozzi [6] for representations, one of the author together with Moraschini [26,28,30,31] has
recently developed the theory of numerical invariants of measurable cocycles, that is part of
a program whose aim is to generalize rigidity results for representations of rank-one lattices.
Those invariants are obtained by pulling back preferred classes in bounded cohomology along
cocycles, imitating the case of representations. The aimof this paper is to apply thismachinery
to the study ofmeasurable cocycles of complex hyperbolic lattices to get a superrigidity result
similar to the one obtained by Pozzetti. More precisely, let � < PU(p, 1) be a torsion-free
lattice, (X , μX ) be an ergodic standardBorel probability�-space andσ : �×X → SU(m, n)

be a measurable cocycle. Exploiting the Kähler form on the symmetric space associated to
SU(m, n), one can define the bounded Kähler class of SU(m, n) in H2

cb(SU(m, n);R), that
we denote by kb

SU(m,n). The pullback of such a class along σ gets back a class in H2
b(�;R)

and through the transfer map we obtain a class in H2
cb(PU(p, 1);R). Hence we can consider

the multiplicative constant obtained by comparing such a class with the Cartan class in
H2
cb(PU(p, 1);R). This turns out to be a numerical invariant tb(σ ) that we are going to call

Toledo invariant associated to σ . Since the latter has absolute value bounded by the rank of
SU(m, n), it makes sense to define the notion of maximal measurable cocycles as those ones
with maximal Toledo invariant.

If in addition σ admits a boundary map into the Shilov boundary Sm,n of SU(m, n),
namely a measurable map φ : ∂H

p
C

× X → Sm,n which is σ -equivariant, the machin-
ery of [26,28] can be exploited to get a useful representative for the pull back of kb

SU(m,n).
More precisely, we recall that Sm,n can be identified with the quotient of SU(m, n) by
a maximal parabolic subgroup stabilizing a maximal isotropic subspace of C

n+m . On
this boundary one can define naturally a bounded measurable SU(m, n)-invariant cocy-
cle, the Bergmann cocycle, that corresponds to the bounded Kähler class through the
canonical map H2(B∞((Sm,n)•+1;R)) → H2

cb(SU(m, n);R) defined by Burger and Iozzi
[6]. Hence we can apply the theory of pullback along boundary maps getting a class in
H2(L∞((∂H

p
C
)•+1;R)�) ∼= Hb(�;R) that coincides with the pullback of kb

SU(m,n).
Even though the definition ofToledo invariant formeasurable cocycles�×X → SU(m, n)

can be given without boundary maps, those maps are fundamental in order to adapt the proof

123



Superrigidity maximal measurable cocycles 423

by Zimmer. For this reason our first result, which is given in a much more general setting,
investigates the existence of boundary maps. In the following statement a �-boundary is an
amenable �-space which is relatively metrically ergodic (see Definition 2.14)

Theorem 1 Let � be a locally compact and second countable group and let H be a simple Lie
group of non-compact type. Let (X , μX ) be an ergodic standard Borel probability �-space
and let σ : �× X → H be a Zariski dense measurable cocycle. Then, for any �-boundary B
there exists a σ -equivariant map φ : B × X → H/P where P < H is a minimal parabolic
subgroup.

The proof of the above result relies on the techniques by Bader and Furman ( [4]) con-
cerning the category of algebraic representations of ergodic spaces. A fundamental tool will
be the notion of relative metric ergodicity, that we recall in Sect. 2.5. Here the assumption of
Zariski density of σ refers to the fact that the algebraic hull coincides with the whole target
group.

As a consequence of Theorem 1, given a torsion-free lattice � < PU(p, 1) and an ergodic
standard Borel probability �-space (X , μX ), any Zariski dense measurable cocycle σ :
� × X → SU(m, n) admits a boundary map φ : ∂H

p
C

× X → Sm,n . We are going to prove
even more. Indeed, exploiting the ergodicity of the space X , we will show that the slice
φx (ξ) := φ(ξ, x) is essentially Zariski dense for almost every x ∈ X (see Proposition 4.4).

Finally notice that Theorem 1 has important consequences also on the work of one of the
author [31], answering to the question of [31, Section 4.1] about the existence of boundary
maps for Zariski dense measurable cocycles of surface groups.

Thanks to the existence of a boundary map, we are going to prove the following super-
rigidity result.

Theorem 2 Consider p ≥ 2 and 1 ≤ m ≤ n. Let � < PU(p, 1) be a torsion-free lattice and
let (X , μX ) be an ergodic standard Borel probability �-space. If σ : � × X → SU(m, n) is
a maximal Zariski dense measurable cocycle, then it is cohomologous to the restriction of a
cocycle associated to a representation ρ : PU(p, 1) → SU(m, n).

In the particular casewhenm = 1,we get back [26, Theorem3] for Zariski dense cocycles.
We also point out that, under the Zariski density assumption, Theorem 2 does not follow by
Zimmer’ Superrigidity Theorem [33, Theorem 4.1] since the rank of PU(p, 1) is one. So our
result should be considered as a suitable adaptation of Zimmer’s theorem in the context of
rank-one lattices, where to get the desired trivialization one needs to introduce themaximality
assumption.

It is worth noticing that it was conjectured that maximal representations of a complex
hyperbolic lattice into a Hermitian Lie group are superrigid. Theorem 2 suggests that a
similar conjecture should hold also for measurable cocycles.

As an easy application of the results by Pozzetti, we also obtain the following

Proposition 3 Consider p ≥ 2. Let � < PU(p, 1) be a torsion-free lattice and let (X , μX )

be an ergodic standard Borel probability �-space. Assuming 1 < m < n, there is no maximal
Zariski dense measurable cocycle σ : � × X → SU(m, n).

The proof of Theorem 2 is not amere adaptation of Pozzetti’s proof.We need an additional
study of the slices of the boundary map. Indeed, since the slice φx is measurable for almost
every x ∈ X [24, Chapter VII, Lemma 1.3], the maximality of σ implies that the slice φx

preserves the chain geometry for almost every x ∈ X . Being essentially Zariski dense by
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Proposition 4.4, by [29, Theorem 1.6] we argue that φx is a rational map for almost every
x ∈ X . This gives us back a measurable map 	 : X → Rat(∂Hp

C
,Sm,n), 	(x) := φx . Thus

following the line of the proof of [33, Theorem 4.1], we exploit the ergodicity of � on X and
the smoothness of the action of PU(p, 1) × SU(m, n) on Rat(∂Hp

C
,Sm,n) to get the desired

statement. In the proof we will exploit the fact that stabilizers of measures on quotients of
PU(p, 1) by a closed subgroup are algebraic (see Lemma 5.1).
Plan of the paper. The paper is divided into four sections. In Sect. 2 we recall some pre-
liminary definitions and known results. More precisely, we start by giving the definition of
measurable cocycle, we remark how it extends the notion of representation and we generalize
conjugation by defining what cohomologous cocycles are. Afterwards, we focus on bounded
cohomology of locally compact groups, recalling basic definitions andBurger-Monod’s func-
torial approach which provides a useful technique for the computation. Then we move to
the definition of two specific cohomology classes, the Kähler class and the Cartan class.
Finally we remind the notion of smooth, ergodic and amenable actions. We conclude with
the notions of relative metric ergodicity and boundaries.

