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Abstract

Computer models are often deterministic simulators used to predict several
environmental phenomena. Such computer models do not provide any mea-
sure of uncertainty associated to their output since they are derived from
deterministic specifications. However, many sources of uncertainty exist in
constructing and employing numerical models, so finding a way to quantify
such uncertainty is important.

We are motivated by temperature maps arising from the Rapid Update
Cycle (RUC) model, a regional short-term weather forecast model for the
continental United States (US). These maps are provided by the National
Climatic Data Center with no associated uncertainty in their forecasts.

Despite a rapidly growing literature on uncertainty quantification, there
is little regarding statistical methods for attaching uncertainty to model out-
put when we do not have information about how deterministic predictions
are created. Although numerical models produce deterministic surfaces, the
output will not be the ‘true’ value of the process and, given the true value and
the model output, the associated error is not stochastic. However, under suit-
able stochastic modeling, this error can be interpreted as a random unknown
about which we can infer using a Bayesian specification within a data fusion
setting, fusing the computer model data with some external validation data
collected independently over the same spatial domain as the deterministic
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map. Our specifications reflect the intuitive fact that uncertainty associ-
ated with locations does not necessarily grow as we become more distant
from the validation locations. We apply our modeling approach to obtain an
uncertainty map associated with RUC forecasts over the northeastern US.
Abstract must be 200 words=Remove 53 words

Keywords: Hierarchical modeling, Measurement error, Numerical models,
LogCAR process, MCMC

1. Introduction

Many computer models are deterministic simulation models developed,
for example, to predict environmental phenomena such as temperatures or air
pollution levels. In a spatial setting, numerical model outputs are displayed
in the form of maps, provided as averages over grid cells, usually at high
spatial and temporal resolution. Such computer models do not provide any
measure of uncertainty associated to their output since they are derived from
deterministic specifications. However, many sources of uncertainty exist in
constructing and employing numerical models. In fact, with computer models
providing spatially referenced output, uncertainty maps can be a useful tool
to guide environmental agencies in refining and improving computer models.
Furthermore, when we use model output as predictor for an environmental
variable, we might seek to evaluate how these uncertainties propagate from
the model output to the forecasting of the response. Altogether, it seems
there is need for quantifying uncertainty in this setting.

The motivating context for us are temperature maps that arise from
the Rapid Update Cycle (RUC) numerical weather model, a regional short
term weather forecast model for the continental United States. This model
yields maps that are publicly available, provided by the National Oceanic
and Atmospheric Administration (NOAA)’s National Climatic Data Center
(NCDC) but with no explicit detail regarding their development and no asso-
ciated uncertainty in their forecasts. Our contribution, articulated in detail
below, is to propose a hierarchical stochastic model along with the introduc-
tion of a validation data set consisting of temperature measurements collected
at monitoring stations operating in the same study region. The model fuses
the two data sources to enable assessment of uncertainty associated with
RUC maps.

In applications, the sources of potential uncertainty associated with nu-
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merical models include input uncertainty, function uncertainty, model dis-
crepancy and observational error (Cumming and Goldstein, 2010). The
Bayesian approach represents a natural way to account for all of these un-
certainty sources and several methods have been developed to deal with the
uncertainty analysis for complex computer models. Customarily, numerical
models are implemented as computer codes, dependent upon a number of
inputs which determine the nature of the output. These inputs represent
unknown parameters and the uncertainty about them propagates through
the numerical model, inducing uncertainty in the output.

A general statistical framework has been presented by Raftery et al.
(1995) for mapping from a set of input parameters to a set of model out-
puts, the so-called Bayesian synthesis which was later revised leading to the
Bayesian melding approach (Poole and Raftery, 2000) Also, statistical meth-
ods have been proposed to handle the sensitivity analysis which is concerned
with understanding how the model output is influenced by changes in the
model inputs (e.g. Oakley and O’Hagan, 2004). For deterministic numerical
models, i.e., models with no random components, their predictions are sub-
ject to error because any model is a simplification of reality. So, model output
will not equal the ‘true’ value of the process of interest and this discrepancy
is well-known as model inadequacy (Kennedy and O’Hagan, 2001).

Structural uncertainty, which is introduced by scientific choices of model
design and development, can be also quantified by analyzing multi-model en-
sembles. In this case, the output consists of different versions of a numerical
model, i.e. a model is run several times with different initial conditions (sce-
narios). Statistical approaches for quantifying uncertainty with ensembles
have recently received considerable attention (see e.g. Gneiting et al. 2005;
Raftery et al. 2005; Berrocal et al. 2007; Smith et al. 2009; Di Narzo and
Cocchi 2010; Kleiber et al. 2011; Sloughter et al. 2013).

