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ABSTRACT Antibiotic resistance (AR) is indisputably a major health threat which
has drawn much attention in recent years. In particular, the gut microbiome has
been shown to act as a pool of AR genes, potentially available to be transferred to
opportunistic pathogens. Herein, we investigated for the first time changes in the
human gut resistome during aging, up to extreme longevity, by analyzing shotgun
metagenomics data of fecal samples from a geographically defined cohort of 62
urban individuals, stratified into four age groups: young adults, elderly, centenarians,
and semisupercentenarians, i.e., individuals aged up to 109 years. According to our
findings, some AR genes are similarly represented in all subjects regardless of age,
potentially forming part of the core resistome. Interestingly, aging was found to be
associated with a higher burden of some AR genes, including especially proteobacte-
rial genes encoding multidrug efflux pumps. Our results warn of possible health
implications and pave the way for further investigations aimed at containing AR
accumulation, with the ultimate goal of promoting healthy aging.

IMPORTANCE Antibiotic resistance is widespread among different ecosystems, and in
humans it plays a key role in shaping the composition of the gut microbiota,
enhancing the ecological fitness of certain bacterial populations when exposed to
antibiotics. A considerable component of the definition of healthy aging and longev-
ity is associated with the structure of the gut microbiota, and, in this regard, the
presence of antibiotic-resistant bacteria is critical to many pathologies that come
about with aging. However, the structure of the resistome has not yet been suffi-
ciently elucidated. Here, we show distinct antibiotic resistance assets and specific mi-
crobial consortia characterizing the human gut resistome through aging.

KEYWORDS resistome, aging, antibiotic resistance, extreme longevity, metagenome,
microbiome

Rates of infection with antibiotic-resistant microorganisms continue to rise world-
wide (1). In Italy, 2015 data showed that over 30% of infections were caused by

bacteria resistant to antimicrobial treatment for eight priority antibiotic-bacterium
combinations, with more than 10,000 of 33,000 attributable deaths in Europe per year
(2). Antibiotic resistance (AR) is therefore considered a critical public health threat (3).
A major cause of the spread and increase in AR is the use and abuse of antibiotics (4),
including those routinely used in the food industry, both for the veterinary sector and
for agriculture, where they are essential in controlling the state of infestation (5, 6).

Important evidence of the impact of antibiotic misuse/abuse and environmental ex-
posure on the development of AR was provided by the comparison of the gut resis-
tome (i.e., the set of genes/proteins conferring AR in the gut microbiome) of Western
populations with that of traditional communities (7, 8). Based on these reports, some
AR genes are shared among all sampled populations regardless of lifestyle, which
stresses the idea that natural environments are the first unquestionable reservoir of AR
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(9). However, the Western-type resistome pattern was found to support a “farm-to-
fork” etiology of resistance transmission. In other words, the habitual use of antibiotics
in food production and medicine in the Western world strongly affects the AR profiles
of the gut microbiome, favoring the emergence of new resistances (not limited to the
antibiotics to which we are exposed) and boosting their expansion through horizontal
gene transfer (8, 10, 11). This has profound implications for health, because the acquisi-
tion of AR genes by the gut microbiome may also involve pathobionts, i.e., minor
microbiome components with pathogenic potential, which can cause or promote dis-
ease under certain circumstances (12–14).

The relevance of antibiotic-resistant gut bacteria as an immediate and long-lasting threat
to human health is well recognized, especially in compromised individuals, such as preterm
infants receiving early-life antibiotics (15), elderly people with a debilitated immune system
(16), and patients with cancer or autoimmune disorders (17). However, little information is
available on the variation of the human intestinal resistome during healthy aging.

In an attempt to bridge this gap, here we profiled the human gut resistome of an excep-
tional cohort of semisupercentenarians, i.e., extremely long-lived individuals over the age of
105, compared to those of young adults, elderly, and centenarians, from a specific geo-
graphic area (Emilia Romagna region, Italy). Specifically, we characterized the type and target
of resistance and related bacterial taxa in fecal samples from 62 individuals falling within the
four age groups mentioned above. In addition to providing a fine characterization of antibi-
otic resistance within the gut microbiome of subjects at distinct times of life, our study
emphasizes a progressive age-related burden in AR genes assigned to potential pathobionts.

