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Abstract 

Poly-hydroxyalkanoates are an example of biodegradable and biocompatible polymers, 

produced from renewable raw materials. With respect to other bioplastics the market share of 

poly-hydroxyalkanoates is still limited because of their commercial costs. To develop more cost-

effective processes, a multilevel approach is usually undertaken combining innovative, cheaper 

and more effective microbial cultivation with safe and cheap extraction and purification 

methodologies. This study assesses the potential life cycle environmental impacts related to a 

novel protocol poly-hydroxyalkanoates extraction based on dimethyl carbonate in comparison to 

the use of halogenated hydrocarbons (in particular 1,2 dicholoroethane). Four scenarios are 

analysed for the dimethyl carbonate protocol considering: extraction from microbial slurry or 

from dried biomass, and recovery by solvent evaporation or polymer precipitation. The life cycle 

assessment demonstrates that the environmental performances of dimethyl carbonate-based 

protocols are far better than those of the most comparative process using the halogenated 

hydrocarbons. The scenario that foresees the extraction of dried biomass and recovers solvent 

by evaporation appears to be the most promising in terms of environmental sustainability 

performance. 

Keywords: bio-based polymers; bioplastics; poly-hydroxyalkanoates; environmental impact; 

environmental performance; ecodesign. 

1. Introduction

Plastic materials from fossil sources play an important and pervasive role in our everyday life. 

However, the same characteristics of durability and resistance to degradation which account for 

their commercial and applicative success cause most of these synthetic plastic polymers to 

withstand the ocean and terrestrial ecosystems for years to decades or longer, affecting 

organisms at multiple trophic levels (Ojeda, 2013). The replacement of petroleum-based non-

biodegradable plastics with alternative bio-based materials that have comparable properties and 

that are more readily degradable after being discarded has become an industrial, social and 

environmental priority. The current annual global production capacity of bioplastics, including 

both biodegradable and bio-based plastics, is about 2 Mt and a significant growth of the 

bioplastics market is expected in the next few years (European Bioplastic, 2015). 

Among biopolymers, poly-hydroxyalkanoates (PHAs) have rapidly gained interest both in 

research and industry because they are greatly versatile, fully biodegradable and with 

properties similar to conventional plastics (Keshavarz and Roy, 2010; Vega-Castro et al., 2016; 

Dietrich et al., 2017). PHAs are linear polyesters produced by single (e.g. Cupriavidus necator) 

or mixed microbial consortia through aerobic fermentation of many carbon sources such as 
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polysaccharides or lipids, to store carbon and energy. At present, approximately 150 different 

PHA monomers can be combined yielding materials with distinct physical properties as function 

of the monomer composition including properties similar to those of polypropylene and 

polyethylene, but with the advantage of being biodegradable, biocompatible and produced from 

renewable raw materials (Steinbüchel and Lütke-Eversloh, 2003). Thanks to this peculiar 

combination of suitable physical and mechanical properties and biodegradation abilities, PHAs 

could be used in packaging but also in biomedical applications as biodegradable carriers for 

drug release, disposable items, surgical pins, and wound dressings. 

Poly-hydroxyalkanoates rank highly in terms of ‘green design’ but they can nonetheless exhibit 

relatively large environmental impacts and, if all life cycle phases are taken into consideration, 

the final environmental balance can be even worse than that of conventional polymers obtained 

from petroleum (Tabone et al., 2010). 

Several studies report that the dominant contributions to energy requirement (and, 

consequently, environmental burden) in the production of PHAs are: i) the use of cultivated 

feedstock, such as corn and sugar cane, to obtain substrates like as glucose, methanol or 

acetic acid (Patel et al., 2005; Keshavarz and Roy, 2010), ii) the sterilization of fermentation 

equipment (Van Wegen et al., 1998); iii) the recovery of the intracellular polymer (Keshavarz 

and Roy, 2010; Rostkowski et al., 2012; Fernández-Dacosta et al. 2015). Persistent effort is 

being made to find environmental friendly feedstock, like as waste vegetable oil, wastewater, 

food scraps, waste oils, etc. (Heimersson et al., 2014; Anjum et al., 2016). In second point 

regards, research is continuing on mixed microbial culture instead of the more expensive and 

problematic pure culture (Hao et al., 2017; Montiel-Jarillo et al., 2017). As far as concerned the 

last point, a more environmentally benign PHAs recovery method that is less energy intensive 

and does not use harmful solvents appears one priority (Keshavarz and Roy, 2010; Rostkowski 

et al., 2012). In general, the recovery of intracellular PHAs can be accomplished via two 

processes: i) solvent extraction, or ii) digestion of the non-PHAs cellular matrix. The first process 

is currently mainly based on the use of chlorinated solvents (e.g. chloroform), able to dissolve 

the polymer in high quantity, and affording, at the same time, the highest levels of PHAs purity. 

The second process is based on the dissolution of cellular membranes by using alkaline/acidic 

solutions, sodium hypochlorite or surfactants, in order to release PHAs from cells. This process, 

however, does not usually yield high levels of purity, can affect the mechanical properties of the 

polymer and increase the recovery costs affecting wastewater treatment and re-use. 