There is little in the literature about statistical methods for attaching un-
certainty to model output when we do not have information about how such
deterministic predictions are created, about model inputs. Indeed, our con-
tribution to uncertainty quantification builds upon the notion of uncertainty
introduced by Ghosh et al. (2012) when numerical models are unavailable;
rather, only deterministic outputs at some spatial resolution are provided.
In other words, we do not know how the deterministic surfaces have been
developed; for us, they come from a entirely unknown ‘black box’. Ghosh
et al. (2012) proposed a general Bayesian approach to associate uncertain-
ties with deterministic interpolated surfaces which requires some external
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validation data collected independently over the same spatial domain as the
deterministic map.

Although numerical models produce deterministic surfaces, we have al-
ready highlighted that the output will not be the ‘true’ value of the process.
In this framework, given the truth and the model output, the associated error
is not stochastic. But, under suitable stochastic modeling, this error can be
interpreted as a random unknown which we can infer about using a Bayesian
specification within a data fusion setting, fusing the computer model data
with the validation data.

Reiterating, the contribution here is to develop a Bayesian hierarchical
model to provide spatially smoothed uncertainty associated with numerical
model output, regardless of how it was created. We show how we can learn
about such uncertainty through stochastic data fusion modeling using some
external validating data. We also take into account the change of support
problem (COSP; Gelfand et al. 2001), which arises from the spatial mis-
alignment between the numerical model output and the validation data. It
is important to note that our objective is not the calibration of numerical
model output. Rather, we are interested in spatially smoothed uncertainties
associated with the prediction maps. To attach such varying uncertainty
across grid cells we offer a fully model-based approach that can be used to
assign uncertainty to any deterministic surface. Two useful advances over
the work in Ghosh et al. (2012) are introduced. First, our specifications here
reflect the intuitive fact that uncertainty associated with grid cells progres-
sively away from the validation locations does not necessarily increase with
distance. Second, our specifications recognize the spatial structure in the
validation data and deal with the spatial misalignment arising from the grid
cell level model output and the point level station data.

The format of the paper is as follows. In Section 2 we describe the mo-
tivating deterministic data surfaces. In Section 3 we provide explicit model
details while in Section 4 we formalize the uncertainty definition and its
calculation. Section 5 provides the fitting details. Section 6 offers some sim-
ulation results, while Section 7 provides the uncertainty surface for the RUC
data. We conclude with a brief summary and future research possibilities.
Supplemental material including additional figures is available.
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2. Data description

The RUC model (Benjamin et al., 2004) is a regional short-term weather
forecast model for the Continental United States (CONUS) developed by
the National Centers for Environmental Prediction (NCEP) to serve users
needing frequently updated short-term weather forecasts. When it was first
implemented in 1994, the model was run every three hours making forecasts
out to 12 hours. By 2002, the RUC was run every hour, on the hour, pro-
ducing 12-hour forecasts at 13 km spatial resolution. The output from the
RUC model is available, for free, at the website: http://ruc.noaa.gov/.

As an illustration, we consider the daily forecast map on August 7th,
2011 obtained as average of 24 hourly temperature forecasts (◦F) provided by
RUC model from 00:00 to 23:00 on August 7th over the northeastern U.S.,
see Figure 1. There are 3,862 RUC grid cells spanning our study region.
Moreover, land-based station data over U.S. is provided by the NOAA’s
National Climatic Data Center (NCDC). Here, we consider 24-hour averages
of hourly temperature collected from 163 monitoring stations operating in
the study region for the same period.
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Figure 1: Temperature stations (black dots) and daily RUC output on August 7th, 2011
over Northeastern U.S..
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3. Data fusion model

Let R(Ai) denote the numerical model output (i.e. temperature predic-
tions from the RUC model) over grid cell Ai, (i = 1, . . . , I). We interpret
R(Ai) as an average value over cell Ai, i.e. R(Ai) = |Ai|−1

∫
Ai
R(s)ds.

First, we specify a measurement error model (MEM) for the numerical
model output R(Ai) relative to the truth. The measurement error model
is also known as error-in-variables model; see for instance Fuller (1987) and
references therein. In particular,

R(Ai) = R̃(Ai) + εr(Ai) (1)

where R̃(Ai) is the underlying process which represents the “true” average
value for Ai and we assume εr(Ai) ∼ N

(
0, σ2

r(Ai)
)

independently ∀i, i =
1, . . . , I. The σ2

r(Ai) reflect the uncertainty we seek to attach to R(Ai);
specification of the model for these areal unit specific variances is a critical
component and is elaborated below. The true average value R̃(Ai) arises from
a Gaussian Markov Random Field (GMRF) equipped with a conditionally
autoregressive structure (CAR) (Besag, 1974; Banerjee et al., 2004) that is:

R̃(Ai) |
{
R̃(Ai′) : i′ 6= i

}
∼ N

(∑
i′∼i

R̃(Ai′)

wi
,
τ 2

wi

)
(2)

where i′ ∼ i denotes the cells Ai′ that are adjacent neighbors to cell Ai and
wi is the number of neighbors of cell Ai.