RESULTS

We previously identified considerable taxonomic and functional variability in the
gut microbiome structure of a geographically defined cohort of 62 urban individuals,
including 11 young adults (Y; mean age, 32 years), 13 younger elderly individuals (E;
mean age, 73 years), 15 centenarians (C; mean age, 100 years), and 23 semisupercente-
narians (S; mean age, 106 years) (18). Here, we profiled their gut resistome by analyzing
1 billion metagenomic reads from shotgun sequencing of fecal samples, with an aver-
age of 16 million (standard deviation [SD], 4 million) reads per subject. The reads were
mapped to a collection of AR proteins, which summarize and organize the resistance
databases of UniProt, CARD, and ARDB (see Materials and Methods). A total of 1,746
proteins were returned as best hits (from 12,567,041 mapped reads, with an average of
202,694 6 60,145 [SD] reads per sample) and then reduced to 377 after elimination of
those with fewer than 10 counts and filtering for subject prevalence of at least 40%.

The taxonomic composition of the gut resistome along aging. The four age
groups show separation in principal-coordinate analysis (PCoA) based on the Bray-
Curtis distance between the taxonomic profiles of the gut resistome at both the family
and genus levels (P = 0.0015 and 0.001, respectively; permutation test with pseudo-F
ratios, vegan R package) (Fig. 1a and d). The family-level structure of the fecal resistome
is dominated by a few taxa that normally abound in the human gut microbiota, i.e.,
Lachnospiraceae (mean percent counts per million [CPM] per group6 SD, 25.8%6 9.8% in
Y, 28.2% 6 13.7% in E, 17.9% 6 8.9% in C, and 17.6% 6 13.6% in S) and Ruminococcaceae
(15.2% 6 7.2% in Y, 13.1% 6 5.6% in E, 12.6% 6 7.0% in C, and 8.5% 6 6.7% in S), as well
as Bifidobacteriaceae (16% 6 12.4% in Y, 8.9% 6 12.8% in E, 13.0% 6 11.9% in C, and
20.5% 6 19.5% in S) (Fig. 1b). Compared to younger individuals, extremely long-lived peo-
ple show decreased contribution of AR reads assigned to Bacteroidaceae (S versus E,
P = 0.03, Wilcoxon test), Eubacteriaceae (C versus E, P = 0.0002; S versus E, P = 0.00001),
Prevotellaceae (S versus E, P = 0.02), and Veillonellaceae (S versus C, P = 0.045), along with an
increase in AR reads assigned to Enterobacteriaceae (S versus Y, P = 0.01) (Fig. 1c). The age-
related decrease in AR reads assigned to Bacteroidetes members was already evident at the
phylum level (S versus E and S versus Y, P# 0.029) (Fig. S1).

At the genus level, the core resistome structure (i.e., that shared by all age groups)
is essentially dominated by Bifidobacterium (18.4% 6 13.4% in Y, 11.0% 6 15.8% in E,
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FIG 1 Age-related variation in the taxonomic composition of the human gut resistome. Principal-coordinate analysis of Bray-Curtis
dissimilarities between the family (a) and genus-level (d) profiles of the gut resistome of young adults (Y), younger elderly individuals (E),
centenarians (C), and semisupercentenarians (S). Significant separation was found at both phylogenetic levels (P = 0.0015 and 0.001,
respectively; permutation test with pseudo-F ratios). Pie charts of the 25 most abundant families (b) and genera (e) for each group (Y, E, C,
and S). Boxplots showing the relative abundance distribution of significantly differentially represented families (c) and genera (f) between age
groups (Wilcoxon test, Bonferroni corrected P value). ***, P # 0.0001; **, P # 0.001; *, P # 0.05.
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15.1% 6 13.0% in C, and 22.5% 6 21.9% in S), Faecalibacterium (13.9% 6 7.8% in Y,
10.0% 6 6.6% in E, 7.7% 6 4.9% in C, and 6.1% 6 7.8% in S), and Collinsella (7.4% 6

