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Abstract 
Static balancing through passive devices is a suitable strategy to reduce motor loads for numerous 
applications in the automation and robotics fields. Many known methods require initially defining which 
balancing elements to install, thus possibly limiting the compensation effectiveness, since potentially 
optimal solutions may be neglected. This work presents an approach to statically balance linkages 
characterized by open and/or closed kinematic chains. The proposed algorithm searches for possible 
balanced variants of the mechanism that can be arranged by installing combinations of counterweights and 
springs, without auxiliary linkages. If solutions are found, the corresponding balancing parameters are 
tuned for optimizing the mechanism energy consumption, by considering the mechanism dynamics when 
performing its operational tasks. Actual benefits and drawbacks of the variants are assessed through 
quantitative criteria. The corresponding performance indicators are proposed as a guideline for designers 
to identify the most convenient balancing solutions. The implemented procedure is general and suitable to 
study any mechanism admitting closed-form solutions for its forward kinematics. A case study concerning 
an industrial palletizing robot is reported as an example of application. Overload issues affecting the robot 
actuators are solved through gravity compensation. The results achieved for the industrial problem prove 
the procedure effectiveness. 
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Nomenclature 
a, b vectors of spring anchor points 
a, b magnitudes of spring anchor points 
card cardinality of a set 
CoM Center of Mass of a part 
CPT Critical PK Task 
CRT Critical RMS Task 
DOF mechanism Degrees of Freedom 
d actual number of balancing elements 
Dmax desired maximum number of balancing elements 
Ecw number of installed counterweights 
Espr number of installed springs 
Etot total number of installed balancing elements 
F joint reaction force magnitude 
g gravity vector 
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h, i, s generic moving parts 
j generic kinematic joint 
J counterweight inertia tensor 
K spring stiffness parameter 
l generic generalized coordinate 
L  total number of mechanism moving parts 
m counterweight mass 
M joint reaction moment magnitude 
n generic actuator/independent generalized coordinate 
N  Total number of mechanism Degrees of Freedom 
PK Maximum absolute peak of a quantity 
px, py, pz coordinates of the platform reference point 
q vector of generalized coordinates 
𝐪̂ vector of independent generalized coordinates 
Q generalized non-conservative applied force 
QIT maximum instantaneous total motor torque 
QTR maximum total RMS of motor torques 
r counterweight CoM vector 
r counterweight CoM vector magnitude 
RMS Root Mean Square 
RMS* Objective function to minimize 
SBc generic Statically Balanced variant 
T total kinetic energy 

𝐓0 𝑖  homogeneous coordinate transformation matrix from σi to Σ0 
UB Unbalanced mechanism 
V total potential energy 
VARe Mechanism variant to be evaluated for balancing 
w generic operating task 
W total number of tested tasks 
x vector of unknown balancing parameters 
α, β angles of spring anchor points 
γ weighting factor for joint reactions 
Γn generic constant coefficient (function of x) 
δ1,.., δ4 robot geometrical constant parameters 
Δ percentage variation of a quantity 
ΔR performance parameter of joint reactions  
θ1,.., θ3 robot rotational variables 
λ vector of Lagrange multipliers 
ρ2, ρ 3 robot translational variables 
Ξn generic variable factor of the n-th partial derivative of V (function of 𝐪̂) 
Σ0 global coordinate system 
σi local coordinate system of the i-th body 
φ counterweight CoM vector angle 
Φ algebraic expressions of kinematic constraints 
ψ generic term of a partial derivative of V 
Ψn total terms of the n-th partial derivative of V 
ω angular velocity vector 
 
 
1. Introduction 
A mechanism is statically balanced if its total potential energy is invariant for any admissible configuration. 
Under this condition, the mechanism is constantly in neutral equilibrium and its actuators are not required 
to sustain any conservative force acting on its moving members. In case static balancing is only adopted for 



balancing the weight of the mechanism moving members (i.e. the gravitational forces), which is the most 
common application, the mechanism can be also referred to as “gravity compensated”. Several approaches 
have been proposed for achieving gravity compensation [1-11]. In general, they are based on the 
installation of passive balancing devices (i.e. not actuated), typically counterweights and/or springs. 
Auxiliary linkages for properly appending such elements are frequently adopted as well [12-15]. 

Static balancing permits to decrease the motor actions if the gravity loads are not negligible with respect 
to the inertia actions. It is an essential strategy for serial manipulators commonly adopted in industrial 
applications [16-19] and is proven convenient also for parallel robots operating at low/moderate dynamics 
[8, 12, 14, 20]. 

The determination of effective balancing solutions for mechanisms not yet investigated in the literature 
may result a rather demanding goal. Firstly, most of the known balancing methods focus either on a very 
specific kinematic architecture or on a family of mechanisms, a general formulation still being unavailable 
[14, 20-22]. Secondly, a priori assumptions on the type and the location of the balancing elements to be 
attached are generally required [1, 5, 8]. These initial assumptions, that disregard the study of possible 
solutions, may prevent potentially suitable balanced variants from being identified, hence limiting the 
benefits possibly achievable. Thirdly, exact solutions to the balancing problem may not exist at all. 
Furthermore, in case feasible solutions are found, their effects on the mechanism operation must be 
properly assessed in order to verify their actual benefits and drawbacks [14, 23-25]. This is particularly true 
if multiple variants characterized by completely different arrangements of the balancing elements are 
available. Indeed, in such an instance, identifying the most convenient balancing solution may result a 
challenging task. Therefore achieving gravity compensation in practice may turn into a time-consuming 
trial-and-error process. Nonetheless, to the authors’ best knowledge, only a few studies investigated the 
“automated” determination of feasible balancing solutions for linkages with certain architecture, all of 
them being primarily focused on serial robotic arms [21, 26-28]. 

This study aims at developing a design tool to assist the static balancing process, thus making the 
practical implementation of gravity compensation strategies more straightforward. A novel procedure to 
determine feasible energy-efficient balancing solutions based on proper combinations of counterweights 
and/or springs is here presented. A detailed analysis of merits and drawbacks characterizing both kinds of 
balancing elements has been provided by Carricato and Gosselin in [8]. In particular, counterweights may 
be easier to design and implement, and grant static balancing independently from the orientation of the 
gravity vector; however, they can significantly increase the mass and inertia of the mechanism, hence 
possibly causing negative effects for its dynamic operation (e.g. higher motor loads and lower natural 
frequencies of the system [8]). Springs typically add little mass and inertia to the system; nonetheless, they 
are more prone to generate problems of interference with the other moving parts (in case the springs are 
required to cover long spans) and safety issues related to the installation and maintenance of mechanical 
energy storage devices arise too. Balanced mechanisms with counterweights and springs adopted 
simultaneously may represent a convenient solution for maximizing the aforementioned benefits and 
limiting the potential disadvantages. Indeed, hybrid balancing solutions can be found in some industrial 
applications (e.g. heavy-duty serial manipulators [17]). Hence, the presented procedure can handle hybrid 
balancing solutions as well.  

