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River floods are one of the most devastating extreme hydrological events, with oftentimes

remarkably negative effects for human society and the environment. Economic losses

and social consequences, in terms of affected people and human fatalities, are increasing

worldwide due to climate change and urbanization processes. Long-term dynamics

of flood risk are intimately driven by the temporal evolution of hazard, exposure and

vulnerability. Although needed for effective flood risk management, a comprehensive

long-term analysis of all these components is not straightforward, mostly due to a

lack of hydrological data, exposure information, and large computational resources

required for 2-D flood model simulations at adequately high resolution over large spatial

scales. This study tries to overcome these limitations and attempts to investigate the

dynamics of different flood risk components in the Murray-Darling basin (MDB, Australia)

in the period 1973–2014. To this aim, the LISFLOOD-FP model, i.e., a large-scale 2-D

hydrodynamic model, and satellite-derived built-up data are employed. Results show

that the maximum extension of flooded areas decreases in time, without revealing any

significant geographical transfer of inundated areas across the study period. Despite

this, a remarkable increment of built-up areas characterizes MDB, with larger annual

increments across not-flooded locations compared to flooded areas. When combining

flood hazard and exposure, we find that the overall extension of areas exposed to high

flood risk more than doubled within the study period, thus highlighting the need for

improving flood risk awareness and flood mitigation strategies in the near future.

Keywords: flood hazard, flood exposure, flood memory, satellite and model data, Murray-Darling basin (MDB),

long-term

INTRODUCTION

Economic losses and social consequences associated with riverine inundations appear to increase
worldwide and the intensification of extreme hydrological events due to climate change is often
pointed out as the main cause (de Moel et al., 2011; Barnes, 2017; IPCC, 2021). Yet urban growth,
flood mitigation infrastructures and increasing human presence and activity in floodplains rule, in
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a similar way, flood risk, as they contribute to shape the origin
and location of flood events as well as the elements at risk
(Gupta et al., 2015; Duan et al., 2016; Merz et al., 2021; Tellman
et al., 2021). River floods are driven by prolonged rainfall periods
that induce high water levels overtopping river embankments,
thus inundating nearby locations. Flood risk analyzes cascading
impacts on society and the environment. More specifically, actual
flood risk results from the superposition of three components
(IPCC, 2012), such as hazard (i.e., frequency of occurrence of
flood events), exposure (i.e., elements at risk, including direct
and indirect damages, people, capital investment, and land or
property value), and vulnerability (i.e., the capacity to deal
with flood events), which separately can control and impact
different dynamics of flood risk evolution (Merz et al., 2010,
2021; Ceola et al., 2014; Domeneghetti et al., 2015). Future
projections of increasing population and economic activities
on river floodplains as derived from socioeconomic growth
scenarios, as well as increasing heavy rainfall estimates associated
to climate variability and change, will likely result in increasing
flood risk (Hirabayashi et al., 2013; Winsemius et al., 2016; Kam
et al., 2021). As a consequence, it is crucial to unravel long-term
dynamics of flood risk and its components.

Several methods have been developed both at local and
global scales to allow for a detailed assessment of flood hazard,
either based on traditional hydrological and hydraulic models
(Bates et al., 2010; Yamazaki et al., 2011; Pappenberger et al.,
2012; Winsemius et al., 2013; Rudari et al., 2015; Sampson
et al., 2015; Dottori et al., 2016; Schumann et al., 2016) or
innovative DEM-based (digital elevation model) techniques (Lee
et al., 2017; Samela et al., 2017; Tavares da Costa et al., 2020).
Typically, flood models simulate inundated areas based on the
probability of exceedance of a particular discharge value (i.e.,
by considering a particular return period) or based on long-
term time series of discharge, without accounting for detailed
topographic features along floodplains. To overcome this issue,
which may result in an approximate identification of the actual
flood spatial extension, and thus exposed people and assets, Bates
et al. (2010) and Schumann et al. (2016) proposed to assess
flood hazard by accounting for detailed floodplain topography.
Similarly, Tellman et al. (2021), contributed to estimate the actual
flood extent and population exposure for several flood events
occurred between 2000 and 2018 by employing high-resolution
satellite imagery. Both approaches provide new standards and
are expected to improve the accuracy of local and global flood
models, our knowledge about how climate, human, land changes
interact with flood dynamics, as well as the development of
effective flood management strategies.

