Semi-Experimental Equilibrium Structure Determinations by Employing B3LYP/SNSD Anharmonic Force Fields: Validation and Application to Semirigid Organic Molecules Supporting Informations

Matteo Piccardo,[†] Emanuele Penocchio,^{‡,†} Cristina Puzzarini,[‡] Malgorzata Biczysko,^{†,¶} and Vincenzo Barone^{*,†}

Scuola Normale Superiore, Pisa, Italy, Dipartimento di Chimica "Giacomo Ciamician", Universitá di Bologna, Via Selmi 2, I-40126 Bologna, Italy, and Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy

E-mail: vincenzo.barone@sns.it.

^{*}To whom correspondence should be addressed

[†]Scuola Normale Superiore

[‡]Dipartimento di Chimica "Giacomo Ciamician"

[¶]ICCOM-CNR

Since asymmetric tops have only non-degenerate vibrational normal modes (hereafter indicated with m and n), the explicit form of $\Delta B_{\rm vib}^{\beta}$ is,

$$\Delta B_{\rm vib}^{\beta} = -\frac{1}{2} \sum_{m} \alpha_{m}^{\beta} \tag{1}$$

where the vibration-rotation interaction constants α_m^{β} are given by,

$$\alpha_m^\beta = -\frac{2(B_e^\beta)^2}{\omega_m} \left\{ \sum_{\gamma=x,y,z} \frac{3(a_m^{\beta\gamma})^2}{4I_e^\beta} + \sum_{n\neq m} \frac{(\zeta_{mn}^\beta)^2}{2\omega_n} \left[\frac{(\omega_m - \omega_n)^2}{\omega_m + \omega_n} + \frac{(\omega_m + \omega_n)^2}{\omega_m - \omega_n} \right] + \pi \left(\frac{c}{h}\right)^{1/2} \sum_n \phi_{mmn} \frac{a_n^{\beta\beta}\omega_m}{\omega_n^{3/2}} \right\}$$
(2)

In the above equation, $a_m^{\beta\gamma}$ are the inertial derivatives, $\zeta_{mn}^{\beta} = -\zeta_{nm}^{\beta}$ the Coriolis coupling constants, ω_m the harmonic frequencies and ϕ_{mmn} the cubic force constants in dimensionless normal coordinates. The first contribution in the right-hand side is then a corrective term related to the moment of inertia, the second is due to Coriolis interactions, and the last one is an anharmonic contribution. The Coriolis term has been explicitly written in its expanded form to point out that all possible Coriolis resonance terms appearing in the left-hand side of eq. 2 cancel once the summation of eq. 1 is performed, because the contribution of the terms having the difference $\omega_m - \omega_n$ as denominator in α_m^{β} and the same contribution in α_n^{β} are equal but in opposite sign.^{1,2}

Symmetric tops have non-degenerate as well as doubly-degenerate (hereafter indicated with s and t) normal modes. For these systems,

$$\Delta B_{\rm vib}^{\beta} = -\frac{1}{2} \sum_{m} \alpha_{m}^{\beta} - \sum_{s} \alpha_{s}^{\beta} \tag{3}$$

Superimposing the principal symmetry axis of the molecule with z, α_m^z and α_n^z are given by,

$$\alpha_{m}^{z} = -\frac{2(B_{e}^{z})^{2}}{\omega_{m}} \left\{ \frac{3(a_{m}^{zz})^{2}}{4I_{e}^{z}} + \sum_{n} \frac{(\zeta_{mn}^{z})^{2}}{2\omega_{n}} \left[\frac{(\omega_{m} - \omega_{n})^{2}}{\omega_{m} + \omega_{n}} + \frac{(\omega_{m} + \omega_{n})^{2}}{\omega_{m} - \omega_{n}} \right] \right. \\ \left. + \pi \left(\frac{c}{h} \right)^{1/2} \sum_{n} \phi_{mmn} \frac{a_{n}^{zz} \omega_{m}}{\omega_{n}^{3/2}} \right\}$$
(4)
$$\alpha_{s}^{z} = -\frac{2(B_{e}^{z})^{2}}{\omega_{s}} \left\{ \frac{3(a_{s_{1}}^{xz})^{2}}{4I_{e}^{x}} + \sum_{t} \frac{(\zeta_{s_{1}t_{2}}^{z})^{2}}{2\omega_{t}} \left[\frac{(\omega_{s} - \omega_{t})^{2}}{\omega_{s} + \omega_{t}} + \frac{(\omega_{s} + \omega_{t})^{2}}{\omega_{m} - \omega_{n}} \right] \right. \\ \left. + \pi \left(\frac{c}{h} \right)^{1/2} \sum_{m} \phi_{ms_{1}s_{1}} \frac{a_{m}^{zz} \omega_{s}}{\omega_{m}^{3/2}} \right\}$$
(5)

while $\alpha_m^x = \alpha_m^y$ and $\alpha_s^x = \alpha_s^y$ by,

$$\alpha_m^x = -\frac{2(B_e^x)^2}{\omega_m} \left\{ \frac{3\left[(a_m^{xx})^2 + (a_m^{xy})^2\right]}{4I_e^x} + \sum_s \frac{\left[(\zeta_{ms_1}^y)^2 + (\zeta_{ms_1}^x)^2\right]}{2\omega_s} \left[\frac{(\omega_m - \omega_s)^2}{\omega_m + \omega_s} + \frac{(\omega_m + \omega_s)^2}{\omega_m - \omega_n}\right] + \pi \left(\frac{c}{h}\right)^{1/2} \sum_n \phi_{mmn} \frac{a_n^{xx}\omega_m}{\omega_n^{3/2}} \right\}$$
(6)

$$\alpha_s^x = -\frac{2(B_e^x)^2}{\omega_s} \left\{ \frac{3(a_{s_1}^{xz})^2}{8I_e^z} + \frac{3(a_{s_1}^{xx})^2}{4I_e^x} + \frac{1}{2} \sum_m \frac{\left[(\zeta_{ms_1}^y)^2 + (\zeta_{ms_1}^x)^2\right]}{2\omega_m} \left[\frac{(\omega_s - \omega_m)^2}{\omega_s + \omega_m} + \frac{(\omega_s + \omega_m)^2}{\omega_s - \omega_m} \right] \right. \\ \left. + \sum_t \frac{\left[(\zeta_{s_1t_1}^y)^2 + (\zeta_{s_1t_1}^x)^2\right]}{2\omega_t} \left[\frac{(\omega_s - \omega_t)^2}{\omega_s + \omega_t} + \frac{(\omega_s + \omega_t)^2}{\omega_s - \omega_t} \right] \right. \\ \left. + \pi \left(\frac{c}{h}\right)^{1/2} \sum_m \phi_{ms_1s_1} \frac{a_m^{xx}\omega_s}{\omega_m^{3/2}} \right\}$$
(7)

where the symmetry relations between the molecular parameters $a_i^{\beta\gamma}$ and ζ_{ij}^{β} (with *i* and *j* non- or doubly-degenerate) are used to derive the previous expressions (see refs. 3,4). For linear molecules, only α_m^x and α_s^x (eqs. 6 and 7) do not vanish in equation 3. In the following, $(B_0^{\beta})^{\text{EXP}}$, $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ results for all the molecules studied in the paper are shown in Tables 1-5. The comparison between the r_0 and r_e^{SE} geometries estimated using $\Delta B_{\text{vib}}^{\beta}$ from CCSD(T), MP2, B3LYP/SNSD and B3LYP/AVTZ cubic force fields is reported in Table 6. Finally, the statistical distributions of the deviations and the plots of the CCSD(T) r_e^{SE} versus the MP2 and B3LYP ones are shown in Figures 1 and 2, respectively.

Table 1: $(B_0^{\beta})^{\text{EXP}}$, $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ ($g^{\beta\beta}$ at the B3LYP/AVTZ level) for all molecules belonging to the GeomCC set. All data are in MHz.

		$(B_0^\beta)^{\text{EXP}}$	$-\Delta B_{ m vib}^{eta}$					
			CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	el	
HCN								
parent	B	$44315.974970(156)^a$	$192.820^{\times,x}$	$216.204 \times$	183.749	187.075	-2.452	
$H^{13}CN$	B	$43170.126736(39)^{b}$	187.917	210.504	178.732	181.850	-2.380	
$\rm HC^{15}N$	B	$43027.647798(36)^c$	185.125	207.595	176.315	179.470	-2.259	
$\mathrm{H^{13}C^{15}N}$	B	$41863.94519(33)^{\acute{d}}$	180.139	201.817	171.238	174.188	-2.187	
DCN	B	$36207.462159(126)^e$	122.553	138.607	119.771	122.876	-1.737	
$\rm D^{13}CN$	B	$35587.645800(182)^e$	121.174	136.828	118.125	121.102	-1.709	
$DC^{15}N$	B	$35169.798344(30)^{\acute{c}}$	117.484	132.928	114.758	117.721	-1.601	
$\mathrm{D}^{13}\mathrm{C}^{15}\mathrm{N}$	B	$34531.299725(184)^e$	116.015	131.053	113.032	115.864	-1.572	
HNC								
parent	B	$45331.9864(24)^{f}$	$157.108^{\times,x}$	163.633^{\times}	149.462	149.314	-2.780	
$\rm HN^{13}C$	B	$43545.6202(363)^{f}$	150.145	155.972	142.684	142.714	-2.501	
$\rm H^{15}NC$	B	$44433.0475(429)^{f}$	159.403	165.016	151.442	151.775	-2.718	
$\mathrm{H^{15}N^{13}C}$	B	$42629.642(40)^{g}$	152.170	157.114	144.417	144.910	-2.442	
DNC	B	$38152.9988(16)^h$	53.825	66.396	53.809	48.978	-2.064	
$\rm DN^{13}C$	B	$36684.003(25)^i$	51.211	62.954	51.074	46.562	-1.862	
$D^{15}NC$	B	$37643.521(30)^i$	58.330	70.074	57.885	53.533	-2.039	
$\mathrm{D^{15}N^{13}C}$	B	$36155.521(25)^{i}$	55.511	66.442	54.961	50.915	-1.835	
\mathbf{HNCCN}^+								
parent	B	$4438.01064(45)^{j}$	$-2.638^{\asymp,y}$	$-0.199 \times$	2.622	-1.532	0.005	
DNCCN ⁺	B	$4158.32201(49)^k$	-3.668	-1.472	1.048	-2.657	0.002	
$\rm H^{15}NCCN^+$	B	$4320.49155(30)^{j}$	-2.461	-0.095	2.639	-1.524	0.003	
$\rm HN^{13}CCN^+$	B	$4422.4404(13)^{j}$	-2.623	-0.203	2.578	-1.524	0.005	
$\rm HNC^{13}CN^+$	B	$4417.16553(67)^{j}$	-2.339	0.007	2.745	-1.290	0.006	
$\rm HNCC^{15}N^{+}$	B	$4305.02207(61)^{j}$	-2.688	-0.308	2.444	-1.600	0.007	
HCCCCH								
parent	B	$4389.3019(39)^l$	$1.838^{\times,l}$	$2.098^{\div,l}$	8.072	2.314	0.009	
DCCCCD	B	$3809.2433(66)^l$	-0.237	-0.207	5.023	0.416	0.007	
${\rm H}^{13}{\rm C}^{13}{\rm C}^{13}{\rm C}^{13}{\rm C}{\rm H}$	B	$4098.8959(36)^l$	1.890	2.145	7.502	2.281	0.008	
$\mathrm{H}^{13}\mathrm{C}^{13}\mathrm{CCCH}$	B	$4243.7325(111)^{l}$	1.871	2.130	7.786	2.297	0.008	
$\mathrm{H}^{13}\mathrm{CCCCH}$	B	$4258.5465(105)^{l}$	1.829	2.112	7.843	2.282	0.008	
$\rm HC^{13}CCCH$	B	$4371.6291(45)^{i}$	1.879	2.113	8.009	2.335	0.009	
${\rm H}^{13}{\rm C}^{13}{\rm C}^{13}{\rm CCH}$	B	$4224.7392(99)^{l}$	1.905	2.138	7.722	2.317	0.008	
$\mathrm{H^{13}C^{13}CC^{13}CH}$	B	$4115.0556(42)^{l}$	1.855	2.133	7.559	2.265	0.008	
HCCCCD	B	$4084.45342(7)^{l}$	0.688	0.815	6.407	1.265	0.008	
$\rm H^{13}CCCCD$	B	$3964.11797(17)^{l}$	0.718	0.871	6.237	1.272	0.007	
$HC^{13}CCCD$	B	$4066.49893(16)^{l}$	0.725	0.830	6.352	1.284	0.008	
$HCC^{13}CCD$	B	$4071.64202(16)^{l}$	0.743	0.851	6.372	1.300	0.008	
$\rm HCCC^{13}CD$	B	$3977.69016(15)^{l}$	0.718	0.870	6.260	1.274	0.007	
HCO^+		()						
parent	B	$44594.42895(27)^m$	$238.681 \times$	246.416^{\times}	239.497	235.471	-0.389	
DCO^+	B	$36019.76763(41)^n$	170.258	174.500	172.964	171.349	-0.378	
$\rm H^{13}CO^+$	B	$43377.3019(17)^{n}$	229.246	236.816	229.757	225.726	-0.432	
$HC^{18}O^+$	B	42581.26°	223.327	230.663	224.024	220.150	-0.239	
HCCH								
parent	B	$35274.9651(3)^p$	$170.835^{+,w}$	$179.738 \div$	150.563	163.194	0.947	
$\rm HC^{13}CH$	B	$34429.9877(3)^q$	167.885	176.694	147.907	159.850	0.902	
$\mathrm{H}^{13}\mathrm{C}^{13}\mathrm{CH}$	B	$33564.00473(300)^r$	164.781	173.488	145.123	156.376	0.858	
DCCH	B	$29725.24501(82)^{s}$	112.445	117.909	99.440	110.793	0.671	
DCCD	B	$25418.629(6)^{t}$	73.839	77.090	65.415	75.790	0.489	
$D^{13}CCH$	B	$29237.8864(27)^{s}$	111.925	117.399	98.966	109.827	0.649	
$DC^{13}CH$	B	$28995.7361(19)^{s}$	110.395	115.811	97.568	108.355	0.639	
$\mathrm{D}^{13}\mathrm{C}^{13}\mathrm{CH}$	B	$28490.20067(1799)^{u}$	109.769	115.191	97.003	107.295	0.617	
$\mathrm{D}^{13}\mathrm{C}^{13}\mathrm{C}\mathrm{D}$	B	$24519.19191(1499)^v$	72.944	76.228	64.589	74.124	0.456	
$D^{13}CCD$	B	$24976.406(24)^w$	73.424	76.692	65.031	74.989	0.473	

Graphical symbols denote: \div VTZ; \asymp VQZ; \times CVQZ; + wCVQZ.

References: a) 5; b) 6; c) 7; d) 8; e) 9; f) 10; g) 11; h) 12; i) 11; j) 13; k) 14; l) 15; m) 16; n) 17; o) 18; p) 19; q) 20; r) 21; s) 22; t) 23; u) 24 v) 25; w) 26; x) 27; y) 28;

— Table 1 continued —

		$(B^{\beta})^{\text{EXP}}$	$-\Delta B^{\beta}$				
	-	(<i>D</i> ₀)	CCSD(T)	MP2	$\frac{-\Delta D_{\rm vib}}{\rm B3LYP/SNSD}$	B3LYP/AVTZ	$\Delta D_{\rm el}$
ou+			()		1	,	
SH ₃	B	$1/6737 6663(13)^a$	$1705,760\pm s$	1644 107×	1585 370	1606 001	26 025
parent		$126760 0(11)^{b}$	1597 050	$1456\ 171$	$1653\ 279$	1660 595	20.925 20.041
SH_2D^+	A	$142553.4460(43)^{c}$	1386.990	1308.338	1312.657	1326.901	25.242
····2	В	$98027.4348(78)^{c}$	1026.240	982.570	957.017	966.338	11.846
	C	$90373.8729(55)^{c}$	1017.870	954.449	1035.093	1042.623	10.097
SHD_2^+	A	$103327.92014(847)^a$	879.190	846.005	807.902	820.472	13.012
-	B	$89077.3239(106)^a$	774.280	692.884	741.288	744.089	9.785
	C	$70472.74887(659)^a$	748.580	732.676	765.014	772.067	6.088
SD_3^+	B_{-}	$76217.9527(37)^a$	635.550	611.564	595.455	602.604	6.993
24 arr +	C	$63616.(779)^{a}$	571.460	520.251	588.048	591.301	5.018
${}^{34}\text{SH}_3^+$	B	$146424.6233(13)^a$	1700.060	1638.759	1579.669	1600.326	26.868
34cD+		-	1596.020	1455.365	1652.076	1659.393	20.041
$^{\circ1}SD_3$	B	75931.5594(40)	632.050 570.740	608.322 510.687	592.210 586 750	599.342 500.005	6.963 5.018
NH3	U		510.140	515.007	000.100	000.000	5.010
parent	B	298192.92^{e}	$2245.988^{\times,t}$	$1837.590 \times$	1946.876	1677.154	90.610
-	C	186695.86^{e}	3615.703	3593.360	3767.176	3756.216	50.414
ND_3	B	$154175.90998(2650)^{f}$	940.608	804.558	831.942	760.239	23.459
	C	93672.22^{f}	1323.056	1312.545	1372.659	1374.489	12.621
NT_3	B_{-}	$105565.373(34)^g$	571.616	500.678	530.835	483.361	10.732
15	C	-	742.993	736.050	774.138	772.083	5.628
¹³ NH ₃	B	$297464.913(24)^{n}$	2213.376	1803.049	1910.987	1640.133	90.361
$15 ND_{2}$	B	$180707.04(70)^{10}$ $153603.1420(4047)^{i}$	3000.937	3080.147 786.813	3738.118 850 847	3747.158 740 773	50.414 23.368
ND3	C	-	1317.613	1307.424	1378.339	1368.805	12.621
H_2O							
parent	A	$835839.10(13)^j$	$-11637.727^{ imes,t}$	-12151.736^{\times}	-13248.461	-13659.537	287.304
	B	$435347.353(27)^{j}$	2393.157	2181.981	2954.940	2586.336	168.147
	C_{-}	$278139.826(57)^{j}$	7000.211	6903.581	6920.100	6872.206	97.723
D_2O	A	$462278.942(78)^{\kappa}$	-4650.028	-4847.012	-5309.003	-5485.655	79.876
	B	$218038.287(39)^{n}$	884.781	804.510	1088.739	958.245	42.098
ЧЛО		$145258.00(10)^{n}$ $701021.7(1.0)^{l}$	2020.202	2089.701	2003.040	2080.807	20.320
IIDO	A R	$272011 84(51)^{l}$	-0071.371 958 371	-7065.008	-7000.138 1162 723	-7991.021 1017 305	220.200 60.678
	C	$192055.458(78)^{l}$	3938.679	3887.864	3898.842	3865.562	45.326
$T_{2}O$	Ă	338810.896^m	-2826.385	-2941.732	-3235.558	-3350.322	39.132
2 -	B	145665.397^m	505.850	459.235	619.826	548.599	18.771
	C	100259.401^m	1503.280	1481.978	1494.363	1478.926	11.627
HTO	A	$677844.8(25.5)^n$	-4923.930	-5330.406	-5649.833	-6026.424	227.349
	$B_{\widetilde{\alpha}}$	$198198.2(6.6)^n$	623.286	570.997	722.405	638.158	30.065
DTO	C	$150466.4(6.0)^{\prime\prime}$	2672.542	2641.495	2647.479	2620.944	27.190
DIO	A B	$410174.145(78)^{2}$ 172101 952(45) ⁹	-5524.570 592.986	-3089.230 537 112	-4027.234 725-312	-4190.019 640.603	04.042 25.428
	C	$119127.850(45)^{\circ}$	1939.611	1912.995	1925.604	1906.691	16.703
$H_{2}^{17}O$	A	$830279.4(12.6)^p$	-11549.089	-12060.527	-13145.687	-13551.744	285.448
2	B	$435349.0(6.3)^{\hat{p}}$	2387.361	2177.142	2948.788	2579.601	168.147
10	C	$277506.8(6.3)^p$	6973.435	6877.163	6892.311	6845.426	97.498
$H_{2}^{18}O$	A	$825365.8(10.2)^p$	-11470.657	-11979.814	-13054.774	-13456.411	283.767
	B	$435353.5(5.1)^p$ 276048 0(5.1)p	2382.285	2172.917	2942.262	2573.689	168.147
$D^{18}O$	4	$270940.9(0.1)^{4}$ 451891.5230(16)9	-4531.672	-4725 356	-5170.987	-5340,430	97.312 78.111
$D_2 \ O$	B	$218045.22743(78)^{q}$	-4551.072 875.925	796.853	1078.706	948.226	42.098
	\tilde{C}	$144201.63828(51)^q$	2594.947	2558.982	2570.991	2549.495	25.142
$HD^{18}O$	A	692844.04 ^e	-6499.788	-6908.274	-7400.971	-7786.627	226.281
	B	271457.501^{e}	925.627	830.414	1123.999	981.595	60.013
D 170	C_{i}	190812.982^{e}	3891.397	3841.295	3850.145	3818.327	44.948
$D_2^{1'}O$	A	$456768.140(13)^r$	-4587.233	-4782.470	-5325.755	-5408.569	78.951
	B C	$218041.937(11)^{T}$ 144701 861(14)T	880.053	800.416	1083.389	952.902	42.098
$HD^{17}O$	4	144701.001(14) [*] 697096 423(25) ^r	2009.743 	2073.028 -6990 738	2000.443 	2004.343 	20.230 227 251
	B	$272216.963(38)^r$	941.106	845.065	1142.308	998.518	60.330
	\overline{C}	$191336.440(37)^r$	3913.711	3863.276	3873.121	3840.615	45.122
		× /					

q) 46; r) 47; s) 48; t) 27.