The aim of Sect. 3 is to introduce the Toledo invariant of a measurable cocycle and to
prove some of its properties. Using boundary maps to implement the pullback in bounded
cohomology and applying the transfer map, we are allowed to compare the pullback of the
Kähler class with the Cartan class. The real number obtained by such a comparison will be
our desired invariant. Then we prove that the module of such invariant is bounded by the
rank rk(Xm,n) of the symmetric space associated to SU(m, n).

In Sect. 4 we prove Theorem 1 and Proposition 4.4, where we investigate the relation
between the Zariski density of the cocycle and the essential Zariski density of the slices of
the boundary map.

Section 5 is spent to prove the Theorem 2 and Proposition 3.

2 Preliminaries

2.1 Measurable cocycles

Let G and H be locally compact groups endowed with their Haar measurable structures. Let
(X , μX ) be a standard Borel probability space equipped with a measure preserving G-action.
Additionally, suppose that μX is atom-free. Under those assumptions, we say that (X , μX )

is a standard Borel probability G-space. If the G-action preserves only the measure class of
μX , we are going to call (X , μX ) a Lebesgue G-space.

Given another measure space (Y , μY ), we denote byMeas(X , Y ) the space of measurable
maps from X to Y , where we identify two measurable functions if they coincide up to a
measure zero subset. We endow Meas(X , Y ) with the topology of convergence in measure.
In the previous setting we can give the following

Definition 2.1 A measurable cocycle is a measurable function σ : G × X → H which
satisfies the cocycle condition

σ(g1g2, x) = σ(g1, g2x)σ (g2, x) (1)

for almost every g1, g2 ∈ G and for almost every x ∈ X .

The cocycle condition (1) can be suitably interpreted as a generalization of the chain rule
for differentiation. Moreover, it is equivalent to the equation defining Borel 1-cocycles of
Meas(G,Meas(X , H)) in the sense of Eilenberg-MacLane (see for instance [14]).
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The notion of measurable cocycle is quite ubiquitous in mathematics, but for our pur-
poses we will mainly focus our attention on how measurable cocycles extend the concept
of representations. More precisely, given a representation one can naturally define a cocycle
associated to it as follows.

Definition 2.2 Let ρ : G → H be a continuous representation and let (X , μX ) be a standard
Borel probability G-space. The cocycle associated to ρ is defined by

σρ(g, x):=ρ(g)

for every g ∈ G and for almost every x ∈ X .

Notice that when � is a lattice, it naturally inherits the discrete topology from the ambient
group and hence any representation is automatically continuous.

By following the interpretation of measurable cocycles as Borel 1-cocycles, we now
introduce the notion of cohomologous cocycles.

Definition 2.3 Let σ1, σ2 : G × X → H be two measurable cocycles, let f : X → H be a
measurable map and denote by σ

f
1 the cocycle defined as

σ
f
1 (g, x):= f (gx)−1σ1(g, x) f (x)

for every g ∈ G and almost every x ∈ X . The cocycle σ
f
1 is the f -twisted cocycle associated

to σ1. We say that σ1 is cohomologous to σ2 if there exists a measurable map f such that
σ2 = σ

f
1 .

As well measurable cocycles may be interpreted as a generalization of representations, so
the notion of cohomologous cocycles actually extends conjugacy between representations.

An important tool that may encode useful information about a given representation is the
closure of its image. One would like to introduce a similar notion in the context of measurable
cocycles. Unfortunately this attempt may reveal quite difficult since a priori the image of a
cocycle does not have any nice algebraic property like a group structure. Nevertheless, when
the target is an algebraic group, it is possible to introduce the notion of algebraic hull.

Definition 2.4 Let H be a semisimple real algebraic group and denote by H = H(R) the real
points of H. The algebraic hull of a measurable cocycle σ : G × X → H is the (conjugacy
class of the) smallest algebraic subgroup L of H such that L(R)◦ contains the image of a
cocycle cohomologous to σ .

We say that σ is Zariski dense if its algebraic hull coincides with the whole group H.

The fact that the notion of algebraic hull is well-defined follows by the descending chain
condition in H, which is algebraic and hence Noetherian [34, Proposition 9.2.1]. Notice
that by [34, Proposition 3.1.6] simple Lie groups are real points of algebraic groups, thus it
makes sense to speak about Zariski density in that case. This should clarify the assumption
of Theorem 1

2.2 Continuous bounded cohomology

In this section we are going to recall both the definitions of continuous and continuous
bounded cohomology for locally compact groups. We refer to [11,25] for more details.
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We define the sets of real continuous functions on G•+1 as

C•
c (G;R):={ f : G•+1 → R | f continuous}

and the maps

δ• : C•
c (G;R) → C•+1

c (G;R)

where

δ•( f )(g0, · · · , g•+1):=
•+1∑

i=0

(−1)i f (g0, · · · , gi−1, gi+1, · · · , g•+1) .

There exists a natural G-action on C•
c (G;R) defined by

(g f )(g0, · · · , g•):= f (g−1g0, · · · , g−1g•) (2)

for every f ∈ C•
c (G;R) and for every g, g0, . . . , g• ∈ G. Hence, if we consider the sets of

G-invariant cochains

C•
c (G;R)G :={ f ∈ C•

c (G;R) | g f = f } ,

the restriction δ•| of the coboundary operator δ• is well-defined, since it preserves G-
invariance. The pair

(C•
c (G;R)G , δ•| )

is the cochain complex of real-valued invariant continuous functions on G.

Definition 2.5 The continuous cohomology of the group G with real coefficients is the coho-
mology of the complex (C•

c (G;R)G , δ•| ) and it is denoted by H•
c(G;R).

Similarly, we can consider the subspace of continuous bounded cochains, that is the cochain
complex given by

(C•
cb(G;R)G , δ•| )

where

C•
cb(G;R)G :=

{
f ∈ C•

c (G;R)G | sup
g0,··· ,g•

| f (g0, · · · , g•)| < +∞
}

and the coboundary is obtained by restriction, since it preserves boundedness.

Definition 2.6 The continuous bounded cohomology of the group G with real coefficients is
the cohomology of the complex (C•

cb(G;R)G , δ•| ) and it is denoted by H•
cb(G;R).

It is worth mentioning that the space H•
cb(G;R) admits a standard seminormed structure.

Indeed, given an element α ∈ H•
cb(G;R), we can define its seminorm as follows

‖α‖∞:= inf{||c||∞ | [c] = α} .

In this way H•
cb(G;R) becomes a seminormed space with the quotient seminorm.

The computation of continuous bounded cohomology groups may reveal quite compli-
cated using the standard definition. Burger and Monod [11,25] circumvent this problem
showing a way to compute continuous bounded cohomology with the use of strong resolu-
tions by relatively injective G-modules. Since it would be too technical to introduce those
notions here, we prefer to omit them and we refer to Monod’s book [25] for a more detailed
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exposition. The result by Burger and Monod [11, Corollary 1.5.3.] shows that given a locally
compact group G and a strong resolution of R by relatively injective Banach G-modules
(E•, δ•), there exists an isomorphism

Hk
cb(G;R) ∼= Hk((E•)G) ,

for every k ∈ N. Here (E•)G is the subcomplex of G-invariant vectors in E•. Unfortunately
the isomorphism above is not isometric a priori, in the sense that it does not necessarily
preserve seminorms.

