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Abstract 

Previous work has highlighted the difficulty of obtaining accurate and economically significant predictions of 

VIX futures prices. We show that both low prediction errors and a significant amount of profitability can be 

obtained by employing a neural network model to predict VIX futures returns. In particular, we focus on open 

to close returns (OTCRs) and we consider intraday trading strategies, taking into account non-lagged 

exogenous variables that closely reflect the information possessed by traders at the time they decide to invest. 

The neural network model with only the most recent exogenous variables (namely, the return on the Indian 

BSESN index) is superior to an unconstrained specification with ten lagged and coincident regressors, which 

is, actually, a form of weak efficiency involving markets of different countries. Moreover, the neural network 

reveals to be more profitable than both a logistic specification and heterogeneous autoregressive models.  

 

Keywords: VIX, VIX futures, forecasting, coincident indicators, trading strategies, weak efficiency 

 

 

1. Introduction  

The VIX index represents the market’s estimate of the future volatility of the S&P 500 over the next thirty 

days. It provide a benchmark of the short-term expected volatility, as futures and options contracts can be 

inscribed on (see Whaley, 2008). In fact, implied volatility reflects the market makers’ point of view about the 

expected volatility of the futures’ underlying assets. Therefore, since market makers are often among the most 

informed agents, implied volatility should outperform the historical one in forecasting the realized volatility 

of the futures’ underlying asset (Shu and Zhang, 2012). 

Despite the importance and the common use of VIX as a volatility measure, only little attention has been paid 

to the problem of forecasting it. In particular, the few works on the subject show that the VIX is to some extent 

predictable. This finding, albeit theoretically interesting, is not necessarily helpful for traders, because VIX is 

tradable only as derivative contracts, whose dynamics does not always follow that of the VIX index. For 

example, Asensio (2013), Degiannakis (2008), Kostantinidi et al. (2008), Konstantinidi and Skiadopoulos 

(2011), who are among the few authors focusing on VIX futures (henceforth referred to as VXFs), highlight 

only a weak evidence of statistical predictability and experience a low level of profitability when implementing 

trading strategies based on VIX forecasts. The overall picture is not encouraging for investors: on the one hand, 

there is evidence that VIX is predictable; on the other, it seems very hard to trade VXFs by learning from the 

(predicted) VIX dynamics.  

In the present paper, in order to fill this “forecasting gap”, we present a new approach for modelling VXF 

returns that provides a significant amount of predictability and allows us to build profitable trading strategies.  

Specifically, we rely on a feed-forward neural network model, which yields a very general form of non-

linearity. Moreover, we consider exogenous variables that closely reflect the information possessed by traders 

at the time they decide to invest. In particular, in the information set we include non-lagged exogenous 

variables that are available only a few hours before the Chicago Board Options Exchange (CBOE) opening.  
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Instead of forecasting VXF daily returns (DRs), we predict VXF open to close returns (OTCRs), which are 

free of spurious effects related to trading timing (Anderson et al., 2012). No less importantly, by considering 

intraday returns we can easily connect forecast performances to the profits earned by those investors who open 

and close a position on the same day, taking advantage of the fact that stock volatility is substantially higher 

intraday than overnight (Muravyev and Ni, 2016). 

The contribution of the present paper is fourfold: first, we show that, by using an appropriate modelling 

approach, accurate predictions of OTCRs on VFX can be obtained.   

Second, we show that a neural network model whose only input variable is the most recent exogenous one 

(namely, the return on the BSESN index) is superior to an unconstrained model with ten lagged and coincident 

regressors. That is, VXF prices strongly reflect the most recent publicly available information, which is, 

actually, a form of weak efficiency involving markets of different countries.  

Third, we compare the VXF OTCR prediction provided by the neural network model with that yield by a 

logistic specification, by a simple (Naïve) model always forecasting negative VXF OTCRs, and by both a 

heterogeneous autoregressive (HAR) and two augmented heterogeneous autoregressive (HAR_X) models. The 

results obtained reveal that the neural network significantly outperforms all the other models as far as mean 

directional accuracy is concerned.  

Fourth, we simulate and test various trading strategies, with different abilities to filter out false signals. Again, 

the predictions of the neural network model turn out to be more profitable than those of the rival models.  

The remainder of the paper is organized as follows. Section 2 describes the main issues related to predicability 

and profitability in the VIX/VXF market. Section 3 presents the model specifications, as well as the measures 

of forecast accuracy and profitability. Section 4 shows and discusses the main estimation results, focussing on 

the comparative assessment of the models’ predictions and on the profitability of the corresponding trading 

strategies (considering both VXF OTCRs and VFX DRs). Finally, Section 5 concludes. 

 

 

2. Main issues related to predictability and profitability in the VIX/VXF market 

Research on VIX has been largely dominated by autoregressive conditional heteroscedasticity models taking 

into account non-linearity, long memory features and/or lagged exogenous variables. Ahoniemi (2006) tests 

and compares the predictive capabilities of probit, ARIMAX-GARCH and ARFIMA models. By considering 

a large set of  U.S. financial and macroeconomic variables, she finds that the addition of exogenous regressors 

enhances forecasting performance, whereas improvements from adding GARCH errors or long memory 

features are negligible. Degiannakis (2008) introduces a threshold effect to model asymmetry, but no 

incremental information in forecasting VIX is obtained. Konstantinidi et al. (2008) model several implied 

volatility indices, including VIX, in a multivariate VAR framework, which, however, does not yield any 

significant improvement in forecasting. Long memory features are also exploited, among others, by Fernandes 

et al. (2014), who apply a heterogeneous autoregressive (HAR) model coupled with a neural network to better 

capture non-linearities. Nevertheless, they find only little evidence of non-linearity, since the HAR model 

augmented by the neural network performs as well as the linear HAR model with no neural network. 

Psaradellis and Sermpinis (2016) analyze three volatility indices including VIX, and, by employing support 

vector regression models coupled with a genetic algorithm, find significant evidence of strong non-linearities.  

Other approaches look at both VIX and VXF prices, with the aim to study causality direction, and/or to 

investigate the forecast accuracy and the profitability of trading the VXFs. Shu and Zhang (2012) find that 

VXF prices drive spot VIX if a linear model is employed. However, after searching for non-linear relationships, 

both spot and futures prices react simultaneously to the arrival of new information. Jabłecki et al. (2015) and 

Luo and Zhang (2012) show that the shape of the implied volatility term structure and the volatility risk 

premium help in forecasting VIX.  
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A very important point to remark is that the predictability of the VIX index does not necessarily imply that 

VXF prices can be predicted too. This is clearly pointed out by Degiannakis (2008), who observes that in the 

26% of the trading days the log-returns of VIX and of its futures have opposite signs. He concludes that “an 

agent cannot utilize VIX predictions in creating abnormal returns in implied volatility futures markets”, and 

highlights the need for future work focusing directly on the predictability of VXFs. As well, Degiannakis 

(2008), Kostantinidi et al. (2008), Konstantinidi and Skiadopoulos (2011), despite finding some evidence of 

predictability of the VIX index, do not succeed in using VIX forecasts to construct profitable trading strategies.  

Asensio (2013) addresses the topic from a more theoretical point of view, and, to stress out the complexity of 

the VIX/VXF market, talks about a “VIX-VFX Puzzle”. In particular, he identifies a number of factors that 

cause VXFs to be “consistently overpriced relative to the subsequent moves in the underlying VIX index”. 