5.2% in Y, 3.2% 6 2.2% in E, 4.4% 6 4.6% in C, and 4.7% 6 5.6% in S), but with a
decreased proportion of Faecalibacterium-assigned AR reads occurring with aging (S
versus Y, P = 0.02) (Fig. 1e and f). Compared to younger subjects, the semisupercente-
narian group also showed reduced contribution of AR reads assigned to Roseburia (S
versus E, P = 0.03) and Ruminococcus (S versus E, P = 0.02), which are other typically
health-associated, short-chain fatty acid-producing taxa (19), as well as to Eubacterium (S
versus E, P = 0.00002) andMegasphaera (S versus E and S versus Y, P# 0.01). On the other
hand, the fecal resistome of extremely long-lived people is enriched in AR reads assigned
to Eggerthella (S versus E, P = 0.01) (Fig. 1f). A linear regression analysis (with age as a con-
tinuous variable) confirmed most of the associations found, i.e., that age was positively
associated with AR reads assigned to Enterobacteriaceae and Eggerthella but negatively
associated with those of Bacteroidaceae, Eubacteriaceae, Faecalibacterium, and Roseburia
(Bonferroni corrected P value # 0.05) (Fig. S2). When exploring the impact of gender, we
did not find a significant separation between females and males in the Bray-Curtis-based
PCoA of the gut resistome at the family and genus levels (P$ 0.45, permutation test with
pseudo-F ratios) (Fig. S3), thus suggesting a limited effect on the overall compositional
structure of the gut resistome, at least in our population.

Resistome profile and age group-specific antibiotic resistance determinants.
Consistent with taxonomic data, the Bray-Curtis PCoA on protein-level resistome profiles
provides evidence of an age-related trajectory (P = 0.012, permutation test with pseudo-F
ratios) (Fig. 2a), suggesting the presence of age group-specific AR determinants (ARDs).
As for the resistome profiling, a summary of the results in terms of mechanisms of resist-
ance (using Antibiotic Resistance Ontology [ARO]) and antibiotics is shown in Fig. 2b. In
particular, antibiotic efflux (ARO:0010000) constitutes the prevailing resistance mecha-
nism accounting for 44.1% of the mechanisms identified. Alteration of the antibiotic tar-
get (ARO:0001001) is the second most represented mechanism (29.1%), including both
mutations and enzymatic modification of the target site. Finally, antibiotic inactivation by
bacterial enzymes (ARO:0001004) is the third most represented mechanism, accounting
for 12.3% of the total. A core set of 8 ARDs, with mean relative abundance above 2%
across all groups, was then identified (Fig. 2c). In particular, 6 core ARDs encode ATP-bind-
ing cassette (ABC) antibiotic efflux pumps (macB, bcrA, efrA, efrB, sav1866, and msbA), 1
encodes a quinolone resistance protein (mfd), and 1 encodes an isoleucyl-tRNA synthe-
tase (ileS) conferring resistance to mupirocin.

A total of 39 age group-specific ARDs were next identified, defined as AR determi-
nants that were differentially represented in at least one comparison between two age
groups (with log2 fold changes of #22 and $2). Twenty-nine of these discriminating
ARDs were annotated as coding for efflux pumps, 7 as antibiotic inactivating, 2 as antibi-
otic target modifying, and 1 as target protecting. The full list of age group-specific ARDs,
including a description of their mechanisms, is reported in Table S2, while differential
results for each age group comparison are shown in Table S3. Interestingly, compared to
that of the younger group, the fecal resistomes of elderly individuals, centenarians, and
semisupercentenarians show an overall larger amount of ARDs for sulfonamide (leuO)
and multidrug, particularly bcr, emrD, emrY, mdfA, mdtG, mdtL, robA, and tolC (P # 0.03,
Wald test). Seven multidrug ARDs are specifically discriminatory for semisupercentenar-
ians (cpxA,mdtA,mdtB,mdtC,mdtD,mdtK, andmdtN) (P# 0.008).

Furthermore, the semisupercentenarian group showed higher levels of ARDs con-
ferring resistance to rifampin (rphB) and tetracycline (tcr3 and tetD) (P # 0.02). On the
other hand, compared to that of semisupercentenarians, the resistome of young adults
was enriched in ARDs for beta-lactam antibiotics (Bl2e_cepa, cblA-1, and OXA-34),
whereas that of elderly subjects was enriched in ARDs for macrolide-lincosamide-strep-
togramin (ermB and ermF) (P# 0.05).

