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Automating cell counting 
in fluorescent microscopy 
through deep learning 
with c‑ResUnet
Roberto Morelli  1,2,4*, Luca Clissa  1,2,4, Roberto Amici  3, Matteo Cerri  3, Timna Hitrec  3, 
Marco Luppi  3, Lorenzo Rinaldi  1,2, Fabio Squarcio  3 & Antonio Zoccoli  1,2

Counting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have 
to accomplish to assess the effects of different experimental conditions on biological structures of 
interest. Although such objects are generally easy to identify, the process of manually annotating 
cells is sometimes subject to fatigue errors and suffers from arbitrariness due to the operator’s 
interpretation of the borderline cases. We propose a Deep Learning approach that exploits a fully-
convolutional network in a binary segmentation fashion to localize the objects of interest. Counts are 
then retrieved as the number of detected items. Specifically, we introduce a Unet-like architecture, 
cell ResUnet (c-ResUnet), and compare its performance against 3 similar architectures. In addition, we 
evaluate through ablation studies the impact of two design choices, (i) artifacts oversampling and (ii) 
weight maps that penalize the errors on cells boundaries increasingly with overcrowding. In summary, 
the c-ResUnet outperforms the competitors with respect to both detection and counting metrics 
(respectively, F

1
 score = 0.81 and MAE = 3.09). Also, the introduction of weight maps contribute to 

enhance performances, especially in presence of clumping cells, artifacts and confounding biological 
structures. Posterior qualitative assessment by domain experts corroborates previous results, 
suggesting human-level performance inasmuch even erroneous predictions seem to fall within the 
limits of operator interpretation. Finally, we release the pre-trained model and the annotated dataset 
to foster research in this and related fields.

Deep Learning models, and in particular Convolutional Neural Networks (CNNs)1,2, have shown the ability 
to outperform the state-of-the-art in many computer vision applications in the past decade. Successful exam-
ples range from classification and detection of basically any kind of objects3,4 to generative models for image 
reconstruction5 and super-resolution6. Thus, researchers from both academy and industry have started to explore 
adopting these techniques in fields such as medical imaging and bioinformatics, where the potential impact is 
vast. For instance, CNNs have been employed for identification and localization of tumours7–10, as well as detec-
tion of other structures like lung nodules11–13, skin and breast cancer, diabetic foot14, colon-rectal polyps15 and 
more, showing great potential in detecting and classifying biological features16–18.

In the wake of this line of applied research, our work tackles the problem of counting cells into fluorescent 
microscopy pictures. Counting objects in digital images is a common task for many real-world applications19–22 
and different approaches have been explored to automate it9,10,23–25. In the field of natural sciences, many experi-
ments rely on counting biological structures of interest to assess the efficacy of a treatment or the response of an 
organism to given environmental conditions26–28. For example, Hitrec et al.26 investigated the brain areas of mice 
that mediate the entrance into torpor, showing evidence of which networks of neurons are associated with this 
process. Knowing and controlling the mechanisms that rule the onset of lethargy may have a significant impact 
when coming to applications to humans. Artificially inducing hibernation may be crucial for a wide variety of 
medical purposes, from intensive care to oncology, as well as space travels and more. As a consequence, their 
work arouses considerable interest in the topic and lays the foundations for further in-depth studies.
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However, the technical complexity and the manual burden of these analyses often hampers fast developments 
in the field. Indeed, these experiments typically resort heavily to semi-automatic techniques that involve multi-
ple steps to acquire and process images correctly. In fact, manual operations like area selection, white balance, 
calibration and color correction are fundamental in order to identify neurons of interest successfully29–31. As a 
result, this process may be very time-consuming depending on the number of available images. Also, the task 
becomes tedious when the objects appear in large quantities, thus leading to errors due to fatigue of the opera-
tors. Finally, a further challenge is that sometimes structures of interest and picture background may look quite 
similar, making them hardly distinguishable. When that is the case, counts become arguable and subjective due 
to the interpretation of such borderline cases, leading to an intrinsic arbitrariness.