Samorì et al. (2015) have designed a new protocol for the extraction of poly-hydroxybutyrate 

(PHB) and various copolymers (e.g. poly-hydroxybutyrate-valerate, PHBHV) from single strains 

and mixed microbial consortia with a high content of polymer (74 and 40% wt%, respectively) 

using as solvent dimethyl carbonate (DMC). DMC is an acyclic alkyl carbonate and it has 

become increasingly important in the chemical industry mainly because of its versatility as 

reagent and solvent, and its relatively low toxicity for human health and for the environment 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

4 

(Delledonne et al., 2001). This study therefore aims to assess the potential environmental 

impacts related to a production processes based on the protocol proposed by Samorì et al. 

(2015) in comparison to the extraction with halogenated. We apply an attributional Life Cycle 

Assessment (LCA) adopting a ‘gate-to-gate’ perspective: we start from the microbial biomass 

enriched in PHA and stop when the polymer is ready to be formed. Up to now, the DMC-based 

protocol has been developed only on a laboratory scale thus an industrial-scale production has 

been hypothesized. and this preliminary analysis of potential environmental impacts of a future 

industrial-scale production can provide useful information to better orient the development and 

scale-up activities. 

 

2. Materials and Methods 

2.1. Extraction processes using dimethyl carbonate 

PHB is one of the most well-known and studied PHAs, therefore has been taken as the study 

polymer. The method is based on the solubilisation of PHB with dimethyl carbonate (DMC). The 

procedure can be applied directly to concentrated microbial slurries or to dry biomass, affording 

very high polymer recovery (>92%) and excellent purity (>95%).  

The direct extraction from microbial slurry requires a biomass concentration of 100 g L
−1

. Such 

concentration was achieved by centrifuging and concentrating a pure microbial culture after the 

accumulation phase. The slurries were extracted with DMC for 1 h at 90 °C. After that, DMC 

phase and the biomass slurry were centrifuged and separated, and the extracted polymer was 

recovered after (i) evaporation of DMC or (ii) precipitation with ethanol (EtOH). The polymer 

recovery was very high in both cases (>96%). The extraction from dried biomass requires a 

biomass to solvent ratio of 2.5% (w/v). The biomass and the solvent were centrifuged and kept 

at 90° C for 4 h. The residual biomass was then centrifuged and the polymer was recovered 

after (i) evaporating the solvent or (ii) the addition of EtOH and precipitation. In this case, the 

polymer recovery was above 92% in both recovery scenarios. 

 

2.2. Extraction processes using halogenated hydrocarbons 

Chlorinated solvents are the best performing organic solvents for solubilizing and recovering 

PHAs from microbial cells, therefore, an extraction with halogenated hydrocarbons has been 

chosen as comparison process. Among the patented processes, the US Patent 4324907 

(Senior et al., 1982) has been selected for three reasons: 1) high PHA recovery (95%); 2) data 

comprehensiveness; 3) similarity to DMC extraction process. In the patented process, an 

aqueous suspension of cells is spray-dried and then refluxed with 1,2-dichloroethane (DCE) at 

83 °C for solubilizing PHB. Finally, PHB is precipitated by adding a methanol/water mixture and 
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filtered. The polymer purity is very high (98%). Similar results are obtained using 

dichloromethane or chloroform instead of 1,2-dichloroethane in the PHB extraction process.  

 

2.3. Modelling and scale-up of the extraction processes 

Industrial scale production of PHB with DMC is not yet established, resulting in lack of direct 

input/output data for the LCI. Therefore, the extraction processes at industrial scale have been 

simulated by a preliminary design of the envisaged process plant based on the information 

available from the current lab-scale protocol. The scale-up was based on the principia of good 

engineering practice in scale-up of batch processes and equipment design (Sinnott, 1993; Bisio 

and Kabel, 1985; Zlokarnik, 2002). While it is recognized that the actual scale-up would require 

extensive research efforts, this simplified approach is considered adequate for the purpose of 

explorative LCA studies (Righi et al., 2011; Righi et al., 2016). The material and energy 

balances for the envisaged process flow diagram were quantified with the support of a Chemical 

Process Simulation (CPS) software (Aspen HYSYS® by Aspentech), and the main equipment 

units were preliminary sized on the basis of relevant scientific and technical references (Table 

1). The extraction processes are composed by a series of equipment units: 1) centrifuges; 2) 

batch reaction vessels; 3) air dryers; 4) catalytic oxidizer; 5) pervaporation systems (only in the 

scenarios where the polymer is recovered with the addition of EtOH). The equipments are 

different in dimensions and arrangement in base on the different scenarios (see Fig. 1). 

 

<Table 1> 

<Figure 1> 

 

2.4. Application of environmental life cycle assessment 

The goal of this study is to compare the environmental performance of the protocol proposed by 

Samorì et al. (2015) for the extraction of PHB with DMC from microbial cells with the 

environmental performance due to an alternative process using chlorinated solvents using LCA. 

A ‘gate-to-gate’ approach is used, and only the extraction process has been considered since 

the cultivation phase and the bioplastic product manufacture after the polymer extraction are 

assumed to be equivalent for all considered extraction processes. The system boundaries of the 

study include the following processes: 1) biomass preparation; 2) chemicals production; 3) PHB 

extraction; 4) chemicals recovery; 5) air emissions abatement; 6) solid waste management. 

