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Abstract8

This work introduces a Bayesian approach for detecting multiple unknown change points over time9

in the spatially inhomogeneous intensity of a spatio-temporal point process with spatial and temporal de-10

pendence within segments. We propose a new method for detecting changes by fitting a spatio-temporal11

log-Gaussian Cox process model using the computational efficiency and flexibility of INLA, and stu-12

dying the posterior distribution of the potential changepoint positions. In this paper, the context of the13

problem and the research questions are introduced, then the method is presented and discussed in detail.14

A simulation study assesses the validity and properties of the proposed method, before the approach is15

applied to examine potential unknown change points in the intensity of radioactive particles found on16

Sandside beach, Dounreay, Scotland.17
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1 Introduction20

With this work, we aim at proposing a method for carrying out a changepoint analysis in the complex21

context of spatio-temporal point processes. Our study is motivated by questions on the monitoring and22

recovery of radioactive particles from Sandside beach, North of Scotland, due to the presence of a former23

nuclear reactor ?; the distribution of the particles and their behaviour over time in the offshore and24

foreshore areas are of interest for cleaning purposes. Over the past 15 years, two major changes in the25

equipment used to detect the particles have taken place, representing known potential change points.26

In addition, offshore particle retrieval campaigns are believed to have reduced the particle intensity for27

particles moved onshore with tides and currents with an unknown temporal lag, potentially generating28

multiple unknown change points in the intensity function. Questions on how to build a method able to29

detect changepoints in such a complex dataset are raised; the proposed method has to deal with the issues30

of spatial inhomogeneity, spatial dependence among points and temporal dependence of the process.31

1.1 Theoretical issues32

Changepoint analysis is a well-established area of statistical research, frequently applied in a tem-33

poral context, and less frequently over space. While some of the existing changepoint methods can34

potentially be extended to the general spatio-temporal context, for spatio-temporal point processes this35

branch of analysis appears to be as yet relatively unexplored.36

The basic assumption in a changepoint analysis is that data are ordered and split into segments, follo-37

wing the same model but under different parameter specifications ?. The other common assumption is38

that observations are i.i.d.. The aim of our work is to propose a method to find change points even when39

the mentioned assumptions do not hold. Modelling dependence within data segments in the context40

of unknown multiple change points is currently a challenge, and there is a need for fast approximate41

methods such as Integrated Nested Laplace Approximation (INLA), an alternative, computationally ef-42

ficient approach to MCMC methods to obtain the posterior distribution of both the number of change43

points and their positions [ref]. The computational speed and flexibility of INLA has not been exploited44

for a spatio-temporal changepoint analysis yet.45

Some substantial differences with regard to the standard changepoint analysis in time or in space have to46

be taken into account: firstly, an individual datum is not a single point but a pattern of points; secondly,47

the measured response variable is the point location. Frequently, point process data are collected over48

space, and it is not usual to have repeated measurements on the same observation window over time, in49

a number large enough to make a changepoint analysis sensible. Nevertheless, most of the studies on50

point processes aim at describing the behaviour of the intensity function, therefore its changes over time51

are certainly of interest, and the provision of tools for changepoint analysis on spatio-temporal processes52
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would enlarge the number of questions that can be answered. Furthermore, in this context both the issues53

of spatial dependence among points and of temporal dependence within time segments have to be faced,54

which add further complexity to the analysis.55

We do not have knowledge of a changepoint analysis carried over a spatio-temporal point process with56

recently developed techniques. For all the mentioned reasons, we believe a statistical analysis of change-57

point detection methods in the context of spatio-temporal point processes is a challenging and interesting58

study area.59

1.2 Background60

To our knowledge, the issue of dependence between data in a changepoint analysis has only been61

faced with Bayesian methods so far. Fearnhead (2006) proposes a method for simulating from the po-62

sterior distribution of multiple changepoints using a recursive technique that should theoretically extend63

to dependent data; when dependence is allowed, though, the segment marginal likelihood required by64

Fearnhead’s method usually becomes intractable. Including any type of dependence increases the com-65

putational complexity of the problem, and fast methods providing an accurate and tractable approxima-66

tion of the likelihood even in complex situations have to be developed. Recent work by Wyse, Friel and67

