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Abstract Maximum likelihood estimation of models based on continuous latent vari-
ables generally requires to solve integrals that are not analytically tractable. Numeri-
cal approximations represent a possible solution to this problem. We propose to use
the Adaptive Gaussian-Hermite (AGH) numerical quadratureapproximation for a
particular class of continuous latent variable models for time-series and longitudinal
data. These dynamic models are based on time-varying latentvariables that follow an
autoregressive process of order 1, AR(1). Two examples are the stochastic volatility
models for the analysis of financial time series and the limited dependent variable
models for the analysis of panel data. A comparison between the performance of
AGH methods and alternative approximation methods proposed in the literature is
carried out by simulation. Empirical examples are also usedto illustrate the proposed
approach.
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1 Introduction

Statistical models for the analysis of time-series and panel data often involve contin-
uous time-varying latent variables. The dynamics of these latent variables is typically
modeled by assuming that they follow an autoregressive process of order 1, denoted
as usual by AR(1); see Frees (2004). In the analysis of financial time series data,
this approach is adopted to study the volatility of returns that is time varying and au-
tocorrelated. In particular, in the Stochastic Volatility(SV) model (Andersen, 1994;
Taylor, 1994), the level of volatility is represented by a sequence of latent variables
that follow a first order autoregressive process, as opposedto ARCH-type models
(Engle, 1982; Bollerslev, 1986).

A different example of data that may be effectively analyzedthrough latent au-
toregressive models is that of longitudinal/panel data where repeated observations on
the same units are taken over time. Here the reason for using latent variables is to
account for the non-observable heterogeneity between units. Within the variety of
dynamic models discussed in the literature for panel data weconsider, in particu-
lar, the Limited Dependent Variable (LDV) models for discrete data that are strictly
related to generalized linear mixed models commonly used inthe social sciences
(Skrondal and Rabe-Hesketh, 2004; Hancock and Samuelson, 2008).

Both SV and LDV models have some attractive features. They can properly cap-
ture the variability in the data through an autoregressive latent structure and, at the
same time, are more parsimonious than other models based on latent Markov chains
(Bartolucci et al, 2013). Moreover, these models admit a general representation in
the non-linear state space framework, but their estimationimplies some computa-
tional difficulties as the time-varying latent variables must be integrated out from the
likelihood function and an analytical solution for these integrals does not exist in gen-
eral. In the literature, different solutions to this problem have been proposed, as we
outline in the following.

For SV models, a simple estimation method is the generalizedmethod of mo-
ments (Taylor, 1986). Moreover, Harvey et al (1994) proposed a quasi maximum
likelihood approach based on the Kalman filter that has the advantage of not de-
pending on specific distribution of the error terms. In the Bayesian context, Markov
chain Monte Carlo techniques have been widely applied; see Jacquier et al (1994).
Fridman and Harris (1998) proposed a direct maximum likelihood estimation of SV
models using a non-linear Kalman filter algorithm. This algorithm is based on ex-
pressing the likelihood function as a nested sequence of one-dimensional integrals
which are approximated by the Gauss Legendre numerical quadrature. Bartolucci and De Luca
(2001, 2003) extended this approach by computing analytical first and second deriva-
tives of the approximated likelihood. They applied a rectangular quadrature to ap-
proximate the integrals. A non-linear Kalman filter algorithm has been discussed,
among others, by Tanizaki and Mariano (1998) and Durbin and Koopman (2002) in
the general state space model framework. For the same SV model, Junji and Yoshihiko
(2005) proposed a solution based on the Laplace approximation. All these studies
show that the performance of the different approximation methods is highly sensitive
to the values of the model parameters.
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For LDV models, a numerical integration solution was proposed by Heiss (2008)
and consists in the use of a non-linear filter algorithm and the approximation of the
resulting one-dimensional integrals through the Gauss Hermite (GH) quadrature. He
showed the higher performance of this method in comparison with other methods,
among which the sparse grids integration (Heiss and Winschel, 2008), the non-linear
particle filter (Fernández-Villaverde and Rubio-Ramı́rez, 2006), and the sequential
importance sampling (Tanizaki and Mariano, 1998) in Bayesian settings. The supe-
riority of this sequential GH quadrature over these alternative methods is due to the
fastest convergence to the limiting values. However, it is known that GH based meth-
ods guarantee accurate parameter estimates when several quadrature points are used
per each dimension. It is also important to consider that, for certain target functions,
instability problems arise in the phase of maximization when the function is approx-
imated through this quadrature method.

In this paper, we propose to use the Adaptive Gaussian Hermite (AGH) quadra-
ture method to approximate the one-dimensional integrals involved in the non-linear
filtering algorithm used for the estimation of SV and LDV models, when these models
are specified within a general state space framework. AGH hasbeen developed for the
first time in the Bayesian context to compute posterior densities (Naylor and Smith,
1982; Liu and Pierce, 1994). More recently, it has been implemented and compared
with other methods in a variety of random-effects and latentvariable models; see,
among others, Pinheiro and Bates (1995), Rabe-Hesketh et al(2002), Joe (2008), and
Cagnone and Monari (2013). In all these studies this numerical method appeared to
be superior to other quadrature methods, as it requires onlyfew quadrature points to
get accurate estimates, and it does not give rise to the risk of missing the maximum
of the likelihood function, as it well captures the peak of the integrand involved in
this function.

To our knowledge, AGH has not been previously applied for theestimation of dy-
namic latent variable models within the state space framework. In order to evaluate
its performance for this class of models, we perform a wide simulation study under
different conditions. For SV models, in particular, AGH is compared with alternative
approximation methods discussed in the literature as well as with the Laplace approx-
imation that can be viewed as a particular case of AGH when onequadrature point
is used (Pinheiro and Bates, 1995). For LDV models, AGH quadrature is compared
with the classical GH quadrature under different conditions.