Let V (sj) be the validation data (i.e. observed temperature) at location
sj, (j = 1, . . . , n) gathered independently over the same region as the output,

and Ṽ (sj) denotes the true value at sj. We allow for error in the validation
data, assuming a spatial model given by:

V (sj) = Ṽ (sj) + εv(sj). (3)

Here ε′v = (εv(s1), . . . , εv(sn)) is a zero-mean Gaussian process equipped with
a spatial exponential correlation function, i.e. εv ∼ N

(
0, σ2

v H(φv)
)

where(
H(φv)

)
ij

= exp{−φv||si − sj||}. It seems appropriate to anticipate spatial

dependence in the measurement errors.
Finally, we address the change of support problem between the observed

data and the numerical model output by assuming a further measurement
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Figure 2: Graphical representation of model (1) - (4) under prior (7).

error model for Ṽ (sj). We avoid the integration problem associated with scal-
ing from point to grid level by employing the downscaling approach (Berrocal
et al., 2012; Paci et al., 2013) which associates to each site sj the grid cell
Ai that contains sj. Then, for each j = 1, . . . , n belonging to grid cell Ai we
have:

Ṽ (sj) = R̃(Ai) + εṽ(sj) (4)

where εṽ(sj) are independent N(0, σ2
ṽ). Figure 2 shows a graphical repre-

sentation of the model described above. Now, we are ready to clarify what
we mean by the uncertainty associated with the deterministic outputs, the
R(Ai).

4. Defining and modeling uncertainty associated with determinis-
tic outputs

Recall that our primary goal is to provide a measure of uncertainty asso-
ciated with numerical model output over grid cells. To clarify what we mean
by uncertainty associated with a deterministic output, we say that the true
error of R(Ai) can be quantified by an appropriate residual defined below.
When the expected squared value of this error is small for a grid cell, it im-
plies small uncertainty associated to the numerical model prediction, when
large we would imagine high uncertainty for such a cell.

To inform about the true error, we might rely on the observed residuals
R(Ai)−V (sj), i.e. comparing the numerical model output with the validation
data for each grid cell that contains a site. Then, high ‘disagreement’ between
R(Ai) and V (sj) for sj ∈ Ai suggests high uncertainty in Ai. Conversely, we
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envision small uncertainty at grid cells where the disagreement between the
numerical model output and the observed temperature is low.

However, two issues arise if we confine ourselves to the observed resid-
uals: first, the comparison between the average R(Ai) with the point-level
measurement V (sj) is inappropriate because of the different spatial support
of the two data sources, i.e the change of support problem. Second, the ob-
served residuals are available only for grid cells where monitoring sites lie,
while our goal is to attach uncertainty to every grid cell.

To accomplish this, we consider instead the so-called realized residuals,
that is εr(Ai) = R(Ai) − R̃(Ai) from equation (1). The term ‘realized’ is
borrowed from Zellner (1975) where the problem of making inferences about
the realized values of error terms in the linear normal regression model was
analyzed; also see Chaloner and Brant (1988) for related work. Again, the
true error for R(Ai) is not known and, as usual within the Bayesian frame-
work, we model unknowns as random and look at their posterior distributions
for inference. In fact, under the specification above, we take the model for
R̃(Ai) as the model for the truth and we look at the posterior distribution
of the realized residuals,

[
εr(Ai)|Data

]
. We adopt the posterior variance,

var (εr(Ai) | Data), to provide the desired uncertainty, noting that it varies
across grid cells.

We can obtain our local uncertainties by composition sampling, i.e. draw-
ing posterior samples of εr(Ai) and then computing their variance. Alterna-
tively, we can obtain local uncertainties as the posterior means, E

(
σ2
r(Ai) | Data

)
.

Indeed, under model (1) - (4), we have

var (εr(Ai) | Data) =E
[
var

(
εr(Ai) | R̃(Ai), σ

2
r(Ai), Data

)]
+ var

[
E
(
εr(Ai) | R̃(Ai), σ

2
r(Ai), Data

)] (5)

The second term in (5) is clearly 0 and the first reduces to E
(
σ2
r(Ai) | Data

)
.

So, Rao-Blackwellized estimates (Gelfand and Smith, 1990) can be directly
obtained by computing the mean of the posterior sampled draws of σ2

r(Ai).
Since we are interested in the posterior distribution of σ2

r(Ai), the spec-
ification of its prior distribution becomes a crucial step. We consider two
proposals for this prior.