The proposed procedure is suitable for open-chain, closed-chain and hybrid serial-parallel architectures 
that admit closed-form solutions for their forward kinematics. Unlike most of the approaches available in 
the literature, the proposed procedure only requires to define as input the admissible total number of 
balancing elements to be installed, without any assumption on their arrangement. The procedure searches 
for balancing solutions among the set of all the possible mechanism variants that can be arranged with the 
assigned number of elements, without adding auxiliary linkages. The latter assumption (i.e. not allowing 
auxiliary linkages) is made in order to limit the dimensions of the balancing problem, hence permitting to 
automate the process by neglecting some classes of possible solutions. It may be noticed that a general 
formulation for the static balancing problem is still lacking and, to the authors’ best knowledge, the 
methods currently available in the literature do not permit to assess a priori the existence of balancing 
solutions for a generic mechanism. Indeed, the proposed algorithm does not guarantee to yield balancing 
solutions, like the other known methods, but can handle general mechanisms having the features described 
above. 



In case analytical solutions exist and are found, the parameters characterizing the balancing elements 
(e.g. mass and location of a counterweight) are determined through a numerical optimization algorithm, 
since in a static balancing problem some of the parameters can be arbitrarily imposed. The objective 
function is based on a rough estimate of the mechanism energy consumption for typical operating cycles. 
Indeed, improved energy efficiency is one of the main advantages expected from static balancing [8], as 
well as an increasingly stringent requirement of modern industrial machineries. Static balancing can cancel 
the effects of gravity on the actuators, but the dynamic loads associated with the mechanism operation are 
still present, and they can be even increased by the additional mass and inertia of the balancing elements, 
hence limiting the benefits of compensation. Therefore, the objective function is evaluated by assessing the 
motor loads required for performing a proper set of typical working tasks. 

Finally, the dynamic performance of the original mechanism and of its balanced variants with optimized 
parameters is evaluated by means of three quantitative criteria, defined according to the most relevant 
benefits and drawbacks potentially brought about by static balancing [8]. Consistently with the 
optimization function, the first and most important criterion is related to the estimated energy required 
over a working cycle. The second criterion takes into account the maximum instantaneous motor loads, 
which affect the size of motors. The third one assesses one of the major potential drawbacks, namely 
possible increments in the joint reactions. Three simple scalar indicators - one for each criterion - are 
proposed to directly compare and rank all the feasible solutions generated by the balancing procedure. 

The proposed approach was applied to a case study concerning an industrial 4-DOF palletizing robot. 
The robot actuators experienced overload issues and excessive power consumption when performing 
certain trajectories. The problem was addressed by implementing gravity compensation. Due to the 
manipulator features (in particular the presence of actuated prismatic joints and hybrid serial-parallel 
kinematics), this application appeared particularly interesting to test the effectiveness of the developed 
procedure. 

The paper has the following structure. Section 2 presents the procedure developed for achieving 
balancing and determine the most convenient balanced variants. Section 3 shows the results obtained for 
the examined palletizing robot. Section 4 draws the conclusions. 
 
2. Identification of effective balancing solutions 
The flowchart shown in Fig. 1 summarizes the proposed procedure. The procedure consists of the following 
consecutive main phases. 

‒ Phase 1. The working performance of the (original) unbalanced mechanism is assessed by numerically 
solving its inverse dynamics for a set of prescribed tasks (provided in input by the user). The mechanism 
operation is evaluated in terms of proper performance indicators related to energy efficiency, peak 
motor actions and joint reactions (listed in order of priority), and the most critical tasks according to 
such criteria are identified.  

‒ Phase 2. Feasible statically balanced variants of the original mechanism are determined and refined 
through an optimization process, and their performance is assessed. Firstly, all the possible variants 
with the desired number of balancing elements are generated. For each variant, the conditions for 
achieving static balancing are checked by solving symbolic relations derived from the analytical 
expression of its total potential energy; if a solution is found, the variant can grant exact gravity 
compensation and a further iterative two-step process is performed. 

1. The balancing parameters describing the examined variant are adjusted through numerical 
optimization for minimizing an objective function related to the mechanism energy 
requirements associated with the critical tasks. At the first iteration, such tasks coincide with 
the ones determined in Phase 1 for the unbalanced mechanism. 

2. The operation of the examined variant is assessed through the same procedure adopted for the 
analysis of the unbalanced mechanism, hence determining its performance indicators and its 
own critical tasks. If new critical tasks are found, the objective function is updated and a new 
iteration is perfomed.  

‒ Phase 3. The performance indicators of the balanced variants determined in Phase 2 are compared 
with the ones obtained for the unbalanced mechanism in Phase 1. The balanced variants are ranked 



from the best to the worst according to the priority of the indicators, thus permitting to determine the 
most convenient balancing solutions consistently with the adopted criteria. 

 

Figure 1. Flowchart of the proposed procedure. 

The operating performance of the original mechanism and its balanced variants is assessed on the basis 
of the following three criteria, described in order of priority. 

a) The first criterion is related to energy efficiency. A proper estimate of the actual electric power 
consumption would require detailed information on the motors and their drivers, hence lacking 
generality. A criterion for assessing the effectiveness of balancing in terms of mechanical work was 
proposed in [4] (namely, the ratio between the work of the unbalanced mechanism and the work of the 
balanced variant required for performing the same task). However, it does not appear suitable in case 
of static or quasi-static operation. Indeed, on one hand, the mechanical work is null when the motors 
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are stalling; on the other hand, the unbalanced mechanism can exhibit high power consumption even 
in static conditions, due to the static torques (and the corresponding stall currents), whereas the 
balanced variants do not drain any energy. Hence, mechanical-work-based criteria are not considered 
satisfactory for the purpose of this study. Another criterion, conceived to be suitable also for actuated 
balancing systems and based on the “consumed energy”, was presented in [29]; however, such work 
does not specify how energy can be estimated for a mechanical model. In light of the above 
considerations and issues, the simple trend of the motor torques over a proper set of working cycles 
has been considered acceptable for a rough estimate of the energy requirements (torque being 
proportional to the input current). Accordingly, the scalar indicator QTR is adopted, namely the 
Maximum Total Root Mean Square (RMS) value of the motor torques, computed as: 



  
   

  
 ,

1

max ; 1,..,
N

RMS n
w

n w

QTR Q w W  (1) 

 
where QRMS,n is the torque RMS value of the n-th motor, considering the w-th operating task. Hence, 
QTR provides an indication on the energy requirements of the most demanding task.  