The paper is organized as follows. In Section 2 we define the class of models
of interest and, as particular cases, we describe SV and LDV models. In Section 3
model estimation is discussed, with particular attention to the AGH approximation. In
Section 4 we illustrate the situations in which AGH outperforms the other quadrature
methods in simple cases. Section 5 reports the results of thesimulation study for both
SV and LDV models. In Section 6 two applications on real data are illustrated. Some
conclusions are provided in Section 7.
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2 State space specification of dynamic latent variable models

In a time-series context, we letyt be the response variable observed at occasiont with
t = 1, . . . , T . For the case of panel data, in which we observen sample units atT
occasions, we extend this notation by denoting the responsevariable for uniti at oc-
casiont by yit, i = 1, . . . , n, t = 1, . . . , T , and, since in this case covariates are also
typically observed, we also denote byxit the vector of the covariates corresponding
to yit.

In order to formulate dynamic latent variable models in the state space framework,
we start from the more general case of panel data consideringthat time-series is a
particular case withn = 1. The proposed formulation is based on the following
equations fori = 1, . . . , n andt = 1, . . . , T :

yit = G(y∗it),

y∗it = h(αit,xit, εit), (1)

αit = m(αi,t−1, ηit), (2)

wherey∗it is a continuous unobservable variable underlyingyit introduced to deal
with categorical response variable andG(·) is a parametric function, the specification
of which depends on the nature of the observed variable. Thisfunction may involve
thresholds in the presence of ordinal data. Moreover,h(·) andm(·) are known func-
tions that can be linear or non-linear, whereasαit is a time dependent latent variable
andεit andηit are error terms assumed to be mutually independent. We referto (1) as
measurement equation and to (2) astransition equation. The former specifies the re-
lationship between the manifest variables and the latent variables; the latter specifies
the dependence between the latent variables over time. Whenboth equations are lin-
ear, we obtain the classical linear state space models and the Kalman filter algorithm
is usually used for model estimation. If one or both the equations are non-linear, we
obtain a non-linear state space model.

In the following we illustrate two particular cases of non-linear state space mod-
els: SV models for the analysis of financial time series and LDV models for panel
data.

2.1 Stochastic volatility models for financial time series

SV models are widely used for dealing with volatility in financial time series. These
models represent the volatility by a sequence of latent variables following a first order
autoregressive process and, therefore, they admit the following non-linear state space
representation fort = 1, . . . , T :

yt = exp

(

1

2
αt

)

εt, εt ∼ N(0, 1),

αt = γ + αt−1ρ+ ηt, ηt ∼ N(0, σ2
η).

In this case,G(·) is the identity function as the response variable is continuous. More-
over,exp(αt) is the volatility level underlyingyt; hence, the logarithm of the volatil-
ity level is assumed to follow an AR(1) process.
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2.2 Limited dependent variable models for panel data

Another class of models belonging to the general framework of non-linear state space
models based on equations (1) and (2) is that of LDV models forthe analysis of
panel data. In this context, the latent variables are time and unit dependent random
intercepts that allow us to account for the unobserved heterogeneity between subjects
in a dynamic fashion. The non-linear state space representation of these models is
given by

yit = G(y∗it),

y∗it = x′

itβ + αit + εit,

αit = αi,t−1ρ+ ηit, ηit ∼ N(0, σ2
η),

for i = 1, . . . , n andt = 1, . . . , T and where different distributions may be assumed
for the error termsεit.

In LDV models for panel data, the response variableyit is typically discrete so
thatG(·) is not the identity function. In the binary caseG(y∗it) = I(y∗it > 0), where
I is the indicator function, so that

λ[p(yit = 1|αit,xit)] = x′

itβ + αit, (3)

with λ(·) denoting the logit function or the inverse standard Normal cumulative func-
tion, resulting in a logit model or probit model, respectively.

If the response variables are ordinal withJ categories, we define a set of thresh-
oldsτ1 ≤ . . . ≤ τJ−1, such that

G(y∗it) = j ⇔ τj−1 < y∗it ≤ τj j = 1, . . . , J,

with τ0 = −∞ andτJ = +∞. Different models result according to the assumed
distribution for the error termsεit. For instance, assuming a logistic distribution
leads to the well-known proportional odds model for cumulative probability func-
tions (McCullagh, 1980):

log
p(yit ≤ j|αit,xit)

′

p(yit > j|αit,xit)
= τj − αit − x′

itβ, j = 1, . . . , J − 1. (4)

3 Model estimation

Estimation of the models illustrated above may be carried out through the maximiza-
tion of likelihood function

L(θ) =

n
∏

i=1

f(yi1, . . . , yiT ), (5)

whereθ is the vector of all model parameters which affects themanifest joint dis-
tribution of the observed variablesf(yi1, . . . , yiT ). The latter can be expressed as

f(yi1, . . . , yiT ) =

∫

· · ·
∫ T

∏

t=1

fy(yit|αit)fα(αit|αi,t−1)dαiT · · · dαi1. (6)
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The above expression is based on theconditional independence assumption, accord-
ing to which

f(yit|yi1, . . . , yi,t−1, αi1, . . . , . . . , αiT ) = f(yit|αit),

and on the first order Markov assumption on the latent variables, according to which

fα(αit|yi1, . . . , yi,t−1, αi1, . . . , . . . , αi,t−1) = fα(αit|αi,t−1).

Notice thatfα(αi1|αi0) ≡ fα(αi1). Moreover, the form of the densitiesfy(yit|αit)
andfα(αit|αi,t−1) depends on how the measurement equation (1) and the transition
equation (2) are formulated.