Rue ? extends the method to allow for dependence within segments, using Integrated Nested Laplace68

Approximation ? to face the well known difficulty in analytically obtaining the posterior distribution69

of the parameters. The authors combined recursive methods with INLA, to produce estimates for the70

segment marginal likelihoods, and approximations for the posterior of both the number of changepoints71

and their position.72

Our work is set in the context of spatio-temporal log-Gaussian Cox point processes (LGCPs). Cox73

processes assume the point distribution over space (and potential aggregation) is due to stochastic envi-74

ronmental heterogeneity, modelled as a random intensity function Λ(s) ?; given Λ(s), the distribution of75

points follows a inhomogeneous Poisson process. In LGCPs the logarithm of the intensity surface over an76

observation window W is assumed to be a Gaussian (latent) field Z(s), i.e. Λ(s) =
∫

W λ(s)ds = exp(Z(s),77

and conditional on Z(s) the number of points X ∼ Poi(Λ(s)). LGCPs constitute a very flexible class of78

models that can be extended to the spatio-temporal case and implemented using INLA ?. The INLA79

approach has several fundamental advantages: above all, it is an effective computational tool for model80

implementation; this is fundamental in our context as the dataset is very complex (every single datum is a81

point pattern), therefore computations easily become very slow and demanding. Moreover, the efficiency82

of INLA allows an extension from the temporal to the spatio-temporal context; furthermore, the likeli-83

hood values resulting from different changepoint positions can be evaluated, and a posterior distribution84

can be approximated to choose the best change-point position a posteriori.85

We address the analysis of temporal change points in a spatially inhomogeneous intensity function defi-86
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ning a point process observed over a window. An approximate likelihood based methodology is develo-87

ped to detect change points and obtain estimates of the two-dimensional intensity function at each time88

point. We present a simulation study of this approach in the spatio-temporal point process context; unlike89

traditional changepoint detection algorithms (see ?), with this method the 3 dimensions of the problem90

(two spatial and one temporal) are maintained. We propose two different Bayesian techniques allowing91

decisions on whether, how many and when temporal change points occur.92

2 Methodology93

2.1 Models94

We define a change point under four increasingly complex point process models, and consider the95

case of both a single changepoint and multiple change points at unknown locations; we discretise the96

observation window into a fine grid, and define yts ∼ Poi(|C|λts) as the number of points at time t =97

1, . . . ,T in cell s = 1, . . . ,S, where |C| is the cell area. We initially consider a model with a fixed effect98

which assumes a spatially homogeneous intensity λt ; under each hypothesis (for the alternative, the99

simple case of a single change point is displayed) we model the logarithm of the intensity function λ as:100

H0 : log(λt) = µ+ εt for t = 1, . . . ,T

H1 : log(λt) = µ1 + εt for t < τ∗

log(λt) = µ2 + εt for t ≥ τ∗

(1)

where µ is the fixed effect and ε is an unstructured error term. Under H0 all values over both space and101

time depend on a single value for µ, while under H1 µt is constant over space but allowed to vary over102

time. Note that a single change point in location τ∗ splits the dataset into two time segments with a103

different value for the intensity function (i.e. two equations under the alternative hypothesis), so for a104

single change point we first have to detect where the change occurs, and then we estimate two values for105

µ. In the more general case of M ≥ 2 change points, the equation under H1 is split into M+1 segments,106

time intervals defined by the ordered changepoint locations τ1,τ2, . . . ,τM. Note that each changepoint107

position τm, m = 1, . . . ,M, corresponds to the first point of a new segment.108

The second model adds a temporal effect:109

H0 : log(λt) = µ+φ+ εt for t = 1, . . . ,T

H1 : log(λt) = µ1 +φ1 + εt for t < τ∗

log(λt) = µ2 +φ2 + εt for t ≥ τ∗

(2)

and within each time segment φ is a random effect modelled as an AR(1), i.e. the logarithm of the110

intensity function at every time point is supposed to depend on its own value at the previous time. Hy-111

perparameters are needed for the precision τφ ∼ Gamma(αφ,βφ). Other time dependence structures can112
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be easily modelled using INLA.113