We will spend the rest of the section to define a strong resolution which actually realizes
the isomorphism isometrically. Let (S, μ) be an amenable G-space (we refer the reader to
Definition 2.11). The cochain complex of essentially bounded measurable functions on S•+1

is (L∞(S•+1;R), δ•), where δ• is the standard homogeneous coboundary operator. If we
consider the G-action defined by Equation (2) and we complete the previous complex with
the inclusion of coefficients R ↪→ L∞(S;R), we obtain a resolution of R that is strong and
consists of relatively injective G-modules [11, Theorem 1]. Hence, by [11, Corollary 1.5.3],
we have the following isomorphism

Hk
cb(G;R) ∼= Hk(L∞(S•+1;R)G) ,

for every k ∈ N. The striking result is that this isomorphism is in fact isometric [11, Theorem
2].

Even if S is not amenable, it is sufficient to consider the complex (B∞(S•+1;R), δ•) of
bounded measurable functions on S•+1 to gain information about the continuous bounded
cohomology of G. Indeed with the G-action defined by Equation (2) and the inclusion
R ↪→ B∞(S;R), we obtain a resolution ofRwhich is strong (but not necessarily by relatively
injective modules). By Burger and Iozzi [6, Corollary 2.2] there exists a canonical map

ck : Hk(B∞(S•+1;R)G) → Hk
cb(G;R)

for every k ∈ N. We will tacitly exploit the previous result to ensure that the pullback of
measurable cochain along boundary maps lies in L∞.

2.3 Cartan and Kähler classes

In this section we are going to define two bounded measurable cocycles that will be the main
ingredients for the definition of the Toledo invariant associated to a measurable cocycle.

Let 1 ≤ m ≤ n. Let SU(m, n) be the subgroup of SL(n + m,C) which preserves the
Hermitian form defined by the following matrix

h =
[
Idm

−Idn

]
,

where the matrices appearing above are the identity matrix of order given by the subscript.
Denote byXm,n the associated symmetric space. It is well-known that the latter is aHermitian
symmetric space, that is it admits a SU(m, n)-invariant complex structure. Additionally, when
m = n, the Hermitian space is of tube type, namely it can be biholomorphically realized as
a domain of the form V + i, where V is a real vector space and  ⊆ V is a proper convex
cone. More generally Xm,n contains maximal tube type subdomains which are all isometric
to the symmetric space Xm,m assuming 1 ≤ m ≤ n.

The space Xm,n can also be realized biholomorphically as a bounded convex subspace of
C

n . In that case, SU(m, n) acts via biholomorphisms and this action extends continuously
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to the boundary ∂Xm,n , which is not a homogeneous SU(m, n)-space but it admits a unique
closed SU(m, n)-orbit called Shilov boundary. The Shilov boundary Sm,n is the smallest
closed subset on which one can apply the maximum principle and it can be identified with
the quotient SU(m, n)/Q, where Q is a maximal parabolic subgroup stabilizing a maximal
isotropic subspace ofCm+n . Notice that when 1 ≤ m ≤ n, the Shilov boundaries of maximal
tube type subdomains of Xm,n naturally embed into Sm,n . Those boundaries are called m-
chains. A measurable map ϕ : ∂H

p
C

→ Sm,n will be chain-preserving if it sends chains to
chains.

If ω ∈ 2(Xm,n)SU(m,n) is the Kähler form of Xm,n , denoting by X (3)
m,n the set of distinct

triples of points in Xm,n , we can define the following function

β : X (3)
m,n −→ R

(x, y, z) �−→ 1
π

∫
�(x,y,z) ω

where�(x, y, z) is any trianglewith vertices x, y, z and geodesic edges. Sinceω is SU(m, n)-
invariant, it is closed by Cartan’s Lemma [19, Lemma VII.4], and using Stokes’ Theorem
we get that β is a well-defined SU(m, n)-invariant bounded cocycle. Clerc and Øersted [12]
proved that it is possible to extend β to triple of points of the Shilov boundary Sm,n in
a measurable way getting a map βSm,n called Bergmann cocycle. In this way we obtain a
bounded SU(m, n)-invariant measurable cocycle, that is βSm,n ∈ B∞((Sm,n)3;R)SU(m,n),
and hence by Sect. 2.2 we obtain a class in H2

cb(SU(m, n);R).

Definition 2.7 The bounded SU(m, n)-invariant measurable cocycle βSm,n is the Bergmann
cocycle and the class determined by the Bergmann cocycle in H2

cb(SU(m, n);R) is called
Kähler class.

We recall some properties of the Bergmann cocycle listed in [29, Proposition 2.1] and that
we will use later in the proof of the main theorem. The following hold

(1) The map βSm,n is an alternating cocycle defined everywhere such that

|βSm,n (ξ0, ξ1, ξ2)| ≤ rk(Xm,n)

for every ξ0, ξ1, ξ2 in Sm,n ;
(2) The map βSm,n attains its maximum only on triples of distinct points lying on m-chains.

Such triples are called maximal.

In the case m = p and n = 1 the Bergmann cocycle boils down to the Cartan angular
invariant cp (see [16]) and we will call the associated cohomology class the Cartan class.

2.4 Ergodic, smooth and amenable actions

In this section we are going to recall the definitions of ergodic, smooth and amenable actions.
These notions will be crucial in the proof of Theorem 2. We refer the reader to [34], where
all those definitions are discussed with more details.

In order to define both smooth and ergodic actions we first need to introduce the notion
of countably separated space.

Definition 2.8 ABorel space (X ,B) is countably separated if there exists a countable family
of Borel sets {B j } j∈J that separate points.
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A relevant example of countably separated space is the quotient space of an algebraic variety
defined over a local field of characteristic zero by an algebraic action of an algebraic group.
This is a consequence of [34, Theorem 2.1.14] together with [34, Proposition 3.1.3].

Using the notion of countably separated spacewe are ready to define the concept of smooth
action.

Definition 2.9 Let (X ,B) be a countably separated G-space. The action is called smooth if
the quotient Borel structure on X/G is countably separated.

Smooth actions are crucial in the study of boundary theory. Indeed one of the key point of
the proofs of both Margulis [23] and Zimmer [33] superrigidity results relies on the smooth-
ness of the action of product groups on the set of rational functions between boundaries.
To be more precise, we are going to give an explicit example in our context. Denote by
G = PU(p, 1) and by H = SU(m, n). Recall that G can be seen as the real points of its
complexificationG = PSL(p+1,C) oncewe have suitably fixed a real structure on it. A sim-
ilar thing holds for H and its complexification H = SL(m + n,C). Additionally, there exist
parabolic subgroupsP < G andQ < H forwhich ∂H

p
C

= (G/P)(R) andSm,n = (H/Q)(R).
We say that a map between ∂H

p
C
and Sm,n is rational, if it is the restriction of a rational map

betweenG/P andH/Q. This enables us to speak about the setQ:=Rat(∂Hp
C
,Sm,n) of rational

maps between ∂H
p
C
and Sm,n . It is possible to define a joint action of G and H as follows

((g, h) · f ))(ξ):=h · f (g−1ξ) ,

for each g ∈ G, h ∈ H and f ∈ Q. Following [34, Proposition 3.3.2] we have that the
actions of G, H and G × H on Q are all smooth.

We now move on to the definition of ergodic actions.