To provide an intuition of the VIX-VXF Puzzle, we have computed the correlation between the DRs on VIX 
and the DRs on the VXF on the time interval from March 26, 2007 to December 20, 2016. For the VXF, we 
use the continuous time series provided Thomson Reuters Datastream (Type 0), which contains the prices of 
either nearest contract month futures or second nearest contract month futures (more details about time series 
construction can be found in Thomson Reuters Datastream (2010)). We found that the correlation is 0.823 
when considering the whole data set (2454 observations), and falls down to 0.783 when taking the average of 
the correlations computed on monthly sub-samples (in the chosen time interval we have 116 monthly sub-
samples). Furthermore, in Figure 1.a we show how the monthly correlations varies over time. As we may 
observe, the profile is quite erratic, with many spikes around 0.4 and a minimum close to 0.2.  
If we consider the correlation between VIX OTCRs and VXF OTCRs, the trading gap between VIX and VXF 
is still more serious: the correlation is 0.767 on the whole data set, and falls to 0.771 if we compute the average 
of the correlations on the 116 monthly sub-samples.  Moreover, as shown in Figure 1.b, the correlation 
dynamics is still very erratic. 
Therefore, since the dynamics of VXFs does not closely reflect that of the VIX, even very accurate predictions 

of the VIX may not allow an investor to earn significant profits by trading VIX futures as highlighted in the 

literature.  

We shall acknowledge that, according to Psaradellis and Sermpinis (2016), VIX forecasts can yield a 

“noteworthy prospect” of achieving economically significant profits in the VXFs market. In particular, they 

apply a non-linear long-memory model to predict the VIX, and then they go long (short) in the VXF when the 

forecasted value of the index is greater (smaller) than its current value. Nevertheless, even if Psaradellis and 

Sermpinis succeeded in constructing profitable trading strategies, due to the poor and erratic correlation 

between the VIX and its futures, an investor who trades VXFs based on VIX forecasts could fail to obtain 

significant profits anyway. 

Figure 1. Correlation between VIX and VXF (computed on monthly sub-samples). 

DRs returns (a); OTCRs (b) 
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To fill the trading gap between VIX and VXF, Jablecki at al. (2014) propose an original and interesting 

approach that takes into account both the current level of VIX and the volatility term structure. However, even 

if they succeed in building some profitable trading strategy, their predictions of VXF levels do not outperform 

naïve forecasts.  

To overcome the non-tradability of the VIX index, as well as to avoid the use of VIX futures, some authors 

(see Ahoniemi, 2006 and Degiannakis et al., 2018) propose trading sessions based on buying/selling straddles 

of options on the S&P 500. The predictions on the VIX drive the decision to buy or sell the straddle, and, in 

particular, a long/short position is taken if the VIX is expected to rise/fall. However, such an approach is 

guaranteed to be profitable only if the strikes of the traded straddles coincide with the S&P (i.e. the straddles 

are delta-neutral), which cannot always be the case due to the limited number of straddle strikes that are 

available on the market.  

Finally, while some authors have already focused on the predictability of DRs on VXFs, no one has ever tested 

either the predictability of opening to close returns on VXFs or the profitability of the related trading strategy 

that amounts to opening and closing a position on the same day.  

 

3. Methodology and data 

In order to bypass the complex, and, at least to some extent, non-predictable relationship between the VIX and 

its futures, we directly model the VXF dynamics. We use a neural network approach, which, as suggested by 

the literature, appears to be more successful than a (linear) time series approach in anticipating the evolution 

of the implied volatility.  

Furthermore, the choice of the exogenous variables is very important too. When modelling financial 

phenomena, it is common practice to take the information set from the same market to which the variables 

being explained belong. Nevertheless, as suggested by Shen et al. (2012), under weak efficiency hypothesis, 

price dynamics in markets that close right before or at the very beginning of U.S. trading, should incorporate 

much more information than lagged variables on the U.S. market. Therefore, we augment the information set 

by some “coincident indicators” taken from Asian stock exchange markets leveraging the time zone difference. 

The VIX index is calculated using options with two consecutive expirations having more than 23 days and less 

than 37 days to expiration (for further information see CBOE, 2015). Typically, once a week, some of the 

options used for the calculation start having less than 24 days to expiration, and thus they are rolled to new 

maturities. When this happens the VIX index usually experiences a jump, and, consequently, if returns are 

computed as the log closing price difference between two consecutive days, some bias arises.  

To avoid this problem, we set our dependent variable as the VXF open-to-close return (OTCR), which is 

calculated as ln(𝑐𝑙𝑜𝑠𝑒𝑡) − ln(𝑜𝑝𝑒𝑛𝑡). OTCRs offer the advantage of taking into account only the “genuine” 

autocorrelation that arises from partial price adjustment and time-varying risk premia (Anderson et al., 2012), 

and incorporate the relevant information about the variability of financial assets, since stock volatility is 

substantially higher intraday than overnight (Muravyev and Ni, 2016). No less importantly for the purposes of 

the present work, the use of intraday returns allows to easily connect the forecasting performances to the profits 

earned by a trader who opens and closes a position on the same day. In this respect, it is also worth observing 

that, from the practical standpoint, a trading strategy that consists on buying/selling a VXF is not affected by 

small liquidity issues, since, the liquidity of futures’ market has considerably grown over the years (Shu and 

Zhang, 2012).   

With respect to the usual approach based on the log difference between subsequent closing prices, we 

acknowledge that we do not measure any overnight gap. Nevertheless, this does not represent a limit, because 

we consider a trading strategy that open and close the positions within the same day. 
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3.1 Models specification 

Both the VFX and the VIX, as well as the variables used to explain them (see Section 3.3), are collected at a 

set of (consecutive) trading days 1,2, …, T3 (so that T3 denotes the size of our dataset). Then, we fix two 

positive integers T1 and T2, such that T1 < T2 < T3, in order to form three sub-samples. Precisely, the training 

set, containing the data observed at days 1,2, …, T1, is used to estimate the econometric models. The validation 

set, containing the data observed at days T1 + 1, T1 + 2, …, T2, is used to train the neural network, so as to 

minimize overfitting problems (that is, to reach a trade-off between model complexity and expected forecasting 

accuracy). The first T2 observations are also used for optimizing the parameters of the employed trading 

strategy. 

A third subset, the test set, containing the data observed in T2 + 1, T2 + 2, …, T3, is exploited to assess both the 

ex-post forecast performance of the models and the profitability of the resulting trading strategies. We model 

intraday returns on the VXF by means of a multilayer augmented feed-forward neural network, a black-box 

approach proved to be able to approximate complex (non-linear) relationships (see Thenmozhi, 2006). 

We specify a single hidden layer neural network. The input layer is made by S nodes, or neurons, that 

correspond to the explanatory variables. A constant term 𝑤.,0 (the so-called bias) is also included. These input 

terms are first multiplied by a matrix W of weights and then transformed by a non-linear function (the so-called 

transfer or activation function, which we denote by f): 

                                                   ℎ𝑗(𝑥1,𝑥2,… , 𝑥𝑆) = 𝑓(𝑤𝑗,0 + ∑ 𝑤𝑗,𝑖𝑥𝑖
𝑆
𝑖=1 ),       j = 1, 2, ..., J,                             (1) 

where J  is the number of neurons in the hidden layer, to be selected according to the parsimony principle (so 
as to achieve the best trade-off between complexity and forecasting accuracy).  Following a common approach, 
the activation function is chosen to be the hyperbolic tangent function: 

                                                                              𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧 .                                                                                     (2) 

Then, as happens for input nodes, the hidden neurons’ output is sent to the output layer, multiplied by a second 

matrix V of weights and transformed by a non-linear function:  