The first two models both consider a spatially homogeneous intensity function, therefore there is no spa-114

ce index s because at each time point the intensity takes a single value over the window. We now allow115

the intensity to vary over space as well as over time, and build a model with a spatial effect:116

H0 : log(λts) = δ+ψs + εts for t = 1, . . . ,T and s = 1, . . . ,S

H1 : log(λts) = δ+ψ1s + εts for t < τ∗ and s = 1, . . . ,S

log(λts) = δ+ψ2s + εts for t ≥ τ∗ and s = 1, . . . ,S

(3)

where δ is a common intercept and ψs describes spatial dependence; it is indexed by s as we assume117

that the basic space unit is the grid cell, and that the intensity function is constant inside the cell. This118

approximation is needed for tractability reasons, but thanks to INLA we can build as fine a grid as we119

wish without encountering computational issues, so that the approximation error is very low and can be120

controlled. Under H1, a single value defines the intensity for each cell over all the time segment, and121

after the change point the value for each cell changes. The spatial effect is modelled as an intrinsic CAR,122

i.e. as a Random Walk in two dimensions on a lattice; the model is easily specified with INLA, with a123

neighbourhood structure that gives non-zero (decreasing) weights to the first 12 neighbours in the lattice.124

This produces a very smooth spatial structure which is suitable for LGCPs, where the hypothesis is that125

there is a smooth underlying driver defining the intensity function. Again, the precision hyperparameter126

can be defined as τψ ∼ Gamma(αψ,βψ).127

For the fourth, most complicated model we consider an offset term, a temporal effect and a spatial effect,128

allowing for spatially inhomogeneous intensity:129

H0 : log(λts) = δ+φ+ψs + εts for t = 1, . . . ,T and s = 1, . . . ,S

H1 : log(λts) = δ+φ1 +ψ1s + εts for t < τ∗ and s = 1, . . . ,S

log(λts) = δ+φ2 +ψ2s + εts for t ≥ τ∗ and s = 1, . . . ,S

. (4)

Please remember that in these models the temporal dependence is only assumed to be within, not across,130

segments. The precision parameter for both temporal and spatial effects has a Gamma prior that is by131

default set as non-informative but can be tuned according to a specific context.132

When looking for a single change point, each model is run one time for every possible changepoint133

position, i.e. for every time point with a non-zero prior probability of being a change point. By fitting134

every model with INLA, a series of likelihood values is then produced, and normalised (in absence of135

prior knowledge) to obtain the posterior distribution of the change points: this gives, for every time136

point, the posterior probability of being a change point. Once the posterior is produced, methods for137

identifying significant change points are proposed in Section 2.2. Since each model is run many times138

assuming different changepoint positions, there is a need for efficient computational tools in order to139

obtain results in a reasonable time, and that is one of the reasons why we fit the models using INLA.140

The approach for detecting multiple unknown change points is described in Section 2.3.141
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2.2 Changepoint detection methods142

We propose two different Bayesian techniques for assessing the presence of change points.143

The first option derives from the Bayes Factor, used in absence of prior knowledge to decide if there is a144

change point ?. The Bayes Factor can be written as145

γ =
∑τ π(τ)Q1(τ)Q2(τ)

L0
(5)

where Q1(τ) and Q2(τ) are the segment maximum likelihood values, i.e. the maximum likelihoods for146

the two segments resulting from a changepoint position in τ ∈ {1, . . . ,T}; for every value of τ, a pair of147

values Q1(τ) and Q2(τ) is returned. Besides, π(τ) is the prior probability of the time point τ of being a148

change point, and L0 is the likelihood value obtained by running the model once under H0.149

The Bayes Factor expresses the evidence showed by data in support of the alternative model with regard150

to the null model. Since independence across segments is assumed, for every changepoint position the151

maximum likelihood value under the alternative hypothesis is L1(τ) = Q1(τ)Q2(τ). The formula (5) can152

be extended to the case of a non-vague prior distribution by taking the posterior ratio, i.e. the product of153

likelihoods and prior ratios.154

The prior weight π(τ) in the nominator sum shrinks each alternative likelihood value, still every element155

in the sum will be positive, and the greater the nominator is, the more likely it is to reject H0. We choose156

a more conservative condition, by substituting the sum in the numerator with a single term:157

