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Diagrammatic quantum Monte Carlo study of an acoustic lattice polaron
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We present a diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch
through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region
where quantum resonance between various possible lattice deformations is seen in the ground-state properties,
spectral function, and optical conductivity. This study shows that the acoustic lattice polaron represents a
distinct quantum object with unique features, markedly different from any previously considered polaron model.
In particular, the acoustic lattice polaron exhibits an interplay between long- and short wavelength acoustic
vibrations, resulting in a composite phonon cloud which leads to the formation of multiple competing polaron
states with a complex spectral response.
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The fundamental conception of a polaron, an electron in-
teracting with phonons and increasing its mass by dragging
the accompanying phonon cloud with it, was formed long
ago [1,2]. Depending on the type of phonon involved and on
the mechanism used to model the electron-phonon coupling
[3–9], it is possible to distinguish between optical [10] versus
acoustic [11,12] and lattice [13] versus continuum [14] po-
larons. Optical polaron models have been studied extensively
over the years. The gap in the spectrum of optical phonons
makes them accessible to approximate approaches [15–17],
approximation-free numerical techniques [18–26], and even
analytic methods [27]. On the contrary, acoustic polaron mod-
els have received much less attention. Due to their gapless
phonon spectrum, many techniques, which work well for the
optical case, either fail [27] or are effective only at weak cou-
pling [28]. This lack of reference studies in polaron literature
is in contrast to growing evidence that realistic calculations
require a thorough treatment of electron-acoustic phonon in-
teractions [29–41].

In general, a typical polaron model describes an electron
interacting with a single phonon branch (h̄ = 1):

Ĥ =
∑

k

εkc†
kck +

∑
q

ω(q)b†
qbq

+ N−1/2
∑
k,q

V (q, k) c†
k+qck(b†

−q + bq). (1)

Here, the operator c†
k/b†

q creates an electron/phonon with
momentum k/q. The Hamiltonian is fully determined by the
electron dispersion εk, the phonon frequency ω(q), and the
interaction vertex V (q, k). In lattice models, N specifies the
number of unit cells and sums over momenta are restricted to
the first Brillouin zone (BZ).

Every polaron eigenstate |ν, k〉 of Eq. (1) with energy
Eν (k) can be written as a linear combination of states in which

an electron with momentum k − q1 − . . . − qn is accompa-
nied by n phonons with momenta q1, . . . , qn:

|ν, k〉=
∞∑

n=0

∑
q1...qn

�ν,k
q1...qn

c†
k−q1−...−qn

b†
q1

. . . b†
qn

|Ø〉 . (2)

|Ø〉 denotes the electron and phonon vacuum and �ν,k
q1...qn

are expansion coefficients. For a fixed polaron momentum
k, we can identify the eigenstate |ν = 0, k〉 with the lowest
energy E0(k). The ground state (GS) |0, kGS〉, which is usually
located at k = kGS = 0, has an energy EGS = E0(k = kGS)
and effective mass m∗ = (d2E0(kGS)/dk2)−1. The structure
of the phonon cloud is described by the probabilities of find-
ing n phonons in the GS, Z (n) = ∑

q1...qn
|�0,k=kGS

q1...qn
|2, and

their average number 〈Nph〉 = ∑
n nZ (n). More information

on the excited spectrum is contained in the spectral function
Ak(ω) = ∑

ν δ(ω − Eν (k))| 〈Ø| ck |ν, k〉 |2, which has poles
(sharp peaks) at energies of stable (metastable) states of
the polaron. In addition, it can be instructive to study
the zero-temperature optical conductivity (OC) σk(ω) =
π (ωV )−1 ∑

ν | 〈0, k| j |ν, k〉 |2δ(ω + E0(k) − Eν (k)), where
V is the volume and j the charge current operator, since the
symmetry selection rules for Ak(ω) and σk(ω) are different
[17,42]. The following discussion will be restricted to quanti-
ties calculated at k = kGS = 0.