                                      𝑜𝑢𝑡𝑛(ℎ1(∙), ℎ2(∙), … , ℎ𝐽(∙)) = 𝑓(𝑣𝑛,0 + ∑ 𝑣𝑛,𝑗ℎ𝑗(∙)
𝐽
𝑗=1

),      n = 1, 2,                           (3) 

where 𝑜𝑢𝑡 is a two dimensional vector representing the final neural network prediction, in particular if 𝑜𝑢𝑡1 <
𝑜𝑢𝑡2 the OTCR VFX is forcasted down, whereas if 𝑜𝑢𝑡1 > 𝑜𝑢𝑡2  the OTCR VFX is forcasted up. Normally, 

each node in a given layer is connected to all the nodes. Given the number of hidden layers (which in our case 

is one), the complexity of the model and its capability to approximate the input depend on the number of 

neurons J. However, parsimony is usually seen as the leading principle for model specification as complexity 

increases both the risk of overfitting and the computational time. Once the structure of the neural network is 

created, the parameters are estimated by minimizing a suitable loss function, which is done by applying a 

numerical optimization algorithm (in the network terminology, we say that the network is trained with a 

learning algorithm). The loss function we choose, which is very common for our two-class problem, is the 

“softmax cross-entropy”: 

                                                            𝐸 = − ∑ 𝑦𝑛
2
𝑛=1 ln (

𝑒𝑜𝑢𝑡𝑛

𝑒𝑜𝑢𝑡1+𝑒𝑜𝑢𝑡2
) ,   𝑛 =  1, 2,                                             (4) 

 

and either (𝑦1, 𝑦2) = (0, 1) if the observed direction of the OTCR VFX is down or (𝑦1 , 𝑦2) = (1, 0) if the 

observed direction of the OTCR VFX is up. The problem of bad local minima is dealt with by considering 

different starting points in the learning phase.  

To evaluate whether the complexity and non-linearity implied by the neural network approach worth it, the 

following logistic regression is used as a benchmark to compare with: 
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                                                                   𝜋(𝑥) =
𝑒

𝛽0+∑ 𝛽𝑗𝑥𝑗
𝑠
𝑗=1

1+𝑒
𝛽0+∑ 𝛽𝑗𝑥𝑗

𝑠
𝑗=1

,                                                                              (5) 

 

where (x) denotes the probability that the future observation is positive and x1, x2, …, xs  are the same lagged 

endogenous and/or exogenous variables that we employ in the neural network model. 

Moreover, always for comparison purposes, we consider a simple model (Naïve) that always predicts VXF 

OTCRs to be negative (since the empirical examination of the VXF time series shows that negative OTCRs 

are more likely to occur than positive OTCRs). 

Finally, to compare with a more conventional approach, we also try to forecast VXF movements based on VIX 

predictions. Specifically, we use a Heterogeneous Autoregressive model of Realized Volatility (HAR) and an 

augmented HAR (HAR_X) to predict VIX. The HAR model, which is originally due to Corsi (2009), and the 

HAR_X model are often employed for predicting the volatility of financial time series, since they are 

parismonious approaches and can capture long-memory effect (see, e.g., Busch et al. 2011, Degiannakis and 

Filis, 2017, Degiannakis et al., 2018, Fernandes et al., 2014).  

According to the HAR model, the realized volatility (RV) is predicted as follows: 

 

 𝑅𝑉𝑡 = 𝑏0 + 𝑏1𝑅𝑉𝑡−1 + 𝑏2𝑀𝐴(𝑅𝑉)𝑡−1
5 + 𝑏3𝑀𝐴(𝑅𝑉)𝑡−1

22 + 𝜖𝑡 ,                                     (6) 

where  

𝑀𝐴(𝑅𝑉)𝑡−1
5 =

1

5
∑ 𝑅𝑉𝑡−𝑘 ,5

𝑘=1     𝑀𝐴(𝑅𝑉)𝑡−1
22 =

1

22
∑ 𝑅𝑉𝑡−𝑘

22
𝑘=1 .                                 (7) 

 

Instead, the HAR_X specification predicts the realized volatility by taking also into account the current value 

of S exogenous regressors: 

𝑅𝑉𝑡 = 𝑏0 + 𝑏1𝑅𝑉𝑡−1 + 𝑏2𝑀𝐴(𝑅𝑉)𝑡−1
5 + 𝑏3𝑀𝐴(𝑅𝑉)𝑡−1

22 + ∑ (𝑐1,𝑖𝑥𝑖,𝑡 + 𝑐2,𝑖𝑀𝐴(𝑥𝑖)𝑡
5 + 𝑐3,𝑖𝑀𝐴(𝑥𝑖)𝑡

22)𝑆
𝑖=1 ,  

                                                                                                                                                                          (8) 

where 𝑀𝐴(𝑥𝑖)𝑡
5 and 𝑀𝐴(𝑥𝑖)𝑡

22 are defined analogously to (7). The index t in the exogenous variables does not 

imply using future data that do not belong to the current information set. In fact, the exogenous regressors refer 

to markets closing before the VFX’s opening (see Section 4.1) and thus they become available at least 4 hours 

in advance. 

The HAR and HAR_X models are specifically designed for forecasting realized volatility and thus they cannot 

be directly applied to VXF returns. Therefore, in place of RV we consider VIX. By doing this, we predict the 

VIX based on either (6) or (8), and then we forecast the future direction of the VXF OTCR as follows: 

{

𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡 < 0  𝑖𝑓  𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡  < 0
𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡 > 0  𝑖𝑓  𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡  > 0

𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡 = 0  𝑖𝑓  𝑉𝑋𝐹𝑡 − 𝑉𝑋𝐹𝑡  = 0.
    (9) 

 

3.2 Forecast accuracy 

To measure forecast accuracy, one can use either a loss function based on the magnitude of the forecasting 

error, such as the mean square forecasting error (MSFE) and the mean absolute forecasting error (MAFE), or, 



7 
 

instead, a classification loss function (directional forecasting). If the former approach is the most popular in 

the literature, the latter allows for a better assessement of potential profitability. In fact, as shown by Leitch 

and Tanner (1995), Diebold and Mariano (1995) and Granger and Pesaran (2000) among others, directional 

accuracy (DA) is more connected with profits than standard accuracy measures such as MSFE. In addition, 

Blaskowitz and Herwartz (2011) emphasize the robustness of DA in the presence of signal bias and outliers. 

Finally, some papers (see, e.g., Degiannakis, 2008 and Costantini et al., 2016) combine DA with the profit/loss 

of a trading strategy, and obtain decision-based loss functions that allow one to assess accuracy in economic 

terms.  

Therefore, in the present paper we employ the mean directional accuracy, which, for the k-th model (we are 

going to compare six different models) is computed as follows: 

                                                

                                                      𝑀𝐷𝐴𝑘 =
1

𝑇3−𝑇2
∑ 𝟏𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅𝑡) = 𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅̂𝑘,𝑡)

𝑇3
𝑡=𝑇2+1 ,                                      (10) 

where 𝑂𝑇𝐶𝑅̂𝑘,𝑡 denotes the OTCR at day t forecasted by the k-th model, and 𝟏 an indicator function that is 

equal to one if the two signs coincide, and zero otherwise.  

We test directional forecasting accuracy with the market-timing test for predictive accuracy (Pesaran and 

Timmermann, 1992). The null hypothesis is that the predicted and the realized signs are independent, i.e. the 

forecasted market directions do not inform on the sign of the realized returns. Granger and Pesaran (2000) 

provide the following version of the test: 

                                          𝑃𝑇 =  
√𝑇3−𝑇2(

𝑁𝑝𝑝

𝑁𝑝𝑝+𝑁𝑛𝑝
 − 

𝑁𝑝𝑛

𝑁𝑝𝑛+𝑁𝑛𝑛
)

        (
𝜋̂𝑓(1−𝜋̂𝑓)

𝜋̂𝑜(1−𝜋̂𝑜)
)

1/2 ,                                                     (11) 

where the subscripts p and n indicate positive and negative VXF returns, respectively, 𝑁𝑝𝑛 is the number of 

times the VXF return was negative and the forecast was positive, and 𝑁𝑝𝑝, 𝑁𝑛𝑛, 𝑁𝑛𝑝  are defined accordingly. 