First, we treat the collection of unknown variances as a collection of inde-
pendent random effects. As usual, we adopt a specification which allows us
to borrow strength across the σ2

r(Ai). If we work on the scale of the variances
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we might adopt conditionally i.i.d. σ2
r(Ai), i.e., σ2

r(Ai)|a, b ∼ IG(a, b). As a
vague choice, we set a = 2 and let b be unknown. This provides random ef-
fects with mean b and infinite variance. An alternative is to take σ2

r(Ai) to R1

by working with the log
(
σ2
r(Ai)

)
. Now, we might assume i.i.d. log

(
σ2
r(Ai)

)
with

log
(
σ2
r(Ai)

)
|µ, σ2 ∼ N(µ, σ2). (6)

Here, µ would correspond to log b and we would take σ2 large, e.g. order 103.
As a second proposal, suppose we seek to attach high uncertainty to grid

cells for which we expect large differences between the model output and
the true value. In addition, given a large realized residual at grid cell Ai,
we expect similar behavior in its neighborhood, equally for small realized
residuals, i.e. we envision that changes in variance occur smoothly over
space. This suggests the idea of offering a spatially structured specification
for the log

(
σ2
r(Ai)

)
. With areal unit level variances, this suggests a CAR

model for the logarithm of σ2
r(Ai). That is,

log
(
σ2
r(Ai)

)
|
{

log
(
σ2
r(Ai′)

)
: i′ 6= i

}
∼ N

(∑
i′∼i

log
(
σ2
r(Ai′)

)
wi

,
τ 2∗
wi

)
(7)

where, following the notation in Section 3, i′ ∼ i identifies the cell Ai′ adja-
cent to cell Ai and wi is the number of neighbors of cell Ai. The logCAR prior
model in (7) is analogous to the spatial stochastic volatility approach devel-
oped by Yan (2007) and extended by Reich and Hodges (2008) to capture
spatial clustering in heteroscedasticity. The model in (7) enables us to ex-
plicitly impose spatially varying structure on the variances, allowing for both
borrowing strength across grid cells and inducing local spatial smoothing of
uncertainty estimates relative to their neighboring grid cells.

4.1. Comparing uncertainty assignments

The comparison of alternative models is traditionally performed with at-
tention to uncertainty reduction. However, this is not an appropriate objec-
tive here. There is no intention to obtain arbitrarily small uncertainties. To
clarify, for each Ai, there is a “true” Rtrue(Ai). In the foregoing, R̃(Ai) is a
model for Rtrue(Ai) which will supply desired local uncertainties through the
posterior variances of the realized residuals. Any model with local variances
will provide such uncertainties; how can we say that one set of uncertainties
is better than another?
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An appropriate criterion needs to account for the trade-off between un-
certainty and bias in R̃(Ai) that is

R(Ai)−Rtrue(Ai) =
(
R(Ai)− R̃(Ai)

)
+
(
R̃(Ai)−Rtrue(Ai)

)
.

(8)

Therefore, model comparison should consider both the posterior variance
arising from the first term in (8) and the squared bias associated with the
second term. As pointed out by Ghosh et al. (2012), to inform about bias

with available data, we can only compare R̃(Ai) with validation data V (sj),
for each sj ∈ Ai. Then, the balanced loss approach, as proposed in Gelfand
and Ghosh (1998) yields the criterion

1

I

I∑
i=1

var
[
εr(Ai) | data

]
+
c

n

n∑
j=1

E
[(
R̃(Ai)− V (sj)

)2| data] (9)

where c indicates the relative regret for the two losses. We choose the model
yielding the smallest value of (9).

5. Fitting details

We recall that it is not possible to consistently estimate the decay and
variance parameter in a spatial model with a covariance function belonging
to the Matérn family (Zhang, 2004). In particular, with the exponential co-
variance function we adopt, we can only identify the product σ2

vφv and this
product is what determines predictive behavior. So, we fix the decay param-
eter and we put a prior distribution on σ2

ṽ . We choose φv by connecting it to
the scale of the spatial surface which we are working with; for instance, with
our real data, we fix the decay parameter at roughly 60% of the maximum
distance over the study region as suggested by explanatory analysis. Specif-
ically, for the variance parameters σ2

v and σ2
ṽ , we place weak but partially

data-driven conjugate inverse gamma priors IG(aσ, bσ) where we choose aσ
and bσ so that

bσ
aσ − 1

=
MSE

2
and

b2σ
(aσ − 1)2(aσ − 2)

= 102.
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Here, MSE is the mean square error arising from a simple linear regression
of V (sj) on R(Ai) for each sj ∈ Ai. The prior distributions for τ 2 and τ 2∗ are
specified as independent proper inverse gamma distributions IG(aτ , bτ ).