Definition 2.10 Let G be a locally compact second countable group and let (X , μ) be a Borel
probability G-space. The action is ergodic if for every G-invariant Borel set A we have either
μ(A) = 0 or μ(X \ A) = 0.

Ergodicity can be translated in terms of measurable invariant functions. Indeed an action
of G on X is ergodic if and only if for every countably separated space Y , every G-invariant
map f : X → Y is essentially constant [34, Proposition 2.1.11].

We conclude this brief section by recalling the notion of amenable spaces.

Definition 2.11 LetG be a locally compact second countable group. Let (S, μ) be a Lebesgue
G-space. A mean on L∞(G × S;R) is a G-equivariant L∞(S;R)-linear operator

m : L∞(G × S;R) → L∞(S;R) ,

which has norm one, it is positive and it satisfies m(χG×S) = χS . An action of G on S is
amenable, or equivalently S is an amenable G-space, if there exists amean on L∞(G×S;R).

Actions determined by amenable groups are amenable, but more generally one can char-
acterize the amenability of a group using actions. Indeed any group acting amenably on a
space with finite invariant measure is amenable [34, Proposition 4.3.3]. The crucial property
that we are going to use later is given by the fact that, given a closed subgroup H ≤ G,
then H is amenable if and only if the G-action of the quotient space G/H is amenable [34,
Proposition 4.3.2]. In particular, given a semisimple Lie group G of non-compact type, since
anyminimal parabolic subgroup P ≤ G is amenable, the quotient G/P must be an amenable
G-space.
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2.5 Relative metric ergodicity, boundaries and boundarymaps

The goal of this section is to introduce the notion of boundary for a generic locally compact
and second countable group �. This definition is due to Bader and Furman and we refer to
[3] for further details. We point out that in [3] the authors first provide the more general
definition of boundary pairs and then the one of �-boundary, but here we will not deal with
pairs. The objects that we introduce in this section are the main characters of Theorem 1 and
of Sect. 4.

We start with the following first refinement of the notion of ergodic space.

Definition 2.12 ALebesgue�-space (X , μX ) ismetrically ergodic if for any isometric action
� → Isom(M, d) on a separable metric space (M, d), any �-equivariant measurable map
X → M is essentially constant.

We note that a metrically ergodic action is actually ergodic, taking as M the space {0, 1}with
the trivial �-action. For our goal, we need a further refinement of metric ergodicity. Before
doing that, we give the definition of relative �-isometric action.

Definition 2.13 Ametric on aBorel function p : M → T between standardBorel probability
spaces is a function d : M ×T M → [0,∞) whose restriction d|p−1(t) on each p-fiber is a
separable metric.

Given a metric on p : M → T , an action of � on M is fiber-wise isometric if there exists
a p-compatible �-action on T such that, for any t ∈ T , x, y ∈ p−1(t) and γ ∈ � we have

d|p−1(γ t)(γ x, γ y) = d|p−1(t)(x, y).

The notion of fiberwise isometric action allows us to introduce the following

Definition 2.14 A map q : X → Y between Lebesgue �-space is relatively metrically
ergodic if for any fiber-wise isometric�-action on p : M → T andmeasurable�-equivariant
maps f : X → M and g : Y → T there exists a measurable �-equivariant map ψ : Y → M
such that the following diagram commutes

X M

Y T .

f

q p
g

ψ

It is worth noticing that relative metric ergodicity boils down to metric ergodicity if we
consider the trivial projection q : X → {∗} on a point.

We finally have all the needed tools to give the notion of boundary.

Definition 2.15 A �-boundary is a Lebesgue �-space B such that the projections pr1 :
B × B → B and pr2 : B × B → B on the two factors are relative metric ergodic.

Remark 2.16 As observed in [3, Remarks 2.4] a �-boundary in the sense of Definition 2.15
is a strong �-boundary in the sense of Burger and Monod [11].

Bader and Furman [3, Theorem 2.3] proved that for any lattice � in a connected semi-
simple Lie group G of non-compact type, the quotient G/P is a �-boundary, where P is a
minimal parabolic subgroup. This leads naturally to the following

Definition 2.17 Let � < G be a torsion-free lattice in a semi-simple Lie group of non-
compact type and let H be a locally compact group. Consider a standard Borel probability
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�-space (X , μX ) and a Lebesgue H -space (Y , ν). A boundary map for a measurable cocycle
σ : � × X → H is a measurable map

φ : G/P × X → Y ,

which is σ -equivariant, that is

φ(γ ξ, γ x) = σ(γ, x)φ(ξ, x) ,

for all γ ∈ � and almost every ξ ∈ G/P, x ∈ X .

Remark 2.18 We now compare the notion of boundary map with the ones of Sect. 2.1.

(i) If ρ : G → H is a representation and σ = σρ is the induced cocycle as in Definition
2.2, a ρ-equivariant map ϕ : G/P → Y naturally defines a σρ-equivariant map φ :
G/P × X → Y as

φ(ξ, x):=φ(ξ)

for every ξ ∈ G/P and x ∈ X .
(ii) If φ : G/P × X → Y is a boundary map for a cocycle σ : G × X → H and f : X → G

is a measurable function, the map φ f : G/P × X → Y defined as

φ f (ξ, x):= f (x)−1φ(ξ, x)

is a boundary map for the twisted cocycle σ f introduced in Definition 2.3.

The existence of boundary maps for Zariski dense cocycles will be a crucial result in the
proof of our main theorem.

3 Toledo invariant associated to a cocycle

In this sectionwe define the Toledo invariant associated to ameasurable cocycle, generalizing
the standard definition given for representations. Firstly, we do not use boundary maps, as
done by the second author in [31] and then we follow the approach adopted by the second
author and Moraschini in [26,28,30,31] for the definition of multiplicative constants. Indeed
the Toledo invariant will be a particular case of multiplicative constant in the sense of [26].

We are going to fix the following

Setup 3.1 Consider p ≥ 2 and 1 ≤ m ≤ n. We assume that:

• � ≤ PU(p, 1) is a torsion-free lattice;
• (X , μX ) is a standard Borel probability �-space;
• σ : � × X → SU(m, n) is a measurable cocycle.

As proved in [31, Lemma 2.7], the map

C•
b(σ ) : C•

cb(SU(m, n);R)SU(m,n) → C•
b(�;R)� ,

ψ �→ C•
b(σ )(γ0, . . . , γ•) :=

∫

X
ψ(σ(γ −1

0 , x)−1, . . . , σ (γ −1• , x)−1)dμX (x)

is a well-defined cochain map and hence induces the following map at a cohomological level

H•
b(σ ) : H•

cb(SU(m, n);R) → H•
b(�;R) ,

H•
b(σ )([ψ]) := [C•

b(σ )(ψ)] .
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Then we can compose with the transfer map associated to �. The latter, denoted by

T•
b : H•

b(�;R) → H•
cb(PU(p, 1);R) ,

it is the map induced in cohomology by

T̃•
b : C•

b(�;R)� → C•
cb(PU(p, 1);R)PU(p,1) ,

(T̃•
bψ)(γ0, . . . , γ•):=

∫

�\PU(p,1)
ψ(gγ0, . . . , gγ•)dμ(g) .

Here μ is the probability measure induced on the quotient by the Haar measure on PU(p, 1)
(see [1,26,28] for more details about the transfer map).