Optical polaron models with phonon dispersion ω(q) =
ω0 > 0 and interaction vertex V (q, k) = V (q) are well under-
stood. In the case of lattice models, it is common practice to
quantify the electron-phonon coupling strength with a single
parameter,

λ̃ =
∑

q

2 |V (q)|2
W ω(q)

, (3)
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where W is the width of the electronic band. Polaron states
for λ̃ � 1 and λ̃ � 1 show profound differences. In the weak
coupling regime (WCR) at λ̃ � 1, the GS is light m∗/m∗ (̃λ =
0) ≈ 1 with a slightly distorted lattice 〈Nph〉 � 1 around the
electron, whereas in the strong coupling regime (SCR) at
λ̃ � 1, the GS is heavy m∗/m∗ (̃λ = 0) � 1 because of a large
phonon cloud 〈Nph〉 � 1 surrounding the electron.

At λ̃ = λ̃cr ≈ 1, one may observe the self-trapping (ST)
phenomenon. ST, as defined in the pioneer works [1,43–
45], refers to an apparent quantum resonance between WCR
and SCR. There are two indicators for ST: (i) a two-peak
structure in the phonon distribution function Z (n) and (ii) a
clear avoided crossing behavior of the GS and first excited
state (FES) in the spectral response. These two fingerprints
are very spectacular when the optical phonon frequency ω0

is sufficiently small ω0 � W , but they are hardly observed at
large ω0 [46,47].

The phonon spectrum of the acoustic polaron model dra-
matically changes the situation because the energy gap ω0 >

0, inherent to optical phonons, is missing and there is no a
priori knowledge whether the Debye frequency 
0 of the
acoustic phonon dispersion can be a good substitute. It so hap-
pened that all previous nonperturbative studies were restricted
to a simplified continuum model [12,48–52]. The electronic
band in the continuum model is approximated by εk = k2/2
while the phonon dispersion and interaction vertex are set to
ω(q) = vsq and V (q) ∼ √

q, with vs a sound velocity [53].
A momentum cutoff q � k0 is introduced to establish the
maximal Debye frequency 
0 = vsk0. Surprisingly, it was
shown [12,48,49,52,54] that the WCR to SCR crossover is
sharper for larger values of 
0. This is clearly opposite to
what is found in optical polaron models, where the crossover
is sharper for smaller ω0.

With the present Letter, we fill a gap in the polaron
literature by providing a reference study of an acoustic lat-
tice polaron model using diagrammatic Monte Carlo [55–58]
and stochastic optimization consistent constraint (SOCC)
[56,59,60] analytic continuation. It should be noted that both
methods are approximation-free and are therefore especially
suited for benchmark calculations.

We consider a three-dimensional primitive cubic lattice
with the usual tight-binding dispersion for the electron,

ε(k) = 2t
3∑

i=1

[1 − cos(kia)], −π � ki < π, (4)

and an acoustic phonon spectrum due to nearest-neighbor
force constants:

ω(q) = 
0

√√√√ 3∑
i=1

sin2
{qia

2

}
, −π � qi < π. (5)

The relevant parameters in Eqs. (4) and (5) are the elec-
tron hopping amplitude t , the lattice constant a, and the
Debye frequency 
0. Estimating the deformation potential
D = σ ∇ · u(r) = σ

∑3
i=1 ∂ui/∂xi, as the energy proportional

to the change of the unit cell volume D ∼ ∑3
i=1 | ui(r + âi ) −

ui(r) |, where âi is a primitive unit vector of the 3D cubic
lattice and ui(r) ∼ âi

∑
q eiqr(bq + b†

−q)/
√

ω(q) is a displace-
ment due to the acoustic phonon mode, one arrives at the

FIG. 1. (a)–(d) Polaron ground-state properties for 
0 = 0.5 (red
circles), 
0 = 1 (blue squares), 
0 = 2 (magenta rhomboids), and

