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particular class of continuous latent variable modelsifoetseries and longitudinal
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autoregressive process of order 1, AR(1). Two examplesharstbchastic volatility
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approach.
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1 Introduction

Statistical models for the analysis of time-series and bdaa often involve contin-
uous time-varying latent variables. The dynamics of thatenk variables is typically
modeled by assuming that they follow an autoregressivegsof order 1, denoted
as usual by AR(1); sée Fre 04). In the analysis of fiahtione series data,
this approach is adopted to study the volatility of retutrat is time varying and au-
tocorrelated. In particular, in the Stochastic Volati§§V) model .@4;
@,), the level of volatility is represented by gsence of latent variables
that follow a first order autoregressive process, as oppts@dRCH-type models
(Englé/1982; BollersléV, 1986).

A different example of data that may be effectively analy#t@dugh latent au-
toregressive models is that of longitudinal/panel datarehepeated observations on
the same units are taken over time. Here the reason for usiegtlvariables is to
account for the non-observable heterogeneity betwees.unithin the variety of
dynamic models discussed in the literature for panel datzevsider, in particu-
lar, the Limited Dependent Variable (LDV) models for dideréata that are strictly
related to generalized linear mixed models commonly usetthénsocial sciences
(Skrondal and Rabe-Hesketh, 2004; Hancock and Samueig6&).2

Both SV and LDV models have some attractive features. Theycaperly cap-
ture the variability in the data through an autoregresstent structure and, at the
same time, are more parsimonious than other models basedeot Markov chains
(Bartolucci et al, 2013). Moreover, these models admit aeg&representation in
the non-linear state space framework, but their estimatigulies some computa-
tional difficulties as the time-varying latent variablesshie integrated out from the
likelihood function and an analytical solution for thestegrals does not exist in gen-
eral. In the literature, different solutions to this prabl@ave been proposed, as we
outline in the following.

For SV models, a simple estimation method is the generalzethod of mo-
ments -rG) Moreover, Harvey ét al (1994) proposequasi maximum
likelihood approach based on the Kalman filter that has thamdge of not de-
pending on specific distribution of the error terms. In thg@&aan context, Markov
chain Monte Carlo techniques have been widely applied; aeguier et &l[(1994).
Fridman and Harris (1998) proposed a direct maximum likelthestimation of SV
models using a non-linear Kalman filter algorithm. This aitijon is based on ex-
pressing the likelihood function as a nested sequence cflomensional integrals
which are approximated by the Gauss Legendre numericatguad. Bartolucci and De | uca

Jﬁb) extended this approach by computing analyiistand second deriva-
tives of the approximated likelihood. They applied a regtdar quadrature to ap-
proximate the integrals. A non-linear Kalman filter alglonit has been discussed,
among others, by Tanizaki and Mariano (1998) and Durbin ameiithah((2002) in
the general state space model framework. For the same SMmodgand Yoshihiko

) proposed a solution based on the Laplace approximatil these studies
show that the performance of the different approximatiothmeés is highly sensitive
to the values of the model parameters.
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For LDV models, a numerical integration solution was prcqnbby@s@&
and consists in the use of a non-linear filter algorithm amdahproximation of the
resulting one-dimensional integrals through the Gaussiite(GH) quadrature. He
showed the higher performance of this method in comparistm ether methods,
among which the sparse grids integration (Heiss and Wids2688), the non-linear

particle filter (Fernandez-Villaverde and Rubio-Rareji2006), and the sequential
importance samplind (Tanizaki and Mariaho, 1998) in Bayesiettings. The supe-

riority of this sequential GH quadrature over these altéwvaanethods is due to the
fastest convergence to the limiting values. However, inigvitn that GH based meth-
ods guarantee accurate parameter estimates when sevadaatyue points are used
per each dimension. It is also important to consider thatcéotain target functions,

instability problems arise in the phase of maximization witee function is approx-

imated through this quadrature method.

In this paper, we propose to use the Adaptive Gaussian Hef@@H) quadra-
ture method to approximate the one-dimensional integnatsived in the non-linear
filtering algorithm used for the estimation of SV and LDV mtsjevhen these models
are specified within a general state space framework. AGH&es developed for the
first time in the Bayesian context to compute posterior diss[Naylor and Smith,
11982; Liu and Pierce, 1994). More recently, it has been impleted and compared
with other methods in a variety of random-effects and lat@miable models; see,
among others, Pinheiro and Bates (1995), Rabe-Hesketl{2aG#)| Joe (2008), and
Cagnone and Monatii (20113). In all these studies this nurlemiethod appeared to
be superior to other quadrature methods, as it requiresfewlyguadrature points to
get accurate estimates, and it does not give rise to the fiskssing the maximum
of the likelihood function, as it well captures the peak a# thtegrand involved in
this function.

To our knowledge, AGH has not been previously applied foetstenation of dy-
namic latent variable models within the state space framewo order to evaluate
its performance for this class of models, we perform a wideugation study under
different conditions. For SV models, in particular, AGH @nepared with alternative
approximation methods discussed in the literature as seliith the Laplace approx-
imation that can be viewed as a particular case of AGH whenqoiaelrature point

is used (Pinheiro and Baltes, 1995). For LDV models, AGH catade is compared

with the classical GH quadrature under different condgion

The paper is organized as follows. In Sectidn 2 we define tassobf models
of interest and, as particular cases, we describe SV and Lbtfets. In Sectiohl3
model estimation is discussed, with particular attentioihe AGH approximation. In
Sectiori:4 we illustrate the situations in which AGH outpenfs the other quadrature
methods in simple cases. Sectidn 5 reports the results sfrithdation study for both
SV and LDV models. In Sectidd 6 two applications on real dagdilaistrated. Some
conclusions are provided in Sectign 7.
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2 State space specification of dynamic latent variable model