Typically, computation and maximization of the likelihoodfunction in (5) do not
admit an analytical solution. An effective way to solve thisproblem is to apply non-
linear filter techniques that allow us to transform the multidimensional integral in-
volved in expression (6) into a sequence of uni-dimensionalintegrals using the rules
of conditioning as follows:

f(yi1, . . . , yiT ) = f(yi1)

T
∏

t=2

f(yit|yi1, . . . , yi,t−1),

where

f(yi1) =

∫

fy(yi1|αi1)fα(αi1)dαi1 (7)

and

f(yit|yi1, . . . , yi,t−1) =

∫

fy(yit|αit)f(αit|y1, . . . , yi,t−1)dαit. (8)

The densityf(αit|yi1, . . . , yi,t−1) in expression (8) can be obtained as follows:

f(αit|yi1, . . . , yit) =
fy(yit|αit)f(αit|yi1, . . . , yi,t−1)

f(yit|yi1, . . . , yi,t−1)
, (9)

where

f(αit|yi1, . . . , yi,t−1) =

∫

fα(αit|αi,t−1)f(αi,t−1|yi1, . . . , yi,t−1)dαi,t−1. (10)

The filtering algorithm consists in evaluating recursivelyformulas (8), (9), and (10).
Formulas (8) and (10) involve one-dimensional integrals that cannot be computed

analytically and must be suitably approximated. A widely used method is the Gauss-
Hermite (GH) quadrature method that is based on the following approximation:

∫

e−z2

f(z)dz ≃
q

∑

k=1

wkf(zk), (11)

wherezk are the zeros of the Hermite orthogonal polynomialHk, wk are the cor-
respondent weights, andq is number of quadrature points (Davis and Rabinowitz,
1975). The approximation is exact iff(z) is a polynomial of degree equal to2q − 1.
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In order to apply the GH to the integral (8) we rewrite it as

f(yit|yi1, . . . , yi,t−1) =

∫

fy(yit|αit)f(αit|yi1, . . . , yi,t−1)fα(αit)

fα(αit)
dαit, (12)

wherefα(·) is the density function of the marginal distribution ofαit corresponding
to a Normal density distribution with meanµ and varianceσ2. In particular, for SV
models we haveµ = γ/(1 − ρ) andσ2 = σ2

η/(1 − ρ2); for LDV models we have
µ = 0 andσ2 = σ2

η/(1−ρ2). Denoting withg(αit) = f(αit|yi1, . . . , yit−1)/fα(αit)

and integrating over the standardizedα̃ = 1
σ
(α− µ), we obtain

f(yit|yi1, . . . , yi,t−1) =
1√
2π

∫

fy(yit|σα̃it + µ)g(σα̃it + µ) exp(−α̃it
2/2)dα̃it

≃
q

∑

k=1

fy(yit|σz∗k + µ)g(σz∗k + µ)w∗

k, (13)

wherez∗k =
√
2zk andw∗

k = (1/
√
π)wk. The same approximation can be applied to

solve integral (10).

3.1 Adaptive Gauss-Hermite quadrature

An improved version of the GH approximation is given by the Adaptive Gauss Her-
mite (AGH) quadrature introduced in the Bayesian context with the aim of efficiently
computing posterior densities if they are approximately Normal (Naylor and Smith,
1982). Essentially, AGH consists of adjusting the GH quadrature locations with the
mean and the variance of the posterior density so that the nodes are more concen-
trated around the peak of the integrand, so that a better approximation of the function
to be integrated is obtained.

For the particular class of models defined in Section 2, the AGH quadrature is
obtained by multiplying and dividing the integral in (12) bythe Normal density
φ(α̃it, µ̃it, σ̃it). We have that

f(yit|yi1, . . . , yi,t−1) =

=
1√
2π

∫

fy(yit|σα̃it + µ)g(σα̃it + µ) exp(−α̃it
2/2)

φ(α̃it, µ̃it, σ̃it)
φ(α̃it, µ̃it, σ̃it)dα̃it (14)

such that, transforming thẽαit’s to standardized latent variables, the integral (14) is
approximated as follows

f(yit|yi1, . . . , yi,t−1) ≃

≃ σ̃it

q
∑

k=1

fy(yit|σνitk + µ)g(σνitk + µ) exp(−ν2itk/2)

exp(−z∗2k /2)
w∗

k, (15)

whereνitk = σ̃itz
∗

k + µ̃it.
Two different procedures can be used to determineµ̃it andσ̃it. The first one con-

sists in approximating̃µit with the mode of the integrand and̃σit with the standard
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deviation of the integrand at the mode (Liu and Pierce, 1994;Pinheiro and Bates,
1995; Schilling and Bock, 2005). The advantage of this approach is that the quadra-
ture points are not involved in these computations. On the other hand, this method
is very computationally demanding since it requires a numerical optimization. More-
over, when parameter estimates are obtained by using iterative algorithms, as in the
cases dealt with in the present paper, the first two moments have to be computed
at each step of the algorithm that, for this reason, is expected to be rather slow. An
alternative method consists in computing the posterior mean and standard deviation
(Naylor and Smith, 1982; Rabe-Hesketh et al, 2005). Although this method requires
the use of quadrature points themselves, it is more robust tofat tailed distributions
and it is faster when a sequential scheme is used. For these reasons we adopt the
second procedure.

In more detail, following the second procedure, the computation of µ̃it andσ̃it is
iteratively obtained as follows:

1. Choose starting values̃µ(0)
it = 0 andσ̃(0)

it = 1 so thatν(0)ik = z∗k.
2. Compute the log-likelihood for thel-th iteration

logL(l)(θ) = log

n
∏

i=1

f(l)(yi1, . . . , yiT ) ≃

≃ log

[

n
∏

i=1

(

T
∏

t=1

σ̃
(l−1)
it

q
∑

k=1

fy(yit|σν
(l−1)
itk

+ µ)g(σν
(l−1)
itk

+ µ) exp(−(ν
(l−1)
itk

)2/2)

exp(−z∗2
k

/2)
w∗

k

)]

,

with g(σνitk + µ) = 1 for t = 1.

3. Update each nodeν(l)itk by computing the posterior mean and standard deviation
as follows

µ̃
(l)
it = σ̃

(l−1)
it

q
∑

k=1

ν
(l−1)
itk

fy(yit|σν
(l−1)
itk

+ µ)g(σν
(l−1)
itk

+ µ) exp(−(ν
(l−1)
itk

)2/2)

f(l)(yit|yi1, . . . , yit−1) exp(−z∗2
k

/2)
w∗

k,

σ̃
(l)
it =

√

√

√

√σ̃
(l−1)
it

q
∑

k=1

(ν
(l−1)
itk

)2fy(yit|σν
(l−1)
itk

+ µ)g(σν
(l−1)
itk

+ µ) exp(−(ν
(l−1)
itk

)2/2)

f(l)(yit|yi1, . . . , yit−1) exp(−z∗2
k

/2)
w∗

k
− (µ̃

(l)
it )2.