For these reasons, our work aims at facilitating and speeding up future research in this and similar fields 
through the adoption of a CNN that counts the objects of interest without human intervention. The advantages of 
doing so are two-fold. On one side, the benefit in terms of time and human effort saved through the automation of 
the task is evident. On the other, using a Deep Learning model would impede fatigue errors and introduce a sys-
tematic “operator effect”, thus limiting the arbitrariness of borderline cases both within and between experiments.

After outlining a brief overview of related works and stating the contributions of this work, the analysis pipe-
line is described in the following sections. In “Fluorescent Neuronal Cells dataset”, we describe the data acquisi-
tion, the annotation process and peculiar characteristics and challenges of the images. In “Method”, the training 
pipeline and the experimental settings for the ablation studies are detailed alongside the model architectures 
compared in our work. In “Results”, the performances achieved by the proposed approaches are evaluated both 
quantitatively and qualitatively. Finally, “Conclusions” summarizes the main findings of the study .

Related works.  Some interesting approaches have been proposed for detecting and counting cells in micro-
scopic images. In 2009, Faustino et al.32 proposed an automated method leveraging the luminance information 
to generate a graph representation from which counts of cells are retrieved after a careful mining process. None-
theless, their approach relies on the manual setting of some parameters, like the optimal threshold for separating 
cell clusters and the luminance histogram binning adopted for retrieving connected components, which ham-
pers the extension to different data.

A few years later, in 2015, Ronnenberg et al.33 presented a Deep Learning approach for precise localization 
(also known as segmentation) of cells in an image. Their main contribution is the introduction of a novel network 
architecture, U-Net, which is still state-of-the-art in several applications with only slight adaptations34,35. The 
basic idea is to have an initial contracting branch used to capture relevant features, and a symmetric expanding 
one that allows for accurate localization. The main drawback is that its enormous number of parameters requires 
relevant computing power and makes the training difficult because of vanishing gradient36. For this reason, a 
commonly used variation adopts residual units37 with short-range skip-connections and batch normalization 
to prevent that problem. Also, this typically guarantees comparable performance with much less parameters.

A common downside of these approaches is the need of ground-truth labels (or masks) with accurate anno-
tations of whether each pixel belongs to a cell or the background, resulting in an additional and laborious data 
preparation phase. In an attempt to overcome this limitation, some works tried to tackle the problem in an 
unsupervised fashion. For example, in 2019 Riccio et al.38 addressed segmentation and counting with a step-wise 
procedure. The whole image is first split into square patches, and a combination of gray level clustering followed 
by adaptive thresholding is adopted for foreground/background separation. Individual cells are then labeled 
by detecting their centers and applying a region growing process. While this procedure bypasses the need for 
ground-truth masks, it still requires handcrafted hyperparameters selection that needs to be tuned for new data. 
For additional examples of segmentation in biological images, please refer to Riccio et al.38.

Contribution.  Our work builds upon Morelli et al.39 and it focuses on a supervised learning approach for 
counting cells (in particular neurons) in microscopic fluorescence, also justifying the output number through 
a segmentation map that localizes the detected objects. This additional information is particularly relevant to 
corroborate the results with a clear, visual evidence of which cells contribute to the final counts. The main con-
tributions of our work are the following. First, we develop an automatic approach for counting neuronal cells by 
comparing two families of network architectures, the Unet and its variation ResUnet, in terms of counting and 
segmentation performance. Second, we conduct ablation studies to show how using weight maps that penal-
ize errors on cell boundaries promotes accurate segmentation, especially in cluttered areas. Finally, we release 
the pre-trained model (https://​github.​com/​robom​orelli/​cell_​count​ing_​yellow/​tree/​master/​model_​resul​ts) and a 
rich dataset with the corresponding ground-truth labels to foster methodological research in both biological 
imaging and deep learning communities.