In a time-series context, we lgt be the response variable observed at occasidgth
t = 1,...,T. For the case of panel data, in which we obsensample units af’
occasions, we extend this notation by denoting the respaarsble for uniti at oc-
casiont by y,,i=1,...,n,t =1,...,T, and, since in this case covariates are also
typically observed, we also denote By, the vector of the covariates corresponding
t0 yiz-

In order to formulate dynamic latent variable models in tiagesspace framework,
we start from the more general case of panel data considdraigime-series is a
particular case witmm = 1. The proposed formulation is based on the following
equationsfoi = 1,...,nandt =1,...,T:

Yit = G(?J;:),
yiy = h(oue, @it €4t), 1)
Qi = m(ai,tflvnit% 2

whereyy, is a continuous unobservable variable underlyifngintroduced to deal
with categorical response variable afi¢t) is a parametric function, the specification
of which depends on the nature of the observed variable.fihition may involve
thresholds in the presence of ordinal data. Moreadvej,andm(-) are known func-
tions that can be linear or non-linear, wheregsis a time dependent latent variable
ande;; andn;; are error terms assumed to be mutually independent. WetoefBy as
measurement equation and to [2) agransition equation. The former specifies the re-
lationship between the manifest variables and the latemdas; the latter specifies
the dependence between the latent variables over time. Witbrequations are lin-
ear, we obtain the classical linear state space models ari(aiman filter algorithm
is usually used for model estimation. If one or both the eiquatare non-linear, we
obtain a non-linear state space model.

In the following we illustrate two particular cases of nanelar state space mod-
els: SV models for the analysis of financial time series an lcbodels for panel
data.

2.1 Stochastic volatility models for financial time series

SV models are widely used for dealing with volatility in fir@al time series. These
models represent the volatility by a sequence of latenaisées following a first order
autoregressive process and, therefore, they admit ttefiolgy non-linear state space
representationfor=1,...,7"

1
Yt = exp <§O{t> Et, Et N(O, 1),

ar =7+ ai1p+n, 0~ N(0,07).

In this case((+) is the identity function as the response variable is cowtirsuMore-
over,exp(a) is the volatility level underlying; hence, the logarithm of the volatil-
ity level is assumed to follow an AR(1) process.
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2.2 Limited dependent variable models for panel data

Another class of models belonging to the general framewbnloo-linear state space
models based on equatiois (1) ahtl (2) is that of LDV modelgHeranalysis of
panel data. In this context, the latent variables are tinteuant dependent random
intercepts that allow us to account for the unobserved bgesreity between subjects
in a dynamic fashion. The non-linear state space reprasamiaf these models is
given by

Yit = G(y;(t)v
Yip = B + it + cit,
Qi = QG t—1P + Nit, nie ~ N (0, J%)v

fori =1,...,nandt = 1,...,7T and where different distributions may be assumed
for the error terms;;.

In LDV models for panel data, the response variahleis typically discrete so
thatG(-) is not the identity function. In the binary caé&y’,) = I(y;, > 0), where
I is the indicator function, so that

Ap(yir = e, ©it)] = 5,8 + e, 3

with A(-) denoting the logit function or the inverse standard Normahalative func-
tion, resulting in a logit model or probit model, respechjve

If the response variables are ordinal wittcategories, we define a set of thresh-
oldsm <... < 7y_1,suchthat

Gy =jerna<y,<n j=1../J

with 7 = —oco0 andr; = +oco. Different models result according to the assumed
distribution for the error terms;,. For instance, assuming a logistic distribution
leads to the well-known proportional odds model for cunmiuwéaprobability func-
tions Mh@oy

o P(yie < jlae, i)’
p(Yit > jlot, Tir)

:Tj—ait—mgtﬁ, jil,,Jfl (4)

3 Model estimation

Estimation of the models illustrated above may be carrigdloough the maximiza-
tion of likelihood function

n

L(0) = Hf(yil,---wz‘T), (5)

i=1
where@ is the vector of all model parameters which affects ittemifest joint dis-
tribution of the observed variableg(yi1, . .., yir). The latter can be expressed as

T
fyit, - yir) = / /H Fy(yitleie) fo (it i—1)degr - - - der.— (6)
=1
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The above expression is based ondbeditional independence assumption, accord-
ing to which

fWitlyin, - - S Yit—15 QgL e ey Sour) = fyieloe),

and on the first order Markov assumption on the latent vagmtalccording to which

falQit|yit, o s Yig—1, @ity ooy ey Qi—1) = falu|aii—1).

Notice thatf,, (a1 |aio) = fa(ai1). Moreover, the form of the densitig§ (vi¢| )
andf, (at|o; t—1) depends on how the measurement equafibn (1) and the toansiti
equation[(R) are formulated.

Typically, computation and maximization of the likelihofuhction in [3) do not
admit an analytical solution. An effective way to solve thisblem is to apply non-
linear filter techniques that allow us to transform the naitiensional integral in-
volved in expressiorL{6) into a sequence of uni-dimensionagrals using the rules
of conditioning as follows:

T
firs - yir) = flya) Hf(yit|yi1a e Yit—1),
t=2
where
f(yil) = /fy(yi1|04i1)fa(ai1)dail (7)
and
Fitlyits - Yij—1) = /fy(yit|ait>f(ait|ylv e Yit—1)dogy. (8)
The densityf (ct|yi1, - - -, yit—1) in expression(8) can be obtained as follows:
fy(yit|laar) f (et |y, - - s Yie—1)
(673 i1y -y Y = - N 9
Flewlya vit) fWitlyir, -+ yie—1) ©
where

fleuelyin, - yie—1) = /fa(ait|Oéi,t71)f(ai.,t71|yi1; s Yig—1)dag 1. (10)