b) The second criterion is related to the instantaneous motor torque, since a possible reduction in the 
torque peak values is one of the main benefits expected from static balancing [8]. Such a reduction may 
result particularly profitable in case the size of some motors can be reduced in the mechanism design. 
The scalar parameter QIT is adopted, namely the maximum instantaneous total motor torque, defined 
as: 
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where |𝑄𝑛(𝑡̂)| is the magnitude of the n-th motor torque computed at the 𝑡̂-th time step of simulation, 
related to the w-th operating task. It is worth noting that QIT, although not providing direct insight into 
the behavior of each motor (since it combines the information concerning all the motors), has been 
chosen for an easier comparison of the balanced variants. 

c) The third criterion is related to joint reactions. Indeed, the implementation of a balancing strategy may 
increase their magnitude, particularly for the joints between members connected by balancing springs 
[8, 14, 25]. In case of remarkable overloads with respect to the original mechanism, some components 
could prove not adequate with respect to the loads. Hence, the maximum instantaneous reaction force 
and moment of the j-th joint, Fj and Mj respectively, are monitored: 
 

          
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ˆ ˆmax ; max ; 1,.., ; 1,..,j j j j
t w t ww w

F t M t j J w WF M  (3) 

 

where |𝐅𝑗(𝑡̂)| and  |𝐌𝑗(𝑡̂)| are the magnitudes of the j-th joint reaction force and moment, 

respectively, computed at the 𝑡̂-th time step of simulation and related to the w-th operating task. 
Section 2.3 will describe how these scalar quantities are combined in a single parameter in order to 
simplify the comparison between the different mechanism balanced variants. 

Detailed explanations of the algorithm steps are provided in the following subsections.  
 
2.1. Phase 1: analysis of the unbalanced mechanism operation (Proc-1) 
The working performance of the unbalanced (UB) mechanism, in terms of motor loads and joint reactions, 
is taken as reference to assess the suitability of possible balancing solutions.  

The inverse dynamics problem of the UB mechanism is numerically solved for a proper set of prescribed 
trajectories, by using the Lagrange equations of motion (see Appendix A.1 for a complete description of the 
adopted formalism). The dynamic loads acting on the system for operation with the prescribed trajectories 
are determined by solving (Fig. 1, Proc-1): 
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The set of trajectories consists of the most demanding tasks possibly performed by the robot, i.e. those 

generating the highest dynamic loads. Such trajectories must be provided as inputs to the procedure, since 
they depend on the specific application. The following results are determined and saved for the subsequent 
steps of the procedure.  

‒ First performance indicator, QTRUB, computed according to Eq. (1). 
‒ Second performance indicator, QITUB, computed according to Eq. (2). 
‒ Parameters related to the third criterion, Fj,UB and Mj,UB respectively, computed according to Eq. (3). 
‒ Tasks generating the highest RMS value of the torque on the n-th actuator, referred to as critical RMS 

task and denoted by superscript “CRT”, to be adopted in the optimization process for computing the 
objective function. 

‒ Tasks generating the highest peak (PK) value of the torque magnitude on the n-th actuator, referred to 
as critical PK task and denoted by superscript “CPT” to be adopted in the optimization process for 
determining the constraints.  

It is worth noting that up to N CRT and N CPT different tasks may be found, since they are not 
necessarily the same for all the actuators. 

 
2.2. Phase 2: definition and assessment of the balanced variants (Proc-2 ÷ Proc-8) 
This work studies balancing devices based on counterweights and/or springs and arranged without the 
installation of auxiliary linkages, in order to increase their practical feasibility. 

Figure 2 shows the parameterization adopted for generic balancing elements, namely a counterweight 
rigidly connected to the i-th member and a spring connecting the i-th and the s-th members. 

The i-th counterweight appended to the i-th member is described by its mass parameter, mi, and the 
position of its CoM, given by vector ri, expressed in the local coordinate system σi. Assumptions on the 
counterweight mass distribution are required for determining the corresponding inertia tensor Ji, expressed 
in σi. In this study, cylindrical shaped counterweights are considered, characterized by a fixed ratio (τ) of 
radius to thickness and oriented with the axis parallel to the zi-axis. Hence Ji depends only on the balancing 
parameters mi and ri, and on two constant scalars, namely τ and the material density.  

 

 
 

Figure 2. Parameterization of the balancing elements. 

The kinetic energy, Tmass, and the gravity potential energy, Vmass, associated with the introduction of 
counterweights are, respectively: 
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where  𝐫̇𝒊,𝟎  is the velocity vector of the i-th counterweight CoM, ωi is the angular velocity of the i-th 
member expressed in its body-fixed coordinate system, g is gravity acceleration vector, the subscript “0” 

means that vectors are expressed in the base reference frame Σ0 (in particular, 𝐫𝑖,𝑜 = 𝐓0 𝑖 𝐫𝑖), and mi = 0 if 
there is no counterweight appended to the i-th member. 

The balancing spring connecting members i and s is modelled as a massless zero-free-length extension 
spring characterized by its stiffness parameter, Kis, and by the position of its anchor points, given by vectors 
ais and bis, expressed in the local coordinate systems of the i-th and s-th members respectively (Fig. 2). The 
assumption of negligible spring mass and inertia is generally acceptable for common applications [6, 14, 
30]. Moreover, it is possible to make normal springs work with zero-free-length behavior (e.g. [13, 31, 32]). 
The elastic potential energy given by the installation of springs, Vspring, is: 
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where the position vectors of the spring anchor points, ais,0 and bis,0, are expressed in the base reference 

frame Σ0 by means of the corresponding coordinate transformation matrices (namely, 𝐚𝑖𝑠,𝑜 = 𝐓0 𝑖 𝐚𝑖𝑠 and 

𝐛𝑖𝑠,𝑜 = 𝐓0 𝑠 𝐛𝑖𝑠) and Kis = 0 if there is no spring connecting to the i-th and s-th members. 
The contributions of the balancing elements modify Eq. (4) as follows 
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Static balancing is achieved if the total potential energy, given by the sum of VUB, Vmass and Vspring, keeps 

constant for any assumable configuration, i.e. all its partial derivatives with respect to a proper set of 

independent generalized coordinates q̂  are identically null [8]. In practice, the balancing parameters (i.e. all 

the parameters describing the balancing counterweights and springs) can be determined by imposing such 
condition on N of the partial derivatives of the total potential energy appearing in Eq. (8), computed with 

respect to q̂  (see Appendix A.2). 

It is worth noting that all the balancing solutions including only springs will be equivalent from the point 
of view of required motor loads, due to the assumption of negligible spring mass. Conversely, joint 
reactions depend on the specific spring arrangement.  