0 = 3 (olive triangles): (a) effective mass m∗, (b) ground-state en-
ergy EGS (horizontal red double line shows a break in the y axis from
−5 to −8 separating two different energy scales), (c) quasiparticle
weight Z0, and (d) average phonon number 〈Nph〉 in the phonon cloud.
(e) 
0 dependence of the critical values λcr determined from the con-
dition d2Z0/dλ2 = 0 (rhomboids), Min[d2EGS/dλ2] (squares), and
d2〈Nph〉/dλ2 = 0 (circles). Dashed line shows extrapolation to zero
Debye frequency 
0 → 0. (f), (g) Distribution Z (n) of the number n
of phonons in the GS for different λ (in legend) for (f) 
0 = 0.5 and
(g) 
0 = 2.

interaction vertex:

V (q) = γ

3∑
i=1

sin
{∣∣∣qia

2

∣∣∣}[
3∑

i=1

sin2
{qia

2

}]−1/4

. (6)

γ has the unit of energy and is related to the deformation
potential constant σ via γ =

√
2h̄σ 2/(Ma2
0), with M the

ion mass. As is usually the case, we define a dimension-
less coupling constant λ = γ 2/(6 t 
0) which corresponds to
λ̃ ≈ 2.5 λ, as follows from Eqs. (3)–(6). Henceforth, we set
h̄ = t = a = 1.

Figures 1(a)–1(d) show the GS properties (effective mass,
energy, quasiparticle weight, and average number of phonons)
as functions of the coupling strength λ. In contrast to the
acoustic continuum polaron, the transition from WCR to SCR
is sharper for smaller values of the Debye energy cutoff 
0.
This behavior is similar to what is observed in optical lattice
models, where the crossover is more abrupt for smaller ratios
ω0/W . Moreover, it is interesting to note that the value of
λ̃cr ≈ 2.5λcr in the adiabatic limit is in good agreement in
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FIG. 2. (a)–(c) 
0 = 0.5: (a) Spectral functions A(ω)/κ (κ with
increasing λ is 0.006, 0.02, 0.08, 0.12, 0.23, 0.44, 0.61, 0.65, 0.67,
0.68), (b) energy, and (c) weight of the GS (red circles) and FES (blue
squares) peaks. The spectrum at λcr ≈ λ = 0.41 is highlighted by a
dotted line. (d), (e) 
0 = 2: (d) Incoherent part of spectral functions
A(ω)/κ [κ with increasing λ is 0.04, 0.21, 0.45, 0.6, 0.75, 0.8, 0.8,
0.9, 0.95, 0.65, 0.2] and (e) energy of the excited state peaks counted
from EGS.

both optical and acoustic lattice models. In Fig. 1(e), we show
λcr (
0) determined from derivatives of various GS properties
with respect to λ (see the caption for more details). Although
the values of λcr (
0) slightly depend on the kind of derivative,
this discrepancy becomes negligible at small values of 
0, al-
lowing us to extrapolate to the adiabatic limit λcr (
0 → 0) =
0.355 ± 0.01. Using Eq. (3), we can compare this value for
the acoustic polaron λ̃ac

cr (
0 → 0) = 0.895 ± 0.03 to the one
obtained for the optical polaron λ̃

op
cr (
0 → 0) = 0.9 [61,62].

The general features of the phonon distribution function
Z (n) in Figs. 1(f) and 1(g) are very similar to the optical
polaron case [17,46,63]. In the WCR, the free electron con-
tribution to the expansion of the polaron GS in Eq. (2) is
the dominant one and so Z (n = 0) ≈ 1 while Z (n > 0) ≈ 0.
In the SCR, Z (n) resembles a Poisson distribution with its
mean located at ≈13.47 λ/
0. For the nearly adiabatic case

0 = 0.5 [Fig. 1(f)], Z (n) develops a two-peak structure close
to the critical coupling λcr ≈ 0.41. This ST indicator is not

FIG. 3. Distribution of the number n of phonons in the
ground state for 
0 = 2. Phonons are grouped into LME/HME
(circles/rhomboids). Inset in the upper right corner shows the divi-
sion into LME and HME.

seen in the nearly antiadiabatic case 
0 = 2 [Fig. 1(g)], where
we always observe a single peak.