The filtering algorithm consists in evaluating recursiviglgmulas [8), [(®), and(10).
Formulas[(B) and{10) involve one-dimensional integrads dannot be computed

analytically and must be suitably approximated. A widelgdimethod is the Gauss-

Hermite (GH) quadrature method that is based on the follgwpproximation:

/e_z2f(z)dz ~ Z wi f(zk), (11)
k=1

wherez;, are the zeros of the Hermite orthogonal polynoniigl, wy; are the cor-
respondent weights, angdis number of quadrature points (Davis and Rabinowitz,
1975). The approximation is exactfifz) is a polynomial of degree equal 2g — 1.
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In order to apply the GH to the integrél (8) we rewrite it as

f(yit|yi1,...,yi,t—1)=/fy(yit|ait)f(aitjlfyi(1;_t'>"yi’t_l)fa(ait)dait, (12)

wheref,(-) is the density function of the marginal distribution®f, corresponding
to a Normal density distribution with meanand variancer?. In particular, for SV
models we have. = /(1 — p) ando? = o7 /(1 — p?); for LDV models we have
pn=20 ando? = U%/(l—p2) Denoting Wlthg(alt) = f(ait|yi1, . ,yit_l)/fa(ait)
and integrating over the standardized- %(a — i), we obtain

1 - _ ~ 9 _
it | Yily - ooy Yit— = — it | O QG + o, + exXpl—ay 2 dOél'
fWitlyir Yit-1) m/fy(yﬂ t + p)g(odir + p) exp(—ai”/2)dd

q
~ > fy(ilozi + wg(ozi + pwy, (13)
k=1

wherez} = v/2z; andw} = (1//7)w;. The same approximation can be applied to
solve integrall(T0).

3.1 Adaptive Gauss-Hermite quadrature

An improved version of the GH approximation is given by theaftive Gauss Her-
mite (AGH) quadrature introduced in the Bayesian contest tie aim of efficiently
computing posterior densities if they are approximatelyrhal (Naylor and Smith,
@2). Essentially, AGH consists of adjusting the GH qutuatealocations with the
mean and the variance of the posterior density so that thesnack more concen-
trated around the peak of the integrand, so that a betteozjppation of the function
to be integrated is obtained.

For the particular class of models defined in Sedifibn 2, thélA@adrature is
obtained by multiplying and dividing the integral ih_{12) ye Normal density
d(Qit, fuit, 041 ). We have that

FWatlyirs - Yie—1) =
1 it|oQ o —ai?)2) .
_ /fy(ytlﬂat +u)g~(m~t +~u) exp(—ai”/ )d)(ait,mt,%)dait (14)
V2 (Gt foit, Tir)

such that, transforming th&;;'s to standardized latent variables, the intedral (14) is
approximated as follows

FWatlyir, - - Yie—1) =

q 2
~ fyWitloview + p)g(ovir + p) exp(=vi,/2)
~ 0; E L . 15
7it exp(—2z;2/2) b (15)

k=1

wherev;, = G 2f + fLit.
Two different procedures can be used to deterniipends;;. The first one con-
sists in approximating;; with the mode of the integrand ag; with the standard
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deviation of the integrand at the mode (Liu and Piefce, i1 nd B
[1995; Schilling and Bock, 2005). The advantage of this apginds that the quadra—

ture points are not involved in these computations. On therdtand, this method
is very computationally demanding since it requires a nicagoptimization. More-
over, when parameter estimates are obtained by usingivedyorithms, as in the
cases dealt with in the present paper, the first two momemnts teabe computed
at each step of the algorithm that, for this reason, is exkitt be rather slow. An
alternative method consists in computing the posteriormaeal standard deviation
(Naylor and Smith, 1982; Rabe-Hesketh et al, 2005). Althotngs method requires
the use of quadrature points themselves, it is more robustt tailed distributions
and it is faster when a sequential scheme is used. For thasen® we adopt the
second procedure.

In more detail, following the second procedure, the comjmrtaf i;; andag;; is
iteratively obtained as follows:

1. Choose starting valueéf) =0 and&lgto) =1s0 thatyi(,g) =z
2. Compute the log-likelihood for thieth iteration

log L1 () = log H FD Wi, yir) ~

i=1

~ log {H (H 541 fu(yulau Y4 wgov ( B4 exp(—(yffgl))2/2) wzﬂ 7

2
i=1 \i=1 k=1 eXp( ZZ/Q)

with g(oviu + p) = 1fort = 1.
3. Update each node;:(f,z by computing the posterior mean and standard deviation

as follows

i® = 50" UZ e fy itloviye Y+ walovy, )+M)6XP(—(V§£;1))2/2)W
" FO Witlyi, - -, yir—1) exp(—2;2/2) w

50 = |50 1>Z Wign ) Py wielovigy 4 maovi + (-0 /D) o,
¢ FO (ielyir, - - - yir—1) exp(—2;:2/2)

Steps 2 and 3 are repeated until convergence is attainegimBsar estimation
is obtained by quasi-Newton method. Thus the estimatioargkgn consists in al-
ternating one step of the quasi-Newton procedure to updatngeter estimates and
the iterative scheme proposed above to update the nodee afitiptive numerical
quadrature.

4 Approximation of the probabilities with different numeri cal quadrature
methods

As described in Sectidd 3, the GH quadrature should guazargbarp approximation
of uni-dimensional integrals if an adequate number of gatade points is chosen.
This is because the true function is undistinguishable fitsrapproximation based
on a high order polynomial in most situations. However, & thtegrand presents a
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narrow peak, GH does not provide sharp results even usinghanimber of quadra-
ture points as it does not capture such a peak. On the othdr imathese cases the
AGH quadrature guarantees a much sharper approximatitw dfuie function.

For the class of models considered in this paper, the pedocmof the approx-
imation methods strictly depends on the autocorrelatioampaterp, in the case
of the LDV model, and on the squared Coefficient of Variatidritee volatility,
OV =exp(a;/(1 - p?)) — 1, in the case of the SV model.