γτ∗ =
π(τ∗)Q1(τ

∗)Q2(τ
∗)

L0
=

π(τ∗)L1(τ
∗)

L0
(6)

where τ∗ is the most likely changepoint position, i.e. the one returning the highest likelihood value158

under H1, π(τ∗) is the prior distribution on its position, and L1(τ
∗) is the maximum likelihood under the159

alternative hypothesis: a value for the likelihood is obtained for every potential changepoint position τ,160

the highest one is chosen and the corresponding location is the τ∗ to test. Equivalently, we can take the161

logarithm of (6)162

γ
′
τ∗ = log(π(τ∗))+q1(τ

∗)+q2(τ
∗)− l0 = log(π(τ∗))+ l1(τ∗)− l0. (7)

For the model with no change points, the maximum log-likelihood value under H0 is greater than the163

maximum log-likelihood value under H1, therefore the absolute threshold for this statistic, irrespective164

of the model used, is zero. Indeed, differently from the frequentist likelihood ratio, when using the Bayes165

Factor models with more parameters do not necessarily produce higher likelihood values, as Bayes fac-166

tors naturally incorporate penalization for model complexity, so there is no need for an extra penalization167

term as in AIC or SIC. If γ
′
τ∗ > 0, we reject the null model of no change points, and the change point is168

estimated to occur at τ∗.169

170

7



An alternative option we propose is another typical Bayesian way of taking decisions, i.e. by looking171

at the posterior distribution and fixing a posterior probability threshold for significant values: once the172

resulting curve is plotted, a threshold value is fixed in order to take decisions on which time points are to173

be considered change points.174

As for the threshold choice, it is to bear in mind that greater values (closer to 1) will lead to more175

conservative conclusions, and smaller values (closer to 0) will detect change points more easily. Hints176

for discussion on the choice of the threshold are given in Section 5. This method has the advantage177

of being visually immediate and easy to explain to non-statisticians; moreover, it is very flexible as the178

threshold choice can be adapted to the model fitting the data and to the analysis context. In the special179

case of a known changepoint position to test, the method does not change: a posterior probability curve180

will be estimated all the same, and the threshold will be only used to evaluate the significance of that181

specific changepoint position.182

2.3 Binary segmentation algorithm183

Both the models presented in Section 2.1 and the detection methods presented in Section 2.2 refer184

to a single changepoint search. The method can be extended to a multiple unknown number of change185

points, the most complicated type of changepoint analysis. The hypotheses become:186

H0: no change points187

H1: ≥ 1 change points.188

As for the single changepoint detection, note that H1 is not bound to a specific changepoint position; the189

alternative hypothesis is very complex because it considers the presence of change points first, but then190

the number and positions also have to be estimated. If H0 is rejected, τ∗ = (τ∗1, . . . ,τ
∗
M) is a M×1 vector191

containing the estimated changepoint positions, a subset of (1, . . . ,T ).192

The simplest and most straightforward way of running a multiple changepoint analysis is to use a binary193

segmentation method. For a general introduction to these methods we refer to [killickeckley], and in194

particular for point processes to the work by [park2012]. An alternative option would be to perform a195

simultaneous changepoint search; this method is discarded as, with our techniques, it proved to perform196

poorly as it tends to underestimate the number of change points: different change points will refer to197

changes of different magnitudes in the intensity function; when the posterior probability curve is nor-198

malised, posterior peaks will tend to flatten, and changepoint positions corresponding to smaller, but not199

negligible, changes happen to be considered non-significant. A binary segmentation algorithm allows to200

find local maxima and has proved itself better performing in our analysis.201

The idea of a binary segmentation procedure, and the key to its simplicity, is to split the multiple search202

into a series of subsequent single changepoint searches. It is an iterative procedure, which in general can203

be structured into steps:204
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1. Run a changepoint analysis on the whole data series Y , testing the simple hypotheses205