It is thus no surprise that for 
0 = 0.5, in agreement with
the resonant behavior of Z (n), the spectral function in Fig. 2(a)
demonstrates the avoided crossing phenomenon representa-
tive for ST. At λ = 0.1, the FES is still well separated ≈0.2t
from the GS, which contains nearly all of the weight, i.e.,
Z0 ≈ 1. With increasing coupling, this gap becomes smaller
and the weight is slowly transferred to the FES, as can be seen
from Figs. 2(b) and 2(c). At the crossover point λ = λcr, the
energy gap between GS and FES is minimal and their weights
become equal.

On the other hand, it seems surprising that we can
see the avoided crossing hybridization behavior for 
0 = 2
[Figs. 2(d) and 2(e)], since there is no corresponding two-
peak structure in the phonon distribution function Z (n) [see
Fig. 1(g)].

However, the unique feature of the acoustic lattice po-
laron is the presence of two distinctive groups of phonons
whose properties are significantly different. Considering the
dispersion in Eq. (5) and the interaction vertex in Eq. (6),
one can distinguish between low momenta and energy (LME)
phonons close to the � point and high momenta and energy
(HME) phonons near the BZ boundary. We tentatively divide
the phonons into LME/HME by using a sphere with radius
q f =1/2 = (3π2)1/3, where f is the fraction of the volume of
the BZ [see inset in Fig. 3]. Phonons with momenta inside the
sphere belong to LME, otherwise to HME. Figure 3 shows
their different behaviors for 
0 = 2. The LME phonon cloud
transfers from WCR to SCR at λ ≈ 0.6, while the HME
cloud makes the crossover at a considerably stronger coupling
λ ≈ 0.725. Depending on λ, it is thus possible to observe
three qualitatively different situations in the GS: (i) LME and
HME are both in the WCR, (ii) LME is in the SCR while
HME is still in the WCR, and (iii) LME and HME are both
in the SCR. It is important to note that the number of possible
GS regimes is the same as for the ST phenomenon observed
for optical polarons. Moreover, the situations in (i) and (iii)
simply correspond to the standard WCR and SCR. However,
regime (ii) is specific to the acoustic lattice polaron. It shows
an additional fine structure in the LME/HME phonon clouds
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FIG. 4. Optical conductivity σ (ω) + χ for different λ given in
the legend. χ is an artificially added onset to discern the curves for
different values of λ: (a) 
0 = 2 (χ with increasing λ is 0, 0.015,
0.03, 0.06, 0.09, 0.11) and (b) 
0 = 0.5 (χ with increasing λ is 0,
0, 0, 0, 0.01, 0.02, 0.07, 0.16, 0.26, 0.33, 0.36, 0.39, 0.42). Dotted
blue lines in (a) follow peaks to guide the eye. The spectrum in (b) at
λcr ≈ λ = 0.41 is highlighted by the dotted red line.

which is not present in the total phonon distribution Z (n)
[see Fig. 1(g)]. We observed no qualitative difference between
LME and HME phonons for different fractions f because
LME enters the SCR at smaller values of λ both for f = 1/4
and f = 3/4 (Fig. S1 and Fig. S2 in Supplemental Material
[64]). Besides, the LME cloud transfers for λ = 0.625 from
WCR to SCR in the range f ∈ [1/4, 3/4], whereas HME
always stays in the WCR (Fig. S3 Supplemental Material
[64]). The configuration (iv) when LME is in the WCR and
HME is in the SCR, is not seen in the GS but might be
realized in some excited states. Furthermore, the very nature
of acoustic phonons implies that there is always a group of soft
phonons present, namely, LME, which are responsible for the
manifestations of the ST phenomenon even for large Debye
frequencies 
0, see Figs. 2(d) and 2(e). For 
0 = 0.5, both
LME and HME show a two-peak structure while the number

of phonons n at maximal Z (n) is, indeed, larger for LME
(Fig. S4 in Supplemental Material [64]).