An overdispersed Poisson generalized linear model on the ARD count data allowed
the identification of 18 significant ARDs (Table S4), in accordance with the results
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obtained with the Wald test (DESeq2) (Table S3). Furthermore, we tested a Poisson
regression model with ARD count data and age (as a continuous variable) and identified
25 ARDs significantly associated with age (Fig. S4 and Table S5), confirming as many
ARDs obtained by the Wald test (DESeq2). In total, we retained 26 ARDs (acrE, arnD,
Bl2e_cepa, cblA-1, emrD, ermB, leuO, lnuA, mdfA, mdtG, mdtH, mdtL, mdtP, mdtQ, mexW,
OXA-34, robA, tolC, mdtA, mdtB, mdtC, mdtN, ermF, bcr, acrD, and emrB), validated by at
least two of the three methods presented (DESeq2, Poisson regression model, and over-
dispersed Poisson generalized linear model) (Fig. 3a). The main results discussed above
were confirmed, except for ARDs conferring resistance to rifampin and tetracycline.

When looking at the taxonomic classification of these ARDs, we found that they
were differently assigned even at the phylum level, depending on the age group
(Fig. 3b), hinting at the establishment of age group-specific topological patterns in the

FIG 2 The human gut resistome across aging. (a) Principal-coordinate analysis of Bray-Curtis dissimilarities between the gut resistome profiles of young
adults (Y), younger elderly individuals (E), centenarians (C), and semisupercentenarians (S). A significant separation was found (P = 0.012, permutation test
with pseudo-F ratios). (b) Hierarchical pie plot, with the external pie chart depicting the resistance mechanisms of the whole gut resistome data set, while
the internal donut recalls the type of antibiotics for each mechanism, with annotation obtained from the Antibiotic Resistance Ontology. (c) The core
human gut resistome consists of 8 antibiotic resistance determinants with mean relative abundance above 2% across all age groups.
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FIG 3 Age group-specific antibiotic resistance determinants. (a) Heat map computed on the abundances of counts normalized by library size and
log2 scaled. The color code ranges from blue (low abundance) to red (high abundance). The samples are in columns, while the rows show the
gene names of the antibiotic resistance determinants (ARDs) significantly associated with age, as identified by the three methods used (DESeq2,
overdispersed Poisson generalized linear model, and Poisson regression model; Bonferroni corrected P value # 0.05). Clustering was computed

(Continued on next page)
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gut resistome. In particular, we observed a higher contribution of ARDs from
Proteobacteria (S versus Y, P = 0.002; S versus E, P = 0.02, Wilcoxon test) and a lower
contribution of ARDs from Bacteroidetes (S versus Y, P = 0.01; S versus E, P = 0.02) in
semisupercentenarians than in younger adults. It is worth noting that 46.3% of proteo-
bacterial ARDs encode multidrug efflux pumps of the species Escherichia coli. On the
other hand, the most represented ARDs in the fecal resistome of young adults are
beta-lactamases from Bacteroidetes species (Y versus S, P = 0.03).

Correlation network analysis between antibiotic resistance determinants and
bacterial species. The aforementioned findings were further highlighted by a correla-
tion network analysis, showing associations between microbial species and ARDs.
Specifically, the network in Fig. 4 shows the co-occurrence patterns between the age
group-specific ADRs as identified above, and the resistome relative abundances sum-
marized at the species level. The nodes represent the ARD entities or the species. Six
connected components (i.e., nodes interconnected by edges and spatially separated
by other groups of nodes and edges) with more than two nodes were identified. The
highest density connected component contains 87% of nodes resistant to multidrug,
of which 96% are annotated with antibiotic efflux mechanism and 4% (arnD) with anti-
biotic target protection mechanism (ARO:0001003). The AR protein families linked to E.
coli are the major facilitator superfamily (MFS), accounting for 91.3% of E. coli links, and
the resistance-nodulation-cell division (RND) antibiotic efflux pump family (4.3% for
acrD). E. coli was found to have the highest diversity in terms of ARDs, with links also to
determinants conferring resistance to sulfonamide and glycopeptide drugs. On the
other hand, Bacteroidetes species, including Alistipes (from the family Rikenellaceae), are
linked to beta-lactamases, with Bl2e_cepa, cblA-1 and OXA-34 accounting for 80% of
the nodes, and to the RND antibiotic efflux pump family (mexW), accounting for the
remaining 20%. The main results were validated by performing the correlation analysis
with the SparCC method, using the 26 ARDs validated by at least two of the three
methods in our ensemble approach (Fig. S5). Specifically, 159 significant associations
from the Spearman correlation method were confirmed, with E. coli and species from
the genus Bacteroides showing the largest number of significant connections.