Note that the microbial cells cultivation is not included in the system boundaries and that the 

processes downstream from cultivation are often the most cost and energy consuming 

(Fernández-Dacosta et al. 2015). The functional unit (FU) is defined as 1 kg of PHB ready for 

the product’s manufacturing. 

 

http://www.sciencedirect.com/science/article/pii/S0959652616002092#bib53
http://www.sciencedirect.com/science/article/pii/S0959652616002092#bib5
http://www.sciencedirect.com/science/article/pii/S0959652616002092#bib5
http://www.sciencedirect.com/science/article/pii/S0959652616002092#bib60
http://www.sciencedirect.com/science/article/pii/S0959652616002092#bib49
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2.4.1. Scenarios description and assumptions 

Two different ways for extracting PHB with DMC have been analysed: a) extraction from dried 

biomass (Dry) and b) extraction from microbial slurry (Slurry). For each of the two extraction 

ways, two sub-scenarios have been evaluated, which differ in the polymer recovery strategy: 1) 

after evaporation of the solvent (Evap); or 2) after the addition of EtOH and precipitation 

(Precip). Each of the four resulting scenarios has been compared to the ‘1,2-dichloroethane 

scenario’ which supplies the same quantity of PHB applying the patent of Senior et al. (1982). 

Table 2 shows the main features of each scenario.  

The following cut-off rules and assumptions have been adopted: 1) electric consumption of 

apparatus for mass transferring, electric consumption of catalytic oxidizer, water consumption of 

cooling pumps have been omitted (the first two because only low contributions are expected, 

the last one because water is supposed to be extracted and then returned to the water stream); 

2) only the operational phase has been considered, excluding equipment construction, 

maintenance and dismantling; 3) all electricity comes from the Italian national grid power (2014 

reference year); 4) the purge factor of air dryers has been fixed to 0.2% (according to Hischier 

et al. (2005) on diffusive and fugitive emissions to air from production plants); 5) an annual 

production of about 500 t/y of PHB has been considered (necessary to estimate the hourly air 

emission rates); 6) 100% pure PHB production; 7) DMC has been classified as a Class V of 

Annex I to Part Five of Italian Legislative Decree 152/2006 (Italian Parliament, 2006) following 

affinity rule (see explanation in section 2.4.4.); 8) DMC and 1,2-dichloroethene air emissions are 

below the materiality threshold (4000 g/h and 25 g/h, respectively); 8) NOx emission factor for 

catalytic oxidizer has been considered equal to those occurring in thermal treatment processes 

of biodegradable waste; 9) emission factors for hazardous waste have been used to estimate 

the emission due to the catalytic oxidizer applied to extraction process through 1,2-

dichloroethene; 10) the solid waste resulting from the DMC extraction is treated in a waste-to-

energy plant for non-hazardous waste (see explanation in section 2.4.5.). 

 

<Table 2> 

 

2.4.2 Data collection and elaboration 

Primary data have been used for the processes taking place in laboratory, databases have 

been used for background processes, and estimates have been used for emissions or 

processes not taking place in the current plant, such as catalytic scrubbing. LCA was conducted 

utilizing GaBi 6 software. The databases used for obtaining background data were Gabi 

Professional Database (Thinkstep, 2015) and ecoinvent Version 2 database (Frischknecht et 

al., 2005). All main background processes used in this study are shown in Table 3. Detailed Life 

Cycle Inventories of the five scenarios are presented in Annexes A-E.  
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With regards to life cycle impact assessment (LCIA), the following impact categories have been 

included: climate change (GWP), ozone depletion (OD), human toxicity cancer (HTc) and non-

cancer (HTnc), freshwater ecotoxicity (FE), acidification (AC), photochemical ozone formation 

(POF), freshwater eutrophication (EuF), marine eutrophication (EuM), terrestrial eutrophication 

(EuT), particulate matter formation (PM), ionizing radiation (IR), resource depletion (RD) and 

water depletion (WD). The methods recommended in the ILCD Handbook (EC-JRC, 2011, 

2012) have been applied. 

 

<Table 3> 

 

2.4.3. Dimethyl carbonate toxicity and ecotoxicity characterization 

Since DMC characterization factors (CFs) of human toxicity and freshwater aquatic ecosystem 

toxicity were not available, they have been calculated following the approach proposed in the 

scientific consensus model USEtox (www.usetox.org) that is endorsed by the UNEP/SETAC 

Life Cycle Initiative and recommended by the ILCD Handbook for characterizing human toxicity 

and ecotoxicity in LCA (Westh et al., 2015). The CF calculation requires several types of input 

data: physicochemical substance properties, bioconcentration data and toxicological and 

ecotoxicological information (Fantke et al., 2017). Physicochemical and bioconcentration data of 

DMC were mainly derived from EPI Suite
TM

 (US EPA, 2016), while (eco)toxicological data were 

derived from ECHA’s database on registered substances (European Chemicals Agency, 2017). 