Moreover, 𝜋̂𝑜 =  
𝑁𝑝𝑝+𝑁𝑛𝑝

𝑇3−𝑇2
 is the probability that returns are positive and 𝜋̂𝑓 =  

𝑁𝑝𝑝+𝑁𝑝𝑛

𝑇3−𝑇2
  is the probability that 

returns are forecasted to be positive. As shown by Granger and Pesaran (2000), under the null hypothesis that 
the predicted and the realized signs are independent, PT  has a standard normal distribution (with zero mean 
and unitary variance). Thus, we can easily test if the predicted and the realized signs are independent by 
comparing with the quantile of the standard normal distribution.  

We devote a special attention to data-snooping biases, a common problem in inference with non-linear models 

because of the many degrees of freedom that are lost. Therefore, in order to assess if the predictive superiority 

of the neural network is systematic and not due to luck, we assess the predictive performance of this highly 

parametrized non-linear specification by applying a Monte Carlo cross validation technique. Specifically, we 

consider 1000 random permutations of the sequence of days 1, 2, …, T3  in which data are observed. In each 

permuted sequence we form the training set with the data at places 1, 2, …, T1, the validation set with the data 

at places T1 + 1, T1 + 2, …, T2, and the test set with the data at places T2 + 1, T2 + 2, …, T3. By doing that, for 

each of the 1000 permutations we have a different (random) distribution of all the economic variables among 

the training, validation and test sets. Then, we check the distribution of the mean directional accuracy of the 

simulated neural network model over the set of Monte Carlo permutations.  

Furthermore, we also evaluate the superior predictive ability (SPA) of the rival models applying the test 
developed by Hansen (2005), which is briefly described in the following. We consider, in turn, each model as 
the benchmark to compute the following relative performance at time t of model k : 

           𝑑𝑘,𝑡 ≡ 𝐿(𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅𝑡), 𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅̂0,𝑡)) − 𝐿(𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅𝑡), 𝑠𝑖𝑔𝑛(𝑂𝑇𝐶𝑅̂𝑘,𝑡)),   (12)                             
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where 𝑘 = 0 refers to the model chosen as the benchmark, whereas k  = 1, 2,… refer to the rival models and 

L(.) is a given loss function. Let us consider the sample average of 𝑑𝑘,𝑡: 

                                                                   𝑑𝑘 =
1

𝑇3−𝑇2
∑ 𝑑𝑘,𝑡

𝑇3
𝑡=𝑇2+1 ,                                                            (13) 

and let us define: 

                                                                       𝐴𝑘 =  √𝑇3 − 𝑇2  ∙ 𝑑𝑘.                                                                     (14) 

Moreover, let 𝜔̂𝑘 denote a consistent estimator of the standard deviation of 𝐴𝑘. Then, the null hypothesis of 

the test is that the predictive ability of the benchmark is superior to that of the other five models. Such an 

hypothesis is rejected based on the significance of the studentized test statistic 

                                                                   𝑇𝑆𝑃𝐴 ≡ max [ max
𝑘=1,2,…

𝐴𝑘

𝜔̂𝑘
, 0].                                                           (15) 

Suitable p-values for the statistics 𝑇𝑆𝑃𝐴 are calculated based on bootstrap resamples. 

The trading strategy we consider is as follows: at day t, depending on the forecasted value of 𝑂𝑇𝐶𝑅𝑡, either 

we do nothing or we take a long/short position on the VXF when the market opens and liquidate it when the 

market closes. Accordingly, we measure the total profit in the time interval from day T2 + 1 to day T3 by using 

the cumulative directional value: 

                                                 𝐶𝐷𝑉 = ∑ 𝐷𝑉𝑡
𝑇3
𝑡=𝑇2+1 ,                                                                (16) 

where 

𝐷𝑉𝑡 = 𝑂𝑡 ∙ 𝑂𝑇𝐶𝑅𝑡,                                                                   (17)  

with 𝑂𝑡 = 1, −1, or 0 if at day t we take a long, a short or a flat position, respectively. The Hansen test 

described above is also used to assess the superior ability of the models in generating profits. In particular, we 

use the opposite of the directional value (17) as a loss function in (12). 

 

3.3 Dataset 

We take into account the VIX futures continuous time series constructed by Thomson Reuters Datastream 

(Type 0), which contains the prices of either the nearest contract month futures or the second nearest contract 

month futures. We consider daily data from March 26, 2007 to September 30, 2017, removing days with no 

value (e.g. holidays). With this choice, we collect T3 = 2639 observations on the whole dataset. To form the 

training, validation and test sets introduced in Section 3.2, we set T1 = 1718, T2 = 2086 (i.e., the training set 

contains data from March 26, 2007 to January 21, 2014, the validation set contains data from January 22, 2014 

to July 8, 2015, the test set contains data from July 9, 2015 to September 30, 2017). 

We compute the logarithmic OTCR series of both VIX and VXF. Descriptive statistics (for the sub-sample 

made of the first T2  observations) are provided in Table 1.  

As is typical of many financial time series, the distributions of log-returns are slightly asymmetric and show a 

kurtosis greater than three. The Jarque-Bera (JB) normality test always allows to reject normality (p < 5%). 

The time series of both VIX and VXF returns are stationary as indicated by the Augmented Dickey-Fuller 

(ADF), Philips-Perron (PP) and KPSS tests. However the futures oscillates less than its underlying (i.e. the 

difference between maximum and minimum is smaller). 
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Table 1: Descriptive statistics on OTCR 

 VIX VXF 

Mean -0.0056  -0.0010 
Median -0.0108  -0.0033  

Minimum -0.2844  -0.2030 
Maximum 0.3270  0.1930  

Standard Deviation 0.0590 0.0352 
Skewness 0.690 0.299 

Kurtosis 5.97 6.27 

 

Thomson Reuters Datastream is also the source of the independent variables. We consider both lagged 

endogenous and exogenous selected among the Asian world stock indices that close right before the opening 

of the U.S. market in order to account for possible market sentiment on latest economic news or response to 

progress in major world affairs (see, e.g., Shen et al., 2012). Specifically, variables are selected by looking at 

their correlation with the VXF OTCR. Results suggest to keep lags 0 and 1 of the DRs of the following four 

indices: Nikkei 225 (N225), Hang Seng (HSI), ASX 200 (ASX200) and SENSEX (BSESN). To allow for a 

possible autoregressive dependence we also keep the first two lags of the dependent variable, even if the 

(linear) autocorrelation function was not significant. Values for non-lagged indices are available from 8.30 to 

5 hours prior to the opening of the CBOE. Therefore, we try to exploit as much as possible the information 

available to traders in their “nowcasting” activity, assuming that they need a minimum time lag in order to 

estimate models and set up their investment strategies. We do not consider data from European markets.  

Data also exhibit significant cross-correlations at higher order for BSESN and N225, but we do not take into 

account this in accordance with the parsimony principle. We also exclude macroeconomics, bonds or 

commodity because their informative content is often questioned in the literature (see, e.g., Psaradellis and 

Sermpinis, 2016).  