The anomalously rich structure of the phonon cloud leads
to the existence of multiple competing states. For exam-
ple, a third competing state is clearly seen in the spectral
function A(ω) for 
0 = 0.5 (see Fig. S5 in Supplemental
Material [64]). To reveal more details on the excited spectrum,
Fig. 4 shows the zero temperature OC σ (ω) calculated with
approximation-free SOCCs. Numerous excited states, which
were never observed in the OC of optical polarons, can be
identified for 
0 = 2 [Fig. 4(a)] and 
0 = 0.5 [Fig. 4(b)].
This is a reflection of the unique composite phonon cloud of
the acoustic polaron containing a combination of differently
behaving LME and HME phonons. We are aware of only one
pioneering variational study which investigated the optical re-
sponse of the acoustic continuum polaron [65]. They used the
Feynman-Hellwarth-Iddings-Platzman (FHIP) approach and
identified sharp relaxed excited state (RES) peaks in the WCR
to SCR crossover region. Such peaks do not develop for our
lattice model but, as was shown in detail by two of the present
authors in Ref. [57], a direct comparison between the FHIP
and our DMC results should be done with caution.

In conclusion, we have shown that the lattice polaron in-
teracting with an acoustic phonon branch via the deformation
potential is an object whose complexity is going far beyond
the previously studied optical and acoustic continuum po-
larons. Its most interesting feature is the existence of two
groups of phonons which can interact with the quasiparticle
in different ways. These two phonon clouds are responsible
for the rich structure in the optical response showing mul-
tiple excited states and for the persistent ST phenomenon
even at large values of the Debye frequency. Furthermore,
the sharpness of the crossover between weak and strong
coupling has a different dependence on the Debye/cutoff
frequency in the acoustic continuum polaron compared to
our lattice model. Our results constitute a comprehensive
account of the fundamental properties of an acoustic po-
laron. They will be useful in detecting characteristic features
of electron-acoustic phonon coupling in experiments and
can further guide the exploration of polaron physics in real
materials.

We are grateful to O. Barišić and S. N. Klimin for fruitful
discussions. This work was supported by JST CREST Grant
No. JPMJCR1874, Japan and by the joint FWO-FWF Grants
No. I 2460-N36 and No. I 4506. The computational results
presented have been achieved in part using the Vienna Scien-
tific Cluster (VSC).
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[4] S. Barišić, Phys. Rev. B 5, 932 (1972); 5, 941 (1972).
[5] S. I. Pekar, E. I. Rashba, and V. I. Sheka, Zh. Eksp. Teor. Fiz.

76, 251 (1979) [Sov. Phys. JETP 49, 129 (1979)].

[6] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

[7] A. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev.
Mod. Phys. 60, 781 (1988).

[8] D. J. J. Marchand, G. De Filippis, V. Cataudella, M. Berciu,
N. Nagaosa, N. V. Prokof’ev, A. S. Mishchenko, and P. C. E.
Stamp, Phys. Rev. Lett. 105, 266605 (2010).

L161111-4

https://doi.org/10.1103/PhysRevLett.25.919
https://doi.org/10.1103/PhysRevB.5.932
https://doi.org/10.1103/PhysRevB.5.941
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/PhysRevLett.105.266605


DIAGRAMMATIC QUANTUM MONTE CARLO STUDY OF AN … PHYSICAL REVIEW B 104, L161111 (2021)

[9] O. Goulko, A. S. Mishchenko, N. Prokof’ev, and B. Svistunov,
Phys. Rev. A 94, 051605(R) (2016).

[10] H. Fröhlich, Adv. Phys. 3, 325 (1954).
[11] J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
[12] A. Sumi and Y. Toyozawa, J. Phys. Soc. Jpn. 35, 137 (1973).
[13] T. Holstein, Ann. Phys. (NY) 8, 343 (1959).
[14] T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
[15] M. Berciu, Phys. Rev. Lett. 97, 036402 (2006).
[16] G. L. Goodvin and M. Berciu, Phys. Rev. B 78, 235120 (2008).
[17] G. L. Goodvin, A. S. Mishchenko, and M. Berciu, Phys. Rev.

Lett. 107, 076403 (2011).
[18] G. Wellein and H. Fehske, Phys. Rev. B 56, 4513 (1997).
[19] P. E. Kornilovitch, Phys. Rev. Lett. 81, 5382 (1998).
[20] P. E. Kornilovitch, Phys. Rev. B 60, 3237 (1999).
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