Ecotoxicological and toxicological data used in this study are reported in Table 4. Regarding 

human toxicity, the ED50 values have been extrapolated from NOEC or NOEL based on a 

generic conversion factor of 9 (Huijbregts et al., 2005). Since experimental data are from 

subchronic and acute tests, a subchronic-to-chronic extrapolation factor of 2 and an acute-to-

chronic extrapolation factor of 5 have been used to extrapolate to chronic ED50 (Fantke et al., 

2017). For ecotoxicity, chronic EC50 values have been calculated from NOEC using the 

extrapolation factors suggested by Payet (2004) and, when necessary, applying a generic 

chronic-to-acute ratio of 2 (Müller et al., 2017). All newly developed input data used in the 

USEtox model are reported in Table 5. 

 

<Table 4> 

<Table 5> 

 

2.4.5. Characterization of solid waste from extraction processes 

At first, elemental analysis was carried out on a C, H, and N Elemental Analyser. Next, organic 

compounds measurements were performed by gas chromatography coupled to mass 

spectrometry (GC/MS): the concentrations of dimethyl carbonate and 42 hazardous compounds 

(toxic, carcinogenic, mutagenic, flammable, etc.) were determined (see Annex F). Then, a 
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colorimetric method was applied for the determination of aldehyde concentrations (expressed 

as formaldehyde). Afterward, 19 metals (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zu, As, Ag, Cd, Sb, 

Ba, Tl, Pb, Hg, Sn) were evaluated by inductively coupled plasma mass spectrometry (ICP-MS). 

Finally, ion chromatography was applied for determination of chlorine content (fundamental test 

in solid biomass for power sector). As last step, Mahler bomb calorimeter was used for 

determining higher heating value (HHV) of the solid waste and subsequently its lower heating 

value (LHV). 

 

3. Results and discussion 

The first part of the study results describes the outcome of analyses performed and models 

applied to obtain all data necessary to carry out the LCA. The second part of the study results 

reports the evaluation by means of LCA. 

 

3.1. Toxicity for DMC and solid waste   

Using the extraction process through halogenated hydrocarbons presents a considerable 

disadvantage, namely the use of highly toxic solvents. It is noteworthy that IARC has classified 

dichloromethane as probable carcinogen to humans (Group 2A) and 1,2-dichloroethane and 

chloroform as possibly carcinogens (Group 2B). On the contrary, dimethyl carbonate - according 

to ACGIH, IARC, NTP - has not been classified as carcinogen. Consequently, it is fundamental 

that the comparison between DMC-based protocol and the extraction through halogenated 

hydrocarbons considers also the (eco)toxicity effects of the extraction solvents. Results of 

human toxicity and freshwater aquatic ecotoxicity characterization of DMC calculated with 

USEtox are reported in Table 6. The corresponding characterization factors of 1,2-

dichloroethane are shown in the same table and are up to 2 orders of magnitude higher than for 

DMC. Dichloromethane or chloroform, both used in extraction processes of PHB, show 

characterization results very similar to 1,2-dichloroethane. As it is possible to observe, the 

toxicity CFs of DMC are comparatively low ranging from 2.510
-10

 to 2.710
-6 

cases/kg emitted 

and from 6.710
-10

 to 7.410
-6 

DALY/kg emitted, respectively, for different emission 

compartments. Also the freshwater aquatic ecotoxicity CFs are low ranging from 0.2 to 6.7 

PDFm
3
day/kg emitted. As for ecotoxicity, it is noteworthy that freshwater aquatic ecotoxicity 

CFs have been obtained by so-called ‘limit tests’. A ‘limit test’ is an acute toxicity test in which, if 

no ill-effects occur at a pre-selected maximum dose, no further testing at greater exposure 

levels is required (Duffus, 2009). Therefore, a conservative approach has been applied 

considering no observed effect concentrations (NOEC) to extrapolate to concentrations 

resulting in 50% effect in the exposed freshwater ecosystem species (EC50). 

As additional comparison to give an impression of the order of magnitude of presented CFs, the 

human toxicity CF of formaldehyde (carcinogen to humans Group 1) for the emission to 
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household indoor air is 4.5510
-3 

cases/kg emitted, while the corresponding CF of DMC is 

2.7210
-6

 cases/kg emitted and the aquatic ecotoxicity CF of DDT (persistent organic pollutant, 

worldwide banned) for the emission to continental freshwater is 2.7810
5 

PAFm
3
day/kg 

emitted, while the corresponding CF of DMC is 10.8
 
PAFm

3
day/kg emitted. These findings and 

considerations agree with a number of authors that referred to DMC as a substance benign to 

human health (Lissel et al., 1989; Ono, 1997; Tundo and Selva, 2002) and eco-friendly (Tundo 

et al., 2000; Vasapollo et al., 2003; Miao et al., 2008). 

While EU legislations concerning air quality is rather homogeneous, based on the setting of 

limits for the concentration of certain pollutants into the air, the EU rules regarding industrial 

emissions into the atmosphere is more heterogeneous. In Italy this issue is regulated by the 

Legislative Decree 152/2006 (Italian Parliament, 2006). National emission limits have been set 

by the Decree for different substances based on their hazard properties. The Decree organizes 

the organic substances in five classes in order of decreasing toxicity. Not all organic substances 

are listed, but it is possible to define the class of a substances referring to substances occurring 

in the list and with similar toxic properties (‘affinity rule’). Dimethyl carbonate is not listed by the 

Decree but through the ‘affinity rule’ it can be classified in Class V. For this class, the emission 

limit is set to 600 mg/Nm
3
 that corresponds to 4000 g/h. These values have been used for LCA 

modelling.  