Steps 2 and 3 are repeated until convergence is attained. Parameter estimation
is obtained by quasi-Newton method. Thus the estimation algorithm consists in al-
ternating one step of the quasi-Newton procedure to update parameter estimates and
the iterative scheme proposed above to update the nodes of the adaptive numerical
quadrature.

4 Approximation of the probabilities with different numeri cal quadrature
methods

As described in Section 3, the GH quadrature should guarantee a sharp approximation
of uni-dimensional integrals if an adequate number of quadrature points is chosen.
This is because the true function is undistinguishable fromits approximation based
on a high order polynomial in most situations. However, if the integrand presents a
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narrow peak, GH does not provide sharp results even using a high number of quadra-
ture points as it does not capture such a peak. On the other hand, in these cases the
AGH quadrature guarantees a much sharper approximation of the true function.

For the class of models considered in this paper, the performance of the approx-
imation methods strictly depends on the autocorrelation parameterρ, in the case
of the LDV model, and on the squared Coefficient of Variation of the volatility,
CV = exp(σ2

η/(1− ρ2))− 1, in the case of the SV model.
For illustrative purposes, consider a first simple case of a limited dependent vari-

able model for panel data described in Section 2.2 for ordinal responses andT = 2.
ConsiderJ = 4 categories, thresholds equal toτ1 = −1.5, τ2 = 0, τ3 = 1.5, and
σ2 = 1 without covariates. Suppose that for individuali we observe categoryj = 3.
The probability reported in expressions (7) becomes

f(yi1) =

∫

fy(yi1|αi1)fα(αi1)dαi1 = (16)

=

∫

(p(yi1 ≤ 3|αi1)− p(yi1 ≤ 2|αi1))φ(αi1)dαi1

wherep(yi1 ≤ 3) = exp(1.5− αi1)/(1 + exp(1.5− αi1)), with p(yi1 ≤ 2) defined
accordingly, andφ(·) stands for the standard Normal density. The behaviour of GH
and AGH for the approximation of the integral in (16) is illustrated in Figure 1 (left
picture) where the densityfy(yi1|αi1) is represented together with the relative GH
and AGH nodes and weights forq = 21. We observe that the integrand has a smooth
shape and both methods approximate it very well and they perform similarly.

On the contrary, the integrand in expression (10) is not necessarily smooth due to
the shape of the Normal densityfα(αi2|αi1) that strictly depends on the value ofρ.
For the example here considered, equation (10) becomes

f(αi2|yi1) =
1

f(yi1)

∫

φ(αi2; ραi1, (1− ρ2))fy(yi1|αi1)φ(αi1)dαi1, (17)

whereφ(·; ραi1, (1 − ρ2)) denotes the Normal density function with meanραi1 and
variance(1− ρ2). In Figure 2 we show the product of the densitiesφ(αi2; ραi1, (1−
ρ2))fy(yi1|αi1) in expression (17) forρ = 0.5 (left picture) andρ = 0.95 (right
picture). While in the first case both the approximations perform well, in the second
case only a small fraction of quadrature points are in the nonzero area and only AGH
captures the peak of the integrand, outperforming GH. Clearly for T greater than 2,
both probabilities (8) and (10) become more problematic to be approximated for high
values ofρ.

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]
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As a second example, we consider a stochastic volatility model for financial time
series described in Section 2.1 and, as in the previous example, we fix T = 2 for
simplicity. In this case, the probabilities in (8) and (10) become

f(y1) =

∫

fy(y1|α1)fα(α1)dα1 =

∫

φ(y1; 0, exp(1/2α1))φ(α1)dα1 (18)

and

f(α2|y1) =
1

f(y1)

∫

φ(α2; γ + ρα1, σ
2
η)fy(y1|α1)φ(α1)dα1, (19)

respectively. We consider two sets of parameters so thatCV = 10 andCV = 0.1; the
first one isγ = −0.821,ρ = 0.90 andση = 0.675 and the second one isγ = −0.706,
ρ = 0.90, andση = 0.135.

In this case it is interesting to compare the performance of the AGH quadrature in
approximating the probabilities in (18) and (19) with two quadrature based methods
used in literature for SV models, the Gauss-Legendre quadrature (GLQ) approxima-
tion proposed by Fridman and Harris (1998) and a rectangulartype quadrature (RQ)
method proposed by Bartolucci and De Luca (2001).

The right picture of Figure 1 shows the Normal densityφ(y1; 0, exp(1/2α1))
with relative AGH, GLQ, and RQ nodes and weights forq = 21. As for the LVD
models, also in this case all the quadrature approximationscapture very well the area
under the curve.

The approximation of the productφ(α2; γ + ρα1, σ
2
η)fy(y1|α1) in formula 19

depends on the value ofCV . In the case ofCV = 10 (left picture, Figure 3) all the
methods perform quite well, in particular AGH and RQ are morecentered around
the mode. On the other hand, forCV = 0.1 (right picture, Figure 3), AGH and RQ
perform similarly but only AGH captures the peak of the density whereas GLQ is
clearly the worst method.

5 Simulation study

We carried out two simulation studies in order to evaluate the performance of AGH
for LDV and SV models. In both cases the results are compared with other approxi-
mation methods discussed in the literature.

5.1 Simulation study for the LDV models

LDV model considered in this simulation study is the proportional odds model il-
lustrated above. For this model, the behavior of AGH is compared with that of the
classical GH approximation for increasing values of the correlation parameterρ =
(0.5, 0.90, 0.95), different combinations of time points (T = 5, 10), and sample sizes
(n = 500, 1000). Five categories for the ordinal responses are chosen and the thresh-
olds are fixed asτ1 = −1.65, τ2 = −0.5, τ3 = 0.5, andτ4 = 1.65. The remaining
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parametersβ andσ are fixed to 1. One covariate is generated from a stationary AR(1)
process with autocorrelation parameter equal to 0.5. The quadrature points chosen for
AGH areq = 15, 21 and for GH areq = 21, 51. Under each simulation scenario, 500
samples were generated and the model parameters were estimated on the basis of the
two approximation methods.