For illustrative purposes, consider a first simple case ohadd dependent vari-
able model for panel data described in Secfioh 2.2 for otdésponses and = 2.
ConsiderJ = 4 categories, thresholds equaltp= —1.5, » = 0, 73 = 1.5, and
o2 = 1 without covariates. Suppose that for individaae observe category= 3.
The probability reported in expressions$ (7) becomes

flyin) = / fy(arlain) fo(oir)doin = (16)
= /.(p(yﬂ < 3lain) — plya < 2|un)) P )dao

wherep(y;1 < 3) = exp(1.5 — a;1)/(1 + exp(1.5 — 1)), with p(y;; < 2) defined
accordingly, ands(-) stands for the standard Normal density. The behaviour of GH
and AGH for the approximation of the integral [0{16) is illtated in Figurél (left
picture) where the density, (v:1|e1) is represented together with the relative GH
and AGH nodes and weights fgr= 21. We observe that the integrand has a smooth
shape and both methods approximate it very well and theppar§imilarly.

On the contrary, the integrand in express{od (10) is notseardly smooth due to
the shape of the Normal densify, (a2 |1 ) that strictly depends on the value af
For the example here considered, equafioh (10) becomes

flaualyin) = ﬁ /(b(aiz;paih (1= ") fy(yirlevin ) ¢(cir )devi,  (17)

wherea(-; pai1, (1 — p?)) denotes the Normal density function with mean; and
variance(1 — p?). In Figure2 we show the product of the densitiga.;»; pa1, (1 —
) fy(yir|in) in expression[(d7) fop = 0.5 (left picture) andp = 0.95 (right
picture). While in the first case both the approximationgqren well, in the second
case only a small fraction of quadrature points are in theemarea and only AGH
captures the peak of the integrand, outperforming GH. Gldar T" greater than 2,
both probabilitied(B) and (10) become more problematietaproximated for high
values ofp.

[Fig. 1 about here.]
[Fig. 2 about here.]

[Fig. 3 about here.]
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As a second example, we consider a stochastic volatilityetfod financial time
series described in Section P.1 and, as in the previous deamp fix 7' = 2 for
simplicity. In this case, the probabilities inl (8) ahdl(1@cbme

fln) = / Fy]on) falon)das = / 610, exp(1/201))d(ar)dar  (18)

and

flazlyr) = ﬁ/ﬂa%’y + par, ) fy(yr|aa)p(an ) day, (19)

respectively. We consider two sets of parameters sa@that= 10 andC'V = 0.1; the
firstoneisy = —0.821, p = 0.90 ando,, = 0.675 and the second one1is= —0.706,
p =0.90, ando, = 0.135.

In this case it is interesting to compare the performanck@MNGH quadrature in
approximating the probabilities ib (118) arid19) with twoaguature based methods
used in literature for SV models, the Gauss-Legendre quaeréGLQ) approxima-

tion proposed bLLEr_Ldma.n_a.nd_I:IaHls (1998) and a rectangyperquadrature (RQ)
method proposed by Bartolucci and De Luca (2001).

The right picture of Figur€]l shows the Normal density;; 0, exp(1/2c1))
with relative AGH, GLQ, and RQ nodes and weights for= 21. As for the LVD
models, also in this case all the quadrature approximatiaptire very well the area
under the curve.

The approximation of the produgt{as;y + pai,o;) fy(yilai) in formula[19
depends on the value 6fV. In the case o'V = 10 (left picture, FiguréB) all the
methods perform quite well, in particular AGH and RQ are moeatered around
the mode. On the other hand, f6f1” = 0.1 (right picture, Figuré13), AGH and RQ
perform similarly but only AGH captures the peak of the dgngihereas GLQ is
clearly the worst method.

5 Simulation study

We carried out two simulation studies in order to evaluagepgarformance of AGH
for LDV and SV models. In both cases the results are compaitdother approxi-
mation methods discussed in the literature.

5.1 Simulation study for the LDV models

LDV model considered in this simulation study is the projmméal odds model il-
lustrated above. For this model, the behavior of AGH is camegavith that of the
classical GH approximation for increasing values of theaation parametep =
(0.5,0.90, 0.95), different combinations of time point§’(= 5, 10), and sample sizes
(n = 500, 1000). Five categories for the ordinal responses are choserharttitesh-
olds are fixed as; = —1.65, » = —0.5, 73 = 0.5, andt, = 1.65. The remaining
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parameters ando are fixed to 1. One covariate is generated from a stationafL AR
process with autocorrelation parameter equal to 0.5. Thdmiure points chosen for
AGH areq = 15,21 and for GH are; = 21, 51. Under each simulation scenario, 500
samples were generated and the model parameters weretestiomehe basis of the
two approximation methods.

The comparison between the two different numerical appmations is assessed
in terms of both accuracy of estimates and computationd&bpeaance of the algo-
rithms. ForT’ = 5 andn = 500 the results are reported in Table 1.

[Table 1 about here.]