In summary, we work with four independent variables, namely the DRs of the Nikkei 225, Hang Seng, ASX 

200 and SENSEX. Standard t, JB, ADF, PP, KPSS tests show that each of these variables has zero mean and 

is normally distributed and mean-stationary (at the 95% confidence level). On the overall, if we count both 

lagged and coincident variables, we perform an initial specification step by considering, besides the intercept, 

ten regressors (those reported in Table 2) for both the neural network and the logistic models and fifteen 

regressors (those reported in Table 3) for the HAR_X model. 

 

 

4. Results  

 

4.1  Model specification and estimation 

 

Let us consider the logistic regression (5) with the above 10 regressors. This model, which we call L10, is 

estimated by maximum likelihood on the sub-sample of data containing the first T2  = 2086 observations. As 

we may note (see Table 2), not all the variables turn out to be significant. Thus, after a backward stepwise 

selection process, only the current BSESN is retained (together with the intercept), since it is the only 

significant variable. We call this parsimonious model L1. It is worth noticing that BSESN contains the most 

recent information, since India is the market that closes last among the four we considered. L10 shows a better 

goodness-of-fit than L1 but it has a worse BIC, and thus the less parametrized model turns out to be our choice.  

In order to account for a more general form of non-linearity, we also estimate a feed-forward single hidden 

layer neural network. Analogously to what done for the logistic specification, we consider two sets of inputs, 

namely all the 10 variables appearing in Table 2 and the current BSESN only. Models are labelled as N10J and 

N1J, respectively, where J represents the number of neurons in the hidden layer and is chosen according to the 
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procedure outlined below. For both the model with one and with ten regressors we will find the best value of 

J  based on the cross entropy (4). 

 

Table 2. Parameters’ estimations (benchmark models on VXF) 

 L10 L1 

Intercept -0.2570** -0.250*** 
𝑉𝑋𝐹 𝑂𝑇𝐶𝑅𝑡−1 -0.0110  
𝑉𝐹𝑋 𝑂𝑇𝐶𝑅𝑡−2 -0.0060  
𝐴𝑆𝑋200 𝐷𝑅𝑡 -0.0882  

𝐴𝑆𝑋200 𝐷𝑅𝑡−1 -0.0773  
𝐵𝑆𝐸𝑆𝑁 𝐷𝑅𝑡 -0.1053** -0.0942** 

𝐵𝑆𝐸𝑆𝑁 𝐷𝑅𝑡−1 0.0462  
𝐻𝑆𝐼 𝐷𝑅𝑡 0.0385  

𝐻𝑆𝐼 𝐷𝑅𝑡−1 0.0297  
𝑁225 𝐷𝑅𝑡 0.0306  

𝑁225 𝐷𝑅𝑡−1 -0.0064  

BIC 2.9008×103 2.8635×103 

Pseudo 𝑅2 0.0112 0.0068 

**p < 0.01 

 

The neural network is trained with the scaled conjugate gradient algorithm on the training set containing the 

first T1 = 1718 observations, and we early stop the training algorithm based on the network performance 

achieved on the validation set containing T2 - T1 = 368 observations. The maximum number of iterations of the 

conjugate gradient method is capped at 1000.  

For both the N1J and the N10J architectures, the number J of neurons in the hidden layer is chosen as follows: 

first of all, we generate 10000 randomly selected sets of weights, which we use as initial weights to train the 

neural network. Then, we consider the following expected performance indices: 

 

                                               𝐸𝑃 (𝑁 ∙𝐽) =
1

10000
∑ 𝑀𝐷𝐴𝑖(𝑁 ∙𝐽) 10000

𝑖=1 ,                                                (18) 

 

where MDAi  is the mean directional accuracy (computed according to (10), with OTCRt for t = 1, 2, …, T2) 

that we obtain when we train the neural network starting from the i-th set of weights.  

We let J vary from 2 to 20 and we find the value that maximizes the EP in (18). For both the N1J and the N10J 

specifications, the maximum 𝐸𝑃(𝑁 ∙𝐽) value is obtained with J =16 neurons, which we thus identify as the 

best complexity for the two models. The expected performance of the network with only 𝐵𝑆𝐸𝑆𝑁𝑡 as input, 16 

hidden nodes and 2 output neurons is 𝐸𝑃(𝑁116) = 59.7%, whereas the expected performance of the network 

with all the ten regressors is 𝐸𝑃(𝑁1016) =58.4%. Moreover, once 16 neurons in the hidden layer are chosen, 

we also compute the maximum of the expected performance over the set of 10000 sets of initial weights:  

 

                                                           𝐸𝑃𝑚𝑎𝑥  (𝑁 ∙16) = max
𝑖=1,2,…,10000

𝑀𝐷𝐴𝑖(𝑁 ∙16 ),                                         (19) 

 

Both the N116  and the N1016 networks reach the same maximum MDA, equal to 61.4%, while the maximum 

MDA achieved by the logistic specifications L1 and L10 is lower, namely 59.2% and 60.2%, respectively. 
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Moreover, the maximum MDA achieved by HAR, 𝐻𝐴𝑅_𝑋6 and 𝐻𝐴𝑅_𝑋15  is 49.4%, 53.0% and 52.8%, 

respectively. 

The gap of accuracy between the neural networks and the logistic models is essentially due to the greater ability 

of the networks to grasp upwards movements (those less frequent in the sample but more profitable, as their 

average OTCR is 2.64% vs. an average OTCR of -2.50% for negative returns). In particular, if we focus on 

upward returns, the maximum values of MDA reached by N1 and N10 are 37.8% and 41.0%, respectively, 

while the logistic specification performs only 38 true positives on 910 positive observations. By contrast, the 

neural network is superior to the HAR class in forecasting the downward movements of the VXF. 

All over considered, the neural networks yield levels of prediction accuracy that are considerably higher than 

those achieved by other models, which indicates the existence of a marked non-linearity in the relationship 

between futures OCTRs and the exogenous variables.  

If we agree on the fact that predictive performances constitute an effective measure of informative contents, 

then markets are capable to pack the information about past events into current information. That is, the 

dependence on the most recent indicator (the BSESN index) subsumes the information contained in all the 

other (less recent) variables. This conclusion holds for both the logistic specification and the neural network 

model, so it is robust across different types of non-linearity in the relationship linking variables. Furthermore, 

our finding that all the relevant information about the current events is contained in the most recent past is 

consistent with several empirical studies (see, e.g., Ahoniemi, 2006 and Degiannakis, 2008) showing the low 

predictive accuracy of time series models with long memory. For all of these reasons, only parsimonious 

specifications (with one input variable) of the neural network and logistic models are considered hereafter. 

The estimation of the HAR and HAR_X models, which is shown in Table 3, provides a slightly different 

picture. The introduction of the exogenous variables still brings a clear improvement of the BIC but now, 

unlike what we experienced for the logistic model, the coincident BSESN is not the only informative variable, 
as also the lagged endogenous and indices from other markets than India are statistically significant.  