In order to assess flood exposure, several population and
built-up datasets recently released are typically employed (Ceola
et al., 2014; Leyk et al., 2019; Bernhofen et al., 2021). These
include e.g., gridded population of the world (Center for
International Earth Science Information Network (CIESIN),
2016), global human settlement layer (Corbane et al., 2018),
global urban footprint (Palacios-Lopez et al., 2019), Facebook’s
High Resolution Settlement Layer (Facebook Connectivity Lab,
and Center for International Earth Science Information Network
(CIESIN), 2016), WorldPop (Lloyd et al., 2019), but also

unconventional datasets such as nighttime lights (NOAA -
Earth Observation Group, 2016). These datasets present different
spatial and temporal resolutions and coverage, which are not
always suited for an effective assessment of long-term flood
exposure dynamics (Leyk et al., 2019; Bernhofen et al., 2021).

The assessment of flood vulnerability, which depends
on economic, social, demographic, cultural, institutional and
governance factors, is typically the most challenging task. People
can alter the hydrologic regime, including extremes such as
floods and droughts (Viglione et al., 2016), and in turn these
extremes can also shape human society (Ridolfi et al., 2020). It
is well-acknowledged that previous flooding experience, income
and education control risk perception and influence flood
memory and thus flood vulnerability (Jonkman and Kelman,
2005; EU Floods Directive, 2007; Kreibich et al., 2011; Garde-
Hansen et al., 2017; Aerts et al., 2018), though it is difficult
to quantify and model it. Some attempts are available from
the scientific literature, e.g., FLOPROS, a global database of
flood protection standards used as a proxy of flood vulnerability
(Scussolini et al., 2016), or comparative estimations of observed
vs. modeled data (Tanoue et al., 2016), yet further efforts
are needed.

Therefore, unraveling long-term dynamics of both flood risk
and its components is critical and crucial to allow for an effective
flood management, by planning investments in adaptation
strategies and improving people awareness of flood risk (Duan
et al., 2016; Merz et al., 2021). However, a comprehensive long-
term analysis of flood risk components is not straightforward,
mostly due to a lack of hydrological data, exposure information,
and large computational resources required for 2-D flood model
simulations at adequately high resolution over large spatial scales.
This study tries to overcome these limitations and attempts
to investigate the dynamics of different flood-risk components
in the Murray-Darling basin (MDB, Australia) in the period
1973–2014. In particular, we examined long-term dynamics of
(i) flood hazard, (ii) flood exposure, (iii) flood memory and
(iv) flood risk (see flowchart in Figure 1). More specifically, the
spatio-temporal evolution of flood hazard is assessed by means
of a large-scale 2-D hydrodynamic model, based on remotely-
sensed STRM (Shuttle Radar Topography Mission) data, while
for exposure, the Global Human Settlement Layer (GHSL),
particularly the built-up area data, provided and distributed by
the JRC, is used. As a preventive measure, flood vulnerability is
not considered here.

MATERIALS AND METHODS

Study Area
The study area considered here is the MDB located in the
southeastern part of Australia (Figure 2). The MDB is
the largest river basin in Australia, with a drainage area
of ∼106 km2, covering 14% of Australia’s land area. The
MDB is composed by 22 sub-basins (Murray-Darling
Basin Authority, 2020). The MDB provides water to 2.2
million people, typically used for agriculture, drinking and
recreation and it is also home to internationally significant
wetlands and supports a huge range of endangered species
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FIGURE 1 | Analysis of long-term flood risk dynamics: research flowchart.

(Murray-Darling Basin Authority, 2020). Given its relevance,
several research initiatives and projects focused on MDB
water resource management, hydrological extremes and
environmental and societal impacts have been recently
developed (e.g., Gallant et al., 2012; Heimhuber et al., 2016;
Bishop-Taylor et al., 2018).