Fluorescent Neuronal Cells dataset
The Fluorescent Neuronal Cells dataset40 consists of 283 high-resolution pictures (1600 × 1200 pixels) of mice 
brain slices and the corresponding ground-truth labels. The mice were subjected to controlled experimental 
conditions, and a monosynaptic retrograde tracer (Cholera Toxin b, CTb) was surgically injected into brain 
structures of interest to highlight only the neurons connected to the injection site26. Specimens of brain slices were 
then observed through a fluorescence microscope configured to select the narrow wavelength of light emitted by 
a fluorophore (in our case of a yellow/orange color) associated with the tracer. Thus, the resultant images depict 
neurons of interest as objects of different size and shape appearing as yellow-ish spots of variable brightness and 
saturation over a composite, generally darker background (Fig. 1, top row).

Although many efforts were made to stabilize the acquisition procedure, the images present several relevant 
challenges for the detection task. In fact, the variability in brightness and contrast causes some fickleness in 

https://github.com/robomorelli/cell_counting_yellow/tree/master/model_results
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the pictures overall appearance. Also, the cells themselves exhibit varying saturation levels due to the natural 
fluctuation of the fluorescent emission properties. Moreover, the substructures of interest have a fluid nature. 
This implies that the shape of the stained cells may change significantly, making it even harder to discriminate 
between them and the background. Combined to that, artifacts, bright biological structures—like neurons’ fila-
ments—and non-marked cells similar to the stained ones handicap the recognition task. Besides complicating 
the training, all of these factors likewise hinder model evaluation as the interpretation of such borderline cases 
becomes subjective.

Finally, another source of complexity is the broad shift in the number of target cells from image to image. 
Indeed, the total counts range from no stained cells to several dozens clumping together. In the former case, 
the model needs high precision in order to prevent false positives. The latter, instead, requires high recall since 
considering two or more touching neurons only once produces false negatives.

Ground‑truth labels.  Under a supervised learning framework, the training phase leverages ground-truth 
labels acting as examples of desired outputs that the model should learn to reproduce. In the case of image 
segmentation, such targets are in the form of binary images (masks) where the objects to segment and the back-
ground are represented by white and black pixels, respectively (Fig. 1, bottom row).

Obtaining target masks usually requires a great effort in terms of time and human resources, so we resorted to 
an automatic procedure to speed up the labeling. In particular, we started from a large subset composed by 252 
images and applied gaussian blurring to remove noise. The cleaned images were then subjected to a threshold-
ing operation based on automatic histogram shape-based methods. The goal was to obtain a loose selection of 
the objects that may seem good candidates to be labeled as neuronal cells. After that, acknowledged operators 
reviewed the results to discard the false positives introduced with the previous procedure, taking care of exclud-
ing irrelevant artifacts and misleading biological structures. The remaining images were segmented manually by 
domain experts. We included significant pictures with peculiar traits—such as artifacts, filaments and crowded 
objects—in the latter set to have highly reliable masks for the most challenging examples .

Despite the huge popularity Deep Learning has gained in computer vision in the last decade, the lack of 
annotated data is a common curse when dealing with applications involving non-standard pictures and/or tasks41. 
Since ground-truth labels are expensive to acquire in terms of time and costs, a common approach is to fine-
tune models pre-trained on giants datasets of natural images like ImageNet42 or COCO43, possibly using as few 
new labels as possible for the task of interest. However, this strategy often does not apply to use cases where the 
pictures under analysis belong to extraneous domains with respect to the ones used for pre-training14. For this 
reason, by releasing the annotated dataset and our pre-trained model we hope to (i) foster advances in fields like 
biomedical imaging through the speed up guaranteed by the automation of manual operations, and (ii) promote 
methodological research on new techniques of data analysis for microscopic fluorescence and similar domains.

Method
This work tackles the problem of segmenting and counting cells in a supervised learning framework. For this 
purpose, we address the segmentation task exploiting four CNN architectures belonging to the Unet and ResUnet 
families. Once the cells are detected, the final count is retrieved as the number of connected pixels in the post-
processed output. In doing so, we also test the impact of study design choices intended to reduce false negatives 
and promote accurate segmentation.