The solid waste resulting from PHB extraction process was analysed to attempt a first 

classification of it as ‘hazardous’ or ‘not hazardous’ waste. These analyses were necessary to 

hypothesize its end-of-life. In fact, all ‘hazardous’ waste must be disposed in accordance with 

regulations more stringent than for ‘not hazardous’ waste. Main results of chemical analyses 

carried out on solid waste coming from the extraction process of PHB from microbial cells are 

presented in Table 7. All hazardous organic compounds show results lower than the detection 

limits (data not reported). According to these results and in first approximation, it is possible to 

categorize this waste as ‘not hazardous’. The content lower than 1% of halogenated organic 

substances, expressed as chlorine, suggests that the waste could be sent to incineration plants 

respecting the restriction that the gas resulting from the incineration is raised to a temperature 

of at least 850 °C for at least two seconds (as established by Directive 2010/75/EU, European 

Commission, 2010). The incineration way is reinforced by the low heating value (LHV) of the 

waste (14,400 J/g) that is well comparable with other waste usually sent to waste-to-energy 

plants, like textile (11,789 J/g), leather and rubber (14,265 J/g), and wood (9,310 J/g) (World 

Bank, 1999). Another interesting end-of-life option for the extraction waste could be the 

composting, suggested by the high carbon content (47.6%) and the low concentration of metals 

considered hazardous for such employment (Legislative Decrees, 217/06, Italian Parliament, 

2006; and D.G.R. 1528/2006, Regional Council of Abruzzo Region, 2006). Composting of 

biomass remaining after PHB recovery was a solution proposed also by Nonato et al. (2001).  
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<Table 6> 

<Table 7> 

 

3.2. Overall environmental performance results 

Environmental performance results of PHB production processes based on DMC protocol 

considering two alternative ways of extraction (from microbial slurry or from dried biomass) and 

taking into account two different ways of polymer recovery (solvent evaporation or polymer 

precipitation) are reported in Table 8. The four scenarios are compared to the reference 

scenario ‘DCE’ (extraction with 1,2-dichloroethane). The relative contributions to each impact 

category from the main steps involved within each scenarios are illustrated in Fig. 2 to 4. Each 

PHB production process is subdivided into six steps: 1) biomass preparation (which includes 

drying in scenarios ‘Dry-Evap’ and ‘Dry-precip’), 2) chemicals production, 3) PHB extraction, 4) 

chemicals recovery, 5) catalytic oxidation for air emission abatement, 6) solid waste treatment.  

 

<Figure 2> 

<Figure 3> 

<Figure 4> 

 

Table 8 shows that all four scenarios using DMC show better environmental performances than 

the process employing 1,2-dichloroethane for all considered impact categories. GHG emissions 

due to ‘DCE scenario’ are about 5 to 15 times higher than scenarios representing the extraction 

via DMC. Acidification, ozone formation precursors, marine and terrestrial eutrophication, 

particulate matter formation and water depletion due to process by DCE are about 4 to 20 times 

higher than those of the DMC protocol. The difference between ‘DCE’ and ‘DMC’ scenarios for 

resources depletion shows 40 times difference. The emissions of (eco)toxic substances of ‘DCE 

scenario’ are up to 2 orders of magnitude higher than the other scenarios. Finally, ionizing 

radiation, ozone-depletion gas emissions and freshwater eutrophication related to process 

through DCE is up to 350 times higher than ‘DMC scenarios’. Note that the biggest differences 

are always between ‘DCE’ and ‘Dry-Evap’ scenarios.  

When comparing the four scenarios related to DMC protocol, we observe that extraction applied 

to dry biomass is always preferable to the one from slurry, and that recovery by solvent 

evaporation is always preferable to polymer precipitation with EtOH. Therefore, the scenario 

which evaluates extraction of the biopolymer from dried biomass and recovery by precipitation 

(Dry-Evap scenario) seems to be the most promising, in spite of the fact that recovery obtained 

through extraction from dried biomass is lower (92%) than obtained with the extraction from 

slurry (96%). Such a result is dependent on three main factors: 1) the moderate solubilization, 
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and consequent loss, of DMC in the slurry; 2) the high energy requirement of pervaporation 

systems (in the scenarios “Precip”); 3) the adding of EtOH which increases the mass that has to 

be dried (in the scenarios “Precip”). 