The proposed procedure generates the set of all the possible mechanism variants that can be arranged 
with permutations of counterweights and springs (Fig. 1, Proc-2, the e-th generic variant being referred to 
as VARe), that satisfy the condition 
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where d is the actual number of balancing elements installed on the mechanism, and Dmax (∈ ℕ≠0) is set 
arbitrarily as an input of the balancing problem. Dmax represents the maximum number of balancing 
elements to be possibly installed on the mechanism; the designer’s choice may depend on many 
qualitative/quantitative criteria (e.g. total cost of the system modifications/additional components, or 
possible problems of interference between the balancing elements and the mechanism members). The 



minimum value of Dmax is equal to 1, whereas its maximum (within the proposed algorithm) is given by the 
sum of the mechanism moving members and all the possible pairs of members (also including the fixed 
frame, see Appendix A.3)1. Certainly, having some guidelines for choosing a “reasonable” value for Dmax 
would be convenient. For some architectures it might be possible to find a relation between the 
mechanism DOFs and the number of required balancing elements (e.g. for planar serial chains of binary 
links connected by revolute joints [27]). Nonetheless, for a generic mechanism, the methods and tools 
currently available in the literature do not allow – a priori – either to assess the existence of feasible 
balancing solutions with the desired specifications, or to determine the minimum number of elements 
required to achieve gravity compensation. For instance, in case the installation of auxiliary linkages is a 
viable option, one single balancing element should be theoretically sufficient, since the vertical coordinate 
of the mechanism global CoM is the only coordinate affecting the gravitational potential energy, as shown 
by Herder in [33]. Conversely, if the installation of auxiliary linkages is not allowed (that is the case of the 
proposed algorithm), a number of required balancing elements greater than one may expected; however, 
depending on the actual mechanism architecture, such assumption may be not confirmed, as occurring for 
the palletizer robot analyzed in Sec. 3.2. In the Authors’ opinion, having a low number of balancing 
elements would be convenient, in order to limit the mechanism complexity, hence increasing the practical 
feasibility. Moreover, the amount of mechanism variants VARe to be evaluated grows very fast with an 
increment in Dmax, which heavily extends the computational time (see Appendix A.3). Hence, in light of the 
above considerations, it is suggested that: (i) the balancing process is started by performing a first run of 
the algorithm with Dmax = 1; (ii) iteratively, Dmax is increased by 1 and the algorithm is repeated, until a 
satisfactory set of balanced variants is possibly found. 

Balancing conditions are imposed on each VARe variant of the set so determined. The following N 

conditions must be verified for all admissible values of q̂ : 
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For each VARe variant, the procedure searches for an analytical solution to Eq. (10) by using the Matlab® 
symbolic solver (Fig. 1, Proc-3), which results in a set of analytical relations between the unknowns (see 
Appendix A.2). If a solution is found2, the VARe variant is identified as a possible balanced variant and 
enters an iterative numerical optimization process, otherwise it is discarded (Fig. 1, Proc-4). The solution of 
Eq. (10), namely the analytical expressions of the balancing parameters that make the total potential 
energy invariant, is included in the constraints of the optimization problem. Indeed, at this step no 
numerical values are assigned to the balancing parameters yet. 

As previously illustrated, the primary objective of the study is reducing the system energy consumption. 
Therefore, a “global” optimality criterion, related to the mechanism energy requirements for the set of 
trajectories given in input, is adopted. Consistently with the considerations discussed at be beginning of 
Section 2, optimization of the c-th balancing solution (referred to as SBc) is performed by minimizing an 
objective function based on the RMS value of the motor actions (Fig. 1, Proc-5). At the first iteration, such 
function is defined as 
 

                                                           
1 It is worth noting that the upper limit for Dmax is not inherent in the balancing problem, but is a characteristic of the 
proposed algorithm, which does not admit multiple counterweights attached to a single member or multiple springs 
connecting a pair of members. In general, the upper (theoretical) limit would be +∞. Furthermore, if a balanced 
variant with d elements can be found, reasonably a solution with a higher number of balancing elements should also 
exist [27]. 
2 It is worth noting that balancing solutions with the desired design (combination of springs and counterweights 
without auxiliary linkages) may not exist at all. In addition, the symbolic computation of Eq. (10) can be demanding 
and, in case the solver fails, some possible balancing solutions may be neglected (see Appendix A.2). 
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where xSBc= {mi, ri, Kis, ais, bis}T is the vector of the unknown balancing parameters (i,s=1,..,L, i>s), and 

𝑅𝑀𝑆𝑆𝐵𝑐,𝑛
𝐶𝑅𝑇  is the RMS value of the n-th motor torque, Qn, computed for the CRT task defined in Sec. 3.1 by 

using simplified equations of motion:  
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The following constraint equations must be satisfied, in addition to Eq. (10): 
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where xSBc,min and xSBc,max are the lower and upper bounds for the unknowns, respectively, PKmax,n is the 

maximum allowed load for the n-th actuator and 𝑃𝐾𝑆𝐵𝑐,𝑛
𝐶𝑃𝑇  is the PK value of the n-th motor torque, Qn, 

computed for the CPT task defined in Sec. 2.1 by using Eq. (12). Previous investigations had proven the 
quadratic mean of RMS values more effective than other tested criteria (e.g. the total RMS value or the 
simple mean of the critical RMS) for effectively reducing the required motor actions [30]. A constrained 
nonlinear multivariable problem is therefore defined [34]. The unknowns are computed by means of the 
interior-point method [35], namely by using the “fmincon” Matlab® function.  

The numerical values of the balancing parameters for each feasible balancing solution, xSBc,opt, are 
therefore determined. It is worth noting that some possible balancing solutions may be discarded also at 
this step of the procedure (Fig. 1, Proc-6), in case they can not satisfy the constraints given by Eq. (13) and 
Eq. (14), or convergence is not achieved by the numerical solver. 

The operation of each gravity compensated variant of the mechanism is now assessed by inserting the 
corresponding computed variables xSBc,opt into Eq. (8), and simulating the numerical model. Inverse dynamic 
analysis (equivalent to the one performed on the UB mechanism) is carried out over the whole set of 
prescribed motions taken into account in Sec. 2.1 (Fig. 1, Proc-7), to determine: 

‒ First performance indicator, QTRSBc, as defined by Eq. (1). It is worth noting that the most demanding 
task may differ from the one identified for the UB mechanism. 

‒ Second performance indicator, QITSBc, as defined by Eq. (2). 
‒ Joint reaction forces and moments, Fj,SBc and Mj,SBc, as defined by Eq. (3). 
‒ Possible new critical RMS tasks (i.e. different from the ones characterizing the UB mechanism). 
‒ Possible new critical PK tasks. 

If at least one new critical RMS or PK task is found, the objective function and/or the constraints 
equations are updated accordingly (Fig. 1, Proc-8) and a new optimization step is carried out, followed by a 
new assessment of the dynamic operation of the SBc variant. The iterative loop permits to optimize the 
balancing solution not only for a single specific task, but for the general operation of the system. 
 