Recently, Sørbye and Rue (2013) proposed a general approach for choos-
ing the prior distribution for the precision parameter of an intrinsic GMRF,
according to the specific type of GMRF used. The authors suggested to select
a scaled prior by mapping the precision parameter to the marginal standard
deviation of the model, under linear constraints. In their applications, they
showed that there were no significant differences in the estimated spatial ef-
fects using the default and the scaled priors for the precision parameter of
a CAR process and their results were not sensitive to prior tuning. Due to
the insensitivity to different choices of aτ and bτ , in our implementation we
take aτ = 2 and bτ = 1, implying that these variance components have prior
mean 1 and infinite variance.

Finally, a prior distribution for the parameter µ in (6) is needed. We
assume that this parameter is sampled from a normal distribution with mean
0 and variance g2 = 103.

Define R =
(
R(A1), . . . , R(AI)

)′
and V =

(
V (s1), . . . , V (sn)

)′
; then the

full distributional specification of model (1) - (4) using the logCAR prior
model (7) is given by:[

R | R̃,σ2
r

] [
V | Ṽ, σ2

v

] [
Ṽ | R̃, σ2

ṽ , φv

] [
R̃ | τ 2

] [
σ2
r | τ 2∗

]
(10)

where R̃ =
(
R̃(A1), . . . , R̃(AI)

)′
, Ṽ =

(
Ṽ (s1), . . . , Ṽ (sn)

)′
and

σ2
r =

(
σ2
r(A1), . . . , σ

2
r(AI)

)′
. Along with the prior distributions for all the

unknown parameters, the Bayesian hierarchical model is completely specified.
The model is fitted using Markov Chain Monte Carlo (MCMC) algorithm;
details are deferred to the Appendix.

6. Simulation study

In this section, we consider simulation examples to illustrate the per-
formance of the nonspatial and spatial variance specifications in Section 4.
Since our attached uncertainty is model-based, it requires care to evaluate
the modeling performance, as we discussed in Subsection 4.1. Under the sim-
ulation study we know the truth and so we know the true errors for assessing
map uncertainty.
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The simulation design is built from several sampling/fitting combinations
allowing the investigation of different features. Simulation experiments are
performed through the following steps:

1. We consider a unit square divided equally into 900 grid cells.

2. Using the centroids of the grid cells, we generate R̃(Ai) (i = 1, . . . , I =
900) from the CAR model of expression (2) where τ 2 = 1.

3. We generate R(Ai) using relation (1). We consider different choices for
variances of interest σ2

r(Ai):

3.1. σ2
r(Ai) = 1, ∀Ai;

3.2. σ2
r(Ai) ∼ logN(µ, σ2) with µ = log(0.5) and σ2 = 1;

3.3. σ2
r(Ai) ∼ logCAR(τ 2∗ ), with τ 2∗ = 0.5.

4. Then, two different sets of 200 locations are randomly generated within
the unit square (hereafter, “Coords1” and “Coords 2”).

5. For each location sj, (j = 1, . . . , n = 200) belonging to a grid cell Ai,

we generate Ṽ (sj) using relation (4) with σ2
ṽ = 1 and fixed value of

decay parameter φv. In particular, we set φv = 2.8 or φv = 11.25
corresponding, respectively, to spatial ranges of roughly 80% and 20%
of the maximum distance over the region. We also consider the addition
of some bias to (4) in a portion of the region (top right) when we do
the sampling.

6. Finally, the validation data V (sj) are generated from equation (3)
where σ2

v = 1.

Given the sampling scheme described in the previous steps, we fit model
(1) - (4) under both prior models (6) and (7). Moreover, we allow for the case
when we fit the model setting the spatial decay parameter φv far away from
its true value. Summarizing the sampling/fitting combinations, we consider
the scenarios listed in Table 6.

We provide, as examples, the sampling design for scenarios (g) and (h).
Figure 3 shows the absolute true errors, i.e. the absolute differences between
the simulated R(Ai) and the simulated Rtrue(Ai) under both scenarios. Fig-
ure 4 shows the 900 estimated uncertainties (standard deviations) associated
with the gridded data of scenario (g) and obtained under both priors (6) and
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Table 1: Sampling/fitting simulation design.

Scenario Sampling Fitting1

σ2
r(Ai) Bias to (4) φv Validation data φ̂v

(a) 1, ∀(Ai) NO 2.8 ‘Coords 1’ 2.8
(b) 1, ∀(Ai) YES 2.8 ‘Coords 1’ 2.8
(c) 1, ∀(Ai) NO 11.25 ‘Coords 1’ 11.25
(d) 1, ∀(Ai) YES 11.25 ‘Coords 1’ 11.25
(e) 1, ∀(Ai) NO 2.8 ‘Coords 1’ 11.25
(f) 1, ∀(Ai) NO 2.8 ‘Coords 2’ 2.8
(g) from logN(−0.69, 1) NO 2.8 ‘Coords 1’ 2.8
(h) from logCAR(0.5) NO 2.8 ‘Coords 1’ 2.8

0.5 1.0 1.5 2.0 2.5 0.2 0.4 0.6 0.8 1.0 1.2

Figure 3: True errors (absolute values) under scenarios (g) and (h) in the left and right
panel, respectively.