Since H2
cb(PU(p, 1);R) ∼= R and it is generated by the Cartan class, we can give the

following

Definition 3.2 In the situation of Setup 3.1, the Toledo invariant associated to σ is the real
number tb(σ ) satisfying

T2
b(H

2
b(σ )(kb

SU(m,n))) = tb(σ )[cp] , (3)

where kb
SU(m,n) is the Kähler class of SU(m, n) and [cp] is the Cartan class.

If σ admits a boundary map φ : G/P × X → Sm,n , on can implement the pullback in an
alternative way. Thanks to [28, Lemma 4.2] we know that the map defined as

C•(	X ) : B∞((Sm,n)•+1;R)SU (m,n) → L∞((∂H
p
C
)•+1;R)� ,

ψ �→ C•(	X )(ψ)(ξ0, . . . , ξ•) :=
∫

X
ψ(φ(ξ0, x), . . . , φ(ξ•, x))dμX (x) ,

induces the following map at a cohomological level

H•(	X ) : H•(B∞((Sm,n)•+1;R)SU(m,n)) → H•
b(�;R) ,

H•(	X )([ψ]) := [C•(	X )(ψ)] .

In degree two, the composition of the above map with the transfer map T2
b applied to the

class [βSm,n ] induced by the Bergmann cocycle defines a class T2
b(H

2(	X ))([βSm,n ]) in
H2(L∞((∂H

p
C
)•+1;R)PU (p,1)) ∼= H2

cb(PU (p, 1);R). It follows by [31, Lemma 2.10] that
the following diagram commutes

H•(B∞((Sm,n)•+1;R)SU(m,n)) H•
b(�;R)

H•
cb(SU(m, n);R)

H•(	X )

c•
H•
b(σ )

(4)

and hence T2
b(H

2
b(σ ))(kb

SU(m,n)) = T2
b(H

2(	X ))([βSm,n ])
Even if the Toledo invariant is defined independently of a boundary map, we prefer to

maintain here its expression in terms of boundary maps since this formulation is crucial in
the proof of our superrigidity result. For our purpose, we want to rewrite Equation (3) that
can be at the level of cochains in terms of φ and βSm,n . Since the transfer map is also induced
by the map

T̂•
b : L∞((∂H

p
C
)•+1);R)� → L∞((∂H

p
C
)•+1);R)PU(p,1)

(T̂•
bψ)(ξ0, . . . , ξ•):=

∫

�\PU(p,1)
ψ(gξ, . . . , gξ•)dμ(g) ,
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the diagram (4) leads to the following formula
∫

�\PU(p,1)

∫

X

βSm,n (φ(gξ0, x), φ(gξ1, x), φ(gξ2, x))dμX (x)dμ(g) =

= tb(σ )cp(ξ0, ξ1, ξ2). (5)

Moreover, as proved for instance in [1,2,29], Equation (5) holds for every triple (ξ0, ξ1, ξ2)

of pairwise distinct points in ∂H
p
C
.

Remark 3.3 It isworth noticing that Equation (5) is a suitable adaptation of [26, Proposition 1]
to this particular context. The absence of coboundary terms is due to the doubly ergodic action
of � on the boundary ∂H

p
C
and to the fact that all the considered cochains are alternating.

Additionally, the Toledo invariant tb(σ ) is themultiplicative constant λβSm,n ,cp (σ ) associated
to σ, βSm,n , cp , namely

tb(σ ) = λβSm,n ,cp (σ ) ,

according to [26, Definition 3.16].

Proposition 3.4 In the situation of Setup 3.1, the Toledo invariant tb(σ ) satisfies:

(1) |tb(σ )| ≤ rk(Xm,n);
(2) |tb(σ )| = rk(Xm,n) if and only if the slice φx :=φ( · , x) is chain-preserving for almost

every x ∈ X.

Proof Ad 1. By Sect. 2.3 we know that ||cp||∞ ≤ 1 and that ||βSm,n ||∞ ≤ rk(Xm,n). Hence
we obtain

|tb(σ )| = ‖tb(σ )cp‖∞ = ‖T̂2
b(C

2(	X )(βSm,n ))‖∞ ≤ rk(Xm,n) ,

since both the transfer map T̂2
b and the pullback map C2(	X ) are norm non-increasing.

Ad 2. Assume that the slice φx is chain preserving for almost every x ∈ X . Fixed a point
x ∈ X , if φx is chain preserving and the triple (ξ0, ξ1, ξ2) lies on a chain, then the triple
(φx (gξ0), φx (gξ1), φx (gξ2)) lies on a m-chain for almost every g ∈ �\PU(p, 1). Hence, if
we fix a triple (ξ0, ξ1, ξ2) ∈ (∂H

p
C
)(3) of positive points on a chain, it holds cp(ξ0, ξ1, ξ2) = 1

and by hypothesis it follows

βSm,n (φx (gξ0), φx (gξ1), φx (gξ2)) = rk(Xm,n)

for almost every g ∈ �\PU(p, 1), x ∈ X . In this way we obtain

tb(σ ) =
∫

�\PU(p,1)

(∫

X
β(φx (gξ0), φx (gξ1), φx (gξ2))dμX (x)

)
dμ(g) =

=
∫

�\PU(p,1)

(∫

X
rk(Xm,n)dμX (x)

)
dμ(g) = rk(Xm,n) ,

as claimed.
For the converse assume tb(σ ) = rk(Xm,n). Fixing a positive triple (ξ0, ξ1, ξ2) ∈ (∂H

p
C
)(3)

on a chain, it follows by Equation (5) that,

β(φx (gξ0), φx (gξ1), φx (gξ2)) = rk(Xm,n)

for almost every g ∈ � \ PU(p, 1) and x ∈ X . By the σ -equivariance of φ we argue that

β(φx (gξ0), φx (gξ1), φx (gξ2)) = rk(Xm,n) ,
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for almost every g ∈ PU(p, 1) and x ∈ X . By the transitivity of the PU(p, 1)-action on
chains, the map φx is chain preserving, as desired.

The same arguments can be used for the negative case. �
By Proposition 3.4 it follows naturally the next

Definition 3.5 In the situation of Setup 3.1, a cocycle σ : � × X → SU(m, n) is maximal if
tb(σ ) = rk(Xm,n).

It is worth mentioning that the notion of maximal measurable cocycles is a substantial
extension of that one of maximal representations. Indeed, given any maximal ρ : � →
SU(m, n) in the sense of Pozzetti [29] and any measurable function f : X → SU(m, n), it is
easy to check that the twisted cocycle σ

f
ρ is actually maximal. Moreover, if ρ is Zariski dense

then it admits an essentially Zariski dense boundary map ϕ : ∂H
p
C

→ Sm,n [29, Proposition
2.9]. Hence the induced boundary map φ : ∂H

p
C

× X → Sm,n defined as in Remark 2.18 has
in fact essentially Zariski dense slices. In particular it satisfies the hypothesis of Theorem 2.
Hence our main theorem can be seen as the converse of what noticed above.

We conclude this section with a characterization of boundary maps associated to maximal
cocycles.

Lemma 3.6 In the situation of Setup 3.1, if σ is maximal and the slice φx has essentially
Zariski dense image for almost every x ∈ X, then φx is rational for almost every x ∈ X.