For the contribution analysis, the impact categories have been arranged in two groups. The first 

group includes GWP, AC, EuT, EuM, POF, PM, HTnc, RD and WD. The second group 

comprises EuF, FE, HTc, IR, and OD. As we observe from Fig. 2 and 3, the first group shows 

several dominant processes for each impact category. Frequently, PHB extraction is a dominant 

process for ‘evaporation’ scenarios (scenarios 1 and 2); chemicals production and recovery 

(sometimes also catalytic oxidation) are the dominant processes in ‘precipitation’ scenarios (3 

and 4); chemicals production is dominant in ‘slurry’ scenarios (1 and 3); and biomass 

preparation is dominant in ‘dry’ scenarios (2 and 4). The distinct dominating factors provide a 

quite differentiated picture in the contribution analysis. ‘Slurry-evap’ is dominated by chemicals 

production and PHB extraction; in ‘Dry-evap’, biomass preparation and PHB extraction play the 

main role; ‘Slurry-precip’ shows chemicals production, chemicals recovery and catalytic 

oxidation as the main processes (the last one is important only in POF); ‘Dry-precip’ is 

dominated by biomass preparation, chemicals production, chemicals recovery, and catalytic 

oxidation (the last one is important only in POF). As indicated by Fig. 4, the second group is 

entirely dominated by the chemical production in all four scenarios. 

From these results, we identified three main processes: chemical production, PHB extraction 

and chemicals recovery. In particular, the most important contributor to chemicals production 

processes is DMC that is used in abundant amount especially in scenarios ‘Slurry-evap’ and 

‘Slurry-precip’ (see Annexes A and C). As shown, DMC consumption can be strongly reduced 

using dry-biomass instead of microbial slurry. Concluding, a reduction in DMC consumption and 

an increase of its recovery rate should therefore be among the major goals in the future scale-

up and optimization of DMC based processes.  

Regarding PHB extraction and chemicals recovery, these processes are dominated, 

respectively, by DMC evaporation through air dryers (see Annexes A and B) and pervaporation 

(see Annexes C and D), both high energy-requiring processes. It is possible that a recovery of 

heat from material flows to be cooled by means of a heat exchanger would lead to a significant 

thermal energy saving. Lastly, in order to reduce the energy consumption due to the DMC 

recovery, an alternative to pervaporation could be analysed. All these recommendations should 

be considered for the scaling up of the processes to industrial-scale. It should be in fact 

reminded that the preliminary scale-up carried out in current study was only oriented to the 

comparison of the basic information available for alternative process schemes: the process 

optimization to be carried out during a more detailed scale-up is actually expected to further 

increase the performances of the industrial process (Sinnott, 1993; Bisio and Kabel, 1985). 

From the point of view of the role of DMC in the environmental sustainability of the process, it is 

important to highlight that the chemical pathway of DMC production (in this case-study via the 
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oxidative carbonylation process; Righi et al., 2016) plays a fundamental role for the obtained 

results: the ‘greener’ the solvent, the less environmentally impacting the extraction. 

To compare the results of our study to those of other scientific works is challenging. One reason 

is that to the best of our knowledge no LCA studies focusing only on PHAs extraction phase 

have been published. Moreover, although several scientific studies have been published about 

LCA method applied to PHAs production, they are usually not comparable. Among them, three 

reviews (Hottle et al., 2013; Yates and Barlow, 2013; Narodoslawsky et al., 2015) analyse and 

compare the results obtained by a total of fifteen studies. All studies report the global warming 

potential (GWP), while only a limited number of studies has also evaluated other environmental 

impacts (Harding et al., 2007; Khoo et al., 2010; Kendall, 2012). Global warming potential 

ranges from -4 kg CO2eq. (Kurdikar et al., 2000) to 11.9 kg CO2eq. (Kendall, 2012) based on 

different system boundaries, feedstock, source of energy, etc. Completely different is the value 

reported by Rostkowski et al. (2012) with 942 kg CO2eq, mainly due to biopolymer recovery. 

The values of GWP provided by the present study (3.9-11 kg CO2eq) lie within the range of 

values reported in other studies. Since our values refer only to polymer extraction, our results 

would agree to the above range only if the PHAs extraction were one of the main contributors to 

the total impact. This hypothesis agrees to previous scientific works who observed that recovery 

is the dominant process (Rostkowski et al., 2012) or one of the dominant processes (Kendall et 

al., 2012; Fernández-Dacosta et al. 2015) contributing to the total environmental impacts of 

PHB production.  

 

<Table 8> 

 

4. Conclusions 

LCA was applied to a novel procedure based on DMC for the extraction of PHB from bacterial 

biomass. Extraction of the polymer from microbial slurry or from dried biomass and recovery by 

solvent evaporation or polymer precipitation were assessed, obtaining four different scenarios. 

LCA results demonstrate that the environmental performances of DMC protocol are far better 

than those of the most common processes using halogenated hydrocarbons. Among the four 

scenarios tested the one that evaluates extraction from dried biomass and PHB recovery by 

precipitation is always the most promising. These findings encourage the research towards the 

application on pilot scale of DMC with the aim to verify the first results and to study its possible 

economic and technical implications at the industrial production scale. The main 

recommendations for the scaling up drawn from this study are: i) to prefer processes using dry 

biomass instead of concentrated microbial slurries since in the latter the loss of DMC is higher; 

2) to enhance the efficiency of polymer recovery and the DMC recovery efficiency after the 

polymer extraction in order to reduce the DMC consumption; 3) to consider a heat exchanger 
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for thermal energy saving, and 4) to consider an alternative to the pervaporation for chemicals 

recovering since this technology is very energy-requiring.  
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Table 1 Main parameters and data sources used to model the extraction processes. 