(7). Equivalently, local posterior uncertainties for scenario (h) are shown in
Figure 5. Such figures reveal that the estimated uncertainties tend to be
larger at grid cells with higher true errors, in accord with the idea of uncer-
tainty described in Section 4. Also, we might compare the local estimated
uncertainties with the absolute true errors via the Spearman’s correlation
statistic ρ. For instance, with scenario (g) we have ρ = 0.52 and ρ = 0.28
under priors (6) and (7), respectively; given scenario (h), we obtain ρ = 0.31
and ρ = 0.16 for both priors. A full elaboration of the finding from this
simulation study is presented in the supplementary materials. Here, we sum-
marize with Table 2 which shows the comparison between the two alternative
approaches via criterion (9) for all scenarios (here, c = 1). In the simulation

13



0.5 1.0 1.5 0.5 1.0 1.5

Figure 4: Scenario (g): estimated local uncertainties (standard deviations) under priors
(6) and (7) in the left and right panel, respectively.

study, the true average Rtrue(Ai) is available and it replaces V (sj) in the
criterion. The table reveals little differences between the two approaches for
modeling, a priori, the variances of interest.

Table 2: Criterion (9) for different scenarios under the two alternative prior models.

Scenario logN(µ, σ2) logCAR(τ 2∗ )
(a) 1.066 + 0.187 = 1.253 1.072 + 0.158 = 1.230
(b) 1.205 + 0.174 = 1.380 1.101 + 0.159 = 1.260
(c) 1.018 + 0.196 = 1.214 1.079 + 0.159 = 1.238
(d) 1.076 + 0.190 = 1.266 1.084 + 0.159 = 1.244
(e) 1.092 + 0.182 = 1.274 1.085 + 0.157 = 1.242
(f) 1.162 + 0.160 = 1.322 1.010 + 0.152 = 1.252
(g) 0.825 + 0.140 = 0.965 0.832 + 0.142 = 0.974
(h) 0.228 + 0.101 = 0.329 0.240 + 0.098 = 0.338

7. Attaching uncertainty to RUC output

Finally, we return to the RUC model output to illustrate our uncertainty
quantification approach using the data fusion model of Section 3. From

14
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Figure 5: Scenario (h): estimated local uncertainties (standard deviations) under priors
(6) and (7) in the left and right panel, respectively.

Section 2, we recall that RUC model produces weather short-term predictions
for the conterminous U.S. over grid cells of size 13× 13 kilometers.

We fit model (1) - (4) under both prior models (6) and (7). Regarding
the spatial decay parameter φv, exploratory analysis suggested to set the
parameter at roughly 60% of the maximum distance over the study region.
The results are not sensitive to choice of φv; in fact, we also experimented
with φv corresponding to spatial range of approximately 30% of the max-
imum distance, obtaining results indistinguishable from those presented in
this section (see supplementary materials).

Posterior summaries of the unknown parameters are presented in Table 3
under both nonspatial and spatial variance specifications in Section 4. The
posterior means of true temperature R̃’s with specifications (6) and (7) are
shown in Figure 6 in the left and right panel, respectively. Comparison of
the two panels reveals little difference between posterior means of the R̃’s
under the two approaches except for somewhat smoother estimates under
prior (6). This is consistent with similar posterior summaries of τ 2 in both
models. Figure 7 shows the estimated uncertainty maps associated with
RUC output under prior (6) and (7) in the left and right panel, respectively.
The uncertainty map resulting from the logCAR prior model on σ2

r ’s reveals
smooth spatial variation, as we expected. It also worth noting from Figures
6 and 7 that the estimated R̃’s and the attached uncertainties have differ-
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Table 3: Posterior summaries of model parameters.

Parameters logN(µ, σ2) logCAR(τ 2∗ )

σ2
v 0.933 (0.270, 2.221) 0.902 (0.283, 2.118)

σ2
ṽ 1.683 (1.203, 2.225) 1.701 (1.231, 2.242)

τ 2 0.787 (0.746, 0.828) 0.728 (0.694, 0.764)

µ -6.248 (-7.327, -5.274)

τ 2∗ 10.868 (7.428, 14.910)

Table 4: Criteria (9) under the two alternative prior models.