		$(B_0^\beta)^{\mathrm{EXP}}$			$-\Delta B_{\rm with}^{\beta}$		$\Delta B_{\rm ol}^{\beta}$
			CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	
H ₂ CO							
parent	A	$281970.5578(61)^a$	$3244.224^{\times,l}$	$3043.405 \times$	3173.034	3240.083	-463.336
1	B	$38833.98715(31)^a$	157.644	159.592	137.820	134.499	-4.925
	C	$34004.24349(31)^{a}$	301.781	299.219	287.228	287.126	-1.960
$H_{2}^{13}C^{17}O$	A	$281987.3(1.9)^{b}$	3226.263	3024.681	3156.650	3223.091	-463.336
2	B	$36776.790(25)^{b}$	142.725	144.903	123.956	120.835	-4.417
	C	$32412.920(19)^{b}$	275.305	273.278	261.399	261.196	-1.779
$H_{2}^{13}C^{18}O$	A	$281984.997(930)^c$	3230.273	3028.216	3160.925	3227.458	-463.336
2	B	$35859.2557(100)^{c}$	138.059	140.237	119.802	116.772	-4.174
	C	$31697.86825(960)^c$	265.321	263.451	251.723	251.482	-1.681
$D_2^{13}CO$	A	$141668.408(26)^d$	1211.840	1143.848	1180.418	1206.173	-116.015
2	B	$31733.2045(60)^d$	126.738	125.650	115.164	112.998	-3.376
	C	$25822.3933(56)^d$	229.380	225.683	221.519	222.070	-1.191
$H_2^{13}CO$	A	$281993.0397(31)^{e}$	3221.810	3020.759	3151.901	3218.240	-463.336
2	B	$37809.106966(213)^e$	148.034	150.208	128.686	125.464	-4.698
	C	$33215.941417(207)^{e}$	286.674	284.465	272.422	272.266	-1.892
$HC_2^{17}O$	A	$281965.0(3.0)^{b}$	3248.615	3047.275	3177.715	3244.865	-463.336
2	B	$37812.287(45)^{b}$	152.256	154.218	133.004	129.786	-4.638
	C	$33214.523(31)^{b}$	290.351	287.977	276.138	275.989	-1.845
$D_2C^{18}O$	A	$141648.(3)^{f}$	1230.665	1162.195	1198.750	1225.016	-116.015
2	B	$30595.86(2)^{f}$	124.589	123.450	113.520	111.448	-3.082
	C	$25063.12(2)^{f}$	221.583	217.986	213.966	214,456	-1.083
$H_{2}C^{18}O$	Ă	$281961.215(82)^{g}$	3252.568	3050.762	3181.927	3249.166	-463.336
2	B	$36902.27551(36)^{g}$	147.517	149.487	128.771	125.644	-4.392
	\overline{C}	$32513.40589(36)^g$	280.307	278.096	266.398	266.208	-1.747
D ₂ CO	A	$141653.5494(16)^{h}$	1226.746	1158.784	1185.945	1220.731	-116.002
2	B	$32283.56403(30)^h$	132.806	131.456	120.738	118.839	-3.474
	C	$26185.31517(28)^h$	237.387	233.448	228.873	229.983	-1.213
HDCO	A	$198118.3259(38)^{i}$	1820.221	1710.387	1772.827	1804.742	-226.645
	B	$34910.53734(64)^{i}$	145.873	145.663	130.827	128.378	-4.052
	C	$29561.46242(58)^{i}$	265.871	262.420	255.091	255.359	-1.515
H_2CCCH_2							
parent	A	$144249.78(33)^{j}$	$1380.298 \div$	$1313.863 \div$	1415.205	1314.517	-37.793
•	B	$8882.0971(33)^{j}$	35.513	36.380	28.823	33.514	-0.078
D_2CCCD_2	A	$72408(9).^{j}$	483.625	461.851	499.829	456.325	-9.461
	B	$6959.77(45)^{j}$	25.835	26.309	22.152	25.066	-0.048
D_2CCCH_2	A	$96431.96(27)^{j}$	720.684	686.294	741.147	686.480	-16.816
	B	7955.11^{j}	27.444	26.048	20.511	24.171	-0.062
	C	7737.14^{j}	32.716	31.421	26.266	29.694	-0.059
$\mathbf{CH}_{2}\mathbf{ClF}$							
parent	A	$41811.2198(98)^k$	$414.891^{\ddagger,m}$	$402.774 \div$	416.292	418.301	-1.062
	B	$5715.97941(42)^k$	28.677	27.828	27.160	26.882	-0.064
	C	$5194.89167(14)^k$	33.263	32.455	32.075	31.949	-0.079
$^{13}CH_2ClF$	A	$40495.4041(49)^{\acute{k}}$	391.488	380.392	393.303	395.217	-1.018
=	B	$5696.81221(64)^k$	27.928	27.095	26.398	26.129	-0.064
	C	$5158.06281(60)^k$	32.602	31.816	31.419	31.303	-0.078
	Ā	$41738.9232(29)^{\acute{k}}$	414.537	402.464	415.974	417.946	-1.061
$CH_2^{37}ClF$	B	$5580.79460(38)^k$	27.847	27.026	26.360	26.090	-0.061
-	C	$5081.90667(35)^k$	32.281	31.498	31.110	30.985	-0.075

— Table 1 continued —

 $\begin{array}{l} \mbox{Graphical symbols denote: \div VTZ; \ddagger CVTZ; \times CVQZ. References: a) 49; b) 50; c) 51; d) 52; e) 53; f) 54; g) 55; h) 56; i) 57; j) 58; k) 59; l) 27; m) 60. \end{array}$

- Table 1 continued -

		$(B_{0}^{\beta})^{\text{EXP}}$		_	$-\Delta B_{\rm uib}^{\beta}$		ΔB_{-1}^{β}
	-		CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	ei
cis-CHFCHCl							
parent	A	$16405.679(1)^a$	$136.035^{\div,d}$	$133.919^{\div,d}$	136.069	$135.617 \div$	-0.780
1	B	$3756.4416(3)^a$	4.914	4.415	4.166	4.351	-0.049
	C	$3052.9045(4)^a$	11.424	11.072	10.839	10.990	-0.014
$CDF = CD^{35}Cl$	A	$13966.6164(26)^b$	93.061	91.270	92.690	92.273	-0.571
	B	$3637.68368(54)^b$	8.686	8.259	8.081	8.409	-0.046
	C	$2882.77342(54)^{b}$	12.552	12.259	12.086	12.327	-0.013
CDF=CH ³⁵ Cl	A	$15578.01990(96)^{b}$	118.692	116.649	117.887	117.925	-0.707
	B	$3643.16983(58)^{b}$	6.580	6.125	6.092	6.172	-0.046
CUD CD35CI	C	$2949.29478(58)^{\circ}$	11.771	11.453	11.346	11.446	-0.013
CHF=CD ^{**} Cl	A D	$14017.4002(19)^{5}$ 2750 17170(20) ^b	104.997	103.177	104.023	104.001	-0.622
	В С	$3730.17170(39)^{2}$	12 265	0.039	0.000	0.000	-0.049
CHF=CH ³⁷ Cl	A	$16346\ 606(1)^a$	135 608	133 529	135 710	135 243	-0.774
0111 - 011 01	B	$3662.6914(4)^a$	4.722	4.232	3.977	4.159	-0.046
	\tilde{C}	$2988.7084(5)^a$	11.009	10.663	10.427	10.575	-0.013
$CDF = CD^{37}Cl$	A	$13918.2633(42)^{b}$	92.810	91.046	92.451	92.033	-0.567
	B	$3546.26244(67)^b$	8.384	7.966	7.787	8.116	-0.043
	C	$2823.06213(37)^b$	12.146	11.858	11.684	11.926	-0.012
CDF=CH ³⁷ Cl	A	$15532.03690(50)^b$	118.431	116.418	117.594	117.619	-0.702
	B	$3550.80487(46)^{b}$	6.339	5.893	5.878	5.951	-0.043
97	C	$2886.87142(65)^{b}$	11.360	11.048	10.952	11.047	-0.012
CHF=CD ³ Cl	A	$14556.6913(13)^{o}$	104.606	102.820	104.213	104.141	-0.616
	B	$3657.50861(30)^{o}$	6.856	6.392	6.277	6.433	-0.046
QUD 13QU35QL	C	$2919.64735(25)^{o}$	11.854	11.535	11.389	11.532	-0.013
CHF=10CH00Cl	A	$15971.8028(83)^{\circ}$	131.404	129.338	131.224	130.680	-0.742
	B	$3730.33171(130)^{\circ}$	4.090	4.205	4.027	4.220	-0.049
13CHE_CH35Cl	4	$5057.50070(04)^{\circ}$ 16228 5163(150) ^b	11.319	10.974	10.764	10.956	-0.014
	R	$3715\ 67378(16)^{b}$	4 954	4 458	4 055	4 371	-0.705 -0.048
	C	$3019.82425(110)^{b}$	11.286	10.938	10.621	10.844	-0.014
$\mathbf{CH}_{2}\mathbf{CHF}$	e	0010102120(110)	11.200	10,000	10.021	101011	01011
parent	A	$64584.672(51)^c$	$621.788 \div$	$598.167^{\div,d}$	560.655	$583.609 \div$	-6.124
	B	$10636.809(9)^c$	51.469	50.904	50.051	49.846	-0.321
10	C	$9118.108(6)^c$	64.804	64.023	62.742	63.061	-0.023
$^{13}CH_2 = CHF$	A	$64211.333(108)^c$	618.011	594.727	561.185	579.104	-6.054
	B	$10295.265(18)^{c}$	49.444	48.936	47.669	47.914	-0.303
CII = 13CIIE		8858.851(13)°	62.181 502.475	61.460 570.774	59.979	60.514	-0.023
$CH_2 = -5CHF$	A B	$02977.398(77)^{-1}$ 10634 218(13) ^c	50 674	50 117	004.000 70.211	000.202 70.118	-0.321
	C	9083 166(9) ^{c}	64 106	63 331	61 999	49.110 62 387	-0.021 -0.023
CHD _{trans} =CHF	A	$63789.713(78)^{c}$	620.156	597.513	561.334	581.180	-5.970
0 <i>trans</i> 0	B	$9668.180(14)^c$	46.520	45.775	45.227	45.337	-0.268
	C	$8383.947(9)^{\acute{c}}$	57.442	56.593	55.621	56.060	-0.021
$CHD_{trans} = CDF$	A	$49547.985(99)^c$	412.297	396.933	372.264	387.014	-3.610
	B	$9667.173(15)^c$	47.369	46.572	46.321	46.487	-0.268
0.115	C	$8076.940(10)^c$	56.099	55.244	54.452	55.016	-0.021
$CHD_{cis} = CHF$	A	$53609.855(227)^{c}$	505.265	486.924	468.429	479.313	-4.220
	B	$10278.245(39)^{\circ}$	42.840	42.027	40.994	41.537	-0.300
CHD - CDF		8010.332(23) ⁻	07.307 240.062	226 062	202.045	201.001	-0.021
$CIID_{cis} = CDF$	A B	42818.339(211) $10274\ 671(44)$	45 018	44 168	43 556	44 183	-2.703 -0.299
	C	8272.260(40)	56.296	55.385	54.517	55.306	-0.020
$CH_2 = CDF$	Ā	$49930.986(91)^{c}$	410.252	394.410	366.205	383.924	-3.669
-	B	$10635.434(15)^{c}$	52.550	51.930	51.823	51.522	-0.321
	C	$8753.124(9)^{\acute{c}}$	63.015	62.225	61.340	61.746	-0.022
$CD_2 = CHF$	A	$52621.501(67)^c$	489.304	471.372	451.437	464.058	-4.056
	B	$9401.010(11)^c$	40.485	39.599	39.278	39.441	-0.254
	C	$7964.335(8)^{c}$	51.949	51.023	50.378	50.811	-0.019
$CD_2 = CDF$	A	$42257.769(52)^{c}$	343.848	331.064	316.640	326.417	-2.626
	B	9397.708(13) ^C	42.281	41.359	41.298	41.561	-0.254
	U	(0(0.414(9))	21.143	əu.227	49.734	50.293	-0.019

Graphical symbol denotes: ÷ VTZ. References: a) 61; b) 62; c) 63; d) 64.

		$(B_{2}^{\beta})^{\text{EXP}}$	$-\Delta B^{eta}_{b}$				ΔB^{β}
		(D_0)	CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	$\Delta D_{\rm el}$
oxirane							
parent	А	$25483.79(3)^a$	$228.075^{\pm,d}$	224.217÷	209.684	214.360	-1.405
parone	B	$22120.76(3)^{a}$	236.345	230.690	224.084	227.205	0.199
	\tilde{C}	$14097\ 71(3)^a$	155 431	153 725	146 508	145 863	0 244
^{13}C	A	$25291 \ 89(6)^a$	225.305	225 506	206 567	204 896	-1.375
0	B	20201.00(0) 21597 77(6) ^a	227.096	220.000 221 400	215 471	219 555	0.180
	C	$13825\ 75(6)^a$	151 103	1/0.036	1/2/10	143 742	0.100
180	4	$23002 \ 83(11)^a$	207 615	208.062	192.910	188 304	_1 228
0	R	23332.03(11) 22121 58(12) ^a	235.076	200.002	222 810	228 106	0 100
	C	$1362856(13)^a$	1/7 800	146 753	130 227	140.470	0.133
Л	4	$24252 \ 47(6)^a$	210.000	210.735	203 200	202 278	1.214
D	R	$10005 34(6)^a$	219.999	105 710	203.233	105.004	-1.214 0.123
		13305.34(0) $13327 \ 40(6)^{a}$	201.313	130.710	131.015	134 655	0.125
D. (aia)	4	13327.40(0) $22700.41(5)^{a}$	200.050	100.076	197.069	196 190	0.213 1 1 2 7
$D_2(cis)$	A D	$22700.41(3)^{-1}$	200.939	199.970	107.000	175 967	-1.127
	D C	$10310.39(3)^{-1}$	100.905	175.700	172.704	170.007	0.159
13C D (vis)		$12030.08(3)^{-1}$	120.009	127.062	122.229	120.402	0.190
$-D_2(cis)$	A D	$22333.01(4)^{-1}$	190.409	197.031	164.740	103.003	-1.114
	D	$17903.42(4)^{-1}$	175.205	170.100	107.122	170.097	0.152
180 D ()		$12438.85(4)^{-1}$	120.000	123.999	119.157	120.372	0.183
$^{10}\text{O-D}_2(cis)$	A	$21424.03(5)^{\circ\circ}$	183.723	183.067	170.596	169.639	-0.990
	B	$18317.20(5)^{a}$	180.534	175.220	172.344	175.440	0.139
$\mathbf{D}(t)$	C	$12243.45(5)^{a}$	123.009	121.376	116.570	117.701	0.183
$D_2(trans)$	A	$22943.19(3)^{a}$	203.744	202.818	189.377	188.479	-1.122
	B	$18198.47(3)^{a}$	179.817	174.610	171.930	174.981	0.135
13 CD (1)	C	$12585.27(3)^{a}$	128.459	126.726	121.993	123.191	0.181
$^{13}\text{C-D}_2(trans)$	A	$22786.84(6)^{a}$	201.110	200.236	186.946	186.025	-1.108
	B	$17852.32(7)^{a}$	174.177	169.220	166.339	169.287	0.127
190 5 (C	$12377.50(6)^{a}$	125.315	123.677	118.921	120.096	0.175
$^{18}\text{O-D}_2(trans)$	A	$21646.74(9)^a$	186.089	185.413	172.467	171.503	-0.983
	B_{-}	$18202.46(10)^a$	179.416	174.200	171.574	174.615	0.135
	C	$12186.66(9)^a$	122.663	121.057	116.366	117.424	0.174
dioxirane							
parent	A	$28976.762(78)^{o}$	$311.^{-,e}$	$265.267 \div$	242.360	246.275	-1.070
	B	$25056.382(86)^{b}$	147.	112.283	138.079	129.544	-2.168
	C	$14779.889(65)^{b}$	149.	124.265	127.950	126.077	0.016
D	A	$25157.48(11)^{b}$	216.	218.707	202.432	205.689	-0.827
	B	$24154.97(10)^b$	142.	115.938	141.161	133.230	-1.999
	C	$14003.461(72)^b$	137.	112.969	116.679	115.027	0.003
$^{18}O_{2}$	A	$28120.96(21)^b$	253.	255.137	232.968	236.525	-0.979
	B	$22491.83(22)^{b}$	123.	92.674	115.050	107.790	-1.747
	C	$13648.58(23)^{b}$	132.	109.837	113.578	111.819	0.021
$^{13}\mathrm{C}$	A	$28012.641(68)^{b}$	246.	250.103	227.777	231.620	-1.013
	В	$25056.772(86)^{b}$	147.	112.417	137.633	129.089	-2.168
	\overline{C}	$14524.118(75)^{b}$	145.	121.518	124.612	122.856	0.012
trans-glvoxal	Ũ	110-1110(10)	110.	121.010	1211012	122.000	0.012
parent	A	$55290.612(51)^{\circ}$	$716.510^{\pm,c}$	$714.492 \div$	723.318	740.494	-29.418
1	B	$4798.037(14)^{c}$	21.852	23,236	22.412	23.108	-0.215
	\overline{C}	$4416.898(14)^{c}$	22,120	23.023	22.010	22 569	-0.078
D	Ă	44482.968(99) ^c	528.840	524.436	530 071	542 820	-18.932
-	B	4786.426(33) ^c	21.303	22.558	21 766	22 420	-0.214
	\tilde{C}	4323 130(33)	21.300	22.366	21.100	21.420	-0.075
D2	<u>_</u>	37036 493(63) ^c	419 714	408 985	413 114	422.860	-13.066
1/4	R	4773 547(94)°	20 060	200.200	91 9/0	91.064	-10.000
	C	4230 257(24)	20.300	22.105	21.049	21.004	-0.213 -0.071
^{13}C	<u> </u>	53412 960(54)c	667 080	665 702	673 385	680 391	-97 /1/
U	P	4760 611/94)°	91 /67	22 861	22 085	00 <i>3</i> .021 99 791	-0.919
	C	4379 871(94) ^c	21.407	22.001	22.000	22.101	-0.212 -0.077
	\sim		41.100	22.000	21.000	22.1°t2	0.011

— Table 1 continued —

Graphical symbol denotes: \div VTZ. References: a) 65; b) 66; c) 67; d) 68; e) calculated as differences of the values reported in Tables V and III in ref 69.