The comparison between the two different numerical approximations is assessed
in terms of both accuracy of estimates and computational performance of the algo-
rithms. ForT = 5 andn = 500 the results are reported in Table 1.

[Table 1 about here.]

For ρ = 0.5, under both GH and AGH approximations the algorithm converges
properly in almost all the samples (%cv). Moreover, the average number of function
evaluations (nr feval) is quite similar for both methods. As for the rmse of the esti-
mates, the best performances are obtained forq = 51 with GH, denoted with GH51
and forq = 21 with AGH, denoted with AGH21. They produce very close results
for all the parameters estimates. In more detail, in terms ofbias AGH21 is always
better than GH51, in terms of rmse adaptive is better than the classical quadrature
for β andσ and slightly worse for the autocorrelation parameter. Thus, with less
than half quadrature points than those used with GH51, AGH21 produces very ac-
curate estimates. Moreover, differently from GH, AGH is notaffected by the choice
of starting values. Nevertheless, the average computational time (av time in seconds)
to convergence of the latter approximation is about three times that of the former,
making GH preferable in this case. This is due to the iterative routine required for the
computation of the posterior means and standard deviationsat each iteration of the
algorithm. However, it is possible to improve the speed of convergence of AGH by
using a pseudo version of the AGH that consists in updating the quadrature nodes for
each subject with the posterior means and standard deviations only at the first step
of the algorithm, implying a consistently reduction of the computation time. This
method was proposed by Rizopoulus (2012) for a class of linear mixed effect models
for longitudinal and event time data. The author showed that, for the class of models
considered, PseudoAGH produces accurate parameter estimates when proper starting
values are used. Here we chose starting values by means of a multi-start strategy. The
results of the PseudoAGH withq = 21 are reported in the last column of Table 1. We
observe that the rmse ofρ is the same as AGH21 whereas the rmse of the other param-
eter estimates are higher than the rmse obtained with AGH21. On the other hand, the
computational time of PseudoAGH is noticeably lower than the standard AGH (the
ratio is about 1 to 4 and in same cases about 1 to 5) and slightlylower than GH51.

In the cases ofρ = 0.90 andρ = 0.95, the superiority of the adaptive procedure
is undoubted. Indeed GH does not produce convergent solutions in all the generated
samples due to instability problems. On the contrary, AGH performs very well even
with q = 15, being the rmse of all the estimates equal to those obtained for q = 21.
Moreover, in this case PseudoAGH presents the same rmse of all the parameter esti-
mates as both AGH15 and AGH21 and, as before, reveals superior in terms of com-
putational time. Thus, for high values of the autocorrelation parameters, PseudoAGH
reveals the best method. The convergence problems under GH occurs in the cases of
latent variables highly correlated over time determining very peaked integrands.
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The simulation results forT = 10 andn = 500 are reported in Table 2. As
expected, in general the rmse of the estimates improve compared with those obtained
in the previous scenario. As for GH, convergent solutions are obtained only forρ =
0.5, whereas AGH performs well for all the values of the autocorrelation parameter
even if the computational time is quite heavy. Also in this case, PseudoAGH seems to
be the best compromise between GH and AGH, particularly in the case of high values
of ρ where, as before, the accuracy of the parameter estimates results similar and in
same cases better than the standard adaptive rule. The reduction in the computational
time results of the same magnitude as in the previous scenarios.

[Table 2 about here.]

The case ofT = 5 andn = 1000 (Table 3) is the only one in which we obtain
convergent solutions under GH also for high values ofρ.

[Table 3 about here.]

However, forρ = 0.90, even if GH51 performs similarly to AGH21 in terms of
rmse, we can observe that%cv is 74% versus a percentage equal to 98% generated
sample in which the algorithm properly converge under AGH21 and to %100 under
PseudoAGH21. Moreover, as in all the previous cases, the latter results to be the
fastest. We observe the same behavior of the different approximation methods also
for ρ = 0.95. In particular, in this case GH produces a%cv equal only to 36%.

5.2 Simulation study for the SV model

The design of the study considered for the SV model is based onthe same setting
considered by Jacquier et al (1994) and widely used in the literature for evaluating
the performance of different approximation methods. Here the results obtained with
the AGH approximation are compared with those obtained by Fridman and Harris
(1998), who used GLQ, by Bartolucci and De Luca (2001), who proposed RQ, and by
Junji and Yoshihiko (2005), who used the Laplace approximation (LA). The Laplace
approximation is considered here since it can be viewed as a particular case of the
AGH when one quadrature point is chosen (Pinheiro and Bates,1995).

The parameter values of the generating model were chosen so that different values
of theCV result. In more detail, the most relevant parameterρ is fixed to0.90, 0.95
and0.98, values based on the empirical evidence. The other parameter values are
consequently determined in such a way thatCV assumes the values0.1,1.0 and10,
producing nine different scenarios. In each simulated scenario, we letT = 500 and
used 500 Monte Carlo replications; for AGH we adoptedq = 21 quadrature points.

The mean of the parameter estimates and the root mean square error (rmse) in
brackets for SV models with different combinations of the parameters are reported in
Table 4.

[Table 4 about here.]
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The Table is grouped according to the values of theCV. We can observe that in the
case ofCV = 10 all the methods perform quite similarly in terms of rmse. Only in the
case ofρ = 0.98, GLQ produces better rmse than the other approximations. But, as
theCV decreases, all the methods deteriorate sensibly apart fromAGH that produces
rmse always with the same small magnitude. The superiority of the proposed method
is particularly noticeable in the case ofCV = 0.1 for the parametersγ andρ. In terms
of bias, AGH gives better or similar results than the other methods for most of the
parameter values.