logN(µ, σ) logCAR(τ 2∗ )
1.99 + 2.34 = 4.33 0.07 + 2.36 = 2.43

ent spatial patterns. In fact, high values in R̃(Ai) do not necessarily imply
high uncertainty; rather, high uncertainty is linked to large realized residuals.
Moreover, we have no reason to believe that the uncertainty should be pro-
portional in some way to true temperature, that larger variances should be
associated with larger responses. Finally, we note that our stochastic model
does not attach higher uncertainty to RUC grid cells that contain sites. In-
tuitively, uncertainties associated with deterministic predictions need not be
larger at grid cells farther from validation sites than at locations nearer.
The comparison between the two alternative approaches is shown in Table
4 revealing that model (7) is preferred according to the criterion (9). The
story here seems to be that, with criterion (9), the biases for (6)
and (7) are essentially the same but the posterior variances are
tiny under (7) compared with (6). Do we believe the uncertainties
are that small? How can we explain the enormous difference in
scale? Are you sure these numbers are correct? We do need to say
something in the text.
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Figure 6: Posterior means of R̃(Ai) under priors (6) and (7) in left and right panel,
respectively.

0.005 0.05 0.5 0.005 0.05 0.5

Figure 7: Estimated standard deviations under priors (6) and (7) in left and right panel,
respectively.
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8. Summary

With the goal of attaching uncertainty to deterministic surfaces, we have
developed a hierarchical model to fuse the deterministic output with some
validation data. We quantify the uncertainty using local posterior variances
with priors on these variances that treat them as either independent or spatial
structured random effects.

Future work will find us dealing with calibration of the RUC model,
extending the simple measurement error specification in (4), jointly with the
uncertainty assessment of the model output. Extension can also concern joint
forecast maps, e.g. temperature and precipitation, attaching uncertainty
through joint stochastic modeling. Regarding the attached uncertainty to
RUC output, we are also interested in seasonal uncertainties, say winter or
summer uncertainty maps. Finally, starting on May 1, 2012, the NCEP
replaced the RUC model with the RAP numerical weather model, alleged to
be a better deterministic model. Therefore, it will be of interest to compare
uncertainty maps associated with RUC output against those attached to
RAP predictions. Should we mention the idea of dynamics, that
with temp maps over time, we could potentially borrow strength
across time to better attach uncertainty?

Acknowledgements

The research of the first author was supported by a FIRB 2012 grant
(project no. RBFR12URQJ) for research projects of national interest that
was provided by the Italian Ministry of Education, Universities and Research.

Appendix A. Full conditional distributions

We partition R̃ =
(
R̃(1), R̃(2)

)
, where R̃(1) corresponds to the numerical

model output for the n grid cells where monitoring stations are, while R̃(2) is
the vector containing the numerical model output at (I −n) grid cells where
no observations are made.

The full conditional distributions for the inverse of the variance parame-
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ṽ

|rest ∼ Ga

(
aσ +

n

2
, bσ +

1

2

(
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where σ2
r =

(
σ2
r(A1), . . . , σ
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r(AI)

)′
, Dw = diag(wi) and W is the proximity

matrix, according to the rook’s neighborhood structure.
The posterior conditional distribution for Ṽ is a multivariate normal dis-

tribution N(Dṽdṽ, Dṽ), where

D−1ṽ =
1

σ2
v

H−1(φv) +
1

σ2
ṽ

In

dṽ =
1

σ2
v

H−1(φv)V +
1

σ2
ṽ

R̃(1)

We sample the elements of R̃ using a univariate sampling scheme as
following. If R̃(Ai) ∈ R̃(1), the full conditional distribution for R̃(Ai) is the
normal distribution N(Dr1dr1, Dr1), where

D−1r1 =
1

σ2
r(Ai)

+
1

σ2
ṽ

+
wi
τ 2

dr1 =
R(Ai)

σ2
r(Ai)

+
Ṽ (Ai)

σ2
ṽ

+
1

τ 2

∑
i′∼i

R̃(Ai′)

If R̃(Ai) ∈ R̃(2), the full conditional distribution for R̃(Ai) is the normal
distribution N(Dr2dr2, Dr2), where

D−1r2 =
1

σ2
r(Ai)

+
wi
τ 2

dr2 =
R(Ai)

σ2
r(Ai)

+
1

τ 2

∑
i′∼i

R̃(Ai′)
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The posterior conditional for µ is the normal distribution N(Dµdµ, Dµ),
where

D−1µ =
1

g2
+

I

σ2

dµ =

∑I
i=1 log

(
σ2
r(Ai)

)
σ2

Finally, given both the log-normal and the logCAR prior models for σ2
r(Ai),

the full conditionals cannot be obtained in closed form; so we use a random
walk Metropolis proposal step to generate samples from their posteriors.
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Benjamin, S. G., Dèvènyi, D., Weygandt, S. S., Brundage, K. J., Brown,
J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith,
T. L., Manikin, G. S., 2004. An hourly assimilation-forecast cycle: the
RUC. Mon. Weather. Rev. 132, 495–518.