		$(B_{\alpha}^{\beta})^{\text{EXP}}$			$-\Delta B^{\beta}$.		ΔB^{β}
	_		CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	
cis-acrolein							
parent	A	$22831.6496(161)^a$	$61.154 \div$	$59.095 \div$	57.086	53.878	-3.019
	B	$6241.0470(29)^{a}$	62.222	60.389	55.610	56.775	-0.303
	C	$4902.2063(28)^{a}$	41.147	39.587	37.225	37.403	-0.018
$^{13}C1$	A	$22565.122(21)^{\acute{b}}$	57.582	55.688	54.438	50.640	-2.950
	B	$6200.653(4)^{\acute{b}}$	61.341	59.516	54.468	55.835	-0.298
	C	$4864.975(3)^{b}$	40.382	38.837	36.349	36.628	-0.018
$^{13}C2$	A	$22485.459(22)^{b}$	58.549	56.664	54.604	50.977	-2.933
	B	$6198.712(4)^{\acute{b}}$	61.184	59.385	54.694	56.028	-0.298
	C	$4860.028(3)^{b}$	40.338	38.813	36.506	36.771	-0.018
$^{13}C3$	Ā	$22574.762(18)^{b}$	59.590	57.653	57.074	53.045	-2.944
	B	$6073.707(3)^{b}$	60.319	58.532	53.360	54.778	-0.288
	\overline{C}	$4786.881(2)^{b}$	40.122	38.603	36.019	36.348	-0.018
$^{18}O4$	Ā	$22339.531(14)^{b}$	59.964	57.988	54.653	51.186	-2.892
	B	$5973.952(3)^{b}$	58.836	57.052	52.855	54.040	-0.274
	Ē	$4714\ 284(2)^{b}$	39 319	37.811	35 682	35 904	-0.015
D5	4	$20811.966(16)^{b}$	69 447	67.075	68 501	65 764	-2510
20	R	6118 233(3) ^b	59 633	58 036	52 802	54 355	_0.901
	C D	$4729 863(3)^{b}$	38 496	37.067	34 700	35 012	-0.231 -0.017
D6	4	$20594 \ 106(8)^{b}$	56 211	53 920	50 605	18 954	-0.017 -2.472
D0	R	$6128\ 360(2)^b$	61.086	50.420	55 607	40. <i>3</i> 54 56 753	-2.472
	D C	$4722 800(2)^{b}$	20.047	09.429 27.621	25 202	26.050	-0.291
D7		4723.099(2)	59.047 71.049	67 680	00.570 60.579	50.050 65 926	-0.018
Di	A D	$20790.901(20)^{\circ}$	71.042	07.080	09.076	00.200	-2.494
	B	$6103.027(3)^{-1}$	07.019 97.019	00.94Z	20.120	01.909 04.079	-0.296
Do	C	$4755.207(3)^{-1}$	37.813	30.373	33.003	34.078	-0.017
D8	A	$22034.702(33)^{-1}$	50.130	54.408	00.278	51.623	-2.950
	B	$5770.070(10)^{\circ}$	55.850	54.103	49.653	50.912	-0.261
trans-acroleir		4598.859(11)	37.642	36.168	33.976	34.278	-0.017
parent	A	$47353.729(9)^{c}$	482.993÷	497.298÷	473.458	492,126	-15.398
parone	B	$4659.4894(4)^{c}$	28.669	26.958	26.919	26.837	-0.156
	\tilde{C}	$4242.7034(4)^{c}$	27.453	25.617	26.036	26.113	-0.020
$^{13}C1$	Ā	$46781.044(7)^{b}$	475.208	489.010	464.606	482.342	-15.029
	B	$4644.7419(7)^{b}$	28.456	26.767	26.704	26.654	-0.155
	\overline{C}	$4225\ 8363(6)^{b}$	27 235	25 419	25.812	25 908	-0.019
$^{13}C2$	A	$46518949(6)^{b}$	459 947	474 033	451 761	470.312	-14847
02	B	$4642\ 4397(7)^{b}$	28.356	26 680	26 629	26 553	-0.155
	C D	$4221\ 7446(6)^{b}$	27.083	25.000 25.279	25.695	25.779	-0.020
$^{13}C3$	A	$47255\ 232(6)^{b}$	481 141	496 201	472 233	490.822	-15340
00	B	$4520\ 7955(6)^{b}$	27 720	26.050	26.008	25 897	-0.148
		$4126\ 6426(6)^{b}$	26.574	20.000 24.784	25.185	25.001	-0.019
$18 \Omega 4$	4	4120.0420(0) $47262.882(6)^{b}$	486 494	500 581	476 595	495 348	-15 3/3
04	B	$4428\ 1025(6)^{b}$	26 698	25.074	25.078	24 998	-0.139
	C D	4420.1020(0)	25.692	23.074	20.010	24.330	-0.135 -0.016
D5		$30514 424(5)^{b}$	406 716	415 043	24.000	410.000	-0.010 10.715
D0	B	$4651\ 701(6)^{b}$	28 221	26 604	26 462	26 408	0 155
	D C	4051.701(0) $4162.3476(6)^{b}$	26.251	20.004	20.402	20.408	-0.135
D6	4	39038 070(5)b	20.314	23.150	20.010	20.017	-10.019
D0	D	4647 0057(7)b	923.000 92 /1 /	96 770	96 794	96 717	0.156
		4047.3007(7) 4152 GEOG(G)b	20.414 26 Fee	20.110	20.704	20.111 25.440	-0.100
D7		$4100.0000(0)^{-1}$	∠0.000 415.000	24.834 499 71 4	20.330 410.017	20.449	-0.019
D1	A D	$41034.013(3)^{-1}$	410.903	420.114	412.017	421.110	-11.932
	В	$4008.0717(6)^{\circ}$	20.155	24.3/4	24.374	24.290	-0.147
Do		4068.6004(5) ⁶	25.274	23.425	23.885	23.956	-0.019
D8	A	46660.088(8) ⁶	491.398	505.105	476.935	493.535	-14.937
	$B \sim$	4356.7777(8)	26.103	24.526	24.671	24.640	-0.138
	C	$3985.4051(8)^{\circ}$	25.095	23.390	23.895	23.983	-0.019

— Table 1 continued —

Graphical symbol denotes: \div VTZ. References: a) 70; b) 71; c) 72.

— Table 1 continued —

		$(B^{\beta})^{\text{EXP}}$	$-\Delta B^{\beta}$.				
	-	(D ₀)	CCSD(T)	MP2	$\frac{-\Delta D_{\rm vib}}{\rm B3LYP/SNSD}$	B3LYP/AVTZ	$\Delta D_{\rm el}$
munidarina			()		/	/	
pyridazine	Δ	$6242\ 95134(14)^a$	52 504 $^{\otimes 0,a}$	49.825÷	49 074	48 838	-0.352
parent	B	$5961.09283(13)^a$	43.231	41.088	38.810	39.542	-0.457
	\tilde{C}	$3048.71390(20)^a$	24.608	23.562	22.823	22.979	0.057
$^{13}C3$	A	$6112.22807(85)^a$	51.177	48.473	47.824	47.613	-0.344
	B	$5961.31709(85)^{a}$	42.965	40.909	38.559	39.285	-0.457
	C	$3017.24769(87)^a$	24.248	23.216	22.490	22.646	0.056
$^{13}C4$	A	$6217.71925(61)^a$	51.903	49.250	48.423	48.226	-0.350
	B	$5848.36612(60)^a$	42.297	40.203	38.053	38.754	-0.444
	C	$3013.02887(23)^a$	24.184	23.158	22.428	22.588	0.056
^{15}N	A	$6218.91097(66)^a$	51.850	49.252	48.377	48.192	-0.349
	B_{-}	$5857.40185(51)^a$	42.393	40.272	38.138	38.829	-0.444
0 - D	C	$3015.70923(32)^{a}$	24.199	23.178	22.442	22.602	0.056
C3-D	A	$5962.40668(41)^{a}$	43.525	41.345	39.249	39.954	-0.454
	B	$5828.17973(46)^{a}$	47.450	45.043	44.523	44.370	-0.323
C4 D	C	$2946.68605(33)^{\circ\circ}$	23.438	22.440	21.827	21.979	0.055
C4-D	A D	$6192.44440(10)^{\circ\circ}$	01.470 20.004	48.973	48.078	47.908	-0.358
	Б С	$3396.11000(13)^{\circ}$ $3020.56870(11)^{a}$	59.904 52.501	37.790 22.297	50.157 21.650	00.700 01.919	-0.414
C3 C4-D	4	2939.30879(11) 5854 14225(16) ^a	23.201 46 381	44.086	21.039 42.797	21.818 42.800	-0.372
03,04-D	B	$5539 31505(15)^a$	40.381	38 364	37 449	37 897	-0.372 -0.376
	C	$2845.68651(15)^a$	22.231	21.281	20.760	20.917	0.053
C3.C5-D	Ă	$5889.76581(36)^a$	46.464	44.063	42.782	42.806	-0.379
)	B	$5498.78296(32)^a$	40.330	38.333	37.425	37.891	-0.370
	C	$2843.27858(12)^{a}$	22.206	21.257	20.741	20.885	0.053
C3,C6-D	A	$5959.19500(34)^a$	43.434	41.310	39.509	40.209	-0.457
	B	$5460.41809(33)^a$	43.429	41.151	40.698	40.583	-0.307
	C	$2848.96352(12)^a$	22.330	21.371	20.865	21.012	0.053
C4,C5-D	A	$6002.7188(12)^a$	49.449	46.882	46.445	46.286	-0.338
	B	$5388.7995(11)^{a}$	37.638	35.767	34.068	34.663	-0.413
CP CL CF D	C	$2839.10005(55)^{a}$	21.124	21.153	20.615	20.761	0.053
C3,C4,C5-D	A D	$5022.30000(24)^{-1}$	45.092	42.084	42.200	42.200	-0.314
	C D	$2750\ 18252(20)^a$	91 194	20.222	19 940	19 940	-0.414 0.052
C3.C4.C6-D	Ă	$5732.55746(16)^{a}$	42.375	40.356	38.748	39.258	-0.418
00,01,00 D	B	$5299.11962(15)^a$	40.482	38.299	38.039	38.067	-0.312
	C	$2753.23394(14)^{a}$	21.208	20.297	19.878	20.018	0.052
C3,C4,C5,C6-D	A	$5385.76388(45)^{a}$	37.727	35.930	34.502	35.111	-0.413
	B	$5275.67750(46)^a$	41.303	39.058	38.973	38.858	-0.297
	C	$2664.70726(65)^a$	20.198	19.333	18.988	19.122	0.050
$^{13}C,C4-D$	A	$6079.770(15)^a$	50.156	47.686	46.730	46.622	-0.357
	B	$5587.211(15)^a$	39.732	37.615	36.068	36.654	-0.408
	C	$2910.9599(10)^a$	22.957	21.965	21.356	21.508	0.055
cyclobutene	4	10000 00(1)b	196 619÷	195 901÷	110 566	109.077	0.404
parent	A D	$12092.00(1)^{-1}$	120.018	120.091	80.061	123.077	-0.404
		$6816.25(1)^{b}$	97.422 61.001	93.233 60.641	57.001	69.904 50.375	-0.488
$^{13}C1$	4	$12784 79(1)^{b}$	123 951	122 532	116 841	120 227	-0.011 -0.403
01	B	$12015 61(1)^{b}$	95.618	91 782	87 509	88.398	-0.466
	C	$6720.51(1)^{b}$	60.558	59.332	56.615	58.051	-0.074
$^{13}C3$	Ă	$12742.89(1)^{b}$	122.942	121.423	115.708	119.093	-0.402
	B	$12033.87(1)^{b}$	96.268	92.532	88.248	89.145	-0.465
	C	$6714.54(1)^{b}$	60.566	59.344	56.617	58.061	-0.074
C1-D	A	$12658.77(1)^{b}$	118.211	115.963	110.617	113.550	-0.421
	B	$11220.97(1)^{b}$	89.056	86.302	82.660	83.801	-0.385
	C	$6432.01(1)^b$	56.562	55.405	53.010	54.356	-0.068
C3-D	A	$12419.27(1)^{b}$	115.896	113.733	108.880	111.671	-0.402
	B	$11431.62(1)^{b}$	94.114	91.016	87.409	88.462	-0.403
	C	$6557.96(1)^{b}$	58.448	57.170	54.845	56.158	-0.071

Graphical symbols denote: \div VTZ; $\otimes 0$ ANO0. References: a) from the Total corrections reported in Table III of ref. 73 and subtracting their $\Delta B_{\rm el}^{\beta}$ (0.309, 0.395, and 0.062 MHz for A, B, and C, respectively). b) 74, the factor 505531 MHz amu Å² has been used for conversions from amu Å² to MHz, as indicated in Table 7.

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^{\beta}$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^{\beta}$
glycolaldehyde		-			propanal		-		
parent	A	$18446.25696(134)^a$	37.488	-1.303	parent	A	$16669.695(9)^{f}$	92.196	-0.809
1	В	$6525.99578(51)^{a}$	108.126	-0.268	1	В	$5893.496(3)^{f}$	62.958	-0.171
	\overline{C}	$4969.23452(50)^a$	65.778	-0.047		\overline{C}	$4598.992(3)^{f}$	44.710	-0.029
H ¹³ COCH ₂ OH	Ā	$18259.420856(138)^{b}$	33.931	-1.274	DCOCH ₂ CH ₃	Ā	$15668.618(9)^{f}$	88.124	-0.709
	B	$6472.436365(46)^{b}$	106.747	-0.265		B	$5752.546(3)^{f}$	61.001	-0.163
	\overline{C}	$4924.607952(39)^{b}$	64.649	-0.047		\overline{C}	$4436.334(3)^{f}$	42.373	-0.027
HCO ¹³ CH ₂ OH	Ā	$18142.347585(137)^{b}$	34.362	-1.272	H ¹³ COCH ₂ CH ₃	Ā	$16536.994(12)^{f}$	89.476	-0.797
	B	$6486.371688(42)^{b}$	106.165	-0.264		B	$5848.634(4)^{f}$	62.143	-0.168
	C	$4924.025217(38)^{b}$	64.159	-0.047		C	$4561.588(4)^{f}$	43.994	-0.029
HC ¹⁸ OCH ₂ OH	A	$18087.0469(48)^{c}$	39.532	-1.268	HCO ¹³ CH ₂ CH ₃	A	$16394.706(6)^{f}$	89.247	-0.789
2 -	B	$6242.8120(18)^c$	102.027	-0.243	2 - 0	B	$5863.114(2)^{f}$	61.925	-0.169
	\overline{C}	$4778.4877(20)^{c}$	62.998	-0.043		\overline{C}	$4559.363(3)^{f}$	43.811	-0.029
HCOCH ¹⁸ OH	Ā	$18085.3081(46)^{c}$	32.027	-1.226	HCOCH ¹³ CH ₃	Ā	$16505.355(10)^{f}$	89.377	-0.786
	B	$6239.3692(21)^c$	103.178	-0.247		B	$5746.942(3)^{f}$	61.466	-0.163
	\overline{C}	$4776.3858(30)^{c}$	63.149	-0.043		\overline{C}	$4497.083(4)^{f}$	43.737	-0.028
HCOCH ₂ OD	Ā	$17490.68230(18)^d$	63.529	-1.154	HCOCHDCH₃	Ā	$15392.623(47)^{f}$	86.378	-0.701
	В	$6499.72649(12)^d$	98.345	-0.267		В	$5789.676(12)^{f}$	61.448	-0.164
	\tilde{C}	$4882.948293(76)^d$	60.233	-0.045		\tilde{C}	$4489.566(12)^{f}$	43.865	-0.029
DCOCH ₂ OH	Ā	$17150.99706(21)^d$	43.173	-1.106	DCOCHDCH ₃	Ā	$14524.314(18)^{f}$	82.315	-0.655
	B	$6362.87482(10)^d$	101.266	-0.259		B	$5656.174(5)^{f}$	59.710	-0.161
	C	$4778.922377(73)^d$	60.593	-0.044		C	$4335.220(5)^{f}$	41.676	-0.028
HCOCHDOH	A	$16987.80362(18)^{d}$	40.081	-1.128	HC ¹⁸ OCH ₂ CH ₃	A	$16333.613(71)^{f}$	91.185	-0.781
	B	$6385.430683(91)^d$	104.775	-0.254	2 - 0	B	$5658.984(12)^{f}$	59.273	-0.155
	C	$4843.811766(70)^d$	63.763	-0.045		C	$4430.429(16)^{f}$	42.566	-0.026
DCOCHDOH	A	$15862.45361(17)^{d}$	43.035	-0.966	HCOCH ₂ CH ₂ D ₀	A	$15609.154(7)^{f}$	83.888	-0.696
	B	$6233.230843(90)^d$	98.658	-0.246		B	$5741.151(3)^{f}$	59.428	-0.163
	C	$4663.584048(65)^d$	58.969	-0.043		C	$4479.589(3)^{f}$	42.657	-0.028
ethenol					$HCOCH_2CH_2D_p$	A	$16602.445(27)^{f}$	99.674	-0.799
parent	A	$59660.80(2)^{e}$	557.543	-2.662	r	B	$5482.571(11)^{f}$	55.687	-0.149
-	B	$10561.665(3)^{e}$	67.801	-0.382		C	$4341.234(10)^{f}$	40.057	-0.027
	C	$8965.786(3)^{e}$	69.567	-0.002	$HCOCH_2CD_2H_o$	A	$15571.225(16)^{f}$	91.834	-0.690
$H_2C = {}^{13}CHOH$	A	$58385.65(2)^{\acute{e}}$	534.876	-2.541		B	$5354.224(46)^{f}$	52.725	-0.143
	B	$10561.069(3)^{e}$	66.899	-0.381		C	$4238.962(44)^{f}$	38.328	-0.025
	C	$8935.768(3)^e$	68.741	-0.002	$\mathrm{HCOCH}_2\mathrm{CD}_2\mathrm{H}_p$	A	$14699.873(94)^{f}$	77.362	-0.605
H ₂ ¹³ C=CHOH	A	$59362.26(2)^{e}$	556.265	-2.630	1	B	$5587.716(28)^{f}$	56.920	-0.155
2	B	$10233.319(3)^e$	65.009	-0.359		C	$4373.944(27)^{f}$	40.830	-0.026
	C	$8721.587(2)^e$	66.947	-0.002	benzene				
$H_2C = CH^{18}OH$	A	$59430.52(2)^{e}$	553.697	-2.669	parent	B	$5689.27(1)^g$	39.925	-0.245
	B	$10025.964(3)^e$	63.431	-0.342		C	-	20.800	0.087
	C	$8571.915(2)^e$	65.362	-0.001	C_6D_6	B	$4707.31(15)^h$	31.430	-0.167
$H_2C=CHOD$	A	$52585.52(2)^e$	453.840	-2.145		C	-	16.139	0.059
	B	$10320.499(3)^e$	64.505	-0.361	${}^{13}C_{6}H_{6}$	B	$5337.92(6)^h$	36.102	-0.215
	C	$8621.184(3)^e$	64.130	-0.002	10	C	— .	18.843	0.076
$H_2C = CDOH$	A	$47112.05(1)^e$	388.530	-1.624	${}^{13}C_6D_6$	B	$4464.37(2)^i$	28.787	-0.151
	$B_{\widetilde{\alpha}}$	$10560.543(3)^e$	69.068	-0.381		C	-	14.805	0.053
	C	8618.709(3) ^e	67.800	-0.001	cyclopropane	-			
$HD_cC = CHOH$	A	$50260.32(1)^{e}$	466.719	-1.854	parent	B	$20093.317(30)^{j}$	207.504	0.287
	B	10195.395(3)	59.575	-0.357	C II D	C	$12522.3(90)^{j}$	145.594	0.469
	C	8408.432(3)	62.566	-0.003	$O_3H_4D_2$	A	$18835.062(18)^{j}$	190.245	0.252
$HD_t C = CHOH$	A	$58911.59(2)^{\circ}$	542.755 61.671	-2.628		B	$10370.2703(70)^{j}$ 11400.0005(67)j	152.250	0.190
	в С	9024.171(3) 8267.011(2)e	01.071	-0.317		U	11409.2280(07)	120.239	0.380
D.C.CUQU		$0207.011(2)^{\circ}$ $40215.77(1)^{e}$	02.020	-0.002					
$D_2 \cup - \cup \Pi \cup \Pi$	A P	49010.11(1) 0350 397/3\e	441.000 56.010	-1.601					
		9990.927(9) 7854.070(9)e	50.019 57 975	-0.301					
D ₂ C=CDOH	A	40226 383(8)e	325 792	-0.003 -1.171					
<i>D</i> ₂ 0=0D011	R	$9347\ 259(2)^e$	57 640	-0.301					
	\tilde{C}	$7578.524(2)^e$	56.293	-0.002					

Table 2: $(B_0^{\beta})^{\text{EXP}}$, B3LYP/SNSD $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ ($g^{\beta\beta}$ at the B3LYP/AVTZ level) contributions for molecules belonging to the GeomSNS set not presented in Table 1. All data are in MHz.