DISCUSSION

To the best of our knowledge, here we reconstructed the longest metagenomic tra-
jectory of the human gut resistome through aging, up to extreme longevity, based on
data from the gut microbiome of subjects falling into different age groups (young
adults, elderly, centenarians, and semisupercentenarians). Our cohort was recruited
from the Emilia Romagna region (northern Italy), and its gut microbiome was previ-
ously characterized in terms of taxonomic and functional structure (18, 20).

By cross-sectional analysis of age groups, we found that the taxonomic structure of
the resistome largely overlaps with that of the microbiome, as AR-coding genes are
mainly harbored by the dominant families of the gut microbial ecosystem, such as
Lachnospiraceae and Ruminococcaceae, along with Bifidobacteriaceae. This could be the
result of extensive microorganism-microorganism cross talk within the gut micro-
biome, with the spread of AR genes via horizontal gene transfer, potentially fueled by
antibiotic exposure. On the other hand, in line with gut microbiota data (20), the resis-
tomes of extremely long-lived people were found to be depleted in AR reads assigned
to beneficial, short-chain fatty acid-producing taxa (i.e., Faecalibacterium, Roseburia,
and Ruminococcus) (19), while they were enriched in those assigned to potential patho-
bionts, such as Enterobacteriaceae members and Eggerthella. These associations were
also confirmed considering age as a continuous variable.

FIG 3 Legend (Continued)
over Euclidean distances by the Ward linkage method. (b) Bar plots showing the normalized abundance (read counts per million normalized by
sequencing depth) of age group-specific ARDs in the gut resistomes of young adults (group Y), younger elderly individuals (E), centenarians (C),
and semisupercentenarians (S). Phylum-level assignments of ARD reads are also shown. ARDs are organized by drug to which resistance is
conferred.
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In light of the increased vulnerability of older people to infectious diseases (21), the
emergence of resistant taxa could pose a serious threat to health, as well as stressing
the need for resistome mapping in clinical practice, for improved efficacy of antimicro-
bial treatments, as has recently been discussed (17). As for resistance mechanisms, the
gut resistome is mainly composed of genes conferring resistance through antibiotic
efflux, along with alteration of the antibiotic target and antibiotic inactivation by bac-
terial enzymes. In particular, 6 ARDs involved in antibiotic efflux are similarly repre-
sented in all subjects regardless of age, likely being part of the core human gut resis-
tome. Interestingly, through an ensemble approach utilizing analytical methods that
treat age as a categorical or continuous variable, we found that aging is associated
with an increasing abundance of some AR genes, including, most notably, ARDs for
multidrug and sulfonamide resistance. This is especially true for semisupercentenar-
ians, who showed the highest load of multidrug ARDs. Although aware that different
subjects have been profiled at different times of life, we speculate that this may repre-
sent an adaptive response of the human holobiont to lifelong exposure to antibiotics,
including those used through the food chain and for health reasons. While being a

FIG 4 Co-occurrence network between age group-specific antibiotic resistance determinants and related bacterial species. Nodes identify ARDs (color
coded by the antibiotic to which they confer resistance) or the bacterial species assigned to them. Only connected components with more than 2 nodes
are depicted. The node size is proportional to the node degree (i.e., the number of edges connected to the node), and the links are Spearman
correlations (see Materials and Methods).
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model of healthy aging, long-lived people are indeed very likely to have been more
exposed to antimicrobials, also due to aging-related physiological processes, such as
immunosenescence, which contributes to increased susceptibility to infections, poten-
tially implying a greater need for medicines, including antibiotics (22, 23).