Proof It follows by [29, Theorem 1.6] since φx is essentially Zariski dense for almost x ∈ X
and it is chain preserving by Proposition 3.4. �

4 Boundarymaps

In this section our aim is to investigate the existence of a boundary map for cocycle with
specific properties. In particular we exploit [4, Theorem 5.3] to prove Theorem 1. From this
we will argue the existence of boundary maps in our specific context. Then we will show
that Zariski density of a measurable cocycle and the ergodicity of the standard Borel space
imply that the boundary map must have Zariski dense slices.

We recall that, by [4, Theorem 5.3], in the setting of Theorem 1 for any ergodic Lebesgue
�-space Y there exists an algebraic subgroup L < H and a �-equivariant universal map
φ : Y → H/L such that, for any algebraic H -space V and for any �-equivariant measurable
map ψ : Y → V , there exists a �-equivariant measurable map π : L/H → V which makes
the following diagram commutative

Y H/L

V .

φ

ψ

π

This universal property is the fundamental ingredient in the proof of Theorem 1.

Proof of Theorem 1 Since B is a strong boundary [3, Remarks 2.4], by [27, Proposition 2.4]
both B × X and B × B × X are ergodic �-space, thus we denote by L, L0 the algebraic
subgroups of H and by φ : B × X → H/L, φ0 : B × B × X → H/L0 the �-equivariant
universal maps associated respectively to B × X and to B × B × X .
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Since B × X is amenable [34, Proposition 4.3.4], then there exists a σ -equivariant map
ν : B × X → Prob (H/P) where P < H is a minimal parabolic subgroup and Prob (H/P)

is the space of probability measures on H/P .
By ergodicity of� on B× X and by the smooth action of H on Prob (H/P) [34, Corollary

3.2.23], it follows that the induced map

ν̄ : B × X → Prob (H/P)/H

is essentially constant. Equivalently, ν has image essentially contained in a single H -orbit,
namelywe get amap B×X → H/StabH (μ0)where StabH (μ0) is the stabilizer in H of some
probability measure μ0 ∈ Prob (H/P). By [34, Corollary 3.2.23] we have that StabH (μ0)

is algebraic and amenable. Hence we can exploit the universal property of φ, in order to get
a �-equivariant map H/L → H/StabH (μ0). Thus, up to conjugacy, L < StabH (μ0) and
moreover, by amenability of StabH (μ0), it follows that L is amenable.

Consider now the map φ ◦π2 where π2 : B × B × X → B × X is the projection on the last
two factors. By the universal property of φ0, we get a �-equivariant map π : H/L0 → H/L
such that the following diagram commutes

B × B × X H/L0

H/L.

φ0

φ◦π2

π

Again, up to conjugation, we can assume that L0 < L and, denoting by

R := Radu(L)

the unipotent radical of L , we get the chain of inclusion L0 < L0R < L and the induced

chain of projections H/L0 H/L0R H/L.
p1 p2

Define now the maps

	 : B → Meas(X , H/L), 	(ξ)(·):=φ(ξ, ·)
and

	0 : B × B → Meas(X , H/L0), 	0(ξ1, ξ2)(·):=φ0(ξ1, ξ2, ·).
Hence, for every γ ∈ � and for almost every ξ ∈ B we have

	(γ ξ)(·) = φ(γ ξ, ·)
= φ(γ ξ, γ γ −1·)
= σ(γ, γ −1·)φ(ξ, γ −1·)
= σ(γ, γ −1·)	(ξ)(γ −1·).

Thus, if we define an action of � on Meas(X , H/L) as

(γ f )(·):=σ(γ, γ −1·) f (γ −1·) (6)

for any γ ∈ � and f ∈ Meas(X , H/L), we actually showed that 	 is a �-equivariant map.
Similarly one can check the �-equivariance of 	0.

Consider now the following commutative diagram
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B × B Meas(X , H/L0R)

B Meas(X , H/L)

	0

pr2 pX
2

	

�

where pX
2 ( f )(·):=p2( f (·)), and pr2 : B × B → B is the projection on the second factor.

We remark that the existence of the map � follows from the fact that pX
2 is fiberwise �-

isometric and from the relativemetric ergodicity of pr2. In fact, ametric onMeas(X , H/L0R)

compatible with the �-action defined in (6), can be found as follows. Let e ∈ Meas(X , H/L)

be the constant function e(x) := L . If we denote by d the L/R-invariant metric on L/L0R
cited in the proof of [3,Theorem3.4],we can set themetricd0 on the special fiber (pX

2 )−1(e) ∼=
Meas(X , L/L0R) as

d0( f , g):=
∫

X

d( f (x), g(x))

1 + d( f (x), g(x))
dμX (x)

for every f , g ∈ Meas(X , L/L0R). Since the group Meas(X , H) acts transitively on
Meas(X , H/L0R), we can move the metric d0 on the whole Meas(X , H/L0R). To show
the compatibility of the collection of metrics on the fibers, let h ∈ Meas(X , H/L) and let
f , g ∈ (pX

2 )−1(h). Then

dγ ·h(γ f , γ g) =
∫

X

dγ ·h(σ (γ, γ −1x) f (γ −1x), σ (γ, γ −1x)g(γ −1x))

1 + dγ ·h(σ (γ, γ −1x) f (γ −1x), σ (γ, γ −1x)g(γ −1x))
dμX (x) =

=
∫

X

dh( f (γ −1x), g(γ −1x))

1 + dh( f (γ −1x), g(γ −1x))
dμX (x) =

=
∫

X

dh( f (x), g(x))

1 + dh( f (x), g(x))
dμX (x) = dh( f , g) ,

where we used the transitivity of Meas(X , H) and the definition of the metrics on the fibers
to move from the first line to the second one and we concluded exploiting the �-invariance
of μX .

Define the �-equivariant map ψ : B × X → H/L0R as ψ(ξ, x):=�(ξ)(x) for almost
every ξ ∈ B and almost every x ∈ X . By the universal property of φ, there exists q : H/L →
H/L0R which is in fact a isomorphism, and hence, up to conjugation, we can assume that
L0R = L .

By defining

φ : B × B × X → H/L × H/L, (φ × φ)(ξ1, ξ2, x) := (φ(ξ1, x), φ(ξ2, x)) ,

we know by the universal property of φ0 that we have the following commutative diagram

B × B × X H/L0

H/L × H/L.

φ0

φ×φ

Additionally, notice that given γ1, γ2 ∈ � we have

(φ × φ)(γ1ξ1, γ2ξ2, x) = (σ (γ1, γ
−1
1 x)φ(ξ1, γ

−1x), σ (γ2, γ
−1
2 x)φ(ξ2, γ

−1
2 x)) ,

for almost every ξ1, ξ2 ∈ B, x ∈ X by the σ -equivariance of φ. As a consequence of the
Zariski density of σ , the essential image of φ × φ is Zariski dense in H/L × H/L . Thus
H/L0 is Zariski dense in H/L × H/L or, equivalently, RL0R is Zariski dense in H . Thus,
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by [3, Lemma 3.5] H is parabolic and, being amenable, is also minimal. This concludes the
proof. �
Remark 4.1 Given a Zariski dense measurable cocycle σ : �× X → G, where� < PU(1, 1)
is a lattice and G is a Hermitian Lie group, one the author [31, Section 4.1] conjectured that
σ has a boundary map. Theorem 1 gives an answer to that question and has important
consequences on the study of measurable cocycles of surface groups. Indeed, in the case that
σ is also maximal in the sense of Definition 3.5, then by [31, Theorem 1] the target must be
a group of tube type. In this way one obtains a true generalization of [10, Theorem 5] to the
context of measurable cocycles.