Subscripts c and t stand for c is and t rans, respectively. Subscripts p and o stand for in plane and out of plane, respectively. References: a) 75; b) 76; c) 77; d) 78; e) 79; f) 80; g) 81; h) 82; i) 83; j) 84.

- Table 2 continued -

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{eta}$	$\Delta B_{\rm el}^\beta$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^\beta$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	propene					cis-methyl for	mate			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	parent	A	46083.05^{a}	380.629	-2.487	parent	A	$19982.19530(56)^d$	15.552	-1.480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	9305.27^{a}	73.152	-0.213		B	$6914.03971(17)^d$	108.164	-0.153
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	8134.16^{a}	68.239	0.046		C	$5304.49791(17)^d$	68.666	-0.049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = {}^{13}CHCH_3$	A	45298.48^{a}	364.457	-2.400	$DCOOCH_3$	A	18475.71^{e}	20.189	-1.270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	9303.28^{a}	72.300	-0.213		B	6768.41^{e}	104.838	-0.145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	C	8107.14^{a}	67.405	0.046		C	5109.70 ^e	64.761	-0.045
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CH^{13}CH_3$	A	46167.22^{a}	377.477	-2.460	$\mathrm{HCOOCH}_2\mathrm{D}_p$	A	$19921.587052(980)^{h}$	38.918	-1.477
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	9047.94^{a}	70.336	-0.203		B	$6415.266933(180)^{h}$	92.790	-0.133
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7932.98^{a}	65.870	0.044		C	$5004.268277(200)^{h}$	59.929	-0.044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CHD_c = CHCH_3$	Α	40217.26^{a}	338.328	-1.945	$\mathrm{HCOOCH}_2\mathrm{D}_o$	A	$18516.681258(830)^{h}$	21.626	-1.270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B_{-}	9040.09^{a}	65.065	-0.191		В	$6730.195643(190)^{h}$	98.134	-0.145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7729.66^{a}	62.135	0.042		C	$5164.955356(180)^n$	64.670	-0.047
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CDCH_3$	A	38154.20	273.435	-1.697	HCOOCD ₃	A	17261.81 ^{<i>j</i>}	40.335	-1.107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	9301.80°	73.081	-0.212		B	6101.92^{f}	84.321	-0.120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7837.18°	66.043	0.043	**12 0 0 0 0**	C	4778.01 ^J	55.213	-0.041
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$CH_2 = CHCH_2D_p$	A	40539.78^{a}	332.267	-1.860	H ¹³ COOCH ₃	A	$19798.73249(43)^{a}$	12.962	-1.454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	9066.99^{a}	70.895	-0.209		B	$6864.74991(14)^{a}$	106.796	-0.150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	au auau p	C	7765.98 ^a	63.164	0.041	13 cm	C	$5262.53086(13)^a$	67.562	-0.048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CHCH_2D_o$	A	43281.76 ^a	335.168	-2.190	HCOO ¹³ CH ₃	A	19765.12^{e}	12.660	-1.449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8659.02 ^a	67.930	-0.183		B	6742.65°	105.477	-0.146
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CII - CDCII D		7718.11 ^a	03.001	0.041			5188.08°	67.184 18.170	-0.048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CDCH_2D_o$	A D	00100.° 9654 590	240.813 67.275	-1.520	пс00сн3	A D	19525.60°	10.179	-1.400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Б С	0004.00 7440.40 ^c	07.373	-0.184		D C	5007 25 ^e	65 611	-0.139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHD -CHCH2D	4	7449.49 35710 c	300 888	-1.498	HCO18OCH	4	10323 00 ^e	13 182	-0.044 -1.384
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$OIID_c = OIIOII2D_p$	R	8821 61 ^c	62 913	-0.187	1100 00113	B	6848.97^e	105 231	-0.151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7397.33^{c}	57 311	0.038		C	5219.01^{e}	66 074	-0.048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHD _c =CHCH2D _c	A	38200. ^c	301.019	-1.739	HCOOCD ₂ H ₂	A	$17281.949265(420)^{g}$	21.724	-1.106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	В	8411.37^{c}	60.544	-0.166		В	$6540.604314(110)^g$	96.140	-0.137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7340.45^{c}	58.083	0.037		C	$5041.990952(120)^{g}$	62.222	-0.045
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CHD_t = CDCH3$	A	37960. ^c	274.858	-1.659	$\mathrm{HCOOCD}_{2}\mathrm{H}_{o}$	A	$18482.353793(330)^{g}$	41.286	-1.269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8546.43^{c}	65.636	-0.181		B	$6261.052643(100)^{g}$	85.733	-0.127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7289.36^{c}	59.691	0.037		C	$4884.201398(110)^{g}$	57.187	-0.043
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CHCHD_pD_o$	A	$38220.^{c}$	302.753	-1.659	$\mathbf{CH}_{2}\mathbf{F}_{2}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8469.44^{c}	65.615	-0.181	parent	A	$49142.87203(230)^i$	514.764	-2.060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7395.45^{c}	59.024	0.037		B	$10604.82258(53)^{i}$	61.021	-0.238
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CHCHD_oD_o$	A	39730. ^c	324.770	-1.905	10	C	$9249.75702(49)^i$	69.366	-0.205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8111.44^{c}	62.878	-0.161	^{13}C	A	$47730.7563(23)^i$	486.777	-1.964
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	C	7370.87^{c}	57.785	0.037		$B_{\widetilde{\alpha}}$	$10606.21792(60)^{i}$	59.610	-0.238
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CD_2 = CHCH_3$	A	39820. ^c	333.925	-1.870	-	C	$9199.02313(63)^i$	68.152	-0.204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8347.03 ^c	59.789	-0.165	D_2	A	$34745.2222(98)^{j}$	319.808	-1.075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	7203.75°	56.838	0.037		B	$10241.4230(30)^{j}$	63.952	-0.222
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CHD_t = CHCH_2D_p$	A	40360.0	334.094	-1.817	D	C	$8831.8102(26)^{j}$	65.793	-0.190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B	8324.23°	63.515	-0.179	D	A	$40682.063(15)^{j}$	393.531	-1.445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CUD -CUCU D		7210.10° 42040 6	20.984	0.030		B	$10454.4885(44)^{j}$	02.390 67.313	-0.232
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\Pi D_t = C\Pi C\Pi_2 D_o$	A D	45040.	00.001 61.072	-2.120	13CD		$9008.9010(40)^{\circ}$ $24128.287(10)^{i}$	207.646	-0.190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Б С	7970.20	01.275 57.444	-0.108	CD_2	A D	$34130.307(19)^{\circ}$ $10242.7414(50)^{i}$	507.040 62.625	-1.047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³ CH ₂ -CHCH ₂	4	45000 181	377 680	0.030 2.476		D C	$10242.7414(59)^{i}$ 8702 5874(57) <i>j</i>	64 627	-0.222
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0112 = 0110113	л R	40999.101	70 525	-2.470 -0.100	CCloFo	U	0192.0014(01)	04.027	-0.189
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C	7930 844	66 015	-0.133 0.044	parent	Δ	$4118\ 87378(12)^k$	19.418	-0.063
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₂ =CDCH ₂ D ₂	A	34060 c	$247\ 147$	-1.311	parent	B	$2638\ 674317(88)^k$	12.253	-0.032
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0112-0D0112Dp	B	$9058\ 28^c$	71 195	-0.208		\overline{C}	$2233691145(88)^k$	10.306	-0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C	$7483 72^{c}$	61 083	0.200	^{13}C	A	$4115\ 71380(67)^{l}$	18 978	-0.020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHD _a =CDCH _a	A	33720 ^c	253 078	-1.379	\sim	B	2638 94282(58) ^l	11 088	-0.032
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511Dc=0D0113	B	9038.74°	65.294	-0.192		\tilde{C}	$2232.85263(57)^{l}$	10.090	-0.026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\tilde{C}	7451.01°	60.213	0.039	^{37}Cl	Ă	$4092.0152(13)^{l}$	19.225	-0.062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHD _f =CHCH ₂	Ă	45912.6^{b}	383.457	-2.417	<u>.</u>	B	$2582.2212(13)^{l}$	11.896	-0.031
$C = 7542.20(0)^{b} = 61.442 = 0.040$		B	$8548.00(8)^{b}$	65.631	-0.182		\overline{C}	$2185.4417(13)^{l}$	10.017	-0.025
		C	$7542.20(0)^{b}$	61.442	0.040			· \ -/		

Subscripts c and t stand for c is and t rans, respectively. Subscripts p and o stand for in plane and out of plane, respectively.

References: a) 85, the factor 505531 MHz amu Å² has been used for conversions from amu Å² to MHz, as indicated in Table III; b) 86; c) 87; d) 88; e) 89, the authors informed us with a private communication that these values have been obtained making new fits of data from ref. 90; f) 90; g) 91; h) 92; i) 93; j) 94; k) 95; l) 96.

- Table 2 continued -

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\rm el}^\beta$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^\beta$	$\Delta B_{\rm el}^\beta$
$\mathbf{CH}_{2}\mathbf{Cl}_{2}$					\mathbf{CHClF}_2				
parent	A	$32002.23(6)^a$	289.383	-0.064	parent	A	$10234.70311(28)^{f,g}$	60.426	-0.215
	B	$3320.24(4)^a$	14.966	-0.025		B	$4861.25340(13)^{f,g}$	20.836	-0.057
	C	$3065.19(4)^a$	17.285	-0.031		C	$3507.43791(10)^{f,g}$	18.866	-0.050
^{13}C	A	$30746.54(10)^b$	271.905	-0.065	^{13}C	A	$10204.19195(41)^{f}$	59.403	-0.214
	B	$3320.66(11)^{b}$	14.552	-0.025		B	$4846.02214(21)^{f}$	20.398	-0.057
	C	$3053.48(10)^{b}$	16.957	-0.031		C	$3503.34990(24)^{f}$	18.483	-0.049
D	A	$27197.75(52)^a$	221.553	-0.056	D	A	$9804.9203(45)^{h}$	59.304	-0.199
	B	$3305.84(54)^a$	14.978	-0.025		B	$4749.2119(19)^{h}$	20.964	-0.055
	C	$3027.21(51)^a$	16.852	-0.031	07	C	$3500.4025(20)^{h}$	19.058	-0.049
D_2	A	$23676.52(16)^a$	179.356	-0.049	³⁷ Cl	A	$10233.85975(28)^{f}$	60.655	-0.215
	B	$3285.08(6)^a$	15.017	-0.025		B	$4717.14876(12)^{f}$	20.016	-0.054
27	C	$2993.98(6)^a$	16.599	-0.030	27	C	$3431.84796(10)^{J}$	18.322	-0.047
³⁷ Cl	A	$31878.65(10)^a$	288.523	-0.060	³⁷ ClD	A	$9803.9417(59)^{n}$	59.191	-0.199
	B	$3231.26(9)^a$	14.498	-0.024		B	$4610.1091(26)^{n}$	20.182	-0.052
27 cm	C	$2988.18(8)^{a}$	16.721	-0.030		C	$3424.3312(28)^n$	18.478	-0.047
$^{37}\mathrm{Cl}_2$	A	$31755.7(14)^a$	287.663	-0.057	pyridine		0000 0 5 10(0) <i>i</i>		
	B	$3142.4(16)^a$	14.038	-0.023	parent	A	$6039.2516(6)^i$	45.557	-0.288
37 CUD	C	$2911.0(14)^a$	16.167	-0.028		B	$5804.9116(6)^i$	38.880	-0.343
31 CID	A	$27091.23(65)^{a}$	220.866	-0.053	13.00	C	$2959.2117(6)^{i}$	21.980	0.071
	B	$3217.01(71)^{a}$	14.506	-0.024	¹⁰ C2	A	$5963.13(4)^{j}$	44.271	-0.285
37.01D		$2951.23(65)^{a}$	16.309	-0.029		B	$5758.90(3)^{j}$	38.969	-0.332
$O(DD_2)$	A D	$23081.80(40)^{\circ}$	1/8.//0	-0.040	13 Ca		$2928.90(1)^{j}$	21.045	0.009
	B	$3197.80(42)^{-1}$	14.044 16.071	-0.024	03	A D	$5950.57(5)^{3}$ 5756 00(4) <i>i</i>	44.108 29.955	-0.285
alvorrile said	C	2919.07(37)	10.071	-0.029		D C	$3730.00(4)^{3}$	21.625	-0.331
giyoxyne aciu	Δ	10066 9692(19)0	107 657	0.012	1304		$2920.03(1)^{3}$	45 222	0.009
parent	A R	4606 00801(20)c	30 374	-0.913 -0.100	04	A B	5676 03(2) <i>j</i>	40.000	-0.287 -0.328
		$3242\ 15287(26)^c$	26 197	-0.130 -0.035			$2925 \ 40(1)^{j}$	21 603	0.020
DCOCOOH	4	$10276\ 7(8)^d$	94 680	-0.798	$15 \mathrm{N}$	A	6039.45(8)j	45 379	-0.306
Decession	B	$4573.66(6)^d$	30 337	-0.188	1	B	$5680.37(6)^{j}$	39 712	-0.283
	\tilde{C}	$3163.85(6)^d$	24.886	-0.033		Ē	$2926.54(2)^{j}$	21.593	0.066
DCOCOOD	Ă	$9777.0(1.0)^d$	91.645	-0.722	D(-C2)	Ă	$5900.8828(5)^{i}$	42.363	-0.312
	B	$4569.88(7)^d$	29.270	-0.187	-()	B	$5558.5214(5)^{i}$	38.715	-0.282
	\overline{C}	$3113.17(7)^d$	24.230	-0.032		\overline{C}	$2861.7137(5)^{i}$	21.056	0.065
H ¹³ COCOOH	Ā	$10861.3(7)^{d}$	104.260	-0.894	D(-C3)	Ā	$5889.1923(10)^i$	41.981	-0.288
	B	$4577.03(6)^d$	30.288	-0.188	()	B	$5555.0518(10)^{i}$	38.494	-0.300
	C	$3218.60(6)^d$	25.827	-0.034		C	$2858.0310(10)^{i}$	20.917	0.066
HCOCOOD	A	$10422.262(136)^{e}$	103.765	-0.824	D(-C4)	A	$6039.9967(10)^{i}$	45.877	-0.288
	B	$4600.668(4)^{e}$	29.239	-0.189	· · ·	B	$5420.0697(9)^{i}$	35.256	-0.328
	C	$3190.305(10)^e$	25.477	-0.034		C	$2855.8194(8)^{i}$	20.887	0.069
HC ¹⁸ OCOOH	A	$10965.74(27)^{\acute{e}}$	107.467	-0.913					
	B	$4349.089(10)^e$	28.743	-0.170					
	C	$3112.754(25)^e$	24.995	-0.032					
HCOC ¹⁸ OOH	A	$10737.525(92)^e$	110.220	-0.880					
	B	$4414.702(5)^e$	26.974	-0.173					
	C_{\cdot}	$3126.948(10)^e$	24.547	-0.032					
HCOCO ¹⁸ OH	A	$10264.66(13)^e$	95.324	-0.796					
	B	$4579.313(7)^{e}$	31.187	-0.188					
1100130001	C	$3165.071(18)^{e}$	25.729	-0.033					
HCO-~COOH	A	$10975.1(9.5)^{\circ}$	106.619	-0.913					
	В С	$4391.17(20)^{\circ}$	29.922	-0.188					
	U	∂2∂0.77(24)°	20.801	-0.034					

References: a) 97; b) 98; c) 99; d) 100; e) 101. f) 102; g) 103; h) 104; i) 105; j) 106;

- Table 2 continued -

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^\beta$	$\Delta B_{\rm el}^\beta$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\rm el}^\beta$
thiophene					furan				
parent	A	8041.77^{a}	60.941	0.395	parent	A	$9447.1210(10)^i$	80.171	-0.506
	B	5418.12^{a}	30.319	0.200		B	$9246.7419(10)^i$	65.581	-0.485
	C	3235.77^{a}	22.237	-0.087		C_{-}	$4670.8234(10)^i$	38.812	0.132
C2-D	A	7437.32^{a}	53.293	0.338	C2-D	A	$9280.3433(14)^i$	68.532	-0.493
	B	5413.61^{a}	30.467	0.199		$B_{\widetilde{\alpha}}$	$8638.6241(14)^i$	67.557	-0.424
Ca D	C	3131.82^{a}	21.093	-0.081	Ca D	C	$4472.1266(13)^i$	36.228	0.121
C3-D	A	7856.13"	58.753	0.376	C3-D	A	$9383.709(2)^{i}$	76.216	-0.502
	B	5138.14° 2105.22 <i>a</i>	28.174	0.179		B	$8490.524(2)^{\circ}$	60.352	-0.413
C2 C4 D		3105.23 ⁻ 7616.004	20.870	-0.080			$4405.483(2)^{-1}$	30.039 52.120	0.120
C3,C4-D	A D	401450^{a}	26.488	0.555	02,03,04,03-D	A D	$7698.0556(0)^{i}$	58 706	-0.308
		2985 99 ^a	19 703	-0.074			$3932\ 5863(9)^i$	29 701	0.004
C2 C3 C4 C5-D	4	$5587 67^{a}$	44 052	0.265	C2 C5-D	A	$9033\ 6024(7)^i$	62 967	-0.463
02,00,04,00-D	B	4905.66^{a}	26717	0.200	02,00-D	B	$8160\ 7819(6)^{i}$	64 322	-0.377
	C	2810.88^{a}	17.898	-0.065		C	$4285.8610(6)^{i}$	33.882	0.112
$^{13}C2$	Ă	7852.89^{a}	59,153	0.377	C3.C4-D	Ă	$8819.6010(7)^{j}$	71.906	-0.440
	B	5418.34^{a}	30.065	0.200		B	$8248.8750(16)^{j}$	55.453	-0.387
	C	3204.81^{a}	21.913	-0.085		C	$4260.5864(9)^{j}$	33.647	0.110
$^{13}C3$	A	7981.43^{a}	60.096	0.389	$^{13}C2$	A	9295.41^{k}	71.932	-0.496
	B	5319.23^{a}	29.645	0.192		B	9178.23^{k}	71.068	-0.483
	C	3190.63^{a}	21.795	-0.084		C	4616.25^k	38.157	0.129
^{34}S	A	8042.29^{a}	60.811	0.395	$^{13}C3$	A	9403.73^{k}	77.657	-0.503
	B	5274.23^{a}	29.301	0.189		B	9043.68^{k}	65.289	-0.468
	C	3183.70^{a}	21.729	-0.084		C	4608.15^{k}	38.037	0.129
trans-formic aci	id				¹⁸ O	A	9447.66^{k}	79.448	-0.506
parent	A	$77512.229(70)^b$	382.599	-12.259		B	8841.72^k	62.330	-0.443
	B	$12055.105(12)^b$	89.219	-0.614		C	4565.37^{k}	37.584	0.127
	C	$10416.114(11)^b$	90.514	-0.159	cis-formic acid				
H ¹³ COOH	A	$75580.8793(39)^c$	349.972	-11.660	parent	A	$86461.6124(12)^l$	703.100	-22.370
	B	$12053.56994(40)^c$	87.955	-0.613		B	$11689.18149(16)^{l}$	68.263	-0.494
	C	$10379.0003(35)^c$	89.023	-0.157	10	C	$10283.99126(15)^l$	76.688	-0.129
DCOOH	A	$57709.23401(70)^d$	285.853	-6.794	H ¹³ COOH	A	$84201.819(19)^m$	664.964	-21.255
	B	$12055.98357(20)^d$	88.421	-0.614		B	$11687.5239(28)^m$	67.273	-0.494
n 12 an art	C	$9955.61289(19)^{a}$	86.322	-0.145	D 00 0 11	C	$10249.6623(28)^m$	75.736	-0.129
D13COOH	A	$56787.65(24)^{e}$	267.974	-6.584	DCOOH	A	$62653.4395(87)^m$	506.338	-15.926
	B	$12054.043(49)^e$	87.204	-0.613		B	$11690.1692(18)^m$	67.547	-0.462
DC1800U		$9927.130(53)^{\circ}$	84.923	-0.144	UCOOD	C	$9837.9145(18)^{m}$	75.137	-0.121
DC ¹⁰ OOH	A	$56979.36(16)^{\circ}$ 11207 0800(26) ^e	285.918	-0.582	HCOOD	A	$83962.785(22)^m$ 10882.0412(20)m	641.978	-16.062
		$0.482 \ A113(22)^e$	80.010	-0.340 0.120		D C	10003.9413(29) 0624.0421(20)m	60.050	-0.428
$DCO^{18}OH$	4	$57440 \ 16(28)^e$	280.366	-6.756	DCOOD	4	$61507 \ 409(11)^m$	475 469	-11.645
000 011	B	$11382.628(11)^{e}$	82.677	-0.550	DCCCD	B	$10884.5356(22)^m$	63.016	-0.404
	\tilde{C}	$9484.547(13)^e$	81.021	-0.135		\tilde{C}	$9237.0082(22)^m$	67.863	-0.112
HCOOD	Ā	$66099.43368(200)^{f}$	354.903	-9.013	$\rm HC^{18}OOH$	Ā	$85388.388(35)^m$	704.617	-22.000
	В	$11762.55737(28)^{f}$	82.293	-0.582		В	$11058.5903(40)^m$	62.811	-0.417
	C	$9969.964321(282)^{f}$	83.319	-0.146		C	$9778.6232(40)^m$	71.078	-0.109
DCOOD	A	$50816.53186(135)^{f}$	267.453	-5.340	$HCO^{18}OH$	A	$85175.320(26)^m$	674.640	-21.353
	B	$11759.89095(21)^{f}$	82.306	-0.581		B	$11093.7328(33)^m$	64.293	-0.477
	C	$9534.172828(207)^{f}$	79.699	-0.134		C	$9803.3164(33)^m$	71.902	-0.122
$\rm HC^{18}OOH$	A	$76526.465(15)^{g}$	382.326	-5.181					
	B	$11397.1065(25)^{g}$	83.002	-0.580					
	C	$9904.6859(20)^{g}$	84.636	-0.133					
$\rm HCO^{18}OH$	A	77201.3076(88) ^g	375.302	-11.887					
	B	$11383.7761(18)^{g}$	83.407	-0.546					
	C	$9905.9491(12)^g$	84.751	-0.140					
$D^{13}COOD$	A	$50031.88(44)^h$	255.194	-12.193					
	B	$11756.1655(151)^{h}_{}$	79.142	-0.552					
	C	$9503.6307(195)^h$	77.304	-0.146					