 

Table 3. Parameters’ estimations (benchmark models on VIX) 

 HAR_X15 HAR_X6 HAR 
Intercept 0.4524** 0.3377** 0.282** 

𝑉𝐼𝑋 𝐷𝑅𝑡−1 0.5898** 0.7122** 0.7913** 

𝑀𝐴(𝑉𝐼𝑋 𝐷𝑅)𝑡−1
5  0.3340** 0.2368** 0.1820** 

𝑀𝐴(𝑉𝐼𝑋 𝐷𝑅)𝑡−1
22  0.0564** 0.0365* 0.0140 

𝐵𝑆𝐸𝑆𝑁 𝐷𝑅  𝑡 -0.3055** -0.4020**  

𝑀𝐴(𝐵𝑆𝐸𝑆𝑁 𝐷𝑅)𝑡
5 0.0137 -0.1151  

𝑀𝐴(𝐵𝑆𝐸𝑆𝑁 𝐷𝑅)𝑡
22 0.0993 -0.1586  

𝐴𝑆𝑋200 𝐷𝑅𝑡 -0.2168**   

𝑀𝐴(𝐴𝑆𝑋200 𝐷𝑅)𝑡
5 -0.3076* 

 
 

𝑀𝐴(𝐴𝑆𝑋200 𝐷𝑅)𝑡
22 0.4116   

𝐻𝑆𝐼 𝐷𝑅𝑡 -0.0602   

𝑀𝐴(𝐻𝑆𝐼 𝐷𝑅)𝑡
5 0.0112   

𝑀𝐴(𝐻𝑆𝐼 𝐷𝑅)𝑡
22 -0.4622*   

𝑁225 𝐷𝑅𝑡 -0.0387   

𝑀𝐴(𝑁225 𝐷𝑅)𝑡
5 -0.2180*   

𝑀𝐴(𝑁225 𝐷𝑅)𝑡
22 -0.2569   

BIC 8.5321×103 8.5771×103 8.7977×103 

𝑅2 0.9683 0.9665 0.9624 

    

**p < 0.01, *p < 0.05 
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Moreover, the BIC of HAR_X15 is slightly better than the BIC of HAR_X6. Nevertheless, in order to perform a 

broader comparisons with the L1 and the 𝑁116 specifications, we consider not only the best performing 
HAR_X15, but also HAR_X6 with BSESN as the only exogenous regressor, and the HAR as a benchmark. 

 

 

4.2  Assessing forecasting performance 

We then shift the focus on out of sample performance by considering the set of data from day T2 + 1 to day T3. 

We find that the out-of sample exact classification rates of models 𝐿1, 𝑁116, HAR_X15, HAR_X6 and HAR are 
60.2%, 65.8%, 52.4%, 52.4% and 42.1% respectively.  

At the first glance, the performances of the models that include exogenous variables are in line with the exact 

classification rates obtained in previous works (i.e. 61.9% in Ahoniemi, 2006; 55.4% in Konstantinidi and 

Skiadopoulos, 2011; 70% Degiannakis et al., 2018). However, it must be stressed out that a straight comparison 

is not possible without considering the frequency of observed negative OTCRs in the test sample.  

This point becomes particularly important when working with VXFs, since negative returns are more frequent 

than positive returns As a hypothetical example, let us think to the case where the frequency of negative returns 

in the test sample is 70%. Then, a model that reaches an exact classification rate of 70% does not perform 

better than the Naïve model always forecasting negative outcomes. 

Accordingly, we should measure the performance of the models in term of relative performance with respect 

to the observed frequency of negative OTCRs in the test set, which we find to be equal to 59.8%. Noting that 

the observed frequency of negative OTCRs coincides with the MDA of the Naïve model, we obtain a measure 

of relative performance (RP) by subtracting the MDA of the Naïve model from the MDA of each of the 

competing specifications. In particular, the one input neural network achieves a relative performance 𝑅𝑃𝑁1 = 

6.0% (i.e. 65.8% − 59.8%), the logistic specification reaches a relative performance 𝑅𝑃𝐿1 = 0.4% (i.e. 60.2% 
− 59.8%), while HAR_X15, HAR_X6 and HAR perform worse than the Naïve specification. 

One could argue that forecasting performances (relative to the Naïve model) depend how data are allocated 

among estimation, validation and test sets. In order to determine if our results are robust to sample partition, 

we make a Monte-Carlo cross validation robustness check for the models with positive relative performance. 

We consider 1000 random permutations of the sequence of days 1, 2, …, T3  at which data were observed. For 

each permuted sequence we continue to form the training set with the data at places 1, 2, …, T1, the validation 

set with the data at places T1 + 1, T1 + 2, …, T2, and the test set with the data at places T2 + 1, T2 + 2, …, T3. 

Then, we re-estimate both the L1 and the N116 models by using the data at places 1, 2, …, T2, (again, to select 

the neural network, we consider 10000 different random initial weights and we choose the neural network that 

achieves the best performance on the validation set). Finally, for each of the 1000 Monte Carlo sequences,  we 

compute the MDA performances of the models by using the data at places T2 + 1, T2 + 2, …, T3 as follows: 

 

𝑅𝑃𝑁1 = 𝑀𝐷𝐴𝑖(𝑁116) −𝑀𝐷𝐴(𝑁𝑎ï𝑣𝑒),                                             (20) 

            𝑅𝑃𝐿1 = 𝑀𝐷𝐴(𝐿1) − 𝑀𝐷𝐴(𝑁𝑎ï𝑣𝑒).                                               (21) 

 

The distribution of the relative performance (over the 1000 random permutations) is reported in Figure 2. As 

we may observe, 𝑅𝑃𝑁1 is rarely negative, reaches a maximum value of 8.7%, and its median is equal to 3.4%. 

Moreover, the relative performance (6.0%) which we experienced using the true (baseline) sequence of OTCR 

values corresponds to the 92.7th percentile of the distribution of 𝑅𝑃𝑁1.  
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The above evidence suggests that 𝑁116 performs considerably better than the Naïve model (whose relative 

performance is null), and that such a conclusion is robust to sample allocation. 

 

Figure 2. Out of sample relative performance, 1000 random permutations of all the T3 data. 𝑹𝑷𝑵𝟏 (a); 

𝑹𝑷𝑳𝟏(b). 

 

Finally, let us perform a model comparison by using both the PT and SPA tests described in Section 3.2. For 

the sake of brevity, we only consider the L1, 𝑁116 and Naïve specifications, since, as already observed, the 
HAR_X15, HAR_X6 and HAR specifications perform worse than the Naïve specification. 

The Hansen test is done considering, in turn, each of the L1, 𝑁116 and Naïve models as the benchmark (so as 

to check if each model achieves a better prediction accuracy than the other five models). Moreover, to compute 

the test statistic 𝑇𝑆𝑃𝐴 (see (15)) we take the opposite of the MDA as the loss function, and the p-values 

associated to 𝑇𝑆𝑃𝐴 are obtained based on 1000 bootstrap resamples. A small p-value indicates that the 

predictive accuracy of the model chosen as benchmark is inferior to the predictive accuracy of at least one of 

the alternative specifications.  

Results are reported in Table 4. The PT test higlights that the market timing ability is different across models. 

In fact, it is possible to reject the null hypothesis of independence between true and forecasted direction of 

change only for model 𝑁116 (p < 1%,), whereas for model L1 the probability of making a type-I error is close 

to 10%.   

 

Table 4. Model performance and superior predictive ability  

 PT 
(p-value) 

SPA 
(p-value) 

Naïve // 0.007 

L1  0.080 0.005 

N116   1.35E-09  1 

 

Moreover, in accordance with our previous findings, the Hansen test confirms that 𝑁116 is the only model 
providing systematic and sizeable improvements in forecast accuracy with respect to the other models. Then, 

if we agree that the predictive performance is an effective specification test (i.e. a measure of the informative 

value of the input variables and of the validity of the functional form of the models), the following conclusions 

hold. First, the most recent information (the current BSESN) encompasses the contribution of all the less recent 

variables, which is, actually, a form of weak efficiency that involves markets of different countries; second, 

the functional relation that links the VXF OTCR to the current BSESN is complex and non-linear. 
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4.3 Trading simulation 

Nevertheless, accuracy does not necessarily imply profitability. Thus, we also checked economic profits by 

simulating a simple trading strategy that amounts to either doing nothing or opening a long/short position when 

the market opens and liquidating it when the market closes.   