In the table, the average computational time (in seconds) ofAGH are also showed
for all the scenarios. We can observe that in all the cases thealgorithm reaches con-
vergence in few seconds. We cannot compare the computational performance of the
proposed method with the other approximation methods sincefor the latter we do not
have this information.

6 Real data analysis

In the following, we illustrate the proposed approach by twoapplications in the con-
text of panel data analysis and in that of time-series data.

6.1 Application of limited dependent variable models to Self-reported health status

We consider panel data deriving from the Health and Retirement Study (HRS)1 con-
ducted by the University of Michigan with the aim of studyingretirement and health
among the elderly in the United States over time. These data are referred to a sam-
ple of n = 7, 074 individuals who were asked atT = 8 time points (from 1992
to 2006 every two years) to report the self-rated health status (SHR) by answering
to the question “Would you say your health is excellent, verygood, good, fair, or
poor?”, that is an ordinal response variable with five categories. Also the covariates
gender, race (“white”, “non white”), education (“high school”, “some college”, “col-
lege and above”), andage measured at each time point are available. Some descriptive
statistics for the distributions of the covariates are reported in Table 5, whereas Ta-
ble 6 reports the conditional sample distribution of SHRt on the previous response
SHRt−1.

[Table 5 about here.]

[Table 6 about here.]

We observe that the sample is mainly composed by females (58.1%), white in-
dividuals (82.9%) with an average age at the first observed time point equal to54.8
years. As for the level of education,60.9% of the interviewed subjects declared to
have a high-school diploma,19.7% of them a college degree, and19.4% a higher title.

1 The RAND HRS Data file is an easy to use longitudinal data set based on the HRS data. It was devel-
oped at RAND with funding from the National Institute on Aging and the Social Security Administration.
See http://www.rand.org/labor/aging/dataprod.html formore details.
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The variable education has been recoded in the following way: 1 for “high school”, 2
for “some college”, and 3 for “college and above”.

The high percentage of individuals (more than 50% percent for all the categories)
that respond to the same category at timet − 1 and at timet indicates that SHR is
highly correlated over time. Previous analysis on HRS data (Heiss, 2008) showed that
the proportional odds model illustrated above with time dependent random intercepts
following a stationary AR(1) well captures the SHR correlation pattern over time.
More recently, Bartolucci et al (2014) analyzed the HRS dataassuming a more flex-
ible model based on a mixture of AR(1) for the latent process.They approximated
the integrals with a rectangular quadrature method. Since here the aim is to evaluate
the performance of the AGH discussed above, we fitted the proportional odds model
with a standard stationary AR(1) using AGH21 and PseudoAGH21 approximation.
For this particular sample, the algorithm under GH51 presented instability problems
and hence it was not possible to compare the performance of the different approxi-
mations.

In Table 7 we report the results in terms of parameters estimates and correspon-
dent standard errors under AGH21 and PseudoAGH21 approximation. The standard
errors were obtained by the diagonal elements of the inverseof the observed infor-
mation matrix.

[Table 7 about here.]

We observe that the parameter estimates are quite similar under PseudoAGH21
and AGH21 and in both cases all of them are significant apart from the coefficient of
the covariate gender. It is worth noting that the autocorrelation parameter estimate is
higher than0.95 indicating a high persistent latent process over time. In this example,
where the sample size is quite large, the computational timeof PseudoAGH21 is
noticeably lower than that of AGH21.

6.2 Application of stochastic volatility models to daily exchange rates

To illustrate the application of the method to SV models, we use a data set analyzed
by Harvey et al (1994) and later by several other authors. Thedata consist of a time
series of daily pound/dollar exchange rates from the periodOctober 1st, 1981 to June
28th, 1985. The series of interest is the logarithm ofn = 945 daily returns (Figure
4).

[Fig. 4 about here.]

For these data, we fitted the standard SV model illustrated above using GLQ, RQ,
and AGH withq = 21 quadrature points for approximating the integrals involved
in the likelihood of the model. The results are reported in Table 8. Under all the ap-
proximation methodsρ has a high and significant value, indicating a highly persistent
volatility process. However, it is worth noting that the variance estimate under AGH21
presents the lowest standard error and it is significantly different from 0 supporting
the stochastic nature of the volatility process. On the contrary, GLQ and RQ variance
estimates result not significantly different from 0.



Title Suppressed Due to Excessive Length 15

[Table 8 about here.]

It is further interesting to compare the standard SV model with an SV model
with error termsεit following a t-Student distribution with an unknown number of
degrees of freedomν. This choice is motivated by the fact that many financial time
series exhibit densities with fatter tails than the Normal distribution. For both specifi-
cations we used AGH21 given the better performance of this method in cases like this
in which the estimated CV of the volatility is less than 1. Theresults of parameter
estimates are reported in Table 9.

[Table 9 about here.]

Under both models,ρ has a high and significant value. BIC, which is equal to
1859.05 for the SV Normal model versus 1862.36 for the SVt-Student model, sug-
gests that there is no improvement assumingt-Student distributed errors.

The similarity between the two specifications of the error terms is confirmed by
the estimated filtered volatilities obtained for each model. Figure 5 shows the plot
of the estimated filtered volatilities for each time point ofthe t-Student distribution
versus the Normal distribution. We observe that there is a substantial agreement in
terms of estimated volatility between the two specifications.

[Fig. 5 about here.]

7 Conclusions

In this work we proposed the Adaptive Gauss Hermite (AGH) quadrature for approx-
imating the integrals involved in the likelihood of a class of dynamic latent variable
models based on a latent process following an autoregressive process of order 1,
AR(1). In particular, we focused on Stochastic Volatility (SV) models for the anal-
ysis of financial time series and on Limited Dependent Variable (LDV) models for
panel data. Both models can be formalized in a non-linear state space framework and
maximum likelihood estimation can be obtained by mean of a non-linear filtering
algorithm.

The main advantage of AGH compared with other numerical approximation meth-
ods is that it better captures the peak of the integrand in those cases in which it appears
very sharp, using fewer quadrature points than other methods. This is due to the fact
that the nodes of AGH are scaled and translated at each step ofthe algorithm with the
posterior mean and the posterior standard deviation of the latent variables given the
manifest variables.