 $References: \ a) \ 107; \ b) \ 108; \ c) \ 109; \ d) \ 110; \ e) \ 111; \ f) \ 112; \ g) \ 113; \ h) \ 114; \ i) \ 115; \ j) \ 116; \ k) \ 117; \ l) \ 118; \ m) \ 119.$

- Table 2 continued -

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\rm el}^\beta$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\mathrm{el}}^{\beta}$
dimethyl ether	•				aziridine				
parent	A	$38788.162(25)^a$	95.332	-0.656	parent	A	$22736.191870(86)^b$	239.356	-0.536
	B	$10056.509(6)^a$	152.569	-0.051		B	$21192.460228(82)^{b}$	210.531	0.261
	C	$8886.804(5)^a$	118.168	-0.113		C	$13383.16422(11)^{b}$	160.053	0.384
$(CH_3)_2^{18}O$	A	$37172.343(19)^a$	67.976	-0.584	ND	A	$20678.35(2)^{c}$	202.187	0.227
	B	$10058.257(5)^a$	150.790	-0.051		B	$20583.08(2)^c$	212.769	-0.438
	C	$8799.546(4)^a$	114.422	-0.110		C	$12796.97(2)^c$	151.297	0.358
$^{13}\mathrm{CH}_{3}\mathrm{OCH}_{3}$	A	$38615.722(21)^a$	91.384	-0.653	CD_c	A	$21832.15(1)^c$	230.958	-0.426
	B	$9795.652(5)^a$	147.525	-0.049		B	$19088.17(1)^c$	180.236	0.162
	C	$8673.639(5)^a$	114.762	-0.107		C	$12653.83(1)^c$	144.778	0.343
$CH_3OCH_2D_p$	A	$38281.541(38)^a$	144.119	-0.630	CD_t	A	$21775.24(1)^{c}$	228.410	-0.428
	B	$9309.206(10)^a$	133.607	-0.044		B	$19097.61(1)^c$	183.144	0.167
	C	$8277.943(8)^a$	103.791	-0.097	1.5	C	$12689.57(1)^c$	147.727	0.336
$CH_3OCH_2D_o$	A	$34764.242(38)^a$	102.011	-0.539	^{15}N	A	$22046.37(2)^c$	227.066	-0.500
	B	$9642.43(10)^a$	142.030	-0.048		B	$21186.75(2)^c$	210.353	0.262
	C	$8537.205(8)^a$	111.994	-0.103	10	C	$13142.74(2)^c$	155.663	0.371
$CH_3OCD_2H_p$	A	$31492.884(32)^a$	102.924	-0.450	^{13}C	A	$22600.73(1)^c$	236.688	-0.513
	B	$9226.434(8)^a$	134.645	-0.043		B	$20684.72(1)^{c}$	202.542	0.233
	C	$8256.869(7)^a$	106.687	-0.098	15	C	$13132.66(1)^c$	155.582	0.369
$CH_3OCD_2H_o$	A	$34199.914(32)^a$	141.378	-0.515	^{15}ND	A	$20685.03(2)^c$	201.726	0.229
	B_{-}	$8976.858(8)^a$	125.761	-0.042		B	$20051.67(2)^c$	203.202	-0.411
011 0 00	C	$7984.112(7)^a$	99.388	-0.090	ab	C	$12596.36(2)^c$	147.583	0.348
CH_3OCD_3	A	$30912.357(24)^a$	134.370	-0.428	CD_2	A	$20883.91(1)^c$	218.466	-0.368
	B	$8635.549(6)^a$	120.939	-0.038		B	$17299.26(1)^c$	160.331	0.111
12 GTL 0 GD	C	$7747.481(6)^{a}$	95.436	-0.086		C	$12116.01(1)^{c}$	136.870	0.311
$^{13}CH_3OCD_3$	A	$30795.899(34)^{a}$	131.582	-0.428	pyrrole				
	B	$8414.195(9)^a$	117.142	-0.036	parent	A	$9130.63231(96)^{a}$	74.754	-0.480
	C	$7561.704(8)^{a}$	92.823	-0.082		В	$9001.36348(93)^{a}$	69.949	-0.336
$CH_3^{10}OCD_3$	A	$29779.220(32)^{a}$	113.732	-0.386	15	C	$4532.10977(97)^a$	37.193	0.181
	B	$8633.634(8)^a$	119.521	-0.038	¹³ N	A	$9131.09(2)^{e}$	74.362	-0.480
arr. 0 ¹³ ap	C	$7672.081(7)^{a}$	92.572	-0.084		B	$8807.26(2)^{e}$	68.696	-0.323
$CH_3O^{13}CD_3$	A	$30847.90(45)^{a}$	131.995	-0.429	13 00	C	$4482.47(2)^{\circ}$	36.748	0.176
	B	$8469.347(11)^{a}$	117.954	-0.036	¹⁰ C2	A	$9021.879(12)^{\circ}$	70.876	-0.371
	C	$7609.406(9)^{a}$	93.403	-0.083		B	$8892.736(12)^{e}$	71.106	-0.421
$(CD_3)_2O$	A	$25696.425(10)^{a}$	143.467	-0.305	13 CP	C	$4477.737(12)^{\circ}$	36.526	0.176
	B	$7483.852(3)^{a}$	97.076	-0.028	10C3	A	$9099.129(9)^{\circ}$	73.507	-0.453
		$6798.089(2)^{\circ\circ}$	78.750	-0.067		B	$8803.137(9)^{\circ}$	68.494	-0.341
$CD_3OCH_2D_p$	A D	$30032.923(30)^{\circ\circ}$	102.801	-0.374	ND		$4473.078(9)^{\circ}$	30.499	0.170
	Б С	$6024.022(12)^{-1}$	100.900	-0.052	N-D	A	$9150.77(2)^{\circ}$	74.000 50.866	-0.480
CD OCU D		$1239.001(0)^{-1}$	04.490	-0.070		Б С	$0340.03(2)^{\circ}$	39.800	-0.290
$CD_3OCH_2D_o$	A D	$26274.100(55)^{\circ}$ 8206.515(10)a	129.062	-0.339	C2D		$4508.00(2)^{\circ}$	54.070 70.020	0.100 0.257
	Б С	$7460 470(7)^{a}$	115.200	-0.035	02-D	A D	$9010.39(3)^{*}$	64 612	-0.557
CD-OCD-H	4	$7400.470(7)^{a}$	91.102 192.646	-0.075		B C	0301.04(3) 1228 20(2)e	24.012	-0.365
$CD_3OCD_2\Pi_p$	A B	20030.220(17) 7076.282(5) ^a	123.040 107.983	-0.333	C3 D		4336.30(3)	54.707 73.499	0.105
		7370.202(3) 7226 842(4) ^a	87 469	-0.032 -0.075	C3-D	A B	9039.00(2) 8272 $45(2)^{e}$	62 384	-0.430 -0.313
CD2OCD2H	4	$27945 018(22)^{a}$	151 794	-0.073 -0.364			$4330\ 20(2)^{e}$	34 701	-0.515 0.165
0030002110	R	7757 971(6)a	101.724	-0.004		C	-000.20(2)	04.101	0.100
	C	$6996 412(5)^a$	81 417	-0.035 -0.075					
13CD ₂ OCD ₂	Ă	$25649\ 234(31)^a$	141 550	-0.305					
0030003	B	$7338.549(13)^a$	94 573	-0.027					
	\tilde{C}	$6674.675(9)^a$	76 949	-0.064					
	U	3011.010(0)	10.010	0.004					

Subscripts c and t stand for c is and t rans, respectively. Subscripts p and o stand for in plane and out of plane, respectively. References: a) 120; b) 121; c) 122; d) 123. e) 124.

- Table 2 continued -

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^{\beta}$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^{\beta}$
maleic-anhy	dride				cis-hexatriene				
parent	A	$6842.486(13)^a$	49.339	-0.422	parent	A	$14651.2292(7)^d$	190.342	-1.325
	B	$2467.614(8)^a$	13.915	-0.067		B	$1583.1814(1)^d$	6.941	-0.021
	C	$1813.627(8)^a$	11.037	-0.015		C	$1429.4619(1)^d$	6.827	0.003
D_2	A	$6106.159(7)^a$	41.481	-0.376	$^{13}C1$	A	$14606.201(1)^d$	190.557	-1.321
	B	$2423.551(3)^a$	13.629	-0.066		B	$1543.538(1)^d$	6.724	-0.020
10	C_{-}	$1734.998(3)^a$	10.377	-0.014	10	C	$1396.6539(4)^a$	6.632	0.003
$^{13}C2$	A	$6841.501(33)^a$	48.988	-0.422	$^{13}C2$	A	$14581.503(1)^d$	187.643	-1.319
	B	$2452.607(9)^{a}$	13.741	-0.066		B	$1571.686(1)^{a}$	6.889	-0.021
13 CP		$1805.442(6)^{a}$	10.911	-0.015	13 CP		$1419.4331(4)^{a}$	6.758	0.003
03	A D	$0091.262(25)^{-1}$	47.078	-0.412	03	A D	$14411.130(3)^{-1}$	100.070	-1.504
		$1700.054(5)^{a}$	10.000	-0.007		D C	1300.989(1) $1425.3504(7)^d$	6 704	-0.021
¹⁸ O1	A	$6688 643(24)^a$	48 814	-0.013 -0.412	$D_{2}(-C1)$	A	$13898\ 545(3)^e$	173 335	-1.256
01	B	$2467.808(8)^a$	13.679	-0.067	$D_2(01)$	B	$1475.897(1)^{e}$	6.354	-0.020
	\overline{C}	$1802.755(5)^a$	10.886	-0.015		\overline{C}	$1334.859(1)^{e}$	6.183	0.003
¹⁸ O6	A	$6790.337(44)^a$	48.929	-0.419	$D_{trans}(-C1)$	A	$14072.587(2)^{e}$	183.904	-1.272
	B	$2354.397(11)^{a}$	13.141	-0.064		B	$1524.966(2)^{e}$	6.522	-0.020
10	C	$1748.276(8)^a$	10.543	-0.014		C	$1376.482(1)^e$	6.484	0.003
$^{13}C2,D_2$	A	$6104.567(25)^a$	41.177	-0.376	$D_{cis}(-C1)$	A	$14494.602(5)^e$	181.545	-1.310
	B	$2409.078(8)^{a}$	13.459	-0.065		B	$1528.795(4)^{e}$	6.765	-0.020
13 Ca D	C	$1727.440(5)^{a}$	10.260	-0.014	D(Co)	C	$1383.628(3)^{e}$	6.532	0.003
C3,D2	A B	$3993.203(28)^{-2}$ $3418.373(7)^{a}$	40.213 13 570	-0.309	D(-C2)	A B	$138(1.1)(2)^{\circ}$ $1577 042(1)^{e}$	181.805	-1.254
		2410.373(7) 1723 126(5) ^a	10.264	-0.005 -0.014		D C	1377.942(1) $1417\ 502(1)^e$	6 531	0.021
$^{18}O1.D_{2}$	A	$5971.996(16)^a$	40.935	-0.368	D(-C3)	A	$13512.527(4)^{e}$	156.783	-1.220
	B	$2423.742(6)^a$	13.442	-0.066	-(•••)	В	$575.8974(5)^{e}$	7.350	-0.021
	C	$1724.104(4)^a$	10.244	-0.014		C	$411.9484(6)^e$	7.008	0.003
$^{18}C6, D_2$	A	$6058.195(14)^a$	40.923	-0.373	imidazole				
	B	$2314.121(5)^a$	12.926	-0.063	parent	A	$9725.326(12)^{f}$	79.977	-0.524
	C	$1674.540(3)^a$	9.939	-0.014		B	$9374.011(12)^{f}$	73.551	-0.559
pyrazole					- (C	$4771.928(12)^{f}$	40.060	0.158
parent	A	$9618.77584(85)^{b}$	78.631	-0.412	D(-N1)	A	$9668.881(20)^{f}$	79.708	-0.579
	B	$9412.54381(82)^{b}$	79.175	-0.676		B	$8699.529(18)^{f}$	62.798	-0.434
$D(\mathbf{N1})$		$4755.85007(98)^{\circ}$	41.264	0.164	D(C2)		$4578.384(18)^{J}$	30.048	0.144
D(-N1)	A B	9400.200(0)° 8850.733(5)°	65 804	-0.045 0.382	D(-C2)	A B	9388.993(20) ³ 8806 784(26) f	70.580	-0.322 0.473
		$4572 847(4)^{c}$	37 819	-0.382 0.151		C D	$4566\ 963(24)^{f}$	37.484	-0.475 0.145
D(-C3)	A	$9435\ 783(4)^c$	77.067	-0.613	D(-C4)	A	$9486\ 409(48)^{f}$	77 266	-0.620
D(00)	B	$8774.190(4)^{c}$	70.857	-0.396	D(01)	B	$8778.562(36)^{f}$	66.602	-0.382
	\overline{C}	$4545.189(3)^c$	38.560	0.150		\overline{C}	$4558.162(26)^{f}$	37.374	0.145
D-(C4)	A	$9566.176(10)^c$	81.191	-0.502	D(-C5)	A	$9586.929(42)^{f}$	76.666	-0.456
. ,	B	$8617.847(9)^{c}$	66.417	-0.488		B	$8684.701(30)^{f}$	66.652	-0.524
	C	$4532.324(9)^c$	38.263	0.149		C	$4555.635(20)^f$	37.197	0.143
D-(C5)	A	$9537.304(4)^c$	75.909	-0.470	$^{15}N1$	A	$9695.278(26)^{f}$	79.760	-0.554
	B	$8677.868(3)^c$	71.457	-0.521		B	$9188.170(26)^{f}$	71.877	-0.510
15	C_{-}	$4542.381(3)^c$	38.438	0.149	15	C	$4716.172(22)^{f}$	39.532	0.154
¹⁵ N1	A	$9488.641(4)^{c}$	80.741	-0.543	¹⁵ N3	A	$9721.546(22)^{J}$	79.361	-0.511
	B	$9339.851(4)^{c}$	75.229	-0.526		B	$9135.778(22)^{J}$	71.311	-0.540
15 N 9		$4705.424(4)^{\circ}$	40.755	0.161	13 Co		$4708.472(18)^{j}$	39.284	0.155
10102	A B	$9018.304(4)^{\circ}$ 0180.010(4)°	76 050	-0.411 0.643	02	A B	$9522.509(02)^{j}$ $9354.007(62)^{f}$	70.002	-0.401
	B C	$4605 610(3)^{c}$	10.959	-0.045		D C	$9534.007(02)^{5}$ $4717.455(62)^{f}$	73.900 30.352	-0.590
$^{13}C3$	A	$9457.566(6)^{c}$	75 059	-0.524	$^{13}C4$	A	$9573.922(60)^{f}$	78712	-0.580
00	B	$9340.099(6)^{c}$	79.714	-0.539	<u>.</u> .	B	$9286.009(60)^{f}$	71.878	-0.477
	\tilde{C}	$4697.835(6)^{c}$	40.496	0.160		\overline{C}	$4712.609(56)^{f}$	39.311	0.155
$^{13}C4$	Ā	$9582.358(6)^{c}$	79.894	-0.463	$^{13}C5$	A	$9632.227(74)^{f}$	77.525	-0.469
	B	$9193.394(8)^{c}$	74.867	-0.594		B	$9225.537(62)^{f}$	72.981	-0.584
	C	$4690.511(8)^c$	40.439	0.159		C	$4710.987(54)^{f}$	39.298	0.154
$^{13}C5$	A	$9571.674(5)^c$	76.019	-0.425	D(-N1), D(-C2)	A	$8941.68(20)^{f}$	70.949	-0.545
	B	$9223.004(5)^c$	78.614	-0.634		B	$8631.60(20)^{f}$	62.252	-0.380
	C	$4695.634(4)^c$	40.478	0.159		C	$4390.68(20)^{J}$	34.451	0.133

References: a) 125; b) 126; c) 127; d) 128; e) 129; f) 130.

- Table 2 continued -

		$(B_0^\beta)^{\rm EXP}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^\beta$			$(B_0^\beta)^{\rm EXP}$	$-\Delta B_{\rm vib}^{\beta}$	$\Delta B_{\rm el}^\beta$
butadiene					ethene				
parent	A	$41682.658(21)^a$	419.959	-6.402	parent	A	$145837.641(1)^{f}$	1497.895	-35.042
	B	$4433.504(3)^{a}$	27.421	-0.106		B	$30010.919(1)^{f}$	199.069	-1.998
	C	$4008.042(6)^a$	25.936	0.020		C	$24824.194(1)^{f}$	247.042	0.616
$^{13}C1$	A	$41634.934(18)^{b}$	419.929	-6.386	$H_2^{13}CCH_2$	A	$145835.5(1.7)^g$	1495.376	-35.042
	B	$4307.067(9)^{b}$	26.460	-0.100	-	B	$29263.1(7)^{g}$	191.781	-1.900
	C	$3904.050(9)^b$	25.081	0.019		C	$24309.6(7)^{g}$	238.692	0.590
$^{13}C2^{13}C3$	A	$40607.152(21)^c$	397.827	-6.079	$HDCCH_2$	A	$120093.521(70)^h$	1108.958	-23.763
	B	$4405.162(3)^c$	26.884	-0.104		B	$27470.737(26)^h$	172.930	-1.667
	C	$3974.762(6)^{c}$	25.378	0.020		C	$22297.745(14)^h$	213.212	0.496
$D_2(-C1)$	A	$36599.086(12)^a$	357.859	-4.915	D_2CCH_2	A	$97496.7(1.8)^h$	801.171	-15.587
	B	$4041.9524(9)^a$	23.709	-0.088		B	$25675.260(44)^h$	156.800	-1.457
	C	$3640.6340(9)^a$	22.436	0.017		C	$20268.791(40)^h$	188.560	0.410
D(-C2)D(-C3)	A	$30589.695(15)^d$	265.758	-3.428	cis-HDCCHD	A	$99667.262(89)^h$	872.687	-16.308
	B	$4415.250(9)^d$	26.939	-0.105		B	$25417.208(41)^h$	148.820	-1.427
	C	$3858.848(9)^d$	24.672	0.019		C	$20199.073(24)^h$	184.854	0.406
$D_t(-C1)D_t(-C4)$	A	$40165.531(18)^e$	399.641	-5.940	D_2CCD_2	A	$73199.01(60)^i$	555.820	-8.773
	B	$3918.248(6)^e$	23.756	-0.082		B	$22032.1(2)^{i}$	127.017	-1.069
	C	$3570.792(6)^e$	22.428	0.016		C	$16893.8(2)^i$	146.799	0.284
$D_c(-C1)D_c(-C4)$	A	$34172.553(18)^e$	340.570	-4.283					
	B	$4137.607(9)^e$	22.899	-0.092					
	C	$3691.350(9)^e$	21.930	0.017					
$D_c(-C1)D_t(-C4)$	A	$36713.688(21)^e$	367.655	-4.948					
	B	$4029.630(21)^e$	23.260	-0.087					
	C	$3631.695(18)^e$	22.172	0.017					

Subscripts c and t stand for $c \mathrm{is}$ and $t \mathrm{rans},$ respectively.