Equipment Data Data sources 

Centrifuges Specific power Perry et al., 1984 

 Volumetric capacity Perry et al., 1984 

 Operating time Harding et al., 2007 

Batch reaction vessels Specific power Morfino, 2009 

 Volume Morfino, 2009 

Air dryers Energy consumption Baker and McKenzie, 2005 

 Purge flow Aspen HYSYS® 

 Heat loss Aspen HYSYS® 

Catalytic oxidizer Emission factors EEA, 2013 

Pervaporation systems General information Kujawski et al, 2000 

 General information Neel, 1991 
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Table 2 Main features of the five scenarios analysed in our study. 

Code Solvent Biomass state Separation 

1 Slurry-Evap DMC microbial slurry DMC evaporation 

2 Dry-Evap DMC dry biomass DMC evaporation 

3 Slurry-Precip DMC microbial slurry precipitation with EtOH 

4 Dry-Precip DMC dry biomass precipitation with EtOH 

5 DCE 1,2-dichloroethane dry biomass Precipitation with MeOH/water 
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Table 3 Main background processes used in this study. 

Process name Data source Geographic location 

Electricity grid mix PE International
§
 IT 

Process steam from natural gas 95% PE International
§
 IT 

Ethylene dichloride, at plant Ecoinvent RER 

Ethanol from ethylene, at plant Ecoinvent RER 

Methanol, at plant Ecoinvent GLO 

Water (desalinated, deionized) PE International
§
 DE 

Dimethyl carbonate, at plant Righi et al, 2016 DE 

Truck, Euro 0-6 mix, 20-26 t gross 
weight / 17.3 t payload capacity 

PE International
§
 GLO 

Diesel production mix, at refinery PE International
§
 EU-27 

Waste incineration of biodegradable 
waste fraction in municipal solid waste 
(MSW), ELCD/CEWEP 

PE International
§
 EU-27 

§ 
PE International is now Thinkstep 
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Table 4 Toxicological and ecotoxicological data of DMC used to calculate characterization factors for human toxicity and freshwater 

aquatic ecosystem toxicity. All data are from the ECHA registered substances database (European Chemicals Agency, 2017). 

 
TOXICOLOGICAL DATA 

 Route Animal Test type End-point Value Chronic ED50 

 Inhalation Rat Acute NOEC >5.36 mg/L  9.65 mg/L 

 Ingestion Rat Subchronic NOEL >500 mg/kg bw/day 2250 mg/kg bw/day 

ECOTOXICOLOGICAL DATA 

 Trophic level Specie Test type End-point Value Chronic EC50 

 Fish Danio rerio ST (96 h) NOEC 100 mg/L 165 mg/L 

 Invertebrates Daphnia magna LT (21 d) NOEC 25 mg/L 120 mg/L 

 Algae Selenastrum capricornutum LT (72 h) NOEC 100 mg/L 480 mg/L 
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Table 5 DMC data used in the USEtox model, version 2.02. 

PARAMETERS Unit Value References [notes] 

 CAS number - 616-38-6 - 

Physical and chemical data   

 Molar mass g/mol 9.0 10
1
 - 

 pKa chemical class - Neutral -  

 Partitioning coefficient 
between n-octanol and 
water 

L/L 1.7 US EPA, 2016 [EPI Suite
TM

] 

 Partitioning coefficient 
between organic carbon 
and water 

L/kg 2.9 US EPA, 2016 [EPI Suite
TM

] 

 Henry’s law constant (at 
25°C) 

Pa·m
3
/mol 8.7 US EPA, 2016 [EPI Suite

TM
] 

 Vapor pressure (at 25°C) Pa 7.6 10
3
 European Chemicals Agency, 2017 

 Solubility (at 25°C) mg/L 1.15 10
5
 European Chemicals Agency, 2017 

Rate constant degradation and bioaccumulation 

 Rate constant 
degradation in air 

1/s 2.3 10
-7

 Based on US EPA, 2016 [EPI Suite
TM

] 

 Rate constant 
degradation in water 

1/s 5.4 10
-7

 Based on US EPA, 2016 [EPI Suite
TM

] 

 Rate constant 
degradation in sediment 

1/s 2.7 10
-7

 Based on US EPA, 2016 [EPI Suite
TM

] 

 Rate constant 
degradation in soil 

1/s 5.9 10
-8

 Based on US EPA, 2016 [EPI Suite
TM

] 

 Bioaccumulation factor in 
fish 

L/kgfish 3.2 Based on US EPA, 2016 [EPI Suite
TM

] 

Toxicological and ecotoxicological data 

 Average of the log of the 
species-specific 
geometric means of 
concentrations affecting 
50% of the exposed 
species population for a 
defined endpoint 

mg/L 2.3 
Calculated [from ecotoxicological data, 

Table 4] 

 Human-equivalent lifetime 
dose per person that 
causes a non-cancer 
disease probability of 
50% via inhalation 

kg/lifetime 7.8 10
2
 

Calculated [from acute inhalation 
LC50, Table 4] 

 Human-equivalent lifetime 
dose per person that 
causes a non-cancer 
disease probability of 
50% via ingestion 

kg/lifetime 9.8 10
2
 

Calculated [from subchronic ingestion 
NOEL, Table 4] 
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Table 6 Human toxicity and freshwater aquatic ecotoxicity characterization factors of 

dimethyl carbonate (DMC) and 1,2-dichloroethane (DCE). 