In particular, when predicting with the N116 and the L1  models, trading is done as follows: at day t, before the 

opening of the CBOE, we forecast the probability that the VXF OTCR will be positive for that day, which, for 

the sake of brevity, we denote with 𝑝𝑡
+ . Moreover, let THR denote a given threshold (filter). If  𝑝𝑡

+ ≥ 0.5 +
𝑇𝐻𝑅, then at day t we take a long position on the VXF (𝑂𝑡 = 1) when the market opens and we liquidate it 

when the market closes. If  𝑝𝑡
+ ≤ 0.5 − 𝑇𝐻𝑅, then at day t we take a short position on the VXF (𝑂𝑡 = −1) 

when the market opens and we liquidate it when the market closes. Finally, if 0.5 − 𝑇𝐻𝑅 < 𝑝𝑡
+ < 0.5 + 𝑇𝐻𝑅, 

then at day t we stay flat (𝑂𝑡 = 0). The trading strategy applied to the HAR_X15, HAR_X6  and HAR outputs is 

analogous to that described above, with the only exception that we take into account the magnitude of the 

forecasted DR on VIX. Specifically, 𝑇𝐻𝑅 is now the smallest magnitude of the forecasted DR on VIX that is 
required in order to open a long/short position on VXF. That is, if the magnitude of forecasted VIX DR does 

not exceed 𝑇𝐻𝑅, then at day t we stay flat (𝑂𝑡 = 0).  

Note that the threshold allows us to optimize the trading strategy and, consequently, it is determined based on 

the first T2 observations, once the final models have been selected/estimated. In particular, following a common 

practice, we attempt to avoid “false signals” by simply filtering out the weakest signals. Precisely, as done by 

Ahoniemi’s (2006), we consider six different threshold levels for each model (see Table 5) with the goal to 

find which filter yields the highest level of profitability on the first T2 observations. As far as profitability is 

concerned, we measure it by means of the cumulative directional value (16) (where we replace T2  and T3  with 

1  and T2 , respectively). Bid-ask spread are neglected and, following a common approach (see, e.g., Psaradellis 

and Sermpinis, 2016), commissions are set to 50 cents each contract.  

The results obtained are reported in Table 5. As we may observe, the neural network performs significantly 

better than the logistic model with every filter and it is also more profitable than the HAR, HAR_X15, HAR_X6 

models provided that THR≤ 2.5%. The augmented HAR models are more profitable than the simple HAR 
model with any filter, which further confirms the importance of leveraging the time zone difference when 

collecting exogenous information. The neural network is the only model that achieve the best trading 

performance with THR=0, i.e. that can correctly discriminate even the weakest signals from the BSESN.  

 

Table 5. Profitability for different probability thresholds in the time period from day 1 to day T2  (in 

parenthesis the fraction of trading days in the considered time period) 
 

 

Furthermore, the HAR_X models achieve performances that are quite similar to those of the logistic 

specification. They perform a large amount of true positives, which is crucial for profitability, as the highest 

 N116 L1  HAR HAR_X6 HAR_X15 
THR=0 663.5%  (100%) 308.0%  (100%) THR=0 -33.9%  (100%) 433.2%  (100%) 420.6%  (100%) 

THR=0.5% 622.0% (95.4%) 312.6% (96.0%) THR=0.25% -78.3% (87.5%) 372.8% (93.7.%) 429.8% (94.2%) 

THR=1% 641.1% (93.5%) 323.3% (94.4%) THR=0.5% -7.5% (75.6%) 374.9% (87.0%) 

 

448.5% (87.7%) 

 

THR=2.5% 639.9% (87.5%) 384.8% (89.2%) THR=1% 65.0% (50.7%) 422.8% (72.4%) 

 

462.9% (75.2%) 

 

THR=5% 537.6% (77.6%) 458.6% (70.5%) THR=1.5% 99.2% (32.2%) 433.6% (59.7%) 

 

412.2% (65.1%) 

 

THR=10% 362.4% (46.6%) 82.7% (10.0%) THR=2% -25.9% (18.4%) 

 

349.9% (48.9%) 

 

384.1% (54.0%) 
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VXF OTCRs are usually experienced in correspondence of upward movements. On the contrary, the logistic 

is the specification that performs best in predicting true negatives, with an exact classification rate greater than 

92% for any 𝑇𝐻𝑅 ≤ 5%.  

Once the filter (THR) that yields the optimal trading strategy is selected (for each specifications) we measure 

the out of sample profitability on the data observed at days T2 + 1, T2 + 2, …, T3. The goal is to check whether 

there are significant differences also in the economic performances of the best strategies that can be constructed 

based on the predictions of the neural network, logistic, Naïve, HAR and HAR_X models. This is 

accomplished by means of the SPA test, in which the opposite of DV (see relation 17) is used as the loss 

function, and the p-values of the statistic 𝑇𝑆𝑃𝐴 are computed based on 1000 bootstrap resamples.  

 

The results obtained are reported in Table 6 (the maximum drawdown in the 5-th column is, actually, the CDV 

(16) computed by considering only losses reported in consecutive trading days). As we may observe, all the 

models except for HAR generate relevant profits. However, the Naïve model exhibits an extremely large 

maximum drawdown, which makes it impossible to match the performance reported in Table 5 by an investor 

who does not have substantial additional capital to compensate losses. It is interesting to observe that the neural 

network outperforms all the competitors in terms of profitability, and it also yields the smallest number of false 

signals. 

If we consider risk (measured by the standard deviation of returns and by the maximum drawdown), the 

strategy built on the forecasts of the logistic regression yields the best performance, but the result depends on 

the applied filter: in particular, the smallest standard deviation and the smallest maximum drawdown are 

achieved if the percentage of effective trading days is 80% (see the second column of Table 6). Nevertheless, 

the strategy based on neural network forecasts has the highest Sharpe ratio, i.e. it yields the best trade-off 

between expected profit and risk. Finally, as far as the HAR class is concerned, we may observe that the 

performances of HAR_X6 and HAR_X15 are very similar, and that they are much more profitable than HAR.  

The SPA test confirms, on an inferential base, that the 𝑁116 neural network provides systematic improvements 
in economic performance over all the other models. We conclude that, by taking into account information with 

a minimum time zone difference and by using a very flexible non-linear specification, we can achieve 

significantly higher profits with respect to the logistic, the Naïve, the HAR and the HAR_X models.  

 

Table 6. Trading strategies’ performance and Superior Predictive Ability in the time period from day 

T2 + 1 to day T3 (in parenthesis the fraction of trading days in the considered time period) 

  

models profitability 
(CDV) 

# false signals  
(1 - MDA) 

Returns’ 
standard dev. 

Maximum 
drawdown 

SPA test  
(p-value) 

Naïve 226.9% 
(100%) 

40.1% 4.3% 53.4% 0.012 

L1 466.8% 
(80%) 

34.2% 3.8% 15.1% 0.028 

N116 647.8% 
(100%) 

34.2% 4.2% 24.7% 1 

HAR 17.4% 
(49.4%) 

59.0% 4.6% 49.0% 0 

HAR_X6 326.3% 
(62.7%) 

47.6% 4.3% 16.4% 0.003 

HAR_X15 317.5% 
(78.3%) 

47.6% 4.3% 19.3% 0.005 
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4.4 Trading simulation based on daily returns (DRs) 

In order to provide additional information more comparable with the existing literature, we assess the 

profitability of the previous models when the dependent variable is chosen to be the VXF DR, rather than the 

VXF OTCR.  