References: a) 131; b) 132; c) 133; d) 134; e) 135; f) 136; g) 137; h) 138; i) 139.

Table 3: $(B_0^{\beta})^{\text{EXP}}$, B3LYP/SNSD $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ ($g^{\beta\beta}$ at the B3LYP/AVTZ level) contributions for fluoropyridines. All data are in MHz.

		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\mathrm{el}}^{\beta}$			$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{\rm el}^\beta$
2-fluoropy	ridine				3-fluoropyri	dine			
parent	A	$5870.88105(19)^a$	43.805	-0.303	parent	A	$5829.70195(13)^a$	42.639	-0.312
	B	$2699.98571(10)^a$	15.801	-0.067		B	$2637.49103(7)^a$	14.761	-0.073
	C	$1849.24259(7)^a$	12.051	0.022		C	$1815.65619(6)^a$	11.494	0.019
^{15}N	A	$5779.4641(3)^a$	42.767	-0.293	^{15}N	A	$5737.4876(4)^a$	41.682	-0.301
	B	$2699.09638(11)^a$	15.735	-0.066		B	$2617.99299(21)^a$	14.572	-0.072
	C	$1839.65857(11)^a$	11.936	0.021		C	$1797.43686(17)^a$	11.321	0.018
$^{13}C2$	A	$5871.2147(7)^a$	43.458	-0.303	$^{13}C2$	A	$5738.82484(21)^a$	41.858	-0.302
	B	$2690.64398(18)^a$	15.599	-0.066		B	$2637.31634(11)^a$	14.666	-0.073
	C	$1844.89037(16)^{a}$	11.915	0.022		C	$1806.66088(9)^{a}$	11.939	0.019
$^{13}C3$	A	$5769.5965(6)^{a}$	42.888	-0.293	$^{13}C3$	A	$5829.97704(27)^a$	42.369	-0.312
	B	$2699.73699(18)^a$	15.715	-0.067		B	$2627.64595(15)^a$	14.555	-0.072
	C	$1838.95575(15)^a$	11.941	0.021		C	$1811.01379(12)^a$	11.361	0.019
$^{13}C4$	A	$5778.6121(5)^{a}$	42.875	-0.293	$^{13}C4$	A	$5729.26706(24)^a$	41.673	-0.302
	B	$2677.95903(17)^a$	15.608	-0.066		B	$2636.95880(13)^a$	14.688	-0.073
	C	$1829.72561(16)^a$	11.878	0.021		C	$1805.54353(11)^a$	11.388	0.018
$^{13}C5$	A	$5870.8586(6)^{a}$	43.598	-0.303	$^{13}C5$	A	$5734.58904(29)^a$	41.689	-0.304
	B	$2650.54112(20)^a$	15.498	-0.064		B	$2618.25406(16)^a$	14.612	-0.071
	C	$1825.91289(20)^a$	11.856	0.021		C	$1797.27550(13)^{a}$	11.342	0.018
$^{13}C6$	A	$5775.7229(5)^{a}$	42.884	-0.294	$^{13}C6$	A	$5829.94366(25)^{a}$	42.363	-0.312
	B	$2682.96409(16)^a$	15.617	-0.066		B	$2592.19215(13)^{a}$	14.510	-0.070
	C	$1831.77113(16)^{a}$	11.887	0.021		C	$1794.09782(11)^{a}$	11.315	0.018

References: a) 140;

trans-CHFCHCl		$(B_0^\beta)^{\text{EXP}}$	$-\Delta E$	β_{\dots}^{β}	ΔB_{-1}^{β}
	_		$CCSD(T)/VTZ^a$	B3LYP/SNSD	ei
parent	A	$53655.7296(13)^b$	542.590	505.722	-4.615
	B	$2476.60705(40)^{b}$	9.530	9.372	-0.034
	C	$2366.41041(45)^{b}$	10.672	10.430	-0.015
$CDF = CD^{35}Cl$	A	$36119.5308(18)^{b}$	299.024	280.102	-2.089
	B	$2466.1772(27)^{b}$	9.466	9.340	-0.033
	C	$2307.5064(12)^{b}$	10.534	10.325	-0.015
CDF=CH ³⁵ Cl	A	$43786.717(19)^{b}$	427.869	397.209	-3.084
	B	$2466.640(20)^{b}$	9.222	9.085	-0.033
	C	$2334.144(20)^{b}$	10.429	10.200	-0.015
$CHF = CD^{35}Cl$	A	$42810.6833(22)^{b}$	340.527	318.286	-2.920
	B	$2476.0507(34)^{b}$	9.694	9.544	-0.034
	C	$2339.6221(43)^{b}$	10.706	10.478	-0.015
CHF=CH ³⁷ Cl	A	$53612.9224(17)^{b}$	541.505	504.437	-4.605
	B	$2415.96632(38)^b$	9.268	9.111	-0.032
	C	$2310.90479(41)^{b}$	10.359	10.122	-0.015
$CDF = CD^{37}Cl$	A	$36093.02672(63)^b$	298.529	279.833	-2.084
	B	$2405.054(7)^{b}$	9.202	9.077	-0.032
	C	$2253.834(7)^{b}$	10.227	10.022	-0.014
CDF=CH ³⁷ Cl	A	$43763.8174(32)^{b}$	427.607	397.036	-3.080
	B	$2405.669(85)^{b}$	8.962	8.828	-0.032
	C	$2279.400(85)^{b}$	10.118	9.896	-0.014
CHF=CD ³⁷ Cl	A	$42766.8580(24)^{b}$	339.312	317.071	-2.910
	B	$2415.2413(42)^{b}$	9.430	9.284	-0.032
	C	$2285.1521(42)^{b}$	10.399	10.178	-0.014

Table 4: $(B_0^{\beta})^{\text{EXP}}$, $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ ($g^{\beta\beta}$ at the B3LYP/AVTZ level) for *trans*-1-chloro-2-fluoroethylene. All data are in MHz.

a) CCSD(T) $\Delta B_{\rm vib}^{\beta}$ from ref. 64. b) $(B_0^{\beta})^{\rm EXP}$ from ref. 141.

Table 5: $(B_0^{\beta})^{\text{EXP}}$, B3LYP/SNSD $\Delta B_{\text{vib}}^{\beta}$ and $\Delta B_{\text{el}}^{\beta}$ ($g^{\beta\beta}$ at the B3LYP/AVTZ level) for pyrimidine. All data are in MHz.

pyrimidine		$(B_0^\beta)^{\mathrm{EXP}}$	$-\Delta B_{ m vib}^{\beta}$	$\Delta B_{ m el}^{eta}$
parent	A	$6276.82802(19)^a$	45.041	-0.342
	B	$6067.16590(18)^a$	41.001	-0.402
	C	$3084.44917(17)^a$	22.396	0.051
$^{13}\mathrm{C2}$	A	$6152.684(4)^a$	43.954	-0.328
	B	$6067.554(3)^a$	40.641	-0.402
	C	$3054.27(2)^{a}$	22.043	0.050
$^{13}C4$	A	$6256.102(4)^a$	44.429	-0.343
	B	$5957.231(4)^a$	40.203	-0.384
	C	$3050.846(8)^a$	22.024	0.050
$^{13}C5$	A	$6132.820(3)^a$	43.775	-0.327
	B	$6067.375(2)^a$	40.807	-0.402
	C	$3049.33(3)^a$	22.041	0.050
^{15}N	A	$6253.962(4)^a$	44.517	-0.343
	B	$5954.185(4)^a$	40.111	-0.383
	C	$3049.541(7)^a$	22.018	0.050

a) $(B_0^\beta)^{\text{EXP}}$ from ref. 142.

Table 6: Comparison between the r_0 and r_e^{SE} geometries estimated using $\Delta B_{\text{vib}}^{\beta}$ from CCSD(T), MP2, B3LYP/SNSD and B3LYP/AVTZ cubic force fields. Distances in Å, angles in degrees.

	$r_e^{\rm SE}$		$\Delta r_e^{\rm SE}$		Δr_0
-	CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	
		– linear mole	ecules –		
$\mathbf{H}\mathbf{C}\mathbf{N}^{a}$					
r(H-C)	$1.0651^{\times,\dagger}$	$+0.0001^{\times,\dagger}$	-0.0006^{\dagger}	-0.0007^{\dagger}	-0.0027
r(C-N)	1.1533	-0.0004	+0.0003	+0.0002	+0.0035
\mathbf{HNC}^{a}					
r(H-N)	$0.9954^{\times, \dagger}$	$-0.0011^{\times,\dagger}$	-0.0008^{\dagger}	-0.0001^{\dagger}	-0.0091
r(N-C)	1.1685	+0.0001	+0.0003	+0.0002	+0.0040
HCO^+					
r(H-C)	$1.0919^{\times, \dagger}$	$+0.0002^{\times,\dagger}$	-0.0003^{\dagger}	-0.0004^{\dagger}	+0.0002
r(C-O)	1.1057	-0.0002	+0.0000	+0.0001	+0.0034
\mathbf{HNCCN}^{+b}					
r(H-N)	$1.0133^{,\dagger}$	$+0.0002^{\times,\dagger}$	$+0.0005^{\dagger}$	$+0.0000^{\dagger}$	-0.0075
r(N-C)	1.1406	-0.0007	-0.0014	-0.0004	-0.0006
r(C-C)	1.3724	+0.0006	+0.0011	+0.0005	+0.0038
r(C-N)	1.1634	-0.0013	-0.0027	-0.0008	-0.0050
\mathbf{HCCH}^{c}					
$r(C \equiv C)$	$1.2030^{+,\dagger}$	$-0.0004^{\div,\dagger}$	$+0.0006^{\dagger}$	$+0.0005^{\dagger}$	+0.0054
r(C-H)	1.0617	+0.0003	-0.0006	-0.0010	-0.0045
$\mathbf{H}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{H}^{d}$					
$r(C \equiv C)$	$1.2084^{\times,\dagger}$	$-0.0007^{\div,\dagger}$	-0.0014^{\dagger}	-0.0003^{\dagger}	-0.0005
r(C-C)	1.3727	+0.0009	-0.0001	+0.0005	+0.0024
r(C-H)	1.0615	+0.0008	-0.0005	-0.0008	-0.0054
	- sy	mmetric top	molecules –		
\mathbf{SH}_3^{+e}					
r(S-H)	$1.3500^{+,\dagger}$	$+0.0003^{\times,\dagger}$	$+0.0002^{\dagger}$	$+0.0001^{\dagger}$	+0.0063
a(H-S-H)	94.15	+0.02	-0.04	-0.04	+0.04
$\mathbf{NH}_3{}^a$					
r(N-H)	$1.0110^{\times, \dagger}$	$+0.0003^{\times,\dagger}$	$+0.0001^{\dagger}$	$+0.0003^{\dagger}$	+0.0040
a(H-N-H)	106.94	-0.04	-0.07	-0.10	+0.58
$\mathbf{H}_2\mathbf{CCCH}_2$					
r(C=C)	$1.3066^{\div,\dagger}$	$+0.0001^{\div,\dagger}$	$+0.0009^{\dagger}$	$+0.0004^{\dagger}$	+0.0030
r(C-H)	1.0807	+0.0001	-0.0007	-0.0002	+0.0026
a(H-C-H)	118.26	+0.02	+0.11	+0.09	+0.30
	- asy	ymmetric top	molecules –		
$\mathbf{H}_2\mathbf{O}^a$					
r(O-H)	$0.9573^{ imes,\dagger}$	$+0.0001^{\times,\dagger}$	-0.0001^{\dagger}	$+0.0002^{\dagger}$	-0.0006
a(H-O-H)	104.53	-0.00	-0.06	-0.06	+0.40

Graphical symbols denote: \div VTZ; \times VQZ; \times CVQZ; + wCVQZ, \dagger the inclusion of $\Delta B_{\rm el}^{\beta}$.

a) CCSD(T) $\Delta B^{\beta}_{\text{vib}}$ from ref. 27. b) CCSD(T) $\Delta B^{\beta}_{\text{vib}}$ from ref. 28. c) CCSD(T) $\Delta B^{\beta}_{\text{vib}}$ from ref. 26. d) CCSD(T) and MP2 $\Delta B^{\beta}_{\text{vib}}$ from ref. 15. e) CCSD(T) $\Delta B^{\beta}_{\text{vib}}$ from ref. 48.

		10010 0 0011	linded		
	$r_e^{ ext{SE}}$		$\Delta r_e^{\rm SE}$		Δr_0
	CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	
H_2CO^a					
r(O-C)	$1.2047^{\times,\dagger}$	$+0.0000^{\times,\dagger}$	$+0.0004^{\dagger}$	$+0.0004^{\dagger}$	+0.0048
r(C-H)	1.1003	+0.0004	-0.0001	-0.0002	+0.0061
a(H-C-O)	121.65	+0.00	-0.03	-0.03	+0.01
$\mathbf{CH}_{2}\mathbf{ClF}^{b}$					
r(C-H)	$1.0840^{\ddagger,\dagger}$	$+0.0005^{\div,\dagger}$	$+0.0002^{\dagger}$	$+0.0004^{\dagger}$	+0.0051
r(C-F)	1.3594	+0.0001	-0.0003	-0.0002	+0.0112
r(C-Cl)	1.7641	-0.0001	+0.0004	+0.0003	-0.0028
a(H-C-Cl)	107.96	+0.01	-0.03	+0.01	+1.38
a(H-C-H)	112.57	-0.05	-0.02	-0.01	-2.36
a(F-C-Cl)	110.02	+0.01	+0.00	+0.01	+0.16
$\mathbf{CH}_{2}\mathbf{CHF}^{c}$					
r(C1-F)	$1.3424^{\div,\dagger}$	$+0.0001^{\div,\dagger}$	-0.0012^{\dagger}	$-0.0004^{\div,\dagger}$	+0.0150
r(C1-H)	1.0792	+0.0001	-0.0008	-0.0011	+0.0129
r(C1-C2)	1.3213	+0.0000	+0.0021	+0.0011	-0.0044
$r(C2-H_{trans})$	1.0772	+0.0003	-0.0004	+0.0002	+0.0002
$r(C2-H_{cis})$	1.0785	+0.0002	-0.0003	-0.0005	+0.0069
a(F-C1-H)	112.10	+0.00	+0.26	+0.35	-4.40
a(F-C1-C2)	121.72	-0.02	-0.04	-0.04	-0.15
$a(C1-C2-H_{trans})$	118.95	+0.00	-0.01	-0.06	-0.12
$a(C1-C2-H_{cis})$	121.32	+0.03	-0.03	-0.02	-0.30
cis -CHFCHCl d					
r(C1-Cl)	$1.7129^{\div,\dagger}$	$-0.0001^{\div,\dagger}$	-0.0005^{\dagger}	$-0.0001^{\div,\dagger}$	+0.0142
r(C1-H)	1.0795	-0.0003	+0.0000	-0.0018	+0.0314
r(C1=C2)	1.3244	+0.0003	+0.0022	+0.0014	-0.0082
r(C2-F)	1.3313	-0.0001	-0.0007	-0.0005	+0.0050
r(C2-H)	1.0796	-0.0001	-0.0020	-0.0009	+0.0062
a(Cl-C1=C2)	123.08	-0.01	+0.00	-0.02	+0.05
a(H-C1=C2)	121.08	-0.07	-0.02	-0.30	+5.80
a(F-C2=C1)	122.56	+0.00	-0.09	-0.03	-0.29
a(H-C2=C1)	123.49	-0.02	-0.16	-0.11	+0.67
$\mathbf{oxirane}^e$,	
r(C-C)	$1.4609^{\div,7}$	$+0.0001^{\div,\dagger}$	$+0.0006^{\dagger}$	$+0.0006^{\dagger}$	+0.0111
r(C-O)	1.4274	+0.0000	+0.0007	+0.0007	+0.0083
r(C-H)	1.0816	+0.0003	-0.0002	-0.0004	+0.0007
a(C-O-C)	61.56	+0.00	-0.01	-0.01	+0.11
a(H-C-H)	116.25	-0.02	+0.08	+0.10	+0.38
a(H-C-O)	114.87	+0.01	-0.05	-0.05	-0.12

— Table 6 continued —

Graphical symbols denote: \div VTZ; \ddagger CVTZ, \ddagger the inclusion of $\Delta B_{\rm el}^{\beta}$. a) CCSD(T) $\Delta B_{\rm vib}^{\beta}$ from ref. 27. b) CCSD(T) $\Delta B_{\rm vib}^{\beta}$ from ref. 60. c) MP2 $\Delta B_{\rm vib}^{\beta}$ from ref. 64. d) CCSD(T) and MP2 $\Delta B_{\rm vib}^{\beta}$ from ref. 64. e) CCSD(T) $\Delta B_{\rm vib}^{\beta}$ from ref. 68.

		10010 0 0011	linded		
	$r_e^{\rm SE}$		$\Delta r_e^{\rm SE}$		Δr_0
	CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ	
$dioxirane^a$					
r(C-O)	1.3846^{\div}	$+0.0000^{\div,\dagger}$	$+0.0004^{\dagger}$	$+0.0003^{\dagger}$	+0.0068
r(O-O)	1.5133	+0.0014	+0.0007	+0.0011	+0.0059
r(C-H)	1.0853	+0.0001	-0.0003	-0.0002	-0.0016
a(H-C-H)	117.03	-0.06	+0.03	+0.02	-0.33
trans-glyoxal ^b					
r(C=O)	$1.2046^{\div,\dagger}$	$+0.0001^{\div,\dagger}$	$+0.0005^{\dagger}$	$+0.0003^{\dagger}$	+0.0084
r(C-C)	1.5157	-0.0004	-0.0008	-0.0009	+0.0002
r(C-H)	1.1006	+0.0000	+0.0000	+0.0001	+0.0025
a(H-C-C)	115.23	+0.14	+0.14	+0.19	+0.19
a(O=C-H)	123.60	-0.14	-0.15	-0.20	+0.20
cis-acrolein					
r(C1-C2)	$1.4806^{\div,\dagger}$	$+0.0002^{\div,\dagger}$	$+0.0003^{\dagger}$	$+0.0005^{\dagger}$	+0.0078
r(C2-C3)	1.3350	+0.0001	+0.0018	+0.0014	+0.0039
r(C1-O)	1.2108	+0.0004	-0.0006	+0.0000	+0.0016
r(C1-H)	1.1024	-0.0002	-0.0003	-0.0009	+0.0023
r(C2-H)	1.0824	+0.0000	-0.0017	-0.0014	+0.0040
r(C3-H8)	1.0808	+0.0012	-0.0008	+0.0003	+0.0176
r(C3-H7)	1.0797	+0.0003	-0.0011	-0.0009	-0.0001
a(C1-C2-C3)	121.21	+0.01	+0.12	-0.09	+0.18
a(O-C1-C2)	123.96	-0.01	-0.08	+0.11	+0.10
a(C2-C1-H)	115.83	-0.01	-0.02	+0.02	-0.50
a(C3-C2-H)	121.57	+0.04	+0.06	+0.05	-0.25
$a(C2-C3-H_{cis})$	119.85	-0.06	+0.01	-0.07	-1.26
$a(C2-C3-H_{trans})$	121.61	-0.01	+0.05	-0.01	-0.12
trans-acrolein					
r(C1-C2)	$1.4702^{\div,\dagger}$	$+0.0002^{\div,\dagger}$	$+0.0001^{\dagger}$	-0.0004^{\dagger}	+0.0101
r(C2-C3)	1.3354	+0.0006	+0.0001	+0.0006	+0.0039
r(C1-O)	1.2103	+0.0003	+0.0006	+0.0006	+0.0019
r(C1-H)	1.1048	+0.0002	-0.0004	-0.0002	+0.0048
r(C2-H)	1.0814	+0.0001	+0.0003	+0.0001	-0.0005
r(C3-H7)	1.0825	+0.0001	+0.0001	+0.0000	+0.0047
r(C3-H8)	1.0795	-0.0001	-0.0003	-0.0004	+0.0038
a(C1-C2-C3)	120.18	+0.00	+0.03	+0.04	+0.00
a(O-C1-C2)	124.02	-0.02	-0.05	-0.03	-0.36
a(C2-C1-H)	115.08	-0.09	+0.03	+0.02	-0.38
a(C3-C2-H)	122.78	+0.03	+0.07	+0.06	+0.01
$a(C2-C3-H_{cis})$	120.46	+0.02	-0.02	-0.03	-0.55
$a(C2-C3-H_{trans})$	122.10	+0.02	-0.03	-0.05	-0.39

— Table 6 continued —

Graphical symbols denote: \div VTZ, \dagger the inclusion of $\Delta B_{\rm el}^{\beta}$. a) CCSD(T) $r_e^{\rm SE}$ from ref. 69. b) CCSD(T) $\Delta B_{\rm vib}^{\beta}$ from ref. 67.