On the other hand, AR is an ancient and inherent bacterial trait that predates the
human use of antibiotics (24), and AR genes are well known to be widely distributed in
any environment inhabited by bacteria, including soil, air, and even household dust
(25, 26). In particular, built environments have recently been appointed as an over-
looked reservoir for AR, with exposure to cleaning chemicals leading to accumulation
of AR genes, especially those involved in antibiotic efflux, along with loss of microbial
diversity and an overall higher level of virulence (27, 28). It is thus tempting to specu-
late that the greater abundance of AR genes in the gut microbiomes of centenarians
and semisupercentenarians, i.e., people with reduced mobility who spend more time
at home (18), is the result of a top-down selection process connected not only to
health status and medical history but also to lifestyle habits, including stable and con-
stant living settings within homes, with longer and more extensive exposure to various
chemicals. Consistently, we previously found that their gut microbiomes are enriched
in several pathways of degradation of pervasive xenobiotics in Western societies,
including those contained in common consumer and other indoor products (18). As far
as the anamnesis is concerned, as expected, it was not possible to reconstruct the his-
tory of drug intake throughout the life of the subjects; however, it should be noted
that only one elderly person and one centenarian were on antibiotic therapy close to
sampling. This further strengthens the hypothesis that our data could be the result of a
long history of antibiotic/chemical exposure and not a snapshot of what happens in
the short term. However, only future studies will be able to fully define this. On the
other hand, the gut resistome of young adults (who were not receiving any therapy
close to sampling) was characterized by a higher abundance of AR genes for beta-lac-
tam antibiotics, mainly harbored by Bacteroidetes members. As previously discussed,
genes conferring beta-lactam resistance are frequently present in Bacteroides spp. and
among the most abundant AR genes in the human gut microbiome (29, 30).
Interestingly, these genes do not appear to transfer to opportunistic pathogens, such
as Enterobacteriaceae (31), possibly explaining their poor representation in the gut
resistome of older people.

In conclusion, our work, although focused only on a small Italian population from a
specific geographic area (Emilia Romagna region), sheds some light on the possible
trajectory of the human intestinal resistome during aging and draws attention to the
potential age-related accumulation of AR genes with possibly severe repercussions on
human health. Future studies in larger cohorts will ideally need to sample the same
subjects over time. In any case, information on previous antibiotic exposure and medi-
cal history, over the widest possible window of time, will need to be included in an
attempt to provide mechanistic explanations. Other potential confounders, such as
gender, lifestyle, and geography, will need be considered to draw unambiguous con-
clusions about aging and resistomes. In addition to stressing the relevance of resis-
tome surveys for more effective therapies, our results may support campaigns aimed
at changing human behavior, i.e., reducing the use and abuse of antibiotics, with the
ultimate goal of containing the spread of AR, thus supporting healthy aging.

MATERIALS ANDMETHODS
Subjects and study groups. Here, we analyzed shotgun metagenomics reads of 62 fecal samples

from 62 Italian subjects, generated in a previous study (18). All subjects were enrolled from the same ge-
ographic area (Emilia Romagna region, Italy). The subjects’ ages ranged from 22 to 109 years, with an av-
erage age of 85 years. In line with previous studies (18, 20), subjects were stratified into four age groups:
semisupercentenarians over 105 (group S; 23 subjects), centenarians aged 99 to 105 (group C; 15 sub-
jects), elderly individuals aged 65 to 98 (group E; 13 subjects), and younger adults aged 22 to 48 (group
Y; 11 subjects). Volunteers were interviewed for the use of prescribed drugs, with particular regard to
antibiotics as well as therapies for the cardiovascular system, hypertension, and metabolism (including
hypoglycemic and lipid-lowering drugs). Only one elderly person and one centenarian were on
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antibiotic therapy in the month prior to sampling. While young adults were not receiving any therapy,
some elderly individuals and most centenarians and semisupercentenarians were taking medications for
the cardiovascular system and to lower blood pressure. See Table S1 for a summary of the metadata
available for the study cohort.