Following the same procedure as in Section 4.1, first of all we select the more informative exogenous variables 

in the logistic model as well as the best neural network architecture. Results indicate that two coincident 

variables, namely the BSESN DR and the ASX200 DR, and two lagged variables, namely the VXF DR and 

the BSESN DR, are statistically significant in explaining the DRs dynamics. We denote the logistic model 

with those regressors as L4. We use the same information set to train the network, finding that the best 

architecture is now achieved by employing 10 nodes in the single hidden layer. We indicate this optimal 

architecture as N410. For the sake of comparison, we also calculate the performance of the HAR, HAR_X6, 

HAR_X15 models considering the same values of THR as in Table 5.  

The results obtained (with the optimally chosen filter) are reported in Table 7. Again, the neural network turns 

out to be the best performing model, yielding profits that are at least 1.7 times higher than those provided by 

any of the rival specifications. Moreover, the models that directly predict the VXF are more profitable if they 

are used with OTCRs rather the DRs (compare with Table 6). The gap is even more evident if we consider the 

sharp ratio. On the contrary, models that forecast the VIX direction (the HAR class), yield higher profits when 

the trading strategies are based on DRs rather than OTCRs. However, if we focus on risk, the standard deviation 

of profits is on the overall larger than that experienced in the case of OTCRs, which reflects the higher level 

of uncertainty that affects DRs.  

Finally, the SPA test confirms, on an inferential base, that the neural network provides systematic improvement 

over all the other models considered.  

 

Table 7. Trading strategies’ performance and Superior Predictive Ability in the time period from day 

T2 + 1 to day T3 (in parenthesis the fraction of trading days in the considered time period).  

  

models 
on DRs 

profitability 
(CDV) 

# false signals  
(1 - MDA) 

Returns’ 
standard dev. 

Maximum 
drawdown 

SPA test  
(p-value) 

Naïve 47.4% 
(100%) 

41.2 % 4.7% 52.2% 0 

L4 324.9% 
(85.9%) 

40.4 % 4.7% 21.2% 0 

N410 632.9% 
(100%) 

36.7 % 4.5% 21.1% 1 

HAR 78.6% 
(49.4%) 

60.1% 4.9% 47.7% 0 

HAR_X6 336.6% 
(62.7%)  

49.0% 4.7% 18.4% 0.016 

HAR_X15 349.5% 
(78.3%)  

49.4% 4.6% 27.2% 0.020 

 

 

Moreover, BSSEN, despite remaining the only variable that is significant at both the coincident and lagged 

levels, is no longer capable to explain DRs by its own (as the coincident ASX200 DR and the lagged VXF DR 
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are found statistically significant). This is due to the fact that the dynamics of DRs is more complex than that 

of OTCRs, since it is also influenced by nonsynchronous trading effects and bid-ask bounces (see Anderson 

et al., 2012).  

It is also interesting to note that, if the trading strategy is based on VXF OTCRs rather then on VXF DRs, the 

performance of the Naïve model deteriorates significantly. In fact, the high profitability of the Naïve 

specification that we obtained by considering OTCRs (226.9%, see Table 6) is essentially due to the fact that 

the volatility of financial markets (and hence also the VIX index) is normally greater in the morning and 

smaller at night (see, e.g., Daigler, 1998 and Garcia et al., 2018), so that selling the VXF in the morning and 

buying it at night turns out to be a profitable trading strategy. Instead, when taking into account VXF DRs, 

such an intraday effect is not exploited any longer, because trading is done only when the market closes and 

the regularity of the volatility trend is somehow broken by the random information flow that arrives overnight 

(see Anderson et al., 2012).  

Finally, even if the neural network achieves almost the same performances when considering DRs in place of 

OTCRs, the use of DRs implies that traders do not have a minimum time lag to forecast the VXF, and set up 

their investment strategies accordingly. In fact they should place the order before the market closes, when the 

closure price of the VXF (or of the VIX if they forecast with the HAR class of models), is still unknown. 

Consequently, when taking into account DRs, profit assessment might not correctly mirror the performance of 

the trading strategy that is followed in practice. This does not occur if OTCRs are considered, because traders 

have all the time (overnight) to forecast the VXF (or the VIX) and to place the order. 

 

5. Conclusions 

We have investigated several relevant aspects related to the predictability of the VIX future (VXF). The use 

of open to close returns (OTCRs) “… offer the advantage of taking into account only the “genuine” 

autocorrelation that arises from partial price adjustment and time-varying risk premia …” (Anderson et al., 

2012). Moreover, the focus on VXF is close to the perspective of the investors who recognize that implied 

volatility is tradable only as a futures contract.  

The present paper contributes to the existing literature in several respects. First, we show that the dynamics of 

the VXF does not closely reflect that of the VIX index. This is in line with previous works, but our analysis 

does also highlight that the “VIX-VXF Puzzle” is more serious when measured on OTCRs than on DRs. In 

particular, the correlation between the intraday returns of VIX and VXF is only 0.767 if calculated it on the 

whole sample (2454 observations), and it is 0.771 if we take the average of the correlations computed on 

monthly sub-samples. On the top of that, the correlation distribution is quite erratic, so that an investor who 

wants to trade the VXF based on some, even very accurate, prediction of VIX intraday returns might not be 

able to earn significant profits.  

Second, we establish that the neural network and logistic models whose only input variable is the most recent 

exogenous one are superior to the unconstrained models with ten (lagged and coincident) regressors. Precisely, 

the specification that includes only the BSESN index yields a lower value of BIC and a higher expected 

performance. That is, prices on the CBOE reflect the last publicly available subsumed by the Indian index, 

which is, actually, a form of weak efficiency that involves markets of different countries. 

As well, one-day lagged endogenous variables are less informative than the price dynamics in a market closing 

right before the US market, even if we fit data with a very flexible approximator such as a neural network. By 

contrast, we get evidence that lagged variables increase the network’s complexity and cause overfitting 

problems. Thus, we can conclude that, in order to reduce overfitting, limiting the number of input nodes in 

these “black-box” models is more effective than pruning the hidden layer units. Overall, our findings reinforce 

the scepticism, widespread in the literature, about the usefulness of a pure long memory time series approach 

to VXF (or VIX) forecasting. 
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Third, we compare the proposed neural network model with a logistic regression, a HAR and a HAR_X 

models, and a Naïve model that always forecasts negative outcomes. Results indicate that the mean directional 

accuracy achieved by the neural network specification is significantly higher than that achieved by all the other 

models. Moreover, as revealed by Monte-Carlo cross validation, the better performance of the neural network 

is robust to sample selection bias. Then, first, non-linearity matters. Furthermore, if non-linearity is combined 

with information available on a market closing right before the U.S. market, a considerable degree of 

predictability of VXF OTCR signs can be obtained. Specifically, we correctly forecast directional changes in 

the 65.8% of the trading days, which, in our opinion, represents a fairly good predictive performance 

confirming the existence of strong non-linearities and supporting the use of a neural network. 

Fourth, in line with the most recent literature, we assess the profitability of alternative trading strategies that 

rely on predictions of VXF directional changes. We find that the use of filters to limit false signals (leaving 

out the weakest signals) enhances profitability for all the employed models except for the neural network which 

is capable to exploit all the information contained in the coincident BSESN index.  Overall, the neural network 

performance was 647.8% in almost three years (553 trading days), which is significantly higher than the 

performance of both the Naïve, the logistic, the HAR and the HAR_X models.  

Finally, in the present paper we do not use data from European markets, since we assume that traders need a 

minimum time lag to estimate models and set up investment strategies. Moreover, we only focus on the future 

with the nearest expiration date, i.e. we do not take into account the term structure of the VXF. However, it 

could be interesting to consider also some European market index and/or futures with longer maturities. This 

could be the subject of a future work. 
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