- Table 6 continued $-$							
	$r_e^{\rm SE}$		$\Delta r_e^{\rm SE}$		Δr_0		
	CCSD(T)	MP2	B3LYP/SNSD	B3LYP/AVTZ			
cyclobutene							
r(C1=C2)	$1.3406^{\div,\dagger}$	-0.0003^{\dagger}	$+0.0003^{\dagger}$	$+0.0002^{\dagger}$	+0.0072		
r(C2-C3)	1.5141	+0.0004	+0.0008	+0.0006	+0.0069		
r(C3-C4)	1.5639	-0.0002	+0.0007	+0.0003	+0.0088		
r(C1-H)	1.0805	+0.0001	-0.0004	-0.0004	+0.0002		
r(C3-H)	1.0894	+0.0003	-0.0002	+0.0000	+0.0029		
a(C1-C2-C3)	94.23	+0.00	+0.00	+0.00	+0.01		
a(C1-C2-H)	133.42	+0.05	+0.05	+0.02	+0.17		
a(C4-C3-H)	114.64	+0.04	-0.04	-0.04	-0.07		
a(H-C3-H)	109.09	+0.00	+0.10	+0.09	+0.13		
${f pyridazine}^a$							
r(N2-C3)	1.3302 ^{ℵ0,†}	$+0.0026^{\div,\dagger}$	$+0.0022^{\dagger}$	$+0.0014^{\dagger}$	+0.0093		
r(C3-C4)	1.3938	-0.0016	-0.0012	-0.0006	+0.0010		
r(C4-C5)	1.3761	+0.0018	+0.0017	+0.0015	+0.0104		
r(C4-H)	1.0802	+0.0002	-0.0011	-0.0010	-0.0005		
r(C3-H)	1.0810	+0.0001	-0.0006	-0.0006	+0.0012		
a(C3-C4-C5)	116.85	+0.02	+0.01	+0.00	+0.00		
a(N2-C3-C4)	123.86	-0.03	+0.01	+0.02	+0.05		
a(H-C3-C4)	121.35	+0.06	+0.04	-0.01	+0.15		
a(H-C4-C5)	122.37	-0.04	-0.05	-0.06	-0.11		

Graphical symbols denote: \div VTZ; $\aleph 0$ ANO0, \dagger the inclusion of $\Delta B_{\rm el}^{\beta}$. a) CCSD(T) $r_e^{\rm SE}$ from ref. 73. Figure 1: Statistical distributions of the MP2, B3LYP/SNSD and B3LYP/AVTZ deviations from the CCSD(T) SE equilibrium parameters for the molecules belonging to the GeomCC set (see Table 1 in the main text and Table 6 above).

(c) CO bonds

Figure 2: CCSD(T) r_e^{SE} equilibrium parameters plotted versus the MP2, B3LYP/SNSD and B3LYP/AVTZ r_e^{SE} values for the molecules belonging to the GeomCC set (see Table 1 in the main text and Table 6 above).

(a) all bonds

(b) all angles

References

- East, A. L. L.; Johnson, C. S.; Allen, W. D. Characterization of the X⁻¹A' state of isocyanic acid. J. Chem. Phys. 1995, 98, 1299–1328.
- (2) Demaison, J., Boggs, J., Császár, A., Eds. *Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry*; CRC Press, 2011.
- (3) Henry, L.; Amat, G. Sur les coefficients d'interaction entre la vibration et la rotation dans les molécules polyatomiques. II. *Cahiers Phys.* **1960**, *118*, 230.
- (4) Henry, L.; Amat, G. The cubic anharmonic potential function of polyatomic molecules. J. Mol. Spectrosc. 1961, 5, 319–325.
- (5) Ahrens, V.; Lewen, F.; Takano, S.; Winnewisser, G.; Urban, S.; Negirev, A.; Koroliev, A. Sub-Doppler Saturation Spectroscopy of HCN up to 1 THz and Detection of $J = 3 \rightarrow 2$ (4 \rightarrow 3) Emission from TMC1. Z. Naturforsch. 2002, 57a, 669.
- (6) Cazzoli, G.; Puzzarini, C. The Lamb-dip spectrum of the J+1 ← J (J=0,1,3-8) transitions of H¹³CN: The nuclear hyperfine structure due to H, ¹³C, and ¹⁴N. J. Mol. Spectrosc. 2005, 233, 280–289.
- (7) Cazzoli, G.; Puzzarini, C.; Gauss, J. The Rare Isotopomers of HCN: HC¹⁵N and DC¹⁵N. Rotational Spectrum and Resolved Nuclear Hyperfine Structures due to ¹⁵N and D. Astrophys. J. Suppl. 2005, 159, 181.
- (8) Fuchs, U.; Brünken, S.; Fuchs, G. W.; Thorwirth, S.; Ahrens, V.; Lewen, v., F. Urban; Giesen, T.; Winnewisser, G. High Resolution Spectroscopy of HCN Isotopomers: H¹³CN, HC¹⁵N, and H¹³C¹⁵N in the Ground and First Excited Bending Vibrational State. Z. Naturforsch. 2004, 59a, 861.
- (9) Brünken, S.; Fuchs, U.; Lewen, F.; Urban, v.; Giesen, T.; Winnewisser, G. Sub-Doppler and Doppler spectroscopy of DCN isotopomers in the terahertz region: ground and first excited bending states $(\nu_1\nu_2\nu_3)=(0\ 1^{\text{e,f}}\ 0)$. J. Mol. Spectrosc. **2004**, 225, 152–161.
- (10) Maki, A. G.; Mellau, G. C. High-Temperature Infrared Emission Measurements on HNC. J. Mol. Spectrosc. 2001, 206, 47–52.
- (11) Pearson, E. F.; Creswell, R. A.; Winnewisser, M.; Winnewisser, G. The Molecular Structures of HNC and HCN Derived from the Eight Stable Isotopic Species. Z. Naturforsch. 1976, 31a, 1394.
- (12) Okabayashi, T.; Tanimoto, M. Millimeter and submillimeter wave spectroscopy of HNC and DNC in the vibrationally excited states. J. Chem. Phys. 1993, 99, 3268– 3271.
- (13) Cazzoli, G.; Degli Esposti, C.; Scappini, F. Molecular structure of protonated cyanogen, HNCCN⁺, by millimeter-wave spectroscopy. J. Chem. Phys. **1992**, 97, 6187–6190.

- (14) Cazzoli, G.; Esposti, C. D.; Scappini, F. Millimeter-wave spectrum of DNCCN⁺. Chem. Phys. Lett. **1992**, 194, 297.
- (15) Thorwirth, S.; Harding, M. E.; Muders, D.; Gauss, J. The empirical equilibrium structure of diacetylene. J. Mol. Spectrosc. 2008, 251, 220–223.
- (16) Cazzoli, G.; Cludi, L.; Buffa, G.; Puzzarini, C. Precise THz Measurements of HCO⁺, N₂H⁺, and CF⁺ for Astrophysical Observations. Astrophys. J. Suppl. 2012, 203, 11.
- (17) Lattanzi, V.; Walters, A.; Drouin, B. J.; Pearson, J. C. Rotational Spectrum of the Formyl Cation, HCO⁺ to 1.2 THz. Astron. J. 2007, 662, 771.
- (18) Database maintained by Holger S. P. Müller and Sven Thorwirth. https://www.astro.uni-koeln.de/cgi-bin/cdmsinfo?file=e031506.cat.
- (19) Amyay, B.; Robert, S.; Herman, M.; Fayt, A.; Raghavendra, B.; Moudens, A.; Thiévin, J.; Rowe, B.; Georges, R. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 μm. J. Chem. Phys. 2009, 131, 114301.
- (20) Fayt, A.; Robert, S.; Di Lonardo, G.; Fusina, L.; Tamassia, F.; Herman, M. Vibrationrotation energy pattern in acetylene: C¹³HC¹²H up to 6750 cm⁻¹. J. Chem. Phys. 2007, 126, 114303.
- (21) Di Lonardo, G.; Ferracuti, P.; Fusina, L.; Venuti, E.; Johns, J. W. C. Vibration-Rotation Spectra of ¹³C Containing Acetylene: I. The Bending States up to $\nu_4 + \nu_5 = 2$. J. Mol. Spectrosc. **1993**, 161, 466–486.
- (22) Cazzoli, G.; Puzzarini, C.; Fusina, L.; Tamassia, F. Rotational spectra of deuterated acetylenes: DCCH, D¹³CCH and DC¹³CH. J. Mol. Spectrosc. 2008, 247, 115–118.
- (23) Huet, T. R.; Herman, M.; Johns, J. W. C. The bending vibrational levels in C2D2 $(\tilde{X}^1\Sigma_q^+)$. J. Chem. Phys. **1991**, 94, 3407–3414.
- (24) Fusina, L.; Tamassia, F.; Di Lonardo, G.; Baldan, A. The infrared spectrum of ${}^{13}C_2HD$ between 100 and 2100 cm⁻¹: a global fit for the bending states up to $\nu_4 + \nu_5 = 3$. Mol. Phys. **2009**, 107, 2119–2126.
- (25) Canè, E.; Cazzoli, G.; Di Lonardo, G.; Dore, L.; Escribano, R.; Fusina, L. The Infrared Spectrum of ¹³C₂D₂: The Bending States up to $\nu_4 + \nu_5 = 2$. J. Mol. Spectrosc. **2002**, 216, 447–453.
- (26) Liévin, J.; Demaison, J.; Herman, M.; Fayt, A.; Puzzarini, C. Comparison of the experimental, semi-experimental and ab initio equilibrium structures of acetylene: Influence of relativisitic effects and of the diagonal Born-Oppenheimer corrections. J. Chem. Phys. 2011, 134, 064119.
- (27) Puzzarini, C.; Heckert, M.; Gauss, J. The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. molecules containing first-row atoms. J. Chem. Phys. 2008, 128, 194108.

- (28) Puzzarini, C.; Cazzoli, G. Equilibrium structure of protonated cyanogen, HNCCN⁺. J. Mol. Spectrosc. 2009, 256, 53.
- (29) Tinti, F.; Bizzocchi, L.; Degli Esposti, C.; Dore, L. Millimeter-wave spectroscopy of and its symmetric isotopologues: Determination of the molecular structure of the sulfonium ion. J. Mol. Spectrosc. 2006, 240, 202–209.
- (30) Nakanaga, T.; Amano, T. Difference frequency laser spectroscopy of SH3⁺: A simultaneous analysis of the ν_1 and ν_3 fundamental bands. J. Mol. Spectrosc. **1989**, 133, 201–216.
- (31) Dore, L.; Bizzocchi, L.; Degli Esposti, C. Millimeter-wave spectroscopy of deuterated hydrogen sulfide, SH₂D⁺. J. Mol. Spectrosc. **2009**, 254, 33–38.
- (32) Xia, C.; Sanz, M. M.; Foster, S. C. Diode Laser Spectroscopy of the ν_1 and ν_3 Bands of SD₃⁺. J. Mol. Spectrosc. **1998**, 188, 175–181.
- (33) Jet Propulsion Laboratory, California Institute of Technology. http://spec.jpl. nasa.gov/ftp/pub/catalog/catdir.html.
- (34) Pickett, H. M.; Poynter, R. L.; Cohen, E. A.; Delitsky, M. L.; Pearson, J. C.; Müller, H. S. P. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. & Rad. Transfer 1998, 60, 883–890.
- (35) Fusina, L.; Murzin, S. Inversion Spectrum and Ground State Spectroscopic Parameters of ¹⁴ND₃. J. Mol. Spectrosc. **1994**, 167, 464–467.
- (36) Helminger, P.; De Lucia, F. C.; Gordy, W.; Morgan, H. W.; Staats, P. A. Microwave rotation-inversion spectrum of NT₃. *Phys. Rev. A* 1974, *9*, 12–16.
- (37) Urban, S.; Klee, S.; Yamada, K. Ground State Ro-inversional Transitions of 15NH3 in the Far-Infrared Region. J. Mol. Spectrosc. 1994, 168, 384–389.
- (38) Fusina, L.; Carlotti, M.; Di Leonardo, G.; Murzin, S. N.; Stepanov, O. N. Pure inversion and inversion-rotation spectra of ¹⁵ND₃ in the ground state. J. Mol. Spectrosc. 1991, 147, 71–83.
- (39) Matsushima, F.; Odashima, H.; Iwasaki, T.; Tsunekawa, S.; Takagi, K. Frequency measurement of pure rotational transitions of H₂O from 0.5 to 5 THz. J. Mol. Struct. 1995, 352, 371–378.
- (40) Papineau, N.; Flaud, J.-M.; Camy-Peyret, C.; Guelachvili, G. The $2\nu_2$, ν_1 and ν_3 bands of D₂¹⁶O. The ground state (000) and the triad of interacting states {(020), (100), (001)}. J. Mol. Spectrosc. **1981**, 87, 219–232.
- (41) Papineau, N.; Camy-Peyret, C.; Flaud, J.-M.; Guelachvili, G. The $2\nu_2$ and ν_1 bands of HD¹⁶O. J. Mol. Spectrosc. **1982**, 92, 451–468.

- (42) Cope, S. D.; Russell, D. K.; Fry, H. A.; Jones, L. H.; Barefield, J. E. Analysis of the fundamental asymmetric stretching mode of T₂O. J. Mol. Spectrosc. 1986, 120, 311–316.
- (43) Cope, S. D.; Russell, D. K.; Fry, H. A.; Jones, L. H.; Barefield, J. E. Analysis of the ν_1 fundamental mode of HTO. J. Mol. Spectrosc. **1988**, 127, 464–471.
- (44) Helminger, P.; De Lucia, F. C.; Gordy, W.; Staats, P. A.; Morgan, H. W. Millimeterand submillimeter-wavelength spectra and molecular constants of HTO and DTO. *Phys. Rev. A* 1974, 10, 1072–1081.
- (45) Kyrö, E. Centrifugal distortion analysis of pure rotational spectra of H¹⁶₂O, H¹⁷₂O, and H¹⁸₂O. J. Mol. Spectrosc. **1981**, 88, 167–174.
- (46) Di Lonardo, G.; Fusina, L. The ν_2 band of $D_2^{18}O.$ J. Mol. Spectrosc. **1989**, 135, 250–258.
- (47) Puzzarini, C.; Cazzoli, G.; Gauss, J. The rotational spectra of HD¹⁷O and D₂¹⁷O: Experiment and quantum-chemical calculations. J. Chem. Phys. 2012, 137, 154311.
- (48) Puzzarini, C. Ab initio anharmonic force field and equilibrium structure of the sulfonium ion. J. Mol. Spectrosc. 2007, 242, 70–75.
- (49) Brünken, S.; Müller, H.; Lewen, F.; Winnewisser, G. High accuracy measurements on the ground state rotational spectrum of formaldehyde (H₂CO) up to 2 THz. *Phys. Chem. Chem. Phys.* **2003**, *5*, 1515–1518.
- (50) Cornet, R.; Landsberg, B.; Winnewisser, G. A precise study of the rotational spectrum of formaldehyde H¹²₂C¹⁷O and H¹³₂C¹⁷O. J. Mol. Spectrosc. **1980**, 82, 253–263.
- (51) Cornet, R.; Winnewisser, G. A precise study of the rotational spectrum of formaldehyde H₂¹²C¹⁶O, H₂¹³C¹⁶O, H₂¹²C¹⁸O, H₂¹³C¹⁸O. J. Mol. Spectrosc. **1980**, 80, 438–452.
- (52) Lohilahti, J.; Mattila, H.; Horneman, V.-M.; Pawłowski, F. FT-FIR-spectrum and the ground state constants of D₂¹³CO. J. Mol. Spectrosc. 2005, 234, 279–285.
- (53) Müller, H. S. P.; Gendriesch, R.; Margules, L.; Lewen, F.; Winnewisser, G.; Bocquet, R.; Demaison, J.; Wotzel, U.; Mader, H. Spectroscopy of the formaldehyde isotopomer H₂¹³CO in the microwave to terahertz region. *Phys. Chem. Chem. Phys.* **2000**, *2*, 3401–3404.
- (54) Dangoisse, D.; Willemot, E.; Bellet, J. Microwave spectrum of formaldehyde and its isotopic species in D, ¹³C, and ¹⁸O: Study of Coriolis resonance between ν_4 and ν_6 vibrational excited states. J. Mol. Spectrosc. **1978**, 71, 414–429.
- (55) Müller, H. S. P.; Gendriesch, R.; Lewen, F.; Winnewisser, G. The Submillimeter-wave Spectrum of the Formaldehyde Isotopomer H2C18O in its Ground Vibrational State. Z. Naturforsch. 2000, 55a, 486.

- (56) Lohilahti, J.; Horneman, V. FTFIR-spectrum of the ground state of D₂CO. J. Mol. Spectrosc. 2004, 228, 1–6.
- (57) Bocquet, R.; Demaison, J.; Cosléou, J.; Friedrich, A.; Margulès, L.; Macholl, S.; Mäder, H.; Beaky, M.; Winnewisser, G. The Ground State Rotational Spectra of HDCO and D₂CO. J. Mol. Spectrosc. **1999**, 195, 345–355.
- (58) Auer, A. A.; Gauss, J. Equilibrium structure and fundamental frequencies of allene. *Phys. Chem. Chem. Phys.* **2001**, *3*, 3001–3005.
- (59) Blanco, S.; Lesarri, A.; López, J.; Alonso, J.; Guarnieri, A. The Rotational Spectrum of Chlorofluoromethane. J. Mol. Spectrosc. 1995, 174, 397–416.
- (60) Pietropolli-Charmet, A.; Stoppa, P.; Tasinato, N.; Giorgianni, S.; Barone, V.; Biczysko, M.; Bloino, J.; Cappelli, C.; Carnimeo, I.; Puzzarini, C. An integrated experimental and quantum-chemical investigation on the vibrational spectra of chlorofluoromethane. J. Chem. Phys. 2013, 139, 164302.
- (61) Alonso, J. L.; Lesarri, A. G.; Leal, L. A.; López, J. C. The Millimeter-Wave Spectra of 1-Chloro-1-fluoroethylene and cis-1-Chloro-2-fluoroethylene. J. Mol. Spectrosc. 1993, 162, 4–19.
- (62) Puzzarini, C.; Cazzoli, G.; Dore, L.; Gambi, A. Molecular structure of cis-1-chloro-2fluoroethylene from ab initio calculations and microwave spectroscopy. *Phys. Chem. Chem. Phys.* **2001**, *3*, 4189–4194.
- (63) Hayashi, M.; Inagusa, T. Microwave spectrum, structure, and dipole moment of vinyl fluoride. J. Mol. Spectrosc. 1989, 138, 135–140.
- (64) Puzzarini, C.; Cazzoli, G.; Gambi, A.; Gauss, J. Rotational spectra of 1-chloro-2fluoroethylene. II. Equilibrium structures of the cis and trans isomer. J. Chem. Phys. 2006, 125, 054307.
- (65) Hirose, C. The Microwave Spectra and r₀, r_s, and r_m Structures of Ethylene Oxide. Bull. Chem. Soc. Jpn. 1974, 47, 1311–1318.
- (66) Suenram, R. D.; Lovas, F. J. Dioxirane. Its synthesis, microwave spectrum, structure, and dipole moment. J. Am. Chem. Soc. **1978**, 100, 5117–5122.
- (67) Larsen, R. W.; Pawlowski, F.; Hegelund, F.; Jørgensen, P.; Gauss, J.; Nelander, B. The equilibrium structure of trans-glyoxal from experimental rotational constants and calculated vibration-rotation interaction constants. *Phys. Chem. Chem. Phys.* 2003, 5, 5031–5037.
- (68) Puzzarini, C.; Biczysko, M.; Bloino, J.; Barone, V. Accurate Spectroscopic Characterization of Oxirane: A Valuable Route to its Identification in Titan's Atmosphere and the Assignment of Unidentified Infrared Bands. *Astrophys. J.* 2014, 785, 107.