For p = 0.5, under both GH and AGH approximations the algorithm conesrg
properly in almost all the sample%tv). Moreover, the average number of function
evaluationsifr feval) is quite similar for both methods. As for the rmse of the-esti
mates, the best performances are obtained fer51 with GH, denoted with Gkl
and forq = 21 with AGH, denoted with AGH,. They produce very close results
for all the parameters estimates. In more detail, in termisia§ AGH,; is always
better than GH, in terms of rmse adaptive is better than the classical qiacdy
for g ando and slightly worse for the autocorrelation parameter. Thyith less
than half quadrature points than those used with; GIAGH»; produces very ac-
curate estimates. Moreover, differently from GH, AGH is affected by the choice
of starting values. Nevertheless, the average compugdtiione @v time in seconds)
to convergence of the latter approximation is about thneedi that of the former,
making GH preferable in this case. This is due to the itegatiutine required for the
computation of the posterior means and standard deviatibeach iteration of the
algorithm. However, it is possible to improve the speed ofvengence of AGH by
using a pseudo version of the AGH that consists in updatiagjttadrature nodes for
each subject with the posterior means and standard dewsatioly at the first step
of the algorithm, implying a consistently reduction of thentgputation time. This
method was proposed by Rizopolilus (2012) for a class oflimeeed effect models
for longitudinal and event time data. The author showed tbathe class of models
considered, PseudoAGH produces accurate parameter estiwlaen proper starting
values are used. Here we chose starting values by means dfistart strategy. The
results of the PseudoAGH with= 21 are reported in the last column of Table 1. We
observe that the rmse pfis the same as AGH whereas the rmse of the other param-
eter estimates are higher than the rmse obtained with AGBIn the other hand, the
computational time of PseudoAGH is noticeably lower thamdtandard AGH (the
ratio is about 1 to 4 and in same cases about 1 to 5) and slightBr than GH;.

In the cases of = 0.90 andp = 0.95, the superiority of the adaptive procedure
is undoubted. Indeed GH does not produce convergent sotuiticall the generated
samples due to instability problems. On the contrary, AGHguens very well even
with ¢ = 15, being the rmse of all the estimates equal to those obtaored#£ 21.
Moreover, in this case PseudoAGH presents the same rmsktioé glarameter esti-
mates as both AGH and AGH,; and, as before, reveals superior in terms of com-
putational time. Thus, for high values of the autocorrelaparameters, PseudoAGH
reveals the best method. The convergence problems underc@Hisan the cases of
latent variables highly correlated over time determinieg/peaked integrands.
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The simulation results fof’ = 10 andn = 500 are reported in Tablgl 2. As
expected, in general the rmse of the estimates improve catpath those obtained
in the previous scenario. As for GH, convergent solutiorsadtained only fop =
0.5, whereas AGH performs well for all the values of the autoelation parameter
even if the computational time is quite heavy. Also in thisesePseudoAGH seems to
be the best compromise between GH and AGH, particularlydrcéise of high values
of p where, as before, the accuracy of the parameter estimatelésreimilar and in
same cases better than the standard adaptive rule. Theicedndhe computational
time results of the same magnitude as in the previous scenari

[Table 2 about here.]

The case off’ = 5 andn = 1000 (Table[3) is the only one in which we obtain
convergent solutions under GH also for high valueg.of

[Table 3 about here.]

However, forp = 0.90, even if GH;; performs similarly to AGH; in terms of
rmse, we can observe th#icv is 74% versus a percentage equal to 98% generated
sample in which the algorithm properly converge under AGeind to %100 under
PseudoAGH;. Moreover, as in all the previous cases, the latter resaltset the
fastest. We observe the same behavior of the different appadion methods also
for p = 0.95. In particular, in this case GH produce%a@v equal only to 36%.

5.2 Simulation study for the SV model

The design of the study considered for the SV model is baseti@same setting
considered by Jacquier et al (1994) and widely used in tkealitire for evaluating
the performance of different approximation methods. Heeerésults obtained with
the AGH approximation are compared with those obtained_lignfaan and Harris
(1998), who used GLQ, by Bartolucci and De Liuca (2001), wioppsed RQ, and by
Juniji and Yoshihikol(2005), who used the Laplace approximngLA). The Laplace
approximation is considered here since it can be viewed astaplar case of the
AGH when one quadrature point is chosen (Pinheiro and Ba898).

The parameter values of the generating model were choseattdifferent values
of the C'V result. In more detail, the most relevant paramgtisrfixed t00.90, 0.95
and0.98, values based on the empirical evidence. The other parawvedtees are
consequently determined in such a way thét assumes the valuésl,1.0 and 10,
producing nine different scenarios. In each simulatedagenwe let” = 500 and
used 500 Monte Carlo replications; for AGH we adopjed 21 quadrature points.

The mean of the parameter estimates and the root mean squarérese) in
brackets for SV models with different combinations of thegpaeters are reported in
Table4.

[Table 4 about here.]
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The Table is grouped according to the values ofife We can observe thatin the
case ofCV = 10 all the methods perform quite similarly in terms of rmse.dnlthe
case ofp = 0.98, GLQ produces better rmse than the other approximations.a8u
theCV decreases, all the methods deteriorate sensibly apart¥irthat produces
rmse always with the same small magnitude. The superidrityeoproposed method
is particularly noticeable in the case©V = 0.1 for the parameterg andp. In terms
of bias, AGH gives better or similar results than the othethoés for most of the
parameter values.

In the table, the average computational time (in second&¥zé are also showed
for all the scenarios. We can observe that in all the casealtjogithm reaches con-
vergence in few seconds. We cannot compare the computhgierfarmance of the
proposed method with the other approximation methods $ordbe latter we do not
have this information.

6 Real data analysis

In the following, we illustrate the proposed approach by applications in the con-
text of panel data analysis and in that of time-series data.

6.1 Application of limited dependent variable models tof8eported health status

We consider panel data deriving from the Health and Retirgi@tidy (HRSEl con-
ducted by the University of Michigan with the aim of studyirgdirement and health
among the elderly in the United States over time. These dateeferred to a sam-
ple of n = 7,074 individuals who were asked &t = 8 time points (from 1992
to 2006 every two years) to report the self-rated healttusté8HR) by answering
to the question “Would you say your health is excellent, vgopd, good, fair, or
poor?”, that is an ordinal response variable with five catiegoAlso the covariates
gender, race (“white”, “non white”), education (“high school”, “some college”, “col-
lege and above”), anaje measured at each time point are available. Some descriptive
statistics for the distributions of the covariates are regmbin Tabldb, whereas Ta-
ble[@ reports the conditional sample distribution of SHRR the previous response
SHR,_;.