2.3. Phase 3: ranking of the balancing solutions (Proc-9) 
In order to compare the performance of the balanced variants with the operation of the original 
mechanism, according to the three criteria previously defined, three non-dimensional parameters are 
computed. The percentage reduction in the performance indicator QRT of the SBc variant with respect to 
the UB mechanism, ΔQRTSBc, is computed as 
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An improved behavior is achieved with the SBc variant if ΔQRTSBc < 0, and the lower is the percentage (up to 
a minimum of -100%), the better is the performance.  

The percentage reduction in the performance indicator QIT of the SBc variant with respect to the UB 
mechanism, ΔQITSBc, is defined as 
 


  100SBc UB

SBc

UB

QIT QIT
QIT

QIT
 (16) 

 
Like for the previous parameter, the SBc variant provides an enhanced performance if ΔQITSBc < 0, and the 
lower is better (maximum reduction for a value of -100%). 

Regarding the third criterion, for the j-th joint of the SBc variant, the percentage variations of its 
reaction force and moment, ΔFj,SBc and ΔMj,SBc respectively, with respect to the UB mechanism are 
computed: 
 


  

, ,

,

,

100j SBc j UB

j SBc

j UB

F F
F

F
 (17) 


  

, ,

,

,

100j SBc j UB

j SBc

j UB

M M
M

M
 (18) 

 
where j=1,..,J. The parameters defined by Eq. (17) and Eq. (18) are intended to detect only possible 
detrimental effects brought about by the balancing elements, in terms of increments in the joint reactions. 
Hence, negative values (indicating reductions in the joint reactions) are neglected by setting them to zero 
(i.e. ΔFj,SBc and ΔMj,SBc are forced to assume only positive or null values), since negative variations may 
conceal the worsening effects exhibited by the other joints. The use of percentage variations permits to 
combine forces and moments in a single parameter:  
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where the weighting factors γFj and γMj, for forces and moments respectively, defined as 
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are adopted to emphasize the variations of the highest loads (since a very low reaction would remain 
negligible even in case of a high percentage variation). The lower is the parameter ΔRSBc (minimum value 
being 0%), the better is the performance of the SBc variant. This parameter allows discriminating between 
the balancing variants featuring only springs. Indeed, such variants necessarily exhibit by the same values of 
both ΔQRTSBc and ΔQITSBc (since they are dynamically equivalent under the assumption of massless springs), 
whereas significant differences in the joint reactions may exist, depending on the spring arrangements. 

The balanced variants are ranked by using the three non-dimensional parameters, according to the 
different priority of the performance indicators, i.e. in order of best ΔQRTSBc, then best ΔQITSBc, and finally 
best ΔRSBc (Fig. 1, Proc-9). The procedure provides both a global ranking of all the balancing solutions and a 



separate ranking for each class of balanced variants (i.e. only-counterweights, only-springs and hybrid 
solutions). Indeed, although the proposed quantitative criteria can provide indications on the dynamic 
operation of each mechanism variant independently of the specific type/arrangement of its balancing 
elements, a direct comparison between different classes of balanced variants may be considered not 
completely rigorous. 

It is worth noting that the adopted performance indicators do not provide a full insight into the actual 
load condition of each actuator and/or joint. However, they were preferred to more complex parameters 
for obtaining a simple and concise overview of the dynamic performance of all the balanced variants. 

Finally, it is important to remark that the proposed criteria are only intended for providing a quantitative 
assessment of the expected working performance of the identified balanced variants, for a preliminary 
selection of the most promising ones. Then, additional criteria – other quantitative indicators (e.g. 
implementation and maintenance costs and/or risk indicators for safety assessment) and/or qualitative 
parameters (e.g. ergonomic features, marketing strategies) and/or the common practice/internal 
guidelines of designers/manufacturers – might be evaluated in order to determine the most convenient 
solution. 
 
3. Case study: industrial palletizing robot 
The balancing procedure proposed in Sec. 2 was adopted for the gravity compensation of an industrial 
robotic arm, namely the 4-DOF palletizing robot here analyzed. The manipulator was characterized by 
rather heavy moving members and operation with low/moderate velocities and accelerations. Given these 
characteristics, gravity compensation appeared a viable strategy to significantly reduce the motor loads of 
the manipulator, hence solving its overload and power consumption issues. 

Figure 3 shows the robot kinematic scheme. Actuator 1 rotates the moving links around a fixed vertical 
axis. A planar 2-DOF pantograph-like linkage, driven by two actuated prismatic joints (Actuator 2 and 
Actuator 3, each one composed of a linear guide and a ball screw driven by a brushless servo motor with 
timing belt transmission), moves the end effector carrier on a vertical plane. Actuator 2 provides translation 
along the horizontal direction, with a transmission ratio of +6 between the slider of the horizontal linear 
guide (member 2, Fig. 4) and the end effector carrier. Similarly, Actuator 3 controls the vertical translation, 
with a transmission ratio of -5. Actuator 4, mounted on the end effector carrier, controls the gripper 
rotation. A further double parallelogram linkage imposes vertical orientation on the gripper rotational axis, 
which is a solution frequently adopted in palletizing robots.  

 

 
Figure 3. Schematics of the palletizing manipulator: workspace referred to the gripper reference point  
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Figure 4. Definition of coordinate systems and kinematic parameters. 

Figure 4 shows the coordinate systems and the main kinematic parameters defined for the analysis. The 
coordinate system Σ0 ≡ X0Y0Z0 is established on the fixed base, with the Y0-axis parallel to the gravity vector, 
g. The Cartesian frame σ1 ≡ x1y1z1, attached to member 1, is established with the same origin of Σ0 and the 
y1-axis coincident with the Y0-axis. The rotation of the moving members around the vertical axis is described 
by the angle θ1. The xlyl-plane of each Cartesian frame σl, attached to the l-th member, is parallel to the 
x1y1-plane. The coordinate systems σ2 ≡ x2y2z2 and σ3 ≡ x3y3z3, attached to the two sliders, members 2 and 3 
respectively, are oriented like σ1. The horizontal translation of σ2 and the vertical translation of σ3, with 
respect to σ1, are described by the variables ρ2 and ρ3 respectively, whereas the constants δ2 and δ3 give 
their corresponding vertical and horizontal offsets. 

The orientation of all moving members on plane x1y1, is described by the two angles θ2 and θ3, defined 
with respect to the x1-axis. The rotation of the palletizing gripper is not taken into account, as explained in 
Sec. 3.1. 