Model architecture.  We compare the detection and counting performance of four alternative architectures 
derived from two network families, Unet and ResUnet, commonly used for segmentation tasks. In the former 
family, we pick the original Unet architecture33 and a smaller version (small Unet) obtained by setting the initial 
number of filters equal to the ResUnet proposed in Zhang et al.44 and scaling the following blocks consequently. 
In the latter, we pick a ResUnet implementation available in literature44 and a similar version with minor modi-

Figure 1.   Sample data. The original images (top row) present neuronal cells of different shape, size and 
saturation over a background of variable brightness and color. The corresponding ground-truth masks used for 
training (bottom row) depict cells as white pixels over a black background.
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fications. Specifically, we add an initial 1 × 1 convolution to simulate an RGB to grayscale conversion which is 
learned during training. Moreover, we insert an additional residual block at the end of the encoding path with 5 
× 5 filters (instead of 3 × 3). These adjustments should provide the model with a larger field of view, thus fostering 
a better comprehension of the context surrounding the pixel to classify. This kind of information can be benefi-
cial, for example, when cells clump together and pixels on their boundaries have to be segmented. Likewise, the 
analysis of some background structures (Fig. 1, top-left image) can be improved by looking at a broader context. 
The resulting architecture is reported in Fig. 2 and it will be referred to as cell ResUnet (c-ResUnet) in the fol-
lowing.

Figure 2.   Model scheme. Each box reports an element of the entire architecture (individual description in the 
legend).
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Ablation studies.  Alongside the four network architectures, we also tested the effect of two design choices 
intended to mitigate errors on challenging images containing artifacts and cells overcrowding.

Artifacts oversampling (AO).  The presence of biological structures or artifacts like those in Fig. 1 (rightmost 
pictures) can often fool the model into detecting false positives. Indeed, their similarity with cells in terms of 
saturation and brightness, added to the fact that they are underrepresented in the data, make it difficult for the 
model to handle them correctly. For this reason, we tried to increase the augmentation factor for these inputs 
to facilitate the learning process. Specifically, we selected 6 different crops representing such relevant structures 
and re-sampled them with the augmentation pipeline described in Model training, resulting in 150 new images 
for each crop.

Weight maps (WM).  One of the toughest challenges during the inference is related to cell overcrowding. As a 
matter of fact, failing to precisely segment cells boundaries may lead to spurious connections between objects 
that are separated. Consequently, multiple objects are considered as a single one and the model performance 
deteriorates. In order to improve cell separation, Ronneberger et al.33 suggested leveraging a weight map that 
penalizes more the errors on the borders of touching cells. Building on that, we introduce a novel implemen-
tation where single object contributions are compounded additively. This procedure generates weights that 
decrease as we move away from the borders of each cell. At the same time, the contributions coming from single 
items are combined so that the global weight map presents higher values where more cells are close together (see 
Fig. 3a). The pseudocode for a weight map is reported in Alg. 1, and an example weight map is shown in Fig. 3b. 

Figure 3.   Weight map. 3a shows the weight factors of background pixels between cells according to Eq. (1). The 
dashed curves depict the weights generated by single cells as a function of the distance from their borders. The 
green line illustrates the final weight obtained by adding individual contributions. In 3b, a target mask and the 
corresponding weight map.
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Model training.  After randomly setting 70 full-size images apart as a test set, the remaining pictures were 
randomly split into training and validation sets. In particular, twelve 512x512 partially overlapping crops were 
extracted from each image and fed as input to the network after undergoing a standard augmentation pipeline. 
Common transformations were considered as rotations, addition of Gaussian noise, brightness variation and 
elastic transformations45. The augmentation factors for crops not included in the artifact oversampling ablation 
study were set to 10 for manually segmented images and 4 to all the others. As a result, the model was trained on 
a total of nearly 16000 images (70% for training and 30% for validation).