H0: no change points206

H1: one change point.207

2. a) If no change points are found, stop the algorithm.208

b) If one change point is found, its position is defined as τ∗0, and data are split in correspondence209

of τ∗0 into two segments, YA ([S× (τ∗0−1)]×1) and YB ([S× (T −τ∗0+1)]×1). For each of the two210

resulting segments, go back to step 1.211

3. a) If no more change points are found, the dataset has a single change point in τ∗0.212

b) If change points τ∗A and/or τ∗B are detected, go back to step 2b and repeat the procedure for each213

segment containing a change point.214

4. Repeat until either no more change points are detected in any segment, or a pre-fixed number of215

change points is reached, or a minimum segment length is reached for all segments.216

Many binary segmentation methods can be built, according to the criterion for detecting a change point217

and to the criterion for stopping the search; what they have in common is that at each step the algorithm218

runs a single changepoint search for every segment. Intuitively, the analysis can become computatio-219

nally very demanding as T and M become large, and methods are available for reducing time and me-220

mory storage requirements [ref needed]. This is nevertheless the general idea we follow, and again the221

computational efficiency of INLA makes this algorithm feasible even for such complex spatio-temporal222

data.223

3 Simulation study224

3.1 Simulation design225

In order to assess and compare the performance of the two methods proposed in Section 2.2, we carry226

out a simulation study covering different situations. We fix a time series of T = 50 time points, and a227

grid of S = 20×20 = 400 cells. The observation window is a square of area 100 and the initial intensity228

value is λ = 1, generating 100 points on average in the window. We allow for spatial inhomogeneity: the229

value for λ gives the average number of points at each time point, but the spatial structure changes over230

the window. More precisely, we build a smooth spatial trend which is stronger in the top-right corner and231

then progressively decreases toward the bottom-left corner (see Fig.1 for an example before and after the232

change point). We build the series assuming that the spatial structure is the same over time up to a scale233

parameter, and the changepoint detection identifies the time point that corresponds to the change of scale234

in our data.235
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We generated both iid and AR(1) data series, under the hypotheses of no change point, one change point236

and three change points. For the single changepoint series, we tried two different change magnitudes: a237

big one, from λ1 = 1 to λ2 = 2, and a small one, from λ1 = 1 to λ2 = 1.2. As for the multiple changepoint238

series, we set two positive changes and a negative one: the segment intensity values are λ1 = 1, λ2 = 1.4,239

λ3 = 2.3 and λ4 = 2. The last change is extremely small, to further test the performance of the detection240

methods. Each one of these time series was replicated 100 times. A summary of the simulation design is241

in Fig. 2.242

Both iid and time dependent data are generated as their behaviour is very different for what concern243

change points. Fig. 3 shows some time series made by counting the number of points for each time244

point. As it can be seen, iid data keep very close to the initial set value over the series, and the change245

points are easily recognizable. On the contrary, AR(1) data tend to drift far away from the initial value,246

and are far more variable. On one hand, this can result in the detection of spurious change points, i.e.247

change points that are due to the variability of the series and not to external factors; on the other hand248

changes set in the simulation may not be identifiable. It is therefore of interest to test the methods on249

both types of data.250

On all the generated time series we fit the four models described in Section 2.1 and try to detect change251

points with both methods described in Section 2.2. All model fitting is done using INLA.252

3.2 Simulation results253

The two methods’ performance was evaluated according to type I and type II errors, number and254

position of detected change points and values of the intensity estimates.255

As for the errors, a summary of the performance is in Fig. 4. In general, the Bayes Factor method256

performs very well as regards the first two models: in most cases type I errors are very small (with the257

exception of one case with time dependent data, but we expect poorer performance on these data, for258

the reasons introduced in Section 3.1) and type II errors are negligible in all cases. When we fit more259

complicated models including spatial effect, though, the performance is very poor: the method is too260

conservative and does not detect change points, irrespective of their magnitude.261

The posterior threshold method holds a better performance over all models; this is sensible, as the th-262

reshold value can be tuned according to the model. A few ’grey’ zones are produced, but the overall263

conclusions are correct in most cases, and there is at least some ability to detect changes in all situations.264