The two main rivers in the MDB, the Murray (2,530 km)
and the Darling (2,740 km), are two of Australia’s longest
rivers. Water in the northern part of MDB runs into the
Darling River while water in the southern part of MDB
runs into the Murray River. Most of the tributaries in
the MDB start in the Great Dividing Range, a series of
mountains along the east coast. Then, water flows on flat plains,
which cover the majority of the basin area. A pronounced
climate gradient characterizes the MDB: from the southeast
to the northwest, average annual rainfall decreases (from
1,500 to 300mm, approximately) and climate variability and
evapotranspiration increase (Murray-Darling Basin Authority,
2020). As a consequence, flooding regimes differ significantly
across the MDB, with severe flood outbreaks during summer
in the northern part of MDB and long flood events driven
by rainfall and snowmelt during winter and spring in the

southern part of MDB (Bunn et al., 2006; Penton and Overton,
2007). Several catastrophic flood events occurred across the
MDB in 1917, 1931, 1952, 1956, 1974, 1993 and 2020 (Murray-
Darling Basin Authority, 2020). By chance, our study period
includes one of the largest flood events ever occurred across
the MDB (i.e., flood event in January 1974, also known as
the “big wet”), which was the biggest event in the considered
study period.

2-D Hydrodynamic Model for Flood Hazard
Assessment
Long-term flood hazard dynamics over the period 1973–2013 has
been reconstructed referring to 2-D hydrodynamic simulations
performed across the overall MDB. In particular, in this study we
retrieve the inundationmaps obtained from the continental-scale
version of the 2-D hydrodynamic model settled by Schumann
et al. (2016) over Australia, specifically applied to the MDB by
Grimaldi et al. (2019). The 2-D numerical model (LISFLOOD-
FP; Bates et al., 2010) adopts a single explicit finite difference
scheme to solve the inertial momentum equation over a regular
grid (e.g., raster-based scheme). The model was built from freely
available Shuttle Radar TopographyMission (SRTM) data, which
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FIGURE 2 | Study area: Location of the Murray Darling Basin, main river network and elevation.

was corrected for vegetation canopy height using a global ICESat-
1 canopy data set (Simard et al., 2011). Despite the nominal
raster resolution, the subgrid channel formulation adopted in the
modeling framework (Neal et al., 2012) ensures the capability to
reproduce hydraulic dynamics of rivers and floodplains having
widths smaller than the adopted grid cell.

All rivers that drain a catchment area >10,000 km2 were
explicitly represented in ourmodel. Furthermore, significant flow
contributions from smaller tributaries were accounted for as
additional inflow points along those major rivers. The model also
includes lakes and reservoirs from the Global Lake and Wetland
Database (Lehner andDöll, 2004), as well as the evaporative water
loss over the MDB based on satellite-sensed daily evaporations
estimates (i.e., Global Land Evaporation Amsterdam Model;
Martens et al., 2017). Reservoirs and lakes were filled before
the simulation was run and were implicitly regulated by the
hydrodynamics of the model during simulation. In light of
the convincing calibration scores achieved in reproducing past
inundations by previous investigations, this study adopts the
same model parameters. The reader can refer to Schumann
et al. (2016) and Grimaldi et al. (2019) for additional details
on model settings, calibration events and modeling assumptions,
including also a thorough assessment of uncertainty as influenced
by model input, structure and parameters. Flood hazard maps
employed in this study are produced at 1 km resolution from
January 1973 until July 2013. Outputs from LISFLOOD-FP
model simulations are 487 monthly (30 days long) maps of
flooded area, flooded water depth, flooded water volume and
frequency of flooding. In our analysis, water depth and water
volume data are not considered since we are interested only
in the identification of flooded locations and their frequency
of flooding.