All competing architectures were trained from scratch under the same conditions to favour a fair comparison. 
Specifically, the Adam46 optimizer was employed with an initial learning rate of 0.006 and a scheduled decrease 
of 30% if the validation loss did not improve for four consecutive epochs. A weighted binary cross-entropy loss 
was adopted on top of the weight maps to handle the unbalance of the two classes (weights equal to 1 and 1.5 
for cells and background, respectively). All models were trained until no improvement was observed for 20 
consecutive epochs. In this way, each model was allowed to converge and the comparison was made at the best 
of each architecture’s individual capabilities.

The approach was implemented through Keras API47 using TensorFlow48 as backend . The training was 
performed on 4 V100 GPUs provided by the Centro Nazionale Analisi Fotogrammi (CNAF) computing center 
of the National Institute for Nuclear Physics in Bologna.

Post‑processing.  The final output of the model is a probability map (or heatmap), in which each pixel value 
represents the probability of belonging to a cell. Figure 4a reports an example of an input image (left) and the 
corresponding heatmap (right). The higher the value, the higher is the confidence in classifying that pixel as 
belonging to a cell. A thresholding operation was then applied on the heatmap to obtain a binary mask where 
groups of white connected pixels represent the detected cells. Figure 4b (left) illustrates the cells detected after 
the binarization with different colors. After that, ad-hoc post-processing was applied to remove isolated compo-
nents of few pixels and fill the holes inside the detected cells. Finally, the watershed algorithm49 was employed 
with parameters set based on the average cell size. An example of the results is provided in Fig. 4b, where the 
overlapping cells in the middle present in the binary mask (left) are correctly splitted after post-processing 
(right). Also, the small object in the top-right corner is removed.

Model evaluation.  The Unet, small Unet, ResUnet and c-ResUnet architectures were evaluated and com-
pared based on both detection and counting performance. Also, ablation studies assessed the impact of artifacts 
oversampling and weight maps.

In order to evaluate the detection ability of the models, a dedicated algorithm was developed. Specifically, 
each target cell was compared to all objects in the corresponding predicted mask and uniquely associated with 
the closest one. If the distance between their centroids was less than a fixed threshold (50 pixels, i.e. average cell 
diameter), the predicted element was considered a true positive (TP); a false negative otherwise (FN). Detected 
items not associated with any target were considered as false positives (FP) instead. Starting from these values, 
we referred to accuracy, precision, recall and F1 score as indicators of detection performance. The definitions of 
such metrics are reported below:

(2)accuracy =
TP

TP+ FP+ FN
=

1

1+ 1
TP (FP+ FN)

;

(3)precision =
TP

TP+ FP
;

(4)recall =
TP

TP+ FN
;

(5)F1score =
2 ∗ precision ∗ recall

precision+ recall
=

2 ∗ TP

2 ∗ TP+ FP+ FN
=

1

1+ 1
2TP (FP+ FN)

.

Figure 4.   Model output. From left to right, the input image with white contours indicating annotated cells; the 
model’s raw output (heatmap); the predicted mask after thresholding at 0.875; the predicted mask after post-
processing.
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Notice that we do not have true negatives in Eq. (2) since the prediction of the class “not cell” is done at the 
pixel level and not at the object level, so there are no “non-cell” objects predicted by the model.

Regarding the counting task, the Mean Absolute Error (MAE), Median Absolute Error (MedAE) and Mean 
Percentage Error (MPE) were used instead. More precisely, let npred be the number of detected cells in i-th image 
and ntrue be the actual one. Then, the absolute error (AE) and the percentage error (PE) were defined as:

Hence, the above counting metrics are just the mean and the median of the AE and the PE.

Threshold optimization.  The choice of the optimal cutoff for binarization was made based on the F1 score com-
puted on full-size images. In practice, each model was evaluated on a grid of values and the best one was selected 
according to the Kneedle method50. The resultant threshold was then used to assess performances on the test 
set. Although the ultimate goal is retrieving the counts, we relied on detection performance to enforce accurate 
recognition and avoid spurious balancing between false positives and false negatives that are indistinguishable 
from the counts. Also, full-size images (and not crops) are used to simulate better the model’s performance in a 
real-world scenario.