A further summary of this performance can be found in Fig. 5: the first row in each table concerns data265

generated under H0 and the second row concerns data generated under H1, therefore numbers have to266

sum to 100 by row. It is very plain that the PT method has a better overall performance: as regards null267

data (first row), the behaviour of the two methods is very similar, but the PT method is 20 percentage268

points better in finding change points in H1 data (second row).269
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As for the number of detected change points, results are linked, but not necessarily identical, to the pre-270

vious results: committing or not a type II error only concerns the rejection of H0 and tells nothing on271

the number and positions of change points found, which is of special interest in the multiple changepoint272

search. Fig. 6 shows a summary of the results. We can see that as far as H0 data are concerned, results273

are correct in all cases: even in situation where some change points were found, as in AR(1) data, all274

the positions were different, and this indicates they are spurious change points and not ’true’ ones. As275

regards the detection in H1 data, the BF method suffers from the above mentioned issue: it is very precise276

in detecting the true change(s) in the first two models, but is too conservative when spatial dependence277

and inhomogeneity is introduced. The PT method performs much better: when change points are not278

detected in the majority of replicates, it is due to the small magnitude of the change, which means the279

method is not too sensible; despite the small size, a percentage of replicates still had a change detected.280

The only wrong conclusion concerns the multiple changepoint iid data series under the most complicated281

model; in all other cases, conclusions are very sensible and the detected position are correct or as close282

as makes no difference. It is interesting to note that spurious changes in the time dependent data do not283

affect the conclusions.284

Lastly, a few comments about the intensity estimates, which again depend on the above presented resul-285

ts. A summary of the estimated values is given in Fig. 7. Note that the intensity is a inhomogeneous286

function which takes different values over space. In this table, for brevity reasons, only the mean value287

is reported, but the mean range (over the replicates) and credibility bands are also available. Given the288

detected change points, estimates are very accurate over all the simulated scenarios: when a change point289

was not detected, values are an average between the two segments’ true values, and when a change point290

was only detected in part of the replicates (as it happens with very small changes), the true magnitude of291

the change is shrunk. In all cases the correct (increasing or decreasing) trend is captured. It is possible292

to see an example of the produced estimates in Fig. ??: it represent a multiple changepoint data series,293

where the above panels show the true values for the intensity in the four segments, and the below panels294

show the three segments estimated by INLA, after detecting two change points (the last change has a295

very small magnitude and was not detected).296

After assessing the performance of the methods, we applied both of them to the motivating dataset.297

3.3 Extension: changes in the spatial structure298

All the simulated data series are generated taking a constant spatial structure for the intensity function299

and allowing for a change in scale, i.e. a change point corresponds to a greater or smaller number300

of points in the window, which follow the same spatial distribution. We are interested in relaxing the301

assumptions and allowing the intensity function to change in space as well, as it happens in many real302

situations. This might lead to two different types of change: a change in structure, when the overall303
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number of points remain approximately the same but the spatial distribution changes, and a change in304

both scale and structure.305

We believe our methods hold over this general situation as well: when looking for a change with the306

proposed algorithms, we never specify that we are looking for a different number of points. We try307

and split the data at all different time points and we look for the single equation (no change point) or308

M+1 equations (M change points) that describe the dataset best, irrespective of the type of change that309

occurred. Therefore, if we use a model that includes a spatial effect, we expect our methodology to be310

able to identify change points in both space and time.311

For studying this situation, we only worked on inhomogeneous data generated under the alternative312

hypothesis of one change point. The spatially homogeneous case is of no interest here, and if the method313

works for a single changepoint search it is straightforward to extend it to multiple changes. We used314

the same values for T , S and W and the change point is again set in the centre of the time series. We315

cover both cases of only spatial change and spatial plus scale change. An example of generated data can316

be seen in Fig 8. As expected, results are very good and show that the methods are able to detect all317

types of change. A summary of the performance of the methods in terms of power is displayed in Tab318