Satellite Data for Flood Exposure
Assessment
In order to assess the spatio-temporal evolution of human
exposure to floods, we employ the Global Human Settlement
Layer (GHSL), a project of the European Commission’s
Joint Research Centre, which freely provides spatially detailed
information on population and settlements (Corbane et al.,
2018). In this research, we employ the GHS-BUILT data (at
30m resolution) that contain a multitemporal information
layer on built-up presence as derived from Landsat image
collections (GLS1975, GLS1990, GLS2000, and ad-hoc Landsat
eight collection 2013/2014), whose values range from 0 (no
built-up surface) to 1 (whole built-up surface). In total, four
snapshot information on built-up density and distribution
are available within the considered study period. Only for
comparative purposes, we use the GHS-POP data (at 250m
resolution, Schiavina et al., 2019) that provides the distribution
of population, expressed as the number of people per cell
for years 1975, 1990, 2000 and 2015. GHS-POP estimates are
derived from a spatial disaggregation of CIESIN GPWv4.10 data
(Center for International Earth Science Information Network
(CIESIN), 2016) based on GHS-BUILT data. In order to perform
a coherent superimposition of inundation and built-up data,
we aggregate both GHS-BUILT and GHS-POP data at the
same resolution as the hydrodynamic model outputs (i.e., 1
km resolution).

Analysis of Long-Term Dynamics of Flood
Risk Variables
The temporal evolution of flood risk dynamics from 1973 to 2014
across the MDB is investigated across four sub-periods, whose
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subdivision depends on the intrinsic temporal availability of
built-up data (i.e., 1975, 1990, 2000 and 2014). Inundation maps,
as derived from LISFLOOD-FP simulations, are available from
January 1973 to July 2013. Since no modeled inundation data
is available afterwards (from August 2013 to December 2014),
we assume that no flood event occurred during this short time
window (i.e., flooded area and frequency of flooding are equal to
zero in each grid cell and month), thus slightly underestimating
flood hazard.

We assess long-term dynamics of (i) flood hazard, (ii) flood
exposure, (iii) flood memory, and (iv) flood risk, as detailed in
what follows and schematically shown in Figure 1.

Flood Hazard

Regarding flood hazard (H), we compute the frequency of
occurrence of inundation states for each grid cell within the
whole study period (1973–2014), by looking at grid cells that
were flooded at least one month, as derived from LISFLOOD-FP
model simulations (Schumann et al., 2016; Grimaldi et al., 2019).
The frequency of occurrence of inundation states is defined as
the ratio between the total number of flooded months and the
total length of the study period (i.e., 504 months). We categorize
these values into four classes, based on the 25th, 50th, 75th
and 100th percentiles, where values within the first (0 < H ≤

H25), second (H25 < H ≤ H50), third (H50 < H ≤H75) and
fourth (H75 < H ≤ H100) quartile belong to class H1, H2, H3,
and H4, respectively. We also quantify the maximum extension
of flooded areas (in km2) and analyze its temporal evolution
to identify increasing or decreasing trends. In particular, the
maximum extension of flooded area is computed by considering
distinct sub-periods (i.e., flooded areas in 1973–1975, 1976–
1990, 1991–2000, 2001–2014) and cumulative sub-periods (i.e.,
flooded areas in 1973–1975, 1973–1990, 1973–2000, 1973–2014).
While the first approach allows to detect singularities within
the study period (i.e., “flood rich” vs. “flood poor” sub-periods,
larger vs. smaller flooded areas), the second one allows to identify
possible geographical transfers of flood hazard in time. Finally,
for each flood hazard class and for each distinct sub-period
we quantify the maximum extension of flooded areas to be
employed for the assessment of flood risk dynamics (see section
Flood Risk).

Flood Exposure

Concerning flood exposure (E), we quantify the maximum
extension of built-up areas (i.e., an indicator of human presence),
as derived from GHS-BUILT data (Corbane et al., 2018), and
then analyze its temporal trend. Since GHS-BUILT provide built-
up data based on cumulative sub-periods (i.e., built-up values
until 1975, until 1990, until 2000, and until 2014), we assess
the spatial extension at the end of each sub-period. GHS-BUILT
values range from 0 to 1, i.e., from no built-up to whole built-
up surface, respectively. Based on these features, we compute
the maximum extension of built-up area, defined as the sum
of built-up values times the grid cell size (in km2). We then
disaggregate this result and distinguish between flooded and not
flooded built-up locations, by superimposing the geographical
location of inundated areas as derived from LISFLOOD-FP

model simulations based on cumulative sub-periods. For the
sake of completeness, we also evaluate the total number of
built-up grid cells, regardless of their built-up value (i.e., by
considering any grid cell with GHS-BUILT>0). Similarly to
the analysis performed for flood hazard, we define four classes
of exposure based on quartile values associated to the most
recent built-up data (up to 2014), which embeds all built-up
areas in any epoch, i.e., E1 where 0 < E ≤ E25, E2 where
E25 < E ≤ E50, E3 where E50 < E ≤ E75, and E4 where E75
< E ≤ E100. We then compute the maximum extension of
built-up areas for each exposure class and sub-period, which is
functional for the analysis of flood risk dynamics (see section
Flood Risk).