The solution of direct kinematics, providing the position vector (px, py, pz) of the reference point P of the 
end effector carrier as function of the independent generalized coordinates θ1, ρ2 and ρ3, is given by: 
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The angles θ2 and θ3 can be inferred from the following conditions: 
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Since the manipulator featured actuated prismatic joints and hybrid serial-parallel kinematics, strategies 

commonly adopted to balance serial manipulators were not directly applicable. Moreover, multiple options 
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for achieving gravity compensation were found in the first phase of the study. Because of these factors, this 
application was considered particularly suitable to prove the effectiveness of the implemented procedure. 

The algorithm was executed (setting Dmax = 2) on a consumer laptop (Intel i7-3612QM CPU @ 2.1 GHz, 
RAM 8 GB) requiring a total computational time of about 30 minutes, with about 10 minutes being required 
for completing Proc-2 and Proc-3.  
 
3.1. Balancing problem and simulated tasks 
Actuators 1 and 4 provide rotation around vertical axes, and therefore they are not affected by gravity 
loads. However the torque of Actuator 1 may be significantly affected by the introduction of balancing 
devices attached to the robot moving parts. Hence Actuator 1 is taken into account in the dynamic model 
for the balancing process. Conversely Actuator 4 is neglected, since it is only affected by the payload carried 
by the gripper. The orientation of the gripper is considered fixed and its mass and inertia are added to 
those of the end effector carrier. 

The proposed method is used to generate balancing solutions including a maximum of two elements, 
attached to members 1÷7. Since the balancing problem is planar, the vectors locating the counterweight 
CoMs and the spring anchor points are expressed as functions of two parameters: 
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where i, s = 1,..,7 (with i > s), rwi, asik, bsik are the magnitudes and φi, αis, βis are the angles describing the 
orientation with respect to the x-axis of the corresponding coordinate systems (namely σi for ri and ais, σs 
for bis).  

In the case of a spring connecting two adjacent members (i.e. spanning over one single joint), equivalent 
spring arrangements (in terms of elastic potential energy) can be obtained by simply varying the spring 
angles αis and βis by the same quantity (hence keeping constant the difference αis – βis), while maintaining 
unaltered the other parameters Kis, ais and bis [27]. Consequently, one angle can be arbitrarily chosen and 
the condition αis = 0 is set. 

Since palletization is basically a pick-and-place task, point-to-point trajectories between all the possible 
couples of points of a discrete spatial grid, into which the workspace is divided, are considered when 
solving inverse dynamics. In particular, a total of 343 grid points is considered (Fig. 5a), given by: 7 by 7 
regular grids covering the rectangular sections of the workspace on vertical planes passing through axis Y0 

(including boundaries); 6 angular divisions with angles of /6 around axis Y0 in the interval [0, ]. The 
system symmetry is exploited to take into account only half the workspace, since in real industrial layouts 

the palletizing tasks between two loading/unloading stations seldom exceed a rotation of  around Y0.  
Motion is imposed on each actuator by using a single quintic polynomial function that prescribes the 

displacement between two grid points in a fixed time interval of 2.5 s (namely, half the duration of a 
working cycle at the maximum palletizing capacity). The generic law of motion in terms of angular position, 
velocity and acceleration is shown in Fig. 5b. 



 
Figure 5. (a) Discrete grid of points for inverse dynamics, (b) generic angular position (𝜃𝑛), velocity (𝜃̇𝑛) and 

acceleration (𝜃̈𝑛) law of motion (actual values depend on both the actuator and the trajectory). 
 
3.2. Feasible balanced variants 
A total of 406 variants is generated and evaluated (see Appendix A.3). Due to the pantograph-like 
architecture of the robot (which features many similar triangles), dozens of variants providing exact static 
balancing are found by the algorithm. The set of possible balanced variants also includes known solutions 
requiring only one counterweight [36, 37]. However, only eleven variants satisfy the chosen optimization 
constraints (e.g. moderate mass increment and acceptable spring rate), whereas all the others are 
discarded. 

Table 1 reports the feasible solutions generated by the gravity compensation procedure and the 
optimized values of the corresponding balancing parameters. Schematic representations of three variants 
are shown in Fig. 6, as examples. The high number of possible variants offers a large degree of flexibility for 
implementing balancing in practice. Many solutions exhibit comparable values and appear potentially 
profitable. In particular, several variants including counterweights (which, in general, can be arranged more 
easily than springs [6, 14]) would bring an acceptable increment in the robot total mass (below +20%). 
Hence, the use of quantitative ranking criteria appears essential for choosing the most advantageous 
solution. 

 

 

 

 

 

 
 

Figure 6. Schematic representation of tree balancing solutions: (a) SB1, (b) SB4, (c) SB10. 

Figure 7 shows the balancing variants ranked according to the three criteria proposed in Sec. 2.3, 
divided by class (only-counterweights, only-springs and hybrid solutions). A remarkable reduction in the 
estimated energy requirements is achieved with all solutions, thus proving the effectiveness of the 
proposed approach. The increment in joint reactions is acceptable for all the variants, as the index ΔRSB 
keeps below 10 %. As expected, the three balanced variants featuring only springs (which are considered 
massless) exhibit the best performance in terms of motor actions. Four hybrid variants, namely the SB6 and 
the SB9–11, show a behavior closely comparable to that characterizing the spring-only solutions. Basically, 
these seven variants can be considered equivalent for the enhancement of motor loads and energy 
efficiency in dynamic operation. Therefore, they all appear suitable to be arranged on the actual robot. The 
variant SB10, namely the best hybrid variant, was eventually selected as the most convenient one for 
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practical implementation, based on considerations about the limited increment in both the mechanism 
complexity and its weight (additional mass being less than 10% of the UB robot mass). 
 
Table 1. Feasible balancing solutions. 

balanced 
variant 

param. 
K 

[N/mm] 
a 

[mm] 
α 

[rad] 
b 

[mm] 
β 

[rad] 
m 

[kg] 
r 

[mm] 
φ 

[rad] 

SB1 
m4 - - - - - 228.6 81.3 0 

m5 - - - - - 500.00 500.0 π 

SB2 
m4 - - - - - 384.7 500.0 π 

m6 - - - - - 234.2 500.0 0 

SB3 
K43 5.669 998.9 0 499.9 π/2 - - - 

K53 4.486 250.0 π 499.9 π/2 - - - 

SB4 
K42 5.000 250.0 0 448.5 3/2 π - - - 

K43 5.711 995.6 0 497.8 π/2 - - - 

SB5 
K42 4.898 476.9 0 271.1 π/2 - - - 

K53 7.143 264.1 0 499.8 π/2 - - - 

SB6 
m4 - - - - - 228.6 347.1 0 

K43 6.334 989.0 0 486.7 π/2 - - - 

SB7 
m4 - - - - - 418.1 440.1 π 

K53 4.228 250.0 π 439.0 3/2 π - - - 

SB8 
m4 - - - - - 384.7 500.0 π 

K42 3.064 250.0 0 500.0 π/2 - - - 

SB9 
m4 - - - - - 228.6 402.3 0 

K52 7.930 800.0 0 500.0 π/2 - - - 

SB10 
m6 - - - - - 181.5 77.8 π 

K43 5.727 994.0 0 497.0 π/2 - - - 

SB11 
m6 - - - - - 500.0 163.0 0 

K52 7.077 800.0 0 500.0 π/2 - - - 

 
 

 
Figure 7. Ranking of the balancing solutions, divided by class (best solution on the left side of each group). 
 