9. As expected, the first two models do not perform very well in detecting a spatial change (yellow area319

in the table), as the spatial effect is not included and they assume the intensity function is constant over320

time. There are no substantial differences in the performance of the BF and PT method. It is nevertheless321

interesting to point out that, in the minority of cases where the change point is detected, it is in the correct322

location.323

The spatial and scale change is correctly detected in all replicates even in the homogeneous models, as a324

change in the number of points is recognized as change point over all models.325

The most interesting result is that, as soon as the spatial effect is included (model 3 and 4), conclusions326

are perfectly correct. The BF method performs even better than in the only-scale change situation, as it327

does not suffer from too much conservationism.328

The INLA estimates, again, reproduce very accurately both the scale and the spatial structure of the time329

segment intensity function in all cases.330

4 Particle data331

Since the 1950s, Dounreay has been the site of several nuclear research establishments, because of332

its isolation for safety reasons. In 1994, the last reactor ceased operation and the area is currently being333

decommissioned (http://www.dounreay.com). Radioactive particles have been found on local beaches in334

the North of Scotland since the 1990s as a result of historic practices during nuclear fuel reprocessing at335

the Dounreay plant. The data set used gives the particles’ locations on one of the local beaches, Sandside336
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beach, during each of the years of monitoring. The temporal data series is made of yearly point pattern337

realizations, and additional information about the retrieval and radioactivity level also labels each particle338

once it has been collected and examined. The underlying intensity and its spatial structure are of interest,339

along with potential changes in its strength. The dataset presents some difficulties when a changepoint340

analysis is carried out: the time series is not long (T = 15) and some yearly patterns present very few341

points. Still, the questions are of interest, and the method performance has already been tested over342

simulated data.343

An exploratory analysis shows that Cox processes fit data very well; in particular, the flexible class of344

log-Gaussian Cox processes is realistically suitable for the problem as the distribution of particles could345

be due to an underlying driver (tides and winds). Moreover, it is very straightforward to complicate these346

models by adding fixed, random of smoothed effects to the structured predictor; the estimation with347

INLA is very fast (and precise) even for complex models and this allows to try many different models348

without high computational effort.349

4.1 Results on particle data350

Table 4.1 and 4.1 display a summary of the number and positions of detected change points in the351

data series for both a single and a multiple search.352

353

Model Change point (BF) Change point (PT)

Fixed 2006 2006

Temporal 2003 2003

Spatial — 2006

Sp-temp — —

354

Model Change point (BF) Change point (PT)

Fixed 2003, 2006, 2012 2003, 2006, 2012

Temporal 2003 2003, 2006, 2012

Spatial — 2006, 2012

Sp-temp — —

355

Results must be interpreted carefully since the time series is very short, but they are sensible given356

the context. The first two detected change points correspond to the periods of equipment changes and357

produce an increase in the point intensity; this supports that the changes in equipment has significantly358

improved the probability of detecting particles. The third change point is very close to the end of the359
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series, therefore conclusions must be drawn with a special care; it gives a hint of a decreasing intensity,360

which could be related to the offshore retrieval campaign, suggesting a reduction of the arrival of parti-361

cles on Sandside beach.362

An example of the analysis output is given in Fig. 10: this shows the result for a multiple changepoint363

detection using the model including spatial dependence and the Posterior Threshold method. The po-364

sterior probability plot in the first panel shows that two significant change points have been detected, in365

2006 and 2012; the right hand side part of the figure shows a comparison between non-parametric kernel366

estimates and INLA estimates. This dataset is similar enough to the case covered by our simulation367

study: the spatial structure of the intensity function is inhomogeneous, but can be considered constant368

over time up to a scale parameter, with a low density value in most of the window and a hot spot in the369

bottom-right area. The reported scale of values shows that there is a significant increase in the intensity370

after 2006, and then a significant decrease in the last two years of the series.371

5 Discussion372

In this work, we presented a new method which is able to find unknown multiple change points in the373

intensity of a spatio-temporal point process. The novelty of our method lies in the ability of modelling374

both spatial and temporal dependence on such a complex point dataset.375

A few considerations can be done on the methodology we follow and the results we obtain.376