Flood Memory

We then analyze flood memory to estimate the temporal
evolution of the extension of built-up areas based on antecedent
flood hazard conditions (Aerts et al., 2018; Merz et al., 2021).
Flood memory is known to influence human resilience to
floods, as prolonged periods without significant flood events
may increase flood exposure and lead to low risk awareness,
which may potentially result in an inadequate response to
flood disasters (Garde-Hansen et al., 2017). Here, the goal
is to verify if previous flood events may have discouraged
the subsequent evolution of built-up areas, thus revealing a
flood memory behavior. More specifically, given the overall
flooded area in each cumulative sub-period, we quantify the
maximum extension of subsequent built-up areas and compute
the ratio between flooded built-up areas and cumulative flooded
areas (as %). In particular, when considering the flooded area
from 1973 to 1975, we look at the built-up evolution in
1975, 1990, 2000 and 2014; when considering the flooded
area from 1973 to 1990, we analyze built-up in 1990, 2000
and 2014; and finally, when considering the flooded area
from 1973 to 2000, we examine the built-up area in 2000
and 2014.

Flood Risk

We finally analyze the temporal evolution of flood risk
(R), here computed by considering concurrent hazard and
exposure, whose values are evaluated based on distinct
sub-periods. As mentioned before, flood vulnerability
is not considered due to lack of reliable data. Starting
from the classification of flood hazard and exposure (see
section Flood Exposure and Flood Memory), we define
four categories of flood risk, as shown in Figure 1. In a
given risk category, we consider only those grid cells where
concurrent hazard and exposure values are both larger
than zero and we quantify flood risk as the maximum
extension of built-up areas in each risk category and
distinct sub-period.

RESULTS AND DISCUSSION

The frequency of occurrence of inundation states across the
MDB from 1973 to 2014, as derived from LISFLOOD-FP model
simulations, is shown in Figure 3A. Percentile values of the
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FIGURE 3 | Flood hazard assessment across the MDB from 1973 to 2014. (A) Geographical representation of the frequency of occurrence of inundation states. (B)

Temporal evolution of the maximum extension of flooded areas (in km2 ) in each flood hazard category (percentile-based classification). (C) Temporal evolution of the

maximum extension of flooded areas (in km2 ), as derived from distinct (light blue triangles) and cumulative (dark blue circles) sub-periods.

frequency of occurrence of inundation states that characterize
flood hazard classes are H25 = 0.03, H50 = 0.12, H75 =

0.50 and H100 = 0.97, showing, among all, that half of the
flooded grid cells was inundated on average for ∼5 years
within the whole study period. The maximum extension of
inundated areas based on distinct sub-periods decreases in
time (Figure 3C, light blue line), from more than 90,000
km2 (nearly 6.3% of MDB area) to a∼75,000 km2 (5% of
MDB area). Given the selected percentile-based classification,
the maximum extension of flooded areas shows a remarkable
reduction in H1 and H2 classes, which identify unfrequently
inundated locations likely associated to major flood events
(Figure 3B). Conversely, H3 and H4 classes, corresponding
to recurring inundation states, are characterized by a slightly
decreasing or even invariant pattern in time. In particular, our
results suggest that 1973–1975 and 1976–1990 are the most
devastating sub-periods, as also confirmed by the absence of
increasing trends in the number of flood peaks and flooded areas
afterwards (Hu et al., 2018; Merz et al., 2021). When considering
cumulative sub-periods (Figure 3C, dark blue line), we do not
find any remarkable geographical transfer of flood hazard in
time, since the maximum extension of inundated areas does
not significantly change in time (i.e., only a feeble increase is
detected). This outcome might suggest that inundations occur

more frequently in the same locations compared to the past,
as influenced for instance by improved risk awareness and
structural defenses.