[Table 5 about here.]
[Table 6 about here.]

We observe that the sample is mainly composed by femate$%), white in-
dividuals §2.9%) with an average age at the first observed time point equal.t
years. As for the level of educatiof().9% of the interviewed subjects declared to
have a high-school diplom#9.7% of them a college degree, an@.4% a higher title.

1 The RAND HRS Data file is an easy to use longitudinal data ss¢dan the HRS data. It was devel-
oped at RAND with funding from the National Institute on Agiand the Social Security Administration.
See http://www.rand.org/labor/aging/dataprod.htminfare details.
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The variable education has been recoded in the following Wégr “high school”, 2
for “some college”, and 3 for “college and above”.

The high percentage of individuals (more than 50% percerglfthe categories)
that respond to the same category at time 1 and at timet indicates that SHR is
highly correlated over time. Previous analysis on HRS @SS) showed that
the proportional odds model illustrated above with timeeatetent random intercepts
following a stationary AR(1) well captures the SHR corrielatpattern over time.
More recently, Bartolucci etlal (2014) analyzed the HRS @atuming a more flex-
ible model based on a mixture of AR(1) for the latent proc@é=y approximated
the integrals with a rectangular quadrature method. Siece tihe aim is to evaluate
the performance of the AGH discussed above, we fitted thegptiopal odds model
with a standard stationary AR(1) using AgHand PseudoAGH approximation.
For this particular sample, the algorithm under fstgresented instability problems
and hence it was not possible to compare the performanceditterent approxi-
mations.

In Table[T we report the results in terms of parameters essrand correspon-
dent standard errors under AgHand PseudoAGH approximation. The standard
errors were obtained by the diagonal elements of the inwafrtfee observed infor-
mation matrix.

[Table 7 about here.]

We observe that the parameter estimates are quite simitierPseudoAGH
and AGH;; and in both cases all of them are significant apart from théicent of
the covariate gender. It is worth noting that the autocati@h parameter estimate is
higher thar0.95 indicating a high persistent latent process over time.igx@kample,
where the sample size is quite large, the computational tiimeseudoAGH; is
noticeably lower than that of AGH.

6.2 Application of stochastic volatility models to dailyaxange rates

To illustrate the application of the method to SV models, \we a data set analyzed
by|Harvey et al (1994) and later by several other authors.dEte consist of a time
series of daily pound/dollar exchange rates from the pedicibber 1st, 1981 to June
28th, 1985. The series of interest is the logarithmof 945 daily returns (Figure

@).

[Fig. 4 about here.]

For these data, we fitted the standard SV model illustratedeabsing GLQ, RQ,
and AGH withg = 21 quadrature points for approximating the integrals invdlve
in the likelihood of the model. The results are reported ihl@&. Under all the ap-
proximation methods has a high and significant value, indicating a highly peesitst
volatility process. However, it is worth noting that the ieaice estimate under AGH
presents the lowest standard error and it is significanfferint from O supporting
the stochastic nature of the volatility process. On thereaptGLQ and RQ variance
estimates result not significantly different from O.
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[Table 8 about here.]

It is further interesting to compare the standard SV modéhwain SV model
with error termse;; following a ¢-Student distribution with an unknown number of
degrees of freedom. This choice is motivated by the fact that many financial time
series exhibit densities with fatter tails than the Normstribution. For both specifi-
cations we used AGH given the better performance of this method in cases lile thi
in which the estimated CV of the volatility is less than 1. Teeults of parameter
estimates are reported in Table 9.

[Table 9 about here.]

Under both modelsy has a high and significant value. BIC, which is equal to
1859.05 for the SV Normal model versus 1862.36 for thetSStudent model, sug-
gests that there is no improvement assunmi$gudent distributed errors.

The similarity between the two specifications of the errom®is confirmed by
the estimated filtered volatilities obtained for each mo&ejure[% shows the plot
of the estimated filtered volatilities for each time pointtloé ¢-Student distribution
versus the Normal distribution. We observe that there isbstsmtial agreement in
terms of estimated volatility between the two specificagion

[Fig. 5 about here.]

7 Conclusions

In this work we proposed the Adaptive Gauss Hermite (AGHdyature for approx-
imating the integrals involved in the likelihood of a clagslgnamic latent variable
models based on a latent process following an autoregeepsoacess of order 1,
AR(1). In particular, we focused on Stochastic Volatili§\() models for the anal-
ysis of financial time series and on Limited Dependent VdgidhDV) models for
panel data. Both models can be formalized in a non-lineg sfzace framework and
maximum likelihood estimation can be obtained by mean of mlivear filtering
algorithm.

The main advantage of AGH compared with other numerical@ppration meth-
ods is that it better captures the peak of the integrand sethases in which it appears
very sharp, using fewer quadrature points than other mesthidus is due to the fact
that the nodes of AGH are scaled and translated at each stie@ algorithm with the
posterior mean and the posterior standard deviation ofateat variables given the
manifest variables.

The good behavior of AGH has been highlighted by means oflsition studies.
For SV models we found that the advantages of AGH with resjpeather methods
are particularly evident in terms of parameter accuracytfose values of the model
parameters that give low coefficients of variation of theatitity. For LDV, we found
that the performance of AGH is related to the value of the @ut@lation parame-
ter p. For high values op, parameter estimates are very accurate under AGH even
with justg = 15 quadrature points whereas GH produces convergent scsubioly
in few cases when the sample size is large. On the other hand, £ 0.5, AGH
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gives results very similar to the classical GH but with a leigtomputational cost. To
solve this problem, we considered a pseudo version of AGHctasists in updating
the nodes of the quadrature only at the first step of the dlgoriwe found a very

good performance of this method in terms of both computatibnrden of the al-

gorithm and parameter accuracy in almost all the scenamosonsidered. However,
differently from AGH, the performance of PseudoAGH depemdshe choice of the
starting values.