Berrocal, V. J., Gelfand, A. E., Holland, D. M., 2012. Space-time data fusion
under error in computer model output: an application to modeling air
quality. Biometrics 68, 837–848.

Berrocal, V. J., Raftery, A. E., Gneiting, T., 2007. Combining spatial sta-
tistical and ensemble information in probabilistic weather forecasts. Mon.
Weather. Rev. 135, 1386–1402.

Besag, J., 1974. Spatial interaction and the statistical analysis of lattice
systems. J. Roy. Stat. Soc. B Met. 36, 192–236.

Chaloner, K., Brant, R., 1988. A Bayesian approach to outlier detection and
residual analysis. Biometrika 75, 651–659.

Cumming, J. A., Goldstein, M., 2010. Bayes linear uncertainty analysis for oil
reservoirs based on multiscale computer experiments. In: Gelfand, A. E.,
Fuentes, M., Guttorp, P., Diggle, P. J. (Eds.), Handbook of Spatial Statis-
tics. CRC Press, pp. 241–270.

Di Narzo, A. F., Cocchi, D., 2010. A Bayesian hierarchical approach to en-
semble weather forecasting. J. Roy. Stat. Soc. C App. 59, 405–422.

20



Fuller, W. A., 1987. Measurement Error Models. Wiley.

Gelfand, A. E., Ghosh, S. K., 1998. Model choice: A minimum posterior
predictive loss approach. Biometrika 85, 1–11.

Gelfand, A. E., Smith, A. F. M., 1990. Sampling-based approaches to calcu-
lating marginal densities. J. Am. Stat. Assoc. 85, 398–409.

Gelfand, A. E., Zhu, L., Carlin, B. P., 2001. On the change of support prob-
lem for spatio-temporal data. Biostatistics 2, 31–45.

Ghosh, S., Gelfand, A. E., Mølhave, T., 2012. Attaching uncertainty to de-
terministic spatial interpolations. Stat. Methodol. 9, 251–264.

Gneiting, T., Raftery, A. E., Westveld, A. H., Goldman, T., 2005. Calibrated
probabilistic forecasting using ensemble model output statistics and mini-
mum crps estimation. Mon. Weather. Rev. 133, 1098–1118.

Kennedy, M. C., O’Hagan, A., 2001. Bayesian calibration of computer models
(with discussion). J. Roy. Stat. Soc. B Met. 63, 425–464.

Kleiber, W., Raftery, A. E., Baars, J., Gneiting, T., Mass, C. F., Grimit,
E., 2011. Locally calibrated probabilistic temperature forecasting using
geostatistical model averaging and local bayesian model averaging. Mon.
Weather. Rev., 2630–2649.

Oakley, J. E., O’Hagan, A., 2004. Probabilistic sensitivity analysis of complex
models: a Bayesian approach. J. Roy. Stat. Soc. B Met. 66, 751–769.

Paci, L., Gelfand, A. E., Holland, D. M., 2013. Spatio-temporal modeling for
real-time ozone forecasting. Spat. Stat. 4, 79–93.

Poole, D., Raftery, A. E., 2000. Inference for deterministic simulation models:
The Bayesian melding approach. J. Am. Stat. Assoc. 95, 1244–1255.

Raftery, A. E., Givens, G. H., Zeh, J. E., 1995. Inference from a deterministic
population dynamics model for bowhead whales. J. Am. Stat. Assoc. 90,
402–416.

Raftery, A. E., Gneiting, T., Balabdaoui, F., Polakowski, M., 2005. Using
Bayesian model averaging to calibrate forecast ensembles. Mon. Weather.
Rev. 133, 1155–1174.

21



Reich, B. J., Hodges, J. S., 2008. Modeling longitudinal spatial periodon-
tal data: a spatially adaptive model with tools for specifying priors and
checking fit. Biometrics 64, 790–799.

Sloughter, J. M., Gneiting, T., Raftery, A. E., 2013. Probabilistic wind vector
forecasting using ensembles and bayesian model averaging. Mon. Weather.
Rev. 141, 2017–2119.

Smith, R. L., Tebaldi, C., Nychka, D. W., Mearns, L. O., 2009. Bayesian
modeling of uncertainty in ensembles of climate models. J. Am. Stat. Assoc.
104, 97–116.

Sørbye, S. H., Rue, H., 2013. Scaling intrinsic Gaussian Markov random field
priors in spatial modelling. Spat. Stat.

Yan, J., 2007. Spatial stochastic volatility for lattice data. J. Agric. Biol.
Envir. S. 12, 25–40.

Zellner, A., 1975. Bayesian analysis of regression error terms. J. Am. Stat.
Assoc. 70, 138–144.

Zhang, H., 2004. Inconsistent estimation and asymptotically equal interpo-
lations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261.

22