The maximum extension of built-up areas (i.e., the sum of
built-up values times the grid cell size, in km2), as shown in
Figure 4A (black line), increases in time from approximately
770 km2 in 1975 to nearly 1,780 km2 in 2014, (i.e., 2.3
times more). Percentile values from the most recent built-
up extension that define flood exposure classes are E25 =

9.2·10−4 km2, E50 = 3·10−3km2, E75 = 0.01 km2 and E100
= 0.99. A highly skewed distribution characterizes built-up
values. Indeed, the majority of built-up grid cells presents
extremely low built-up surfaces and <2.5% of grid cells has
at least half of its surface built-up. We also analyze the
total number of built-up grid cells, regardless of their built-
up values (Supplementary Figure 1), and find that the 2014
value is three times more than the initial one in 1975,
meaning that MDB experienced a remarkable conversion from
natural land to built-up land. The growth rate of built-up
areas is lower than that of the total number of built-up grid
cells (i.e., 2.3 vs. 3), proving that new built-up locations are
characterized by low built-up values, which are typically found
within an urban sprawl context. In particular, when looking at
the temporal evolution across flood exposure classes, different
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FIGURE 4 | Flood exposure assessment across the MDB from 1973 to 2014. (A) Temporal evolution of the actual maximum extension of built-up areas (in km2 ),

distinguishing between total (black), flooded (blue) and not-flooded (gray) locations. (B) Temporal evolution of the maximum extension of built-up areas (in km2 ) in each

flood exposure category (percentile-based classification). The inset shows a zoom for classes E1 and E2.

relative increments emerge. The relative increment of built-up
surfaces is larger in E1 and E2 classes (i.e., 4.5 times), where
built-up values are very small, rather than in E3 and E4 classes,
characterized by 3.3 and 2.6 relative increments, respectively
(Figure 4B).

We then disaggregate the maximum extension of built-up

areas by distinguishing between flooded vs. not flooded built-up
locations, as derived from inundation states based on cumulative
sub-periods. The actual maximum extension of built-up area

that was flooded at least once feebly increases in time from
1975 to 1990, then remains stable until 2014 (Figure 4A, blue

line). The maximum extension of built-up area that did not
experience any flood from 1973 to 2014 increases in time

from 590 km2 in 1975 to 1636 km2 in 2014 (Figure 4A, gray
line), showing the same pattern as the maximum extension of
total built-up area. We then quantify the temporal evolution

of built-up areas (total, flooded and not-flooded) by using a
linear regression model. Average annual increments of built-
up areas (in relative terms) are equal to 4.17%/year (R2 =

0.91), 3.2%/year (R2 = 0.90) and 4.29%/year (R2 = 0.91) for
total, flooded and not-flooded built-up areas, respectively. Our

results confirm that flood exposure increased over the past

four decades (Hu et al., 2018; Merz et al., 2021), despite the
relative temporal invariance of flood hazard (see Figure 3B,

cumulative sub-periods). Not-flooded built-up areas show larger

relative annual increments compared to flooded built-up areas,

which could possibly drive an increase in flood risk in the
near future.

To further support our results, we analyze the total number
of people in the MDB, by using GHS-POP data from the GHSL
dataset (Schiavina et al., 2019), also differentiating between

FIGURE 5 | Flood memory assessment across the MDB from 1973 to 2014:

temporal evolution of the ratio between built-up areas in previously flooded

areas and flooded areas (as %) up to 1975 (green circles), up to 1990 (orange

triangles), up to 2014 (yellow stars).

flooded and not-flooded locations (Supplementary Figure 2).
A similar overall pattern is found, thus supporting the use
of built-up data as a proxy of human presence. Yet, minor
differences between built-up and population datasets emerge.
For instance, the marked increment of built-up areas from
1975 to 1990 (higher than subsequent increments) is not
observed in population data. This could be explained by a
large land conversion up to 1990, not accompanied by a
comparable demographic trend. Also, this differencemay depend
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on the intrinsic characteristics of the population dataset, where
population data in 1975, 1990 and 2014 was derived from
the NASA-CIENSIN Gridded Population of the World dataset
(Center for International Earth Science Information Network
(CIESIN), 2016) in 2010, by applying an exponential model and
by using built-up data.