Figure 5 shows the optimization results. On the left, we can see how each model performance varies in the 
validation set as a function of the cutoff for binarization. Even though lower thresholds work best for all models, 
the F1 curves are rather flat after their peaks. Thus, increasing the cutoff allows focusing only on predictions 
whereby the model is very confident, with just a slight loss in overall performance. Also, good practices in natural 
science applications suggest being conservative with counts and only consider clearly stained cells. For these 
reasons, we resorted to the Kneedle method50 for the selection of the optimal threshold. An example of that choice 
in the case of c-ResUnet is reported in Fig. 5 (right plot).

Results
After the training, the four competing architectures were compared in three different scenarios: full design, 
weight maps only (no AO) and artifacts oversampling only (no WM). The 70 full-size images of the test set were 
used as a testbed. Table 1 reports individual model performances in terms of both detection and counting ability.

Performance.  By looking at the main figures of merit ( F1 score and MAE), c-ResUnet clearly outperforms 
all competitors. Remarkably, the Unet is consistently worse than c-ResUnet and ResUnet despite having far more 
parameters (nearly 14M against 1.7M and 887 k, respectively). The advantage of the ResUnet architectures is 
even more evident when comparing with the lighter Unet version which has a comparable number of parameters 
(876 k).

In addition, c-ResUnet keeps its leading role also when extending the evaluation to the other metrics. The 
only meaningful exception is precision, for which the Unet architectures are better. This is probably due to a 
tendency to “overdetection”. Nonetheless, the ResUnet counterparts well balance this behaviour with a significant 
improvement in accuracy and recall.

Finally, it is worth noticing that adopting the kneed optimal threshold ensures large cutoffs and enforces only 
detections with high confidence. Although desired, this behavior also increases false negatives as less cells are 
detected. As a result, we observe a drop in the accuracy whereby the impact of false negatives is twice as much 
the one in the F1 score (cfr. Eq. (2) and Eq. (5)), thus explaining the gap between these two metrics. In conclusion, 

(6)AE = |ntrue − npred|;

(7)PE =
ntrue − npred

ntrue
.

Figure 5.   Threshold optimization. On the left, the F1 score computed on validation images as a function of the 
cutoff for thresholding. On the right, the test F1 score of the c-ResUnet model is used to illustrate the selection of 
the best threshold for binarization according to argmax (blue) and kneedle (red) methods.
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the model provides reliable predictions and satisfies the design requirement of being conservative with counts, 
as suggested by the negative values of MPE for all experimental conditions.

Ablation studies.  In order to evaluate the impact of artifacts oversampling and weight maps, the experi-
ments were repeated under the same conditions, alternately switching off one of the two design choices.

From Table 1 it is evident how penalizing errors in crowded areas has a positive impact. Indeed, experiments 
exploiting weight maps achieve consistently better results than those without this addition (no WM), except for 
the Unet architecture. In particular, this strategy seems to produce a loss in precision to foster a more significant 
gain in accuracy and recall. Fig. 6 illustrates a visual comparison of c-ResUnet output in crowded areas with (top) 
and without (bottom) weight maps. Again, its beneficial contribution is apparent, with close-by cells sharply 
separated when exploiting the weight maps.

Regarding the impact of artifacts augmentation, Table 1 shows how there is little difference between the full 
c-ResUnet and the one without oversampling of challenging examples (no AO). In particular, the advantage of 
artifacts oversampling is numerically minimal. This is also confirmed by qualitative evaluation (Fig. 7). On the 
one hand, the c-ResUnet (no AO) is able to avoid detecting more evident artifacts as the strip (7a) even without 
specific oversampling. On the other, the c-ResUnet still fails to ignore more troublesome bright structures (7b) 
although additional challenging examples were provided during training. For this reason, the experiment was 
not replicated for the other architectures.

Conclusions
In this work, we tackled the issue of automating counting cells in fluorescent microscopy images through the 
adoption of Deep Learning techniques.