 



3.3. Multibody simulations of a real palletizing task 
Numerical models of the UB mechanism and of the best variant for each configuration (namely only 
springs, SB4, only counterweights, SB1, and hybrid arrangement, SB10, Fig. 6) are implemented by using a 
commercial multibody software (MSC Adams™) to verify the effectiveness of the proposed procedure3. 

Simulations are perfomed by imposing the path A-C-B-E-F-D-A (Fig. 8a, referred to as path Λ) on the 
reference point P of the end effector carrier. Path Λ represents a demanding task of the studied robot and 
has the following main features: rotation of 60° around the Y0-axis; translation of 1046 mm along the x1-
axis, reaching the external boundary of the workspace; translation of 1500 mm along the Y0-axis, to about 
the upper boundary of the workspace. 

 

 

Figure 8. (a) simulated trajectory (point locations in Σ0 [mm]), (b) velocity of the end effector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3 Preliminary investigations on the examined manipulator had shown that the mass of suitable balancing springs might 
be about 40 kg, i.e. only 2% of the total robot mass [30]. Hence, reasonably, the mass and inertia of the springs are 
expected to marginally affect the manipulator dynamics, as initially conjectured. In light of these considerations and 
consistently with the assumptions of the proposed algorithm, the springs are modelled as massless entities also within 
the multibody environment. 
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Figure 9. Static torques along path Λ: (a) UB, (b) SB1, (c) SB4, (d) SB10. 

Two working conditions are simulated for each mechanism. In the first test, point P is driven through 
path Λ in static conditions, i.e. velocities and accelerations are set to zero. The static torques of Motor 2 
and Motor 3 (namely, the servo motors driving Actuator 2 and Actuator 3, respectively), required for the 
robot equilibrium, are computed for 2500 points along the path by taking into account the nominal 
efficiency and the actual transmission ratio of the corresponding mechanical transmissions. 

In the second test, a palletizing cycle is replicated. Path Λ is executed in a total time of 5 s, i.e. at the 
maximum palletizing capacity of the robot. The components of the velocity vector of point P, expressed in 
σ1, are reported in Fig. 8b. A payload of 150 kg (namely, the maximum value of the robot specifications) is 
loaded at point C and unloaded at point F. The required torques for Motor 1-3 are computed with a time 
step of 0.002 s. 

Figure 9 shows the computed static torques. The motor torques required for sustaining the robot own 
weight are remarkable for the UB mechanism, particularly for Motor 3, which generates the vertical motion 
of the end effector. Conversely, all the balanced variants exhibit negligible motor loads, torque values being 
more than five orders of magnitude lower than for the UB mechanism. Reasonably, such small values are 
ascribable to approximations of the parameters of the models and residuals of the numerical solver. 
Nonetheless, the results confirm that complete compensation of gravity loads is achieved for all the 
balanced variants. 

The motor torques required for executing the palletizing task are shown in Fig. 10, as functions of time. 
The RMS values and peak absolute values (|peak|) off all the plotted curves are reported in Table 2. The 

percentage variations with respect to the UB mechanism are also tabulated (%).  
The curves related to Motor 1 are basically superimposed also for SB1 and SB10 variants (Fig. 10a), and 

the corresponding RMS and |peak| values do not exhibit significant variations (Table 2). This confirms that 
possible detrimental effects of the optimized counterweights on the first rotational axis are negligible.  
As for Motor 2 and Motor 3, all the balanced variants are characterized by remarkably lower torques in 
terms of both RMS and |peak|. Consistently with the ranking reported in Fig. 7, the best overall 
performance is provided by the SB4 variant, followed by the SB10 and then by the SB1. Therefore, these 



results prove the effectiveness of the proposed procedure, even in case of a variable payload. In particular, 
the proposed optimization process is confirmed a valid tool to generate convenient balancing solution even 
in case massive counterweights are required. 

 

Figure 10. Dynamic torques of the palletizing cycle: (a) Motor 1, (b) Motor 2, (c) Motor 3. 

 
Table 2. Statistics of the torques required for the palletizing task. 

    UB SB1 SB4 SB10 

Motor   T [Nm] T [Nm] % T [Nm] % T [Nm] % 

1 
RMS 17.48 17.58 +0.6 17.48 0 17.56 +0.4 

|peak| 47.94 48.13 +0.4 47.94 0 48.10 +0.3 

2 
RMS 4.98 2.05 -58.8 2.12 -57.4 2.13 -57.2 

|peak| 9.45 5.36 -43.2 5.59 -40.9 5.61 -40.7 

3 
RMS 18.98 11.26 -40.7 10.55 -44.4 10.63 -44.0 

|peak| 38.21 26.57 -30.4 24.02 -37.1 24.28 -36.5 

 
 
3.4. Discussion 
The reported results are satisfactory and confirm the effectiveness of the proposed procedure. Firstly, the 
procedure could generate a wide range of feasible balanced variants, including hybrid 
counterweight/spring arrangements. Secondly, thanks to optimization, a remarkable improvement in the 
expected energy efficiency of the robot could be achieved for all the solutions. In particular, a significant 
enhancement of the robot dynamic performance could be obtained also for a working cycle with variable 
payload. Thirdly, the adopted quantitative criteria based on the estimated dynamic operation, arbitrarily 
defined, permitted to compare and rank variants characterized by completely different arrangements of 
the balancing elements, as well as to assess the actual benefits (in terms of motor loads) and drawbacks (in 



terms of joint reactions) of each variant, with respect to the UB mechanism. In particular, the analysis 
showed that apparently similar solutions (i.e. characterized by comparable values of their balancing 
parameters) might exhibit a very different dynamic behavior. For instance, the variants SB7 and SB8, albeit 
comparable to the other hybrid solutions, would provide worse working performance. Hence, the reduced 
subset of the most convenient variants could be identified, thus allowing the design process to focus on 
such variants to implement gravity compensation on the actual robot. This proved the presented procedure 
as a suitable tool to help the design of statically balanced mechanisms. 
 