Since we observe a lower relative increment of built-up areas
in previously flooded locations compared to not-flooded built-up
areas (i.e., nearly 43% difference within the whole study period),
we test if a flood memory behavior can be detected across the
MDB. Despite the huge flood event in 1974, a large increment
of built-up areas across locations affected by flood events was
observed afterwards, thus revealing a very low flood memory
behavior (green line in Figure 5). Indeed, historically several
flood mitigation structures and water supply dams were built
across MDB, which induced people to over rely on structural
measures rather than flood risk awareness to reduce human
exposure to floods (Cook, 2017). Conversely, when considering
the flooded area up to 1990 and 2000, our results seem to suggest
a stronger flood memory type behavior (orange and yellow lines
in Figure 5), as shown by the lower increase of built-up areas.

We finally analyze long-term dynamics of flood risk
(Figure 6), as categorized values following the percentile-based
classification of flood hazard and exposure (Figure 1), and
quantify flood risk as the overall extension of built-up areas
flooded in a given sub-period. Regardless of flood risk classes,
the areas at risk increase in time from 75.34 km2 in 1975
to 136.77 km2 in 2014. Despite the differences in terms of
absolute values across risk classes, due to increasing percentages
of built-up surface from R1 to R4 (see Figure 1), we find
that R1, R2 and R3 classes are characterized by a hump-
shaped temporal trend, with a peak in 2000 for R1 and in
1990 for R2 and R3. This outcome might suggest a reduction
or a stabilization within the whole study period of the built-
up area at risk, for low risk classes. Conversely, class R4
more than doubled its overall built-up area from 1975 to
2014, clearly indicating a marked increase of the areas at
high flood risk. This increasing pattern is mainly influenced
by increasing built-up areas, since flooded areas decreased
in time.

CONCLUSIONS

In this study, we coupled a large-scale 2-D hydrodynamic model
with remotely sensed built-up data to assess high-resolution
long-term dynamics of flood risk and its components in the
Murray-Darling Basin (MDB) within a 42-year long time period
(from 1973 to 2014). In particular, we analyzed the frequency
of occurrence of flood events and the temporal evolution of the
maximum extension of flooded areas and built-up areas, the
combination of which allows for a detailed assessment of flood
exposure, flood memory and flood risk.

The following findings are of importance:
1. The maximum extension of flooded areas decreases in

time, without revealing any significant geographical transfer
of inundated areas across the study period. In particular,

FIGURE 6 | Flood risk assessment, as categorized values derived from the

percentile-based classification of flood hazard and exposure, across the MDB

from 1973 to 2014: temporal evolution of the overall extension of built-up

areas at risk in each flood risk class (in km2 ), as defined in Figure 1. The inset

shows a zoom for classes R1 and R2.

recurrently inundated gridded areas present an invariant pattern
in time, whereas a remarkable reduction is typical of infrequently
inundated locations.

2. Our analysis shows that the maximum extension of built-
up areas increased over the past four decades, even though
only <2.5% of built-up grid cells shows at least half of their
surface built-up. Larger annual increments of built-up surfaces
(in relative terms) are typical of not-flooded built-up locations
compared to flooded built-up areas.

3. When testing if previous flood events could have influenced
the subsequent built-up expansion, we find a lower increase of
built-up areas in previously flooded locations after 1990, which
might suggest a flood memory pattern.

4. We finally combine flood hazard and exposure to assess
categories of flood risk and find that areas classified at high
risk for flood more than doubled their spatial extension
during the past 40 years. Conversely, areas at lower risk
for flood present an invariant or even decreasing trend
in time.

Despite a few limitations (e.g., reservoir dynamics not
included in the modeling framework, a simple method for
assessing flood memory), our study supports the analysis of
long-term dynamics of flood risk and its components at a
large scale by combining different perspectives in an innovative
way. More specifically, our results clearly point out that long-
term dynamics of flood risk across the MDB are mainly
driven by the temporal evolution of built-up areas, since flood
hazard appears to be more or less invariant in time. Thus,
adopting an urban development plan that explicitly incorporates
strategies and actions for improving flood risk awareness would
seem to be highly beneficial for reducing flood risk in the
near future.
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