Quality assessment: read preprocessing, quality filtering, and contaminant removal. For DNA
extraction and library preparation, see reference 18. Sequencing data are available at the SRA repository
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA553191).

Reads were in silico depleted of host DNA, using the NCBI Homo sapiens assembly 19 as a reference ge-
nome, identified with bmtagger software (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger) and removed
with the BBMap tool (http://sourceforge.net/projects/bbmap/). Raw reads were processed with Trimmomatic
(32) for adapter removal (Nextera adapters) and quality trimming. Reads were scanned by evaluating the
sequences over a 4-base sliding window and setting the average quality score below Q20 for trimming. We
set Trimmomatic parameters enabling reads dropping if their length was less than 35 bp. Moreover, PCR
duplicates were estimated and removed with the Picard tool EstimatedLibraryComplexity (version used by
the International Human Microbiome Standards project and described in their standard operating proce-
dures). The quality of the reads was inspected before and after the preprocessing steps (FastQC) (33).

Bioinformatics and statistical analysis. The taxonomic classification of high-quality reads was per-
formed with Kaiju (34) (version 1.6.3, greedy algorithm) using as a reference NCBI RefSeq (March 2019
release). On the other hand, we identified resistance proteins in our data set with Diamond (35), using
the taxonomically assigned reads and the Deeparg data set (36) (14,957 entries) as a reference, which
contains Swiss-Prot, Trembl (37), CARD (38), and ARDB (39). Antibiotic-resistant protein families were
curated from Antibiotic Resistance Ontology (ARO) obtained with the CARD database. The member of
each read pair showing at least 35% sequence identity, 80% read coverage against the hit sequence,
and an E value of,0.001 was annotated as the respective mapped protein in the Deeparg data set. A ta-
ble of counts was generated, summarizing the read counts per million (CPM) for each identified protein,
normalized by sequencing depth. Similarly, the taxon-level CPM were computed. The taxonomic classifi-
cation of reads assigned to resistant determinants was summarized at the phylum, family, genus, and
species levels, retaining only taxa with a relative abundance of at least 0.1% in 20% of the data set. The
Kruskal-Wallis test followed by Wilcoxon test was adopted to test for differences in relative abundance
between the four age groups. Linear regression was used to evaluate the association of taxa with age as
a continuous variable (lm function in R). Bonferroni correction for multiple testing was applied. A cor-
rected P value of #0.05 was considered statistically significant.

The PCoA were obtained in R (40) with the function cmdscale (vegan package) (41), and the ordina-
tion was computed with the Bray-Curtis dissimilarities.

Age group-specific antibiotic resistance determinants (ARDs) were identified by the Wald test as imple-
mented in the DEseq2 package (42) in R, with the design formula “; gender1condition,” on the AR counts
mapped per sample. Hits with fewer than 10 reads across the data set were removed from the final table,
as described in reference 5. Differences were assessed for each pair of groups, with proteins with log2 fold
changes of #22 and $2 and a P value threshold of 0.05 corrected with the Bonferroni correction being
considered differentially abundant. The hierarchical clustering, showing the ARD relative abundances in the
samples (rlog function in DEseq2), was computed with the Ward linkage method over the Euclidean distan-
ces (pheatmap package) (43). An overdispersed Poisson generalized linear model, computed with the func-
tion testGeneFamilies (ShotgunFunctionalizeR R package), was adopted to validate the results of DESeq2. A
Poisson regression analysis of ARD count data and age as a continuous covariate was computed with the
function testGeneFamilies.regression, from the same package.

Correlation analysis was performed between ARDs and the taxonomic profile of the gut resistome at
the species level, retaining only species with a minimum relative abundance of 0.1% in 20% of the data
set. The table of correlations, obtained by the Spearman method (hmisc package) (44) and retaining
only associations with a value for rho greater than 0.8 and adjusted P values of 0.001 (Bonferroni
method), was visualized as a network (R package igraph, gephi v. 0.9.2) (45). Correlations and P values
were further computed with the SparCC method, implemented in the FastSpar software, considering
999 iterations and 999 permutations. Positive correlations with P values of #0.05 were retained (46).
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