All the models presented in Section 2.1 are very simple, but they contain the key elements for the ana-377

lysis, i.e. spatial inhomogeneity, spatial dependence and temporal dependence. Once we find a method378

that allows to detect change points in these situations, it is straightforward to complicate the models by379

adding fixed effects, such as covariates, and random effects (in a limited number), up to very complex380

models able to give a good description of many real situations.381

As for the fitting with INLA, a log-likelihood value is returned for every fitting. What we are interested382

in, as in all Bayesian inference, is the posterior distribution. In our work, this is simply obtained by383

normalising the likelihood values, as we set non-informative priors on both number of change points384

and their positions. According to the specific context, different prior distributions can be set, and the385

posterior distribution is found by following the general Bayes rule of multiplying prior and likelihood386

and then rescaling in order to have a proper distribution.387

As for the threshold choice in the PT method, it is to bear in mind that greater values (closer to 1) will388

lead to more conservative conclusions, and smaller values (closer to 0) will detect change points more389

easily. The choice of the threshold can therefore be knowledge-driven, if information is available on the390

diffusion of change points in the data series. Note that useful knowledge can also be incorporated in391

the posterior through the prior distribution. Another important notion is that the height of peaks in the392
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posterior distribution depends on the length of the time series: since the curve must integrate to 1, longer393

T s will flatten its peaks. For example, Park et al. (2012 but CHECK REF!) use a threshold of 0.1 for394

a data series of T = 1000; the same value would certainly lead to the acceptance of too many change395

points in a shorter series. In order to find a sensible and not too arbitrary threshold h, it is possible to396

use simulated data under the null hypothesis for assessing the significance level α based on different397

values of h. Once we find a value for h such that the significance level does not exceed a certain limit398

(usually α≤ {0.01,0.05,0.1}), we use that threshold on data generated under the alternative hypothesis399

in order to evaluate its power level, the ability to detect the correct change points and the accuracy of the400

estimates produced. This is the idea we follow in our simulation study.401

As for what concerns the results, there are multiple aspects we can focus on. In some changepoint ana-402

lysis, the interest only lies on where the change point(s) occur(s), and not on the parameter estimates.403

In many other cases, it is of interest to understand if the change is positive (an increase in the estimated404

values) or negative (a decrease in the estimated values). For all these cases, the accuracy of the estimates405

is not the main goal, and a good performing detection method is all that is needed. Nonetheless, we want406

to focus on the most general case, where the estimate (in our case, the intensity estimate) is of interest407

and an accurate estimation method is also required, once the change points are detected.408

The performance of INLA is very satisfactory as regards both computational time and produced esti-409

mates. Please note that the ability of detecting change points does not depend directly on the INLA410

approach, but depends on the choice of the detection method: we have seen that the Bayes Factor me-411

thod and the Posterior Threshold method have different performances, even if they are used on the same412

model, i.e. they are used on the same set of likelihood values produced by INLA. Given the detection413

of change points, INLA performs very well in reproducing both spatial trend and scale of values of the414

intensity function over all the simulation study. Note that the accuracy of INLA is high when the hypo-415

thesis underlying the use of INLA work: the random field has to be well approximated by a Gaussian416

field, with a smooth but limited spatial structure (i.e. a sparse covariance matrix for the parameters).417

As for the computational time, in the simulation study running the models took a few minutes for every418

replicate, on real data all results were obtained in less than 30 minutes in total. Should computational419

time issues be encountered, for example if working on an extremely long time series and an extremely420

dense dataset, there is an alternative to the grid approach, the Stochastic Partial Differential Equation421

approach (SPDE, see [ref]).422

This work is a first step toward spatio-temporal changepoint analysis. Many interesting extensions are423

possible. A further step would be to generalise the intensity function in order to allow its spatial structure424

to change over time and look for changes in structure as well as scale changes. Looking for improved425

version of the detection methods would be of interest; Wyse, Friel and Rue (2011) propose a combination426

of INLA and recursive techniques to look for multiple change points: an extension of this methodology427
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to the spatio temporal case may lead to better result with regard to the Bayes Factor method.428
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Figura 1: Simulated data - example

Figura 2: Table 1 - Simulation design
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Figura 3: Simulated time series - iid vs AR(1) data

Figura 4: Simulation results - type I and II errors
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Figura 5: Simulation results - type I and II errors - summary

Figura 6: Simulation results - Number and position of detected change points

Figura 7: Simulation results - Time segment intensity estimates
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Figura 8: Spatial change - examples of simulated data

Figura 9: Spatial change - summary of the results

Figura 10: Spatial model and PT method - results
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