The good behavior of AGH has been highlighted by means of simulation studies.
For SV models we found that the advantages of AGH with respectto other methods
are particularly evident in terms of parameter accuracy forthose values of the model
parameters that give low coefficients of variation of the volatility. For LDV, we found
that the performance of AGH is related to the value of the autocorrelation parame-
ter ρ. For high values ofρ, parameter estimates are very accurate under AGH even
with just q = 15 quadrature points whereas GH produces convergent solutions only
in few cases when the sample size is large. On the other hand, for ρ = 0.5, AGH
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gives results very similar to the classical GH but with a higher computational cost. To
solve this problem, we considered a pseudo version of AGH that consists in updating
the nodes of the quadrature only at the first step of the algorithm. We found a very
good performance of this method in terms of both computational burden of the al-
gorithm and parameter accuracy in almost all the scenarios we considered. However,
differently from AGH, the performance of PseudoAGH dependson the choice of the
starting values.

The potential of the proposed method has been showed also through two em-
pirical examples, the first one referred to an American longitudinal survey on the
health condition of the elderly population, the second one to a time series of daily
pound/dollar exchange rates in a given period of time. In both examples, the la-
tent variables showed high values of autocorrelation, values for which the adaptive
quadrature presents the best performance compared with theother approximations.
The high persistency of the latent variable is typical of SV models but it is also plau-
sible in panel data for the underlying process of time dependent response variables,
as for the health status considered here.
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Fig. 1 Approximating fy(y1|α1) for the LDV model (left picture) and SV model (right picture)
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Fig. 2 Approximating φ(α2; ρα1, (1 − ρ2))fy(y1|α1) for the LDV model, ρ = 0.5 (left picture) and
ρ = 0.95 (right picture)
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Table 1 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AGH for
T = 5, n = 500; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.478 0.487 0.487 0.492 0.493
(0.17) (0.18) (0.18) (0.19) (0.19)

β = 1 1.109 1.094 1.118 1.087 1.100
(0.35) (0.28) (0.40) (0.25) (0.34)

σ = 1 1.271 1.238 1.287 1.216 1.244
(0.86) (0.72) (0.97) (0.67) (0.84)

%cv 92 95 99 100 100
nr feval 48 48 41 41 40

av time (sec) 11.14 40.36 78.36 125.54 32.26
ρ = 0.90 - - 0.871 0.884 0.882

(0.05) (0.05) (0.05)
β = 1 - - 1.016 1.011 1.012

(0.05) (0.05) (0.05)
σ = 1 - - 1.045 1.028 1.030

(0.10) (0.11) (0.10)
%cv - - 100 100 100

nr feval - - 28 35 31
av time (sec) - - 64.91 129.56 22.68
ρ = 0.95 - - 0.898 0.917 0.914

- - (0.06) (0.05) (0.03)
β = 1 - - 1.025 1.015 1.019

- - (0.05) (0.05) (0.05)
σ = 1 - - 1.074 1.050 1.053

- - (0.11) (0.10) (0.10)
%cv - - 100 100 100

nr feval - - 27 32 28
av time (sec) - - 65.4 100.18 19.14
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Table 2 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AGH,
T = 10, n = 500; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.455 0.481 0.490 0.490 0.490
(0.10) (0.10) (0.10) (0.10) (0.10)

β = 1 1.044 1.028 1.025 1.023 1.025
(0.11) (0.11) (0.14) (0.10) (0.13)

σ = 1 1.137 1.081 1.070 1.065 1.070
(0.31) (0.30) (0.35) (0.29) (0.34)

%cv 61 81 100 100 100
nr feval 63 53 56 56 56

av time (sec) 24.43 80.12 227.48 288.38 73.23
ρ = 0.90 - - 0.892 0.898 0.898

- - (0.02) (0.02) (0.02)
β = 1 - - 1.003 1.001 1.001

- - (0.03) (0.03) (0.03)
σ = 1 - - 1.011 1.001 1.002

- - (0.06) (0.06) (0.06)
%cv - - 97 98 100

nr feval - - 37 36 36
av time (sec) - - 137.64 188.03 37.91
True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.95 - - 0.923 0.938 0.935
- - (0.03) (0.02) (0.04)

β = 1 - - 1.013 1.007 1.010
- - (0.04) (0.04) (0.03)

σ = 1 - - 1.034 1.017 1.030
- - (0.15) (0.08) (0.06)

%cv - - 99 97 100
nr feval - - 36 36 39

av time(sec) - - 164.71 278.73 52.23
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Table 3 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AGH for
T = 5, n = 1000; results based on 500 replications.

True value GH21 GH51 AGH15 AGH21 PseudoAGH21

ρ = 0.5 0.478 0.482 0.487 0.486 0.488
(0.14) (0.14) (0.14) (0.15) (0.14)

β = 1 1.064 1.058 1.058 1.053 1.057
(0.19) (0.17) (0.23) (0.16) (0.23)

σ = 1 1.170 1.150 1.147 1.138 1.145
(0.52) (0.48) (0.58) (0.46) (0.58)

%cv 77 92 100 100 100
nr feval 50 55 58 57 57

av time(sec) 24.46 83.27 191.66 309.6 72.99
ρ = 0.90 0.828 0.876 0.875 0.888 0.887

(0.08) (0.04) (0.04) (0.04) (0.04)
β = 1 1.030 1.013 1.013 1.008 1.009

(0.05) (0.04) (0.04) (0.03) (0.03)
σ = 1 1.099 1.038 1.036 1.020 1.021

(0.12) (0.08) (0.07) (0.08) (0.07)
%cv 18 74 96 98 100

nr feval 55 50 49 50 50
av time(sec) 19.36 70.84 167.64 312.05 59.84
ρ = 0.95 - 0.902 0.901 0.923 0.918

- (0.05) (0.05) (0.04) (0.04)
β = 1 - 1.021 1.022 1.015 1.016

- (0.04) (0.04) (0.05) (0.03)
σ = 1 - 1.067 1.068 1.036 1.046

- (0.09) (0.12) (0.10) (0.07)
%cv - 36 98 100 100

nr feval - 50 44 48 46
av time(sec) - 72.49 192.63 269.41 62.11
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Table 4 Comparison between different approximation methods in terms of the estimated means and rmse
of the SV model parameters.