We can now prove the existence of a boundary map in our specific setting.

Corollary 4.2 Let p ≥ 2 and let � < PU(p, 1) a torsion-free lattice. Consider an ergodic
standard Borel probability �-space. If σ : �× X → SU(m, n) is a Zariski dense measurable
cocycle, then there exists a boundary map φ : ∂H

p
C

× X → Sm,n.

Proof By [3, Theorem 2.3] the Furstenberg boundary of �, which coincides with the visual
boundary ∂H

p
C
, is actually a �-boundary. Hence, applying Theorem 1 we get a map into

the Furstenberg boundary of SU(m, n) and we compose with the projection on the Shilov
boundary (induced by the inclusion of a minimal parabolic subgroup into a maximal one). �
Remark 4.3 Thanks to Corollary 4.2, in Setup 3.1 one can in fact drop the condition of
existence of a boundary map for Zariski dense cocycles. Throughout the paper, when Setup
3.1 will be recalled, we will tacitly consider the boundary map provided by Corollary 4.2.

Since the essential Zariski density of the slices of a boundary map will be needed in the
proof of the main theorem, we are going to prove that property in the next

Proposition 4.4 In the setting of Setup 3.1 we assume that � is ergodic on X and that σ is
Zariski dense. Then for almost every x ∈ X the slice φx is essentially Zariski dense.

Proof Before starting the proof, recall that the Shilov boundary Sm,n corresponds to the real
points Sm,n = (H/Q)(R) of the quotient of the complexification H of SU(m, n) (which
is SL(m + n,C)) modulo a maximal parabolic subgroup Q stabilizing a maximal isotropic
subspace of Cm+n . For almost every x ∈ X , we are going to denote by Vx ⊂ H/Q the
smallest Zariski closed set such that Vx := Vx (R) ⊂ Sm,n and φ−1

x (Vx ) has full measure in
∂Hn

C
. As noticed in [29] those sets exist by the Noetherian property.

By embedding suitably H/Q in some complex projective space PN (C), we can define a
map,

v : X → Var(PN (C)) , v(x) := Vx .

Here Var(PN (C)) is the set of all the possible closed varieties inside PN (C) with the mea-
surable structure coming from the Hausdorff metric (Zariski closed sets are closed in the
Euclidean topology and this makes sense). The map v is measurable since the slice φx varies
measurably with respect to x ∈ X as a consequence of [24, Chapter VII, Lemma 1.3], by the
measurability ofφ. By the same proof of [32, Proposition 4.2], themap v is alsoσ -equivariant,
that is

v(γ x) = σ(γ, x)v(x) ,
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or equivalently

Vγ x = σ(γ, x)Vx , (7)

for every γ ∈ � and almost every x ∈ X .
OnVar(PN (C)) the groupGL(N+1,C) acts naturally on the left.As noticed in the proof of

[34, Proposition 3.3.2], the set Var(PN (C)) decomposes as a countable union of varieties and
the action ofGL(N +1,C) on those varieties is algebraic and hence smooth. Seeing SU(m, n)

as a subgroup of GL(N + 1,C), we argue that the quotient � := Var((PN (C))/SU(m, n) is
countably separated and v induces a map

v : X → � , v(x) := SU(m, n) · Vx ,

which is �-invariant, since v was σ -equivariant by Equation (7). By the ergodicity of �

on X , the above map must be essentially constant. Equivalently v must take values into a
unique orbit SU(m, n) · Vx0 , for some x0 ∈ X . Hence there must exist a measurable map
g : X → SU(m, n) such that

Vx = g(x)Vx0 ,

and the measurability of g follows by the measurability of φ and by [34, Corollary A.8].
This implies that σ is cohomologous to a cocycle preservingVx0 and the latter must coincide
with H/Q by the Zariski density assumption on σ . Hence for almost every x ∈ X , we have
Vx = H/Q and hence Vx = Sm,n , which means that almost every slice is essentially Zariski
dense. �

5 Proof of themain theorem

The aim of this section is to prove Theorem 2. The proof follows the line of that in [33,
Theorem 4.1] and is based on both Lemma 3.6 and the following useful result about invariant
measures on quotients of algebraic groups. Before stating the lemma, recall that aR-group is
an algebraic group whose defining equations are given by polynomials with real coefficients.

Lemma 5.1 Let G be a semisimple algebraic R-group and let G0 be a R-subgroup. Denote
by G = G(R) and G0 = G0(R) the associated real points, respectively. Consider a lattice
� in G. Then, any measure on G/G0 which is invariant by left translations in �, it is also a
G-invariant measure.

Proof Since G is an affine algebraic group, by Chevalley’s Theorem [34, Proposition 3.1.3]
there exists a suitable positive integer N and a rational representation π : G → PGL(N ,C)

defined overR such that the image π(G0) coincides with the stabilizer in G of a line � ⊂ R
N .

Thus we get a map

π : G/G0 → G · [�] ⊆ P
N−1(R), g · G0 �→ π(g)[�] .

Consider now a measure μ on G/G0. Its push-forward measure ν := π∗μ on P
N−1(R)

is supported on the orbit G · [�]. By Zimmer [34, Theorem 3.2.4] the stabilizer

L := StabPGL(N ,C)(ν)

corresponds to the real points of an algebraic group L < PGL(N ,C) defined over R. Since
the representation π is rational, the preimage

H = π−1(L)
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is a Zariski closed subgroup of G. The intersection

H := H ∩ G

coincides with the stabilizer StabG(μ). By hypothesis we have that � ⊆ StabG(μ) = H∩G.
Passing to the Zariski closures, we get

G = �
Z ⊆ StabG(μ)

Z ⊆ H ,

where the first equality follows by the Borel Density Theorem [34, Theorem 3.2.5]. Hence
the stabilizer of μ in G is the whole group and we are done. �

We are now able to give the proof of the main theorem.

Proof of Theorem 2 Assuming the same algebraic structures on ∂H
p
C
and Sm,n as those ones

described in Sect. 2.4, we denote the set of rational maps between boundaries by

Q:=Rat(∂Hp
C
,Sm,n) .

As described in Sect. 2.4, there exists a natural action of PU(p, 1) × SU(m, n) on it defined
as follows: for each h ∈ PU(p, 1), g ∈ SU(m, n), ξ ∈ ∂H

p
C
and f ∈ Q,

((h, g) · f ))(ξ):=g · f (h−1ξ) .

Since σ is Zariski dense, by Corollary 4.2 we know that there exists a boundary map
φ : ∂∞H

p
C

× X → Sm,n . Being σ also maximal, by Lemma 3.6 we can define the function

	 : X → Q, x �→ φx

and by composing it with the projection Q → Q/SU(m, n) we obtain

	̂ : X → Q̂:=Q/SU(m, n), x �→ SU(m, n) · φx .