- (69) Stanton, J. F.; Lopreore, C. L.; Gauss, J. The equilibrium structure and fundamental vibrational frequencies of dioxirane. J. Chem. Phys. **1998**, 108, 7190–7196.
- (70) Blom, C. E.; Bauder, A. Microwave spectrum, rotational constants and dipole moment of s-cis acrolein. *Chem. Phys. Lett.* **1982**, *88*, 55–58.
- (71) Blom, C. E.; Grassi, G.; Bauder, A. Molecular structure of s-cis- and s-trans-acrolein determined by microwave spectroscopy. J. Am. Chem. Soc. 1984, 106, 7427–7431.
- (72) Jaman, A. I.; Bhattacharya, R. Millimeter-wave rotational spectra of trans-acrolein (propenal) (CH₂CHCOH): a DC discharge product of allyl alcohol (CH₂CHCH₂OH) vapor and DFT calculation. J. At., Mol., and Optical Phys. 2012, 2012, 9.
- (73) Esselman, B. J.; Amberger, B. K.; Shutter, J. D.; Daane, M. A.; Stanton, J. F.; Woods, R. C.; McMahon, R. J. Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: Equilibrium structure and vibrational satellites. J. Chem. Phys. 2013, 139, 224304.
- (74) Bak, B.; Led, J. J.; Nygaard, L.; Rastrup-Andersen, J.; Sørensen, G. O. Microwave spectra of isotopic cyclobutenes: Molecular structure of cyclobutene. J. Mol. Struct. 1969, 3, 369–378.
- (75) Carroll, P. B.; Drouin, B. J.; Widicus Weaver, S. L. The Submillimeter Spectrum of Glycolaldehyde. Astrophys. J. 2010, 723, 845.
- (76) Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R. Millimeter and submillimeter wave spectra of ¹³C-glycolaldehydes. Astron. Astrophys. 2013, 549, A96.
- (77) Carroll, P. B.; McGuire, B. A.; Zaleski, D. P.; Neill, J. L.; Pate, B. H.; Widicus Weaver, S. L. The pure rotational spectrum of glycolaldehyde isotopologues observed in natural abundance. J. Mol. Spectrosc. 2013, 284, 21–28.
- (78) Bouchez, A.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Walters, A.; Bottinelli, S.; Ceccarelli, C.; Kahane, C. The submillimeter spectrum of deuterated glycolaldehydes. *Astron. Astrophys.* **2012**, *540*, A51.
- (79) Rodler, M.; Bauder, A. Structure of syn-vinyl alcohol determined by microwave spectroscopy. J. Am. Chem. Soc. 1984, 106, 4025–4028.
- (80) Randell, J.; Cox, A. P.; Hillig, K. W.; Imachi, M.; LaBarge, M. S.; Kuczkowski, R. L. Cis and Gauche Propanal: Microwave Spectra and Molecular Structures. Z. Naturforsch. 1988, 43a, 271.
- (81) Hollenstein, H.; Piccirillo, S.; Quack, M.; Snels, M. High-resolution infrared spectrum and analysis of the v 11, A_{2u}(B₂) fundamental band of ¹²C₆H₆ and ¹³C¹²C₅H₆. Mol. Phys. **1990**, 71, 759–768.
- (82) Plíva, J.; Johns, J.; Goodman, L. Infrared bands of isotopic benzenes: ν_{13} of ${}^{12}C_6D_6$ and ν_{12} of ${}^{13}C_6H_6$. J. Mol. Spectrosc. **1990**, 140, 214–225.

- (83) Plíva, J.; Johns, J. W. C.; Goodman, L. Infrared bands of isotopic benzenes: ν_{13} and ν_{14} of ${}^{13}C_6D_6$. J. Mol. Spectrosc. **1991**, 148, 427–435.
- (84) Endo, Y.; Chang, M. C.; Hirota, E. The microwave spectrum of cyclopropane-1,1-d₂ molecular structure of cyclopropane. J. Mol. Spectrosc. 1987, 126, 63.
- (85) Lide, D. R.; Christensen, D. Molecular Structure of Propylene. J. Chem. Phys. 1961, 35, 1374–1378.
- (86) Hirota, E. Microwave Spectrum of Propylene. II. Potential Function for the Internal Rotation of the Methyl Group. J. Chem. Phys. 1966, 45, 1984–1990.
- (87) Hirota, E.; Morino, Y. Microwave Spectrum of Propylene. I. Molecular Structure (rs) and Orientation of Dipole Moment. J. Chem. Phys. **1966**, 45, 2326–2327.
- (88) Maeda, A.; Lucia, F. C. D.; Herbst, E. Submillimeter-wave spectra of H¹²COOCH₃ and H¹³COOCH₃ in excited CH₃ torsional states. J. Mol. Spectrosc. **2008**, 251, 293.
- (89) Demaison, J.; Margulès, L.; Kleiner, I.; Császár, A. Equilibrium structure in the presence of internal rotation: A case study of cis-methyl formate. J. Mol. Spectrosc. 2010, 259, 70.
- (90) Curl, R. F. Microwave Spectrum, Barrier to Internal Rotation, and Structure of Methyl Formate. J. Chem. Phys. 1959, 30, 1529.
- (91) Coudert, L. H.; Margulès, L.; Huet, T. R.; Motiyenko, R. A.; Møllendal, H.; Guillemin, J.-C. The submillimeter-wave spectrum of the doubly deuterated species of methyl formate HCOOCD₂H. Astron. Astrophys. **2012**, 543, A46.
- (92) Coudert, L. H.; Drouin, B. J.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.; Motiyenko, R. A.; Margulès, L. The First Astrophysical Detection, Terahertz Spectrum, and Database for the Monodeuterated Species of Methyl Formate HCOOCH₂D. *Astrophys. J.* **2013**, 779, 119.
- (93) Martinache, L.; Burie, J.; Demaison, J. Microwave and Millimeterwave Spectra of Difluoromethane: Centrifugal Distortion Analysis. Z. Naturforsch. 1987, 42a, 846.
- (94) Hirota, E.; Sahara, M. Microwave spectrum of methylene fluoride-d₂, CD₂F₂ in the excited vibrational states. J. Mol. Spectrosc. **1975**, 56, 21–38.
- (95) Baskakov, O.; Dyubko, S.; Katrich, A.; Ilyushin, V.; Alekseev, E. Millimeter-Wave Spectrum of CF₂Cl₂, Taking into Account the Hyperfine Structure. J. Mol. Spectrosc. 2000, 199, 26–33.
- (96) Davis, R.; Gerry, M.; Marsden, C. The microwave spectrum, harmonic force field, and structure of diffuorodichloromethane. J. Mol. Spectrosc. **1983**, 101, 167–179.
- (97) Duncan, J. The structure of the methylene chloride molecule. J. Mol. Struct. 1987, 158, 169–177.

- (98) Harmony, M. D.; Mathur, S.; Merdian, S. J. Microwave spectrum and substitution structure of methylene chloride. J. Mol. Spectrosc. 1979, 75, 144–149.
- (99) Bakri, B.; Demaison, J.; Margulès, L.; Møllendal, H. The Submillimeter-Wave Spectrum and Quantum Chemical Calculations of Glyoxylic Acid. J. Mol. Spectrosc. 2001, 208, 92–100.
- (100) van Eijck, B.; van Duineveldt, F. Molecular structure and rotational isomerism in glyoxylicacid from microwave spectroscopy and ab initio calculations. J. Mol. Struct. 1977, 39, 157–163.
- (101) Christiansen, I.; Marstokk, K.-M.; Mllendal, H. Microwave spectra of isotopic glyoxylic acids, structure and intramolecular hydrogen bond. J. Mol. Struct. 1976, 30, 137–144.
- (102) Kisiel, Z.; Alonso, J.; Blanco, S.; Cazzoli, G.; Colmont, J.; Cotti, G.; Graner, G.; López, J.; Merke, I.; Pszczółkowski, L. Spectroscopic Constants for HCFC-22 from Rotational and High-Resolution Vibration-Rotation Spectra: CHF₂³⁷Cl and ¹³CHF₂³⁵Cl Isotopomers. J. Mol. Spectrosc. **1997**, 184, 150–155.
- (103) Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L.; Guarnieri, A. The Rotational Spectrum and Nuclear Quadrupole Coupling of CH³⁵ClF₂. Z. Naturforsch. **1996**, 51a, 129.
- (104) Cramb, D.; Bos, Y.; Jemson, H.; Gerry, M.; Marsden, C. The microwave spectrum, harmonic force field and structure of chlorodifluoromethane, CHF₂Cl. J. Mol. Struct. 1988, 190, 387–400.
- (105) Mata, F.; Quintana, M. J.; Sørensen, G. O. Microwave spectra of pyridine and monodeuterated pyridines. Revised molecular structure of pyridine. J. Mol. Struct. 1977, 42, 1–5.
- (106) Sørensen, G. O.; Mahler, L.; Rastrup-Andersen, N. Microwave spectra of [¹⁵N] and [¹³C] pyridines, quadrupole coupling constants, dipole moment and molecular structure of pyridine. J. Mol. Struct. 1974, 20, 119–126.
- (107) Bak, B.; Christensen, D.; Hansen-Nygaard, L.; Rastrup-Andersen, J. The structure of thiophene. J. Mol. Spectrosc. 1961, 7, 58–63.
- (108) Baskakov, O. I.; Markov, I. A.; Alekseev, E. A.; Motiyenko, R. A.; Lohilahti, J.; Horneman, V.-M.; Winnewisser, B. P.; Medvedev, I. R.; Lucia, F. C. D. Simultaneous analysis of rovibrational and rotational data for the 41, 51, 61, 72, 81, 7191 and 92 states of HCOOH. J. Mol. Struct. 2006, 795, 54.
- (109) Winnewisser, M.; Winnewisser, B. P.; Stein, M.; Birk, M.; Wagner, G.; Winnewisser, G.; Yamada, K. M.; Belov, S. P.; Baskakov, O. I. Rotational Spectra of cis-HCOOH, trans-HCOOH, and trans-H¹³COOH. J. Mol. Spectrosc. 2002, 216, 259.
- (110) Baskakov, O.; Lohilahti, J.; Horneman, V.-M. High resolution analysis of the ν_7 and ν_9 bands of DCOOH. J. Mol. Spectrosc. **2003**, 219, 191.

- (111) Baskakov, O. Rotational Spectrum of the Excited Vibrational States of DCOOH and Assignment of Optically Pumped Laser Transitions. J. Mol. Spectrosc. **1996**, 180, 266.
- (112) Baskakov, O.; Brger, H.; Jerzembeck, W. The Coriolis-Coupled States $\nu_7 = 1$ and $\nu_9 = 1$ of trans-HCOOD and trans-DCOOD. J. Mol. Spectrosc. **1999**, 193, 33.
- (113) Davis, R.; Robiette, A.; Gerry, M.; Bjarnov, E.; Winnewisser, G. Microwave spectra and centrifugal distortion constants of formic acid containing ¹³C and ¹⁸O: Refinement of the harmonic force field and the molecular structure. J. Mol. Spectrosc. **1980**, 81, 93.
- (114) Baskakov, O.; Dyubko, S.; Sirota, S. Rotational spectra of the H¹³COOD, D¹³COOH, and D¹³COOD molecules at millimeter wavelengths. J. App. Spectro. **1991**, 54, 424.
- (115) Mata, F.; Martin, M. C.; Sørensen, G. O. Microwave spectra of deuterated furans. Revised molecular structure of furan. J. Mol. Struct. 1978, 48, 157–163.
- (116) Spycher, R. M.; Hausherr-Primo, L.; Grassi, G.; Bauder, A. Rotational spectra of isotopic furan-(argon)_n, n = 1,2, complexes and their vibrationally averaged structures. J. Mol. Struct. 1995, 351, 7–17.
- (117) Bak, B.; Christensen, D.; Dixon, W. B.; Hansen-Nygaard, L.; Andersen, J. R.; Schottländer, M. The complete structure of furan. J. Mol. Spectrosc. 1962, 9, 124–129.
- (118) Baskakov, O. I.; Winnewisser, B. P.; Medvedev, I. R.; De Lucia, F. C. The millimeter wave spectrum of *cis*-HCOOH in the ground state and in the $\nu_9 = 1$ and $\nu_7 = 1$ excited vibrational states, and *cis*-H¹³COOH in the ground state. J. Mol. Struct. **2006**, 795, 42.
- (119) Bjarnov, E.; Hocking, W. H. The Structure of the Other Rotamer of Formic Acid, cis-HCOOH. Z. Naturforsch. 1978, 33a, 610.
- (120) Niide, Y.; Hayashi, M. Reinvestigation of microwave spectrum of dimethyl ether and rs structures of analogous molecules. J. Mol. Spectrosc. 2003, 220, 65–79.
- (121) Motiyenko, R. A.; Margulès, L.; Alekseev, E.; Guillemin, J.-C.; Demaison, J. Centrifugal distortion analysis of the rotational spectrum of aziridine: Comparison of different Hamiltonians. J. Mol. Spectrosc. 2010, 264, 94–99.
- (122) Bak, B.; Skaarup, S. The substitution structure of ethyleneimine. J. Mol. Struct. 1971, 10, 385–391.
- (123) Wlodarczak, G.; Martinache, L.; Demaison, J.; Eijck, B. V. The millimeter-wave spectra of furan, pyrrole, and pyridine: Experimental and theoretical determination of the quartic centrifugal distortion constants. J. Mol. Spectrosc. 1988, 127, 200–208.
- (124) Nygaard, U.; Nielsen, J.; Kirchheiner, J.; Maltesen, G.; Rastrup-Andersen, J.; Sørensen, G. Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and ¹⁴N quadrupole coupling constants of pyrrole. J. Mol. Struct. 1969, 3, 491–506.

- (125) Vogt, N.; Demaison, J.; Rudolph, H. Equilibrium structure and spectroscopic constants of maleic anhydride. *Struct. Chem.* **2011**, *22*, 337–343.
- (126) Wlodarczak, G.; Demaison, J.; van Eijck, B. P.; Zhao, M.; Boggs, J. E. Ab-initio and experimental quartic centrifugal distortion constants of acetone, pyrazole, and γ-pyrone. J. Chem. Phys. 1991, 94, 6698–6707.
- (127) Nygaard, L.; Christen, D.; Nielsen, J. T.; Pedersen, E. J.; Snerling, O.; Vestergaard, E.; Sørensen, G. O. Microwave spectra of isotopic pyrazoles and molecular structure of pyrazole. J. Mol. Struct. 1974, 22, 401–413.
- (128) Suenram, R. D.; Pate, B. H.; Lesarri, A.; Neill, J. L.; Shipman, S.; Holmes, R. A.; Leyden, M. C.; Craig, N. C. Semiexperimental Equilibrium Structure for the C6 Backbone of *cis*-1,3,5-Hexatriene; Structural Evidence for Greater π-Electron Delocalization with Increasing Chain Length in Polyenes. J. Phys. Chem. A 2009, 113, 1864– 1868.
- (129) Craig, N. C.; Chen, Y.; Fuson, H. A.; Tian, H.; van Besien, H.; Conrad, A. R.; Tubergen, M. J.; Rudolph, H. D.; Demaison, J. Microwave Spectra of the Deuterium Isotopologues of *cis*-Hexatriene and a Semiexperimental Equilibrium Structure. *J. Phys. Chem. A* 2013, 117, 9391–9400.
- (130) Christen, D.; Griffiths, J. H.; Sheridan, J. The Microwave Spectrum of Imidazole; Complete Structure and the Electron Distribution from Nuclear Quadrupole Coupling Tensors and Dipole Moment Orientation. Z. Naturforsch. 1982, 37a, 1378.
- (131) Craig, N. C.; Groner, P.; McKean, D. C. Equilibrium Structures for Butadiene and Ethylene: Compelling Evidence for Π-Electron Delocalization in Butadiene. J. Phys. Chem. A 2006, 110, 7461–7469, PMID: 16759136.
- (132) Craig, N. C.; Hanson, K. A.; Moore, M. C.; Sams, R. L. Rotational analysis of several bands in the high-resolution infrared spectrum of butadiene-1-¹³C₁: assignment of vibrational fundamentals. J. Mol. Struct. 2005, 742, 21–29.
- (133) Craig, N. C.; Moore, M. C.; Patchen, A. K.; Sams, R. L. Analysis of rotational structure in the high-resolution infrared spectrum and assignment of vibrational fundamentals of butadiene-2,3-¹³C₂. J. Mol. Spectrosc. 2006, 235, 181–189.
- (134) Craig, N. C.; Davis, J. L.; Hanson, K. A.; Moore, M. C.; Weidenbaum, K. J.; Lock, M. Analysis of the rotational structure in bands in the high-resolution infrared spectra of butadiene and butadiene-2,3-d₂: refinement in assignments of fundamentals. J. Mol. Struct. 2004, 695-696, 59–69, Winnewisser Special Issue.
- (135) Craig, N. C.; Hanson, K. A.; Pierce, R. W.; Saylor, S. D.; Sams, R. L. Rotational analysis of bands in the high-resolution infrared spectra of the three species of butadiene-1,4-d₂; refinement of the assignments of the vibrational fundamentals. J. Mol. Spectrosc. 2004, 228, 401–413, Special Issue Dedicated to Dr. Jon T. Hougen on the Occasion of His 68th Birthday.

- (136) Rusinek, E.; Fichoux, H.; Khelkhal, M.; Herlemont, F.; Legrand, J.; Fayt, A. Subdoppler Study of the ν_7 Band of C₂H₄ with a CO₂ Laser Sideband Spectrometer. J. Mol. Spectrosc. **1998**, 189, 64–73.
- (137) Vleeschouwer, M. D.; Lambeau, C.; Lerberghe, D. V.; Janssens, E.; Fayt, A. Absorption spectroscopy of ethylene H¹²₂C¹³CH₂ in the 4500-cm⁻¹ region. J. Mol. Spectrosc. 1981, 90, 273–286.
- (138) Hirota, E.; Endo, Y.; Saito, S.; Yoshida, K.; Yamaguchi, I.; Machida, K. Microwave spectra of deuterated ethylenes: Dipole moment and r_z structure. J. Mol. Spectrosc. **1981**, 89, 223–231.
- (139) Mose, A.-K.; Hegelund, F.; Nicolaisen, F. The high-resolution infrared spectrum of ethylene- d_4 below 1200 cm⁻¹. J. Mol. Spectrosc. **1989**, 137, 286–295.
- (140) van Dijk, C. W.; Sun, M.; van Wijngaarden, J. Microwave Rotational Spectra and Structures of 2-Fluoropyridine and 3-Fluoropyridine. J. Phys. Chem. A 2012, 116, 4082–4088.
- (141) Cazzoli, G.; Puzzarini, C.; Gambi, A.; Gauss, J. Rotational spectra of 1-chloro-2fluoroethylene. I. Main isotopologues and deuterated species of the trans isomer. J. Chem. Phys. 2006, 125, 054313.
- (142) Kisiel, Z.; Pszczółkowski, L.; López, J. C.; Alonso, J. L.; Maris, A.; Caminati, W. Investigation of the Rotational Spectrum of Pyrimidine from 3 to 337 GHz: Molecular Structure, Nuclear Quadrupole Coupling, and Vibrational Satellites. J. Mol. Spectrosc. 1999, 195, 332–339.