CV=10 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.821 0.90 0.675 -0.411 0.95 0.484 -0.164 0.98 0.308
GLQ -0.896 0.890 0.685 -0.505 0.940 0.495 -0.100 0.986 0.320

(0.28) (0.03) (0.08) (0.18) (0.02) (0.07) (0.08) (0.01) (0.05)
RQ -0.859 0.895 0.694 -0.472 0.943 0.503 -0.275 0.967 0.343

(0.25) (0.03) (0.08) (0.18) (0.02) (0.07) (0.18) (0.02) (0.07)
LA -0.905 0.880 0.727 -0.510 0.931 0.534 -0.259 0.965 0.343

(0.28) (0.04) (0.10) (0.23) (0.03) (0.09) (0.18) (0.02) (0.07)
AGH -0.613 0.925 0.725 -0.509 0.938 0.527 -0.276 0.966 0.358

(0.23) (0.03) (0.15) (0.16) (0.02) (0.08) (0.19) (0.02) (0.08)
av time(sec) 17.97 12.34 14.86

CV=1.0 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.736 0.90 0.363 -0.368 0.95 0.26 -0.147 0.98 0.166
GLQ -0.870 0.880 0.370 -0.510 0.930 0.280 -0.090 0.987 0.180

(0.43) (0.05) (0.08) (0.31) (0.04) (0.07) (0.06) (0.02) (0.04)
RQ -0.812 0.890 0.375 -0.492 0.933 0.278 -0.308 0.958 0.214

(0.45) (0.06) (0.09) (0.29) (0.04) (0.07) (0.25) (0.03) (0.08)
LA -0.926 0.872 0.422 -0.526 0.927 0.303 -0.278 0.961 0.200

(0.42) (0.06) (0.11) (0.39) (0.05) (0.10) (0.25) (0.03) (0.07)
AGH -0.572 0.922 0.359 -0.475 0.935 0.293 -0.341 0.953 0.213

(0.17) (0.02) (0.04) (0.21) (0.03) (0.08) (0.26) (0.03) (0.07)
av time(sec) 13.85 11.59 17.83

CV=0.1 γ ρ ση γ ρ ση γ ρ ση

TRUE -0.706 0.90 0.135 -0.353 0.95 0.096 -0.141 0.98 0.061
GLQ -1.360 0.810 0.160 -0.810 0.886 0.120 -0.537 0.924 0.088

(1.72) (0.24) (0.12) (1.15) (0.16) (0.09) (1.13) (0.16) (0.09)
RQ 0.944 0.873 0.159 -0.796 0.888 0.148 -0.515 0.927 0.122

(1.24) (0.17) (0.10) (0.77) (0.11) (0.10) (0.94) (0.13) (0.11)
LA -1.227 0.827 0.178 -0.763 0.892 0.133 -0.489 0.93 0.099

(1.55) (0.22) (0.14) (1.16) (0.16) (0.12) (0.98) (0.14) (0.11)
AGH -0.521 0.926 0.137 -0.455 0.935 0.098 -0.568 0.920 0.131

(0.21) (0.03) (0.08) (0.18) (0.03) (0.08) (0.52) (0.07) (0.10)
av time(sec) 17.02 20.03 18.77
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Table 5 Summary statistics for the covariates in the HRS dataset; n = 7074.

Variable Mean Stdev
Gender (female) 0.581 0.490
Race (nonwhite) 0.171 0.377
Education

(high school) 0.609 0.488
(college degree) 0.197 0.398
(college +) 0.194 0.395

Age92 54.80 5.460

Table 6 Conditional distribution of SHRt given SHRt−1 for the HRS dataset; n = 7074.

poor fair good very good excellent
poor 54.5 34.1 8.4 2.5 0.7
fair 12.8 51.0 27.4 7.2 1.6
good 2.5 16.5 53.3 23.6 4.1
very good 0.8 4.7 25.9 55.6 13.0
excellent 0.4 1.9 10.6 33.7 53.4

Table 7 Estimates of the parameters of the LDV model adopted for the analysis of the HRS dataset (stan-
dard errors in brackets).

AGH PseudoAGH
β̂1 female -0.147 -0.099

(0.074) (0.073)
β̂2 non white -1.509 -1.394

(0.096) (0.091)
β̂3 education 1.182 1.141

(0.046) (0.047)
β̂4 age -0.109 -0.089

(0.003) (0.003)

ρ̂ 0.953 0.955
(0.018) (0.015)

σ̂ 3.121 2.860
(0.036) (0.034)

Log-lik -63591.17 -63595.50
Time (sec) 9612.34 2588.60



26 TABLES

Table 8 Estimate of the parameters of SV model adopted of the analysis of the daily exchange rates using
GLQ, RQ and AGH21 methods(with standard errors in brackets).

GLQ RQ AGH21

γ -0.016 -0.025 -0.033
(0.009) (0.014) (0.012)

ρ 0.982 0.974 0.964
(0.013) (0.020) (0.010)

σ2
η 0.027 0.023 0.039

(0.047) (0.046) (0.001)

Table 9 Estimate of the parameters of SV model adopted of the analysis of the daily exchange rates using
AGH21 (with standard errors in brackets).

Model
SV Normal SVt-Student

γ -0.033 -0.015
(0.012) (0.010)

ρ 0.964 0.966
(0.010) (0.001)

σ2
η 0.039 0.034

(0.001) (0.001)
ν - 25.97

(11.92)

Log-lik -919.25 -917.49
BIC 1859.05 1862.37
Time (sec) 29.73 34.79


	Introduction
	State space specification of dynamic latent variable models
	Model estimation
	Approximation of the probabilities with different numerical quadrature methods
	Simulation study
	Real data analysis
	Conclusions