The potential of the proposed method has been showed alsagtinitwo em-
pirical examples, the first one referred to an American lardinal survey on the
health condition of the elderly population, the second ana time series of daily
pound/dollar exchange rates in a given period of time. Irhlmtamples, the la-
tent variables showed high values of autocorrelation,esfor which the adaptive
guadrature presents the best performance compared withttiee approximations.
The high persistency of the latent variable is typical of Svdals but it is also plau-
sible in panel data for the underlying process of time depahtesponse variables,
as for the health status considered here.
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p = 0.95 (right picture)



FIGURES 19

@
o
o
— AGH
GLQ S|
- - RQ — AGH
GLQ
- - RO
~ A El 1R
'
U4
1 s | [
| - i+
- 4 1 1e
[ i)
1 B i
1 i
N B
o (NN E Ll
T T T T T T T T T T T T
-8 -6 -4 -2 0 -8 -7 -6 -5 -4 -3 -2
z z

Fig. 3 Approximating ¢(a;y + pal,cr?])fy (y1]ar) for the SV model, C'V = 10 (left picture) and
CV = 0.1 (right picture)

time

Fig. 4 Log-daily difference of the pound-dollar exchange rate from October 1st, 1981 to June 28th, 1985.
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Table 1 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AG H for
T =5, n = 500; results based on 500 replications.

True value GHy GH51 AGH15 AGH21 P%UdOAGH21

p=0.5 0.478 0.487 0.487 0.492 0.493
(0.17) (0.18) (0.18) (0.19) (0.19)
B=1 1.109 1.094 1.118 1.087 1.100
(0.35) (0.28) (0.40) (0.25) (0.34)
oc=1 1.271 1.238 1.287 1.216 1.244
(0.86) (0.72) (0.97) (0.67) (0.84)
%cv 92 95 99 100 100
nr feval 48 48 41 41 40
avtime(sec) 11.14 40.36 78.36 125.54 32.26
p=0.90 - - 0.871 0.884 0.882
(0.05) (0.05) (0.05)
B=1 - - 1.016 1.011 1.012
(0.05) (0.05) (0.05)
c=1 - - 1.045 1.028 1.030
(0.10) (0.11) (0.10)
%cv - - 100 100 100
nr feval - - 28 35 31
av time (sec) - - 64.91 129.56 22.68
p=0.95 - - 0.898 0.917 0.914
- - (0.06) (0.05) (0.03)
B=1 - - 1.025 1.015 1.019
- - (0.05) (0.05) (0.05)
oc=1 - - 1.074 1.050 1.053
- - (0.12) (0.10) (0.10)
%cv - - 100 100 100
nr feval - - 27 32 28

av time (sec) - - 65.4 100.18 19.14
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Table 2 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AGH,
T = 10, n = 500; results based on 500 replications.

True value GHy GH51 AGH15 AGH21 P%UdOAGH21

p=0.5 0.455 0.481 0.490 0.490 0.490
(0.10) (0.10) (0.10) (0.10) (0.10)
B=1 1.044 1.028 1.025 1.023 1.025
(0.11) (0.11) (0.14) (0.10) (0.13)
c=1 1.137 1.081 1.070 1.065 1.070
(0.31) (0.30) (0.35) (0.29) (0.34)
%cv 61 81 100 100 100
nr feval 63 53 56 56 56
avtime(sec) 24.43 80.12 227.48 288.38 73.23
p=0.90 - - 0.892 0.898 0.898
- - (0.02) (0.02) (0.02)
S=1 - - 1.003 1.001 1.001
- - (0.03) (0.03) (0.03)
oc=1 - - 1.011 1.001 1.002
- - (0.06) (0.06) (0.06)
%cv - - 97 98 100
nr feval - - 37 36 36
av time (sec) - - 137.64  188.03 37.91
Truevalue GHyy GHsy AGH;5 AGH2 PseudoAGH,,
p=0.95 - - 0.923 0.938 0.935
- - (0.03) (0.02) (0.04)
B=1 - - 1.013 1.007 1.010
- - (0.04) (0.04) (0.03)
c=1 - - 1.034 1.017 1.030
- - (0.15) (0.08) (0.06)
%cv - - 99 97 100
nr feval - - 36 36 39

av time(sec) - - 164.71  278.73 52.23




TABLES

23

Table 3 Estimated mean and rmse (in brackets) for the LDV model parameters under GH and AGH for
T =5, n = 1000; results based on 500 replications.

True value GHoy, GH51 AGH15 AGHQl P%UdOAGH21
p=0.5 0.478 0.482 0.487 0.486 0.488
(0.14) (0.14) (0.14) (0.15) (0.14)
B=1 1.064 1.058 1.058 1.053 1.057
(0.19) (0.17) (0.23) (0.16) (0.23)
c=1 1.170 1.150 1.147 1.138 1.145
(0.52) (0.48) (0.58) (0.46) (0.58)
%cv 77 92 100 100 100
nr feval 50 55 58 57 57
avtime(sec) 24.46 83.27 191.66 309.6 72.99
p=0.90 0.828 0.876 0.875 0.888 0.887
(0.08) (0.04) (0.04) (0.04) (0.04)
S=1 1.030 1.013 1.013 1.008 1.009
(0.05) (0.04) (0.04) (0.03) (0.03)
o=1 1.099 1.038 1.036 1.020 1.021
(0.12) (0.08) (0.07) (0.08) (0.07)
%cv 18 74 96 98 100
nr feval 55 50 49 50 50
avtime(sec) 19.36 70.84 167.64 312.05 59.84
p=0.95 - 0.902 0.901 0.923 0.918
- (0.05) (0.05) (0.04) (0.04)
B=1 - 1.021 1.022 1.015 1.016
- (0.04) (0.04) (0.05) (0.03)
oc=1 - 1.067 1.068 1.036 1.046
- (0.09) (0.12) (0.10) (0.07)
%cv - 36 98 100 100
nr feval - 50 44 48 46
av time(sec) - 72.49 192.63 269.41 62.11
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Table 4 Comparison between different approximation methods in terms of the estimated means and rmse
of the SV model parameters.