Since φ is a boundary map for σ , its equivariance implies

	(γ x) = φγ x ( · )

= φ(·, γ x)

= φ(γ γ −1·, γ x)

= σ(γ, x)φ(γ −1·, x)

= σ(γ, x)(γ	(x)). (8)

In the equation above, notice that γ ∈ � acts on the quotient Q̂ via γ · (SU(m, n) · ψ) :=
SU(m, n) · (γ · ψ), where γ · ψ is the rational map (γ · ψ)(ξ) = ψ(γ −1ξ), for ξ ∈ ∂H

p
C
. As

a consequence of Equation (8) we get

	(γ x) ∈ SU(m, n) · γ · 	(x) ,

and hence it holds

	̂(γ x) = γ · 	̂(x) ,

from which we deduce that 	̂ is a �-equivariant map on the quotient. It follows that the
induced map

̂̂	 : X → ̂̂Q := Q/PU(p, 1) × SU(m, n), x �→ PU(p, 1) × SU(m, n) · φx .
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is �-invariant and, since � acts ergodically on X , it is essentially constant or, equivalently, 	̂
takes values in a single PU(p, 1)-orbit. Notice that to conclude that ̂̂	 is essentially constant,
we exploited the fact that ̂̂Q is countably separated because of the smoothness of the joint
action of both PU(p, 1) and SU(m, n) on Q (see Sect. 2.4).

Let x0 ∈ X be a point such that 	̂ takes value in the orbit PU(p, 1) · 	̂(x0) and set
G0:=StabPU(p,1)(	̂(x0)). The latter is an algebraic R-subgroup of PU(p, 1) by [34, Propo-
sition 3.3.2]. Since the orbit PU(p, 1) · 	̂(x0) may be identified with PU(p, 1)/G0 by the
smoothness of the action [34, Theorem 2.1.14], we can compose the map

	̂ : X → PU(p, 1) · 	̂(x0) ∼= PU(p, 1)/G0 ,

with a measurable section

s : PU(p, 1)/G0 → PU(p, 1) ,

which exists by [34, Corollary A.8]. The previous composition gives us a map

g : X → PU(p, 1)

which is measurable (being the composition of measurable maps) and such that

	̂(x) = g(x)	̂(x0)

for almost every x ∈ X . By definition, we have

	̂(γ x) = g(γ x)	̂(x0)

for every γ ∈ � and almost every x ∈ X . On the other hand, by equivariance we get

	̂(γ x) = γ (	̂(x))

and thus

(γ g(x))−1g(γ x) ∈ G0.

The induced map

ḡ : X → PU(p, 1)/G0

is �-equivariant and this ensures the existence of a �-invariant finite measure (by push-
forward) on PU(p, 1)/G0. By Lemma 5.1, such a measure is in fact PU(p, 1)-invariant and,
sinceG0 is a closed subgroup, it coincideswith PU(p, 1) again by the Borel Density Theorem
[34, Theorem 3.2.5]. Hence 	̂ is essentially constant or, equivalently, 	 takes values in a
single SU(m, n)-orbit. Denote again by φ0 an element in the orbit and choose a map

f : X → SU(m, n)

satisfying

	(x) = f (x)φ0.

The measurability of f follows by the same argument we used to prove the measurability of
g. By rewriting Equation (8) using f we obtain

f (γ x)φ0 = σ(γ, x) f (x)γ φ0 (9)

and then

γ −1φ0 = f (γ x)−1σ(γ, x) f (x)φ0. (10)

123



Superrigidity maximal measurable cocycles 441

We define

β : � × X → SU(m, n), β(γ, x):= f (γ x)−1σ(γ, x) f (x)

and, by Equation (10), we get

φ0(ξ) = β(γ, x1)
−1β(γ, x2)φ0(ξ)

for all γ ∈ � and for almost all ξ ∈ ∂H
p
C
, x1, x2 ∈ X . Hence β(γ, x1)−1β(γ, x2) lies in

the stabilizer of the image of φ0. Since the latter is essentially Zariski dense, the product
β(γ, x1)−1β(γ, x2) actually stabilizes Sm,n . Since the pointwise stabilizer of Sm,n (that is
the kernel of the action of SU(m, n) on Sm,n) is trivial, it follows that β does not depend on
X and hence it is the cocycle associated to a representation

ρ : � → SU(m, n) .

Moreover, by Equation (10), the map φ0 is a boundary map for ρ, it is rational and has
essentially Zariski dense image in SU(m, n). It follows by [29, Theorem 1.1] that ρ is the
restriction of a representation

ρ̃ : PU(p, 1) → SU(m, n)

and, finally, σ is cohomologous to the restriction to � of the induced cocycle σρ̃ , as desired.
�

We can now prove that, except when either m = 1 or m = n, there are no maximal Zariski
dense cocycle as in the statement of Theorem 2.

Proof of Proposition 3 Following the proof of Theorem 2, given such a maximal cocycle,
there exists a maximal representation ρ : � → SU(m, n). Following [29, Corollary 1.2], if
m �= n, such a representation cannot exist. �

Since maximal measurable cocycles into SU(m, n) cannot be Zariski dense when 1 <

m < n, it is quite natural to ask which could be their algebraic hull. We answered to this
question in [32] and we report here both the statement and the proof for sake of completeness.
One can see that the characterization we obtained is completely analogous to the one given
in [29, Theorem 1.3].

Proposition 5.2 [32, Proposition 1.2] In the setting of Setup 3.1 we assume that 1 < m < n,
that X is �-ergodic and that σ is maximal. Denoting by H the algebraic hull of σ and by
H = H(R)◦, then H splits as the product K × Lnt × Lt , where K is a compact subgroup of
SU(m, n), Lt is a Hermitian Lie group of tube type and Lnt is a Hermitian Lie group not of
tube type that splits again as a product of several copies of SU(n, 1).

Proof Recall that a measurable cocycle σ : � × X → SU(m, n) is tight if it satisfies

‖H2(	X )(βSm,n )‖∞ = m .

Since we assumed σ maximal, it must be tight by the same proof of [32, Proposition 4.7]. By
[31, Theorem 3.5] the group H is reductive and hence it splits as the product of a compact
factor Lc = K and a non compact factor Lnc. By splitting Lnc in simple factors L1, . . . , Lk ,
we notice that the composition of σ with any projection πi : L1 × . . .× Lk → Li is a Zariski
dense maximal measurable cocycle from a complex hyperbolic lattice to Li . It follows by
[26, Theorem 5] that none of the Li ’s can be isomorphic to SU(1, 1). Hence the inclusion
Lnc → SU(m, n) satisfies the hypothesis of [29, Proposition 2.5], which states that each
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factor Li is either of tube type or isomorphic to some SU(pi , qi ). We denote by Lt the tube-
type part and we focus on the non-tube type factors. Again by [26, Theorem 5], if one of
SU(pi , qi )’s is actually of the form SU(s, 1) (that is qi = 1), we must have that s is equal to
n by Zariski density. By Corollary 3 the Zariski density of an ergodic cocycle taking values
into SU(pi , qi ) implies necessarily that qi = 1 and we are done. �

One can investigate the behavior of measurable cocycles of complex hyperbolic lattices
into other Hermitian Lie groups than SU(m, n). In [32] we study the case of isometries of infi-
nite dimensional Hermitian symmetric spaces. A hint for working with infinite dimensional
measurable cocycles was given by the recent paper by Duchesne, Lécureux and Pozzetti
[13] that investigate maximal representations of surface groups and hyperbolic lattices into
infinite dimensional Hermitian groups.
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