From the comparison of four alternative CNN architectures, the cell ResUnet (c-ResUnet) emerges as the best 
model amongst the investigated competitors. Remarkably, the careful additions with respect to the ResUnet44—i.e. 
a learned colorspace transformation and a residual block with 5 × 5 filters—enable the model to perform better 
than the original Unet33 despite having seven times fewer parameters.

Table 1.   Performance metrics computed on the test set using the optimal kneed threshold.  The first four 
columns report the detection metrics, while the latter ones evaluate counting performance. The best scores for 
each metric are reported in bold, with underline to highlight the main indicators of interest.

Model Threshold F1 Accuracy Precision Recall MAE MedAE MPE (%)

c-ResUnet 0.875 0.8149 0.6877 0.9081 0.7391 3.0857 1.0 − 5.13

c-ResUnet (no AO) 0.875 0.8047 0.6732 0.9019 0.7264 3.0857 1.5 − 6.24

c-ResUnet (no WM) 0.875 0.7613 0.6147 0.9418 0.6389 3.6857 1.0 − 19.14

ResUnet 0.850 0.7855 0.6468 0.8865 0.7052 3.3286 1.0 − 4.84

ResUnet (no WM) 0.850 0.7513 0.6016 0.9387 0.6262 4.0571 2.0 − 24.12

Unet 0.875 0.7724 0.6291 0.9117 0.6700 3.5143 1.5 − 14.36

Unet (no WM) 0.850 0.7886 0.6510 0.8989 0.7024 3.1571 2.0 − 9.23

Small Unet 0.875 0.7563 0.6081 0.9264 0.6389 3.5714 2.0 − 21.37

Small Unet (no WM) 0.825 0.6697 0.5034 0.9483 0.5176 4.7714 2.0 − 32.01

Figure 6.   Weight map effect. Predicted heatmaps obtained with c-ResUnet (top row) and c-ResUnet (no WM).
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Also, the two design choices considered in the ablation studies provide an additional boost in model perfor-
mance. On one side, the adoption of a weight map that penalizes errors on cell boundaries and crowded areas 
is definitely helpful to promote accurate segmentation and dividing close-by objects. On the other, the effect 
of artifacts oversampling is less evident. Nonetheless, the combined impact of the two components guarantees 
better results than any of the two considered separately.

In terms of overall performance, the results are satisfactory. Indeed, the model predicts very accurate counts 
(MAE = 3.0857) and satisfies the conservative counting requirement, as testified by the negative MPE (-0.0513). 
Detection performance is also very good ( F1 score = 0.8149), certifying that the precise counts come from accu-
rate object detection rather than a balancing effect between false positives and false negatives.

Finally, qualitative assessment by domain experts corroborates further the previous statements. Indeed, by 
visually inspecting the predictions is possible to appreciate how even erroneous detections are somewhat arguable 
and lay within the subtle limits of subjective interpretability of borderline cases (see Fig. 7c, 7d).

In conclusion, the proposed approach proved to be a solid candidate for automating current operations in 
many use cases related to life science research. Thus, this strategy may bring crucial advantages in terms of speed-
ing up studies and reducing operator bias both within and between experiments. For this reason, by releasing 
the c-ResUnet model and the annotated data, we hope to foster applications in microscopic fluorescence and 
similar fields, alongside innovative research in Deep Learning methods.

Figure 7.   Results on test images. The c-ResUnet (no AO) correctly handles evident artifacts (a, topleft corner), 
while the c-ResUnet fails with more problematic structures (b). Notice how false positives (c, red boxes) 
look like target cells. Likewise, the objects discarded (d, blue boxes) are similar to other stains that were not 
annotated.
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Data availability
The original images and the corresponding ground-truth masks are available on AMS Acta, the Open Science 
repository of the University of Bologna  (DOI: http://​doi.​org/​10.​6092/​unibo/​amsac​ta/​6706).

Code availability
The code is available on GitHub at the link: https://​github.​com/​robom​orelli/​cell_​count​ing_​yellow.
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