Cv=10 ¥ p oy y p oy vy p oy

TRUE -0.821 090 0.675 -0.411 0.95 0484 -0.164 0.98 0.308

GLQ -0.896 0.890 0.685 -0.505 0.940 0.495 -0.100 0.986 0.320
(0.28) (0.03) (0.08) (0.18) (0.02) (0.07) (0.08) (0.01) O®&.

RQ -0.859 0.895 0.694 -0.472 0.943 0.503 -0.275 0.967 0.343
(0.25) (0.03) (0.08) (0.18) (0.02) (0.07) (0.18) (0.02) O@.

LA -0.905 0.880 0.727 -0.510 0.931 0.534 -0.259 0.965 0.343
(0.28) (0.04) (0.10) (0.23) (0.03) (0.09) (0.18) (0.02) O@.

AGH -0.613 0.925 0.725 -0.509 0.938 0.527 -0.276 0.966 0.358
(0.23) (0.03) (0.15) (0.16) (0.02) (0.08) (0.19) (0.02) 0O@.

av time(sec) 17.97 12.34 14.86

Cv=1.0 ¥ P on y P oy vy p oy

TRUE -0.736  0.90 0.363 -0.368 0.95 0.26 -0.147 0.98 0.166

GLQ -0.870 0.880 0.370 -0.510 0.930 0.280 -0.090 0.987 0.180
(0.43) (0.05) (0.08) (0.31) (0.04) (0.07) (0.06) (0.02) 0.

RQ -0.812 0.890 0.375 -0.492 0.933 0.278 -0.308 0.958 0.214
(0.45) (0.06) (0.09) (0.29) (0.04) (0.07) (0.25) (0.03) O@®.

LA -0.926 0.872 0.422 -0.526 0.927 0.303 -0.278 0.961 0.200
(0.42) (0.06) (0.11) (0.39) (0.05) (0.10) (0.25) (0.03) 0.

AGH -0.572 0.922 0.359 -0.475 0.935 0.293 -0.341 0.953 0.213
(0.127) (0.02) (0.04) (0.21) (0.03) (0.08) (0.26) (0.03) O@.

av time(sec) 13.85 11.59 17.83

Cv=0.1 ~ p o ¥ p oy ¥ p oy

TRUE -0.706 0.90 0.135 -0.353 0.95 0.096 -0.141 0.98 0.061

GLQ -1.360 0.810 0.160 -0.810 0.886 0.120 -0.537 0.924 0.088
(1.72) (0.24) (0.12) (1.15) (0.16) (0.09) (1.13) (0.16) O@.

RQ 0.944 0.873 0.159 -0.796 0.888 0.148 -0.515 0.927 0.122
(2.24) (0.17) (0.10) (0.77) (0.11) (0.10) (0.94) (0.13) 1(M.

LA -1.227 0.827 0.178 -0.763 0.892 0.133 -0.489 0.93 0.099
(1.55) (0.22) (0.14) (1.16) (0.16) (0.12) (0.98) (0.14) 1.

AGH -0.521 0.926 0.137 -0.455 0.935 0.098 -0.568 0.920 0.131
(0.21) (0.03) (0.08) (0.18) (0.03) (0.08) (0.52) (0.07) 1®.

av time(sec) 17.02 20.03 18.77
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Table 5 Summary statistics for the covariates in the HRS dataset; n = 7074.

Variable Mean Stdev
Gender (female)  0.581 0.490
Race (nonwhite)  0.171 0.377
Education
(high school) 0.609 0.488
(college degree) 0.197 0.398
(college +) 0.194 0.395
Ageys, 54.80 5.460

Table 6 Conditional distribution of SHR; given SHR,_; for the HRSdataset; n = 7074.

poor fair good verygood excellent
poor 545 34.1 8.4 2.5 0.7
fair 12.8 51.0 274 7.2 1.6
good 25 165 533 23.6 4.1
very good 0.8 47 259 55.6 13.0
excellent 04 19 106 33.7 53.4

Table 7 Estimates of the parameters of the LDV model adopted for the analysis of the HRS dataset (stan-

dard errorsin brackets).

AGH PseudoAGH
5, female -0.147 -0.099
(0.074) (0.073)
3, non white  -1.509 -1.394
(0.096) (0.091)
s education  1.182 1.141
(0.046) (0.047)
3, age -0.109 -0.089
(0.003) (0.003)
p 0.953 0.955
(0.018) (0.015)
& 3.121 2.860
(0.036) (0.034)
Log-lik -63591.17  -63595.50
Time (sec) 9612.34 2588.60
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Table 8 Estimate of the parameters of SV model adopted of the analysis of the daily exchange rates using
GLQ, RQ and AGH2; methods(with standard errorsin brackets).

GLQ  RQ  AGHy,
~  -0.016 -0.025 -0.033
(0.009) (0.014) (0.012)
p 0982 0974 0.964
(0.013) (0.020) (0.010)
02 0.027 0.023 0.039
(0.047) (0.046) (0.001)

Table 9 Estimate of the parameters of SV model adopted of the analysis of the daily exchange rates using
AG H2; (with standard errorsin brackets).

Model

SV Normal SV¢-Student
~ -0.033 -0.015

(0.012) (0.010)
P 0.964 0.966

(0.010) (0.001)
037 0.039 0.034

(0.001) (0.001)
v - 25.97

(11.92)

Log-lik -919.25 -917.49
BIC 1859.05 1862.37
Time (sec) 29.73 34.79
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