4. Conclusion 
This paper dealt with the gravity compensation of mechanisms characterized by both serial and parallel 
kinematic chains. A novel approach to automate the generation of feasible static balancing solutions, and 
the identification of the most convenient ones, was presented. Given a mechanism with known – 
analytically solvable – forward kinematics, and starting from very limited input data concerning the 
balancing elements to be installed, the procedure searches for possible balanced variants that can be 
arranged with proper combinations of counterweights and springs, without adding auxiliary linkages (which 
are sometimes required to achieve balancing solutions). If analytical solutions are found, the balancing 
parameters are determined by means of a numerical optimization procedure aimed at maximizing the 
mechanism energy efficiency. The resulting balanced variants are ranked by using three simple quantitative 
criteria that were specifically developed for guiding the selection of the most suitable solutions. The main 
merits of the proposed approach can be summarized as follows. 

‒ It is suitable for open-chain, closed-chain and hybrid mechanisms.  
‒ It does not require a priori assumptions on the arrangement/location of the balancing elements. 
‒ It can generate exact balancing solutions with counterweights and springs combined together. 
‒ Each mechanism variant is numerically optimized in terms of expected energy consumption, by taking 

into account its dynamic operation with typical working conditions. 
‒ It provides an estimate of the dynamic performance of each variant by using three simple indicators. 

The proposed approach was successfully adopted for an industrial palletizing robot. On one hand, the 
procedure could generate a set of possible balanced variants of the manipulator, most of them exhibiting a 
remarkable reduction in the expected energy consumption. On the other hand, the most convenient 
variants to be implemented in practice could be identified by using the implemented performance 
indicators. Hence the proposed method proved as an effective tool for gravity compensation purpose. 
 
 
 
Appendix 
A.1. Mechanism kinematics and dynamics 
The proposed method can operate on a generic N-DOF mechanism modeled as a chain of L rigid bodies 
connected by kinematic joints, provided that a closed-form solution for the forward kinematics problem 
can be found. The benefits of different balancing solutions on the mechanism operation are assessed by 
solving the inverse dynamics problem to compute the dynamic loads acting on the system for a set of 
prescribed trajectories of interest.  

Since the mechanism may feature both open- and closed-chains, the actual model parameterization 
depends on the specific geometry of the linkage. In general, a local Cartesian coordinate system is attached 
to each rigid body. Its position and orientation with respect to a global reference frame are defined by 
means of three Cartesian coordinates and three Euler angles, respectively. Proper homogeneous 

transformation matrices from the i-th local system σi to the global frame Σ0, 𝐓0 𝑖 , are then defined [38]. 
At first, the mechanism forward kinematics is solved for determining the pose, velocities and 

accelerations of its moving parts. These results permit to determine the expressions of the kinetic and the 
potential energies of each member and of the corresponding balancing elements. The potential energy is 
utilized for identifying the balanced variants (see Appendix A2 for further details). Then, the kinetic and the 
potential energies are employed in the Lagrange equations of motion, which are solved to estimate the 



motor actions. The expressions describing the forward kinematics of each mechanism member (as 

functions of a proper set of independent generalized coordinates  ˆ ˆ
T

nqq , n=1,..,N) are therefore 

assumed as know input data for the procedure that generates balancing solutions. 
The following formulation is adopted for writing the Lagrange equations of motion [39]:  
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where  
T

lqq  with l=1,..,6L is the vector of all generalized coordinates for a generic spatial linkage, Ql is 

the non-conservative applied generalized force related to the l-th generalized coordinate, T and V are the 
total kinetic energy and total potential energy of the mechanism, respectively, λ is the vector of (6L-N) 
Lagrange multipliers, and Eq. (A2) describes the (6L-N) kinematic constraints (Φ denoting the column vector 
of the algebraic expressions of the kinematic constraints). Hence, friction is neglected in the inverse 
dynamics problem. 
 
 
A.2. Static balancing conditions 
The expression of the partial derivative of the total potential energy V of a mechanism with respect to the 

n-th generalized coordinate ˆ
nq  typically assumes the following form [1, 2, 8]: 
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where   ,n x is a constant coefficient (function of the unknown vector x, i.e. of the parameters of the 

balancing elements) and   ,
ˆ

n q  is a variable factor (function of the independent generalized 

coordinates). 
Gravity compensation is achieved if Eq. (10) holds for any assumable configuration of the mechanism. 

Hence, a sufficient condition for static balancing is that all the constant coefficients of Eq. (A3) are null, i.e.: 

      , 0; 1,.., ; 1,..,n n n Nx  (A4) 

If for the examined mechanism variant VARe a solution to Eq. (A4) exists, exact gravity compensation 
can be granted. The solution of Eq. (A4) itself is a set of relations between the unknowns. The maximum 
number of relations obtained by imposing and solving Eq. (A4) is 




1

N

n
n

 (A5) 

However, a lower number of expression is generally obtained, since the same coefficient can be present in 
different partial derivatives. 

The proposed algorithm starts from symbolic kinematic relations to write the expression of the 
mechanism potential energy V. Thank to this formulation, the exact partial derivatives of V can be 
computed, hence permitting to find exact balancing solutions. In practice, the constant coefficients 

  ,n x  are isolated from the analytical expressions of Eq. (A3) through the Matlab® command “coeffs”, 

and the condition given by Eq. (A4) is imposed. A solution is determined by solving Eq. (A4) in the 
unknowns mi and Kis (Matlab® command “solve”).  

It is worth noting that, except for Proc-2 and Proc-3, which exploit the symbolic solver, all the other 
operations performed within the algorithm are numerically computed. 

 
 



A.3. Generation of mechanism variants with balancing elements 
For a generic mechanism with L moving parts to which balancing elements can be attached, the number of 
variants with one counterweight, Ecw, is given by 

cwE L  (A6) 

whereas, the number of variants with one spring, Espr, is given by all the possible combinations of L+1 
members (since a spring can be attached to the fixed base as well) taken two at a time (since a spring 
connects two members): 
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Hence, the total number of mechanism variants with a number of balancing element, d, that satisfies the 
condition d ≤ Dmax is given by all the possible combinations of (Ecw +Espr) variants taken d at a time: 
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It should be noted that, since each variant does not admit repetitions (i.e. a single counterweight can be 
attached to each member, and a single spring can connect each couple of members), the maximum value of 
Dmax is equal to (Ecw +Espr).  

Equation (A6) clearly shows that the total number of mechanism variants to be generated and evaluated 
can grow quite fast with an increment in Dmax. In particular, under certain conditions, raising Dmax by one 
may determine an increment of even one order of magnitude in Etot, thus significantly increasing the 
computational time. Indeed, the execution of Proc-2 and Proc-3 has been proven quite demanding. 
Nonetheless, the computational time of the proposed algorithm is deemed acceptable. 

As for the case study presented in Section 3, by setting Dmax = 2, L = 7 and by excluding the fixed base 
from the possible spring connections, a total amount of 406 mechanism variant was generated and 
checked. In case Dmax was set to 3, a total of 3682 variants would be generated. 
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