MIDPOINT LEVEL CHARACTERIZATION FACTORS 

Type of emission 
Human toxicity 

[cases/kg emitted] 

Freshwater aq. ecotoxicity 

[PAFm3day/kg emitted] 

 DMC DCE DMC DCE 

to household indoor air 2.72 10
-6

 6.05 10
-5

 3.79 10
-1

 1.22 10
-1

 

to industrial indoor air 9.24 10
-8

 2.13 10
-6

 3.79 10
-1

 1.22 10
-1

 

to urban air 1.94 10
-8

 5.14 10
-7

 3.79 10
-1

 1.22 10
-1

 

to continental rural air 3.93 10
-9

 1.70 10
-7

 3.79 10
-1

 1.22 10
-1

 

to continental freshwater 8.85 10
-9

 1.57 10
-6

 1.35 10
1
 1.51 10

1
 

to continental sea water 2.46 10
-10

 3.98 10
-8

 2.28 10
-2

 2.33 10
-2

 

to continental natural soil 3.89 10
-9

 2.33 10
-7

 3.60 10
0
 1.17 10

0
 

to continental agricultural soil 1.59 10
-8

 1.58 10
-6

 3.60 10
0
 1.17 10

0
 

DAMAGE LEVEL CHARACTERIZATION FACTORS 

Type of emission 
Human toxicity 

[DALY/kg emitted] 

Freshwater aq. ecotoxicity 

[PDFm3day/kg emitted] 

 DMC DCE DMC DCE 

to household indoor air 7.35 10
-6

 7.56 10
-4

 1.90 10
-1

 6.08 10
-2

 

to industrial indoor air 2.50 10
-7

 2.67 10
-5

 1.90 10
-1

 6.08 10
-2

 

to urban air 5.25 10
-8

 6.43 10
-6

 1.90 10
-1

 6.08 10
-2

 

to continental rural air 1.06 10
-8

 2.13 10
-6

 1.90 10
-1

 6.08 10
-2

 

to continental freshwater 2.39 10
-8

 1.96 10
-5

 6.73 10
0
 7.55 10

0
 

to continental sea water 6.65 10
-10

 4.97 10
-7

 1.14 10
-2

 1.16 10
-2

 

to continental natural soil 1.05 10
-8

 2.91 10
-6

 1.80 10
0
 5.86 10

-1
 

to continental agricultural soil 4.29 10
-8

 1.98 10
-5

 1.80 10
0
 5.86 10

-1
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Table 7. Chemical analyses on solid waste from PHB extraction from microbial cells. 

PARAMETERS Unit Value 

C % 47.6 

H % 9.6 

N % 5.2 

S % 0.1 

Cl % 0.03 

DMC mg/kg 0.4 

Be mg/kg <1 

Al mg/kg 180.9 

V mg/kg 1.67 

Cr mg/kg 5.3 

Mn mg/kg 144.4 

Fe mg/kg 1092.8 

Co mg/kg 36.5 

Ni mg/kg 2.12 

Cu mg/kg 95.5 

Zn mg/kg 496 

As mg/kg <1 

Ag mg/kg 4.1 

Cd mg/kg <0,5 

Sb mg/kg <1 

Ba mg/kg 41.6 

Tl mg/kg <1 

Pb mg/kg 5.2 

Hg mg/kg <0,2 

Sn mg/kg 1.32 

HHV J/g 16,455 

LHV J/g 14,400 
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Table 8 LCIA scores related to ‘new extraction process’ scenarios: extraction from microbial slurry + evaporation of the solvent (Slurry-

Evap), extraction from dried biomass + evaporation of the solvent (Dry-Evap), extraction from microbial slurry + addition of EtOH and 

precipitation (Slurry-Precip),  extraction from dried biomass +  addition of EtOH and precipitation (Dry-Precip). Reference scenario is 

extraction with 1,2-dichloroethane (DCE). FU is 1 kg of PHB ready for the product’s manufacturing. 

Impact category Unit Slurry-Evap Dry-Evap Slurry-Precip Dry-Precip DCE 

GWP kg CO2eq. 7.0 10
0
 3.9 10

0
 1.1 10

1
 7.9 10

0
 6.3 10

1
 

OD kg CFC-11eq. 2.5 10
-7

 6.4 10
-9

 2.9 10
-7

 4.8 10
-8

 1.6 10
-6

 

HTc CTUh 2.6 10
-8

 2.0 10
-9

 3.8 10
-8

 1.5 10
-8

 1.7 10
-7

 

HTnc CTUh 8.5 10
-8

 2.5 10
-8

 1.2 10
-7

 6.6 10
-8

 9.8 10
-7

 

FE CTUe 1.8 10
0
 8.4 10

-2
 2.8 10

0
 1.1 10

0
 1.5 10

1
 

AC Mole of H
+
eq. 9.7 10

-3
 4.9 10

-3
 1.6 10

-2
 1.1 10

-2
 9.2 10

-2
 

POF kg NMVOC 1.0 10
-2

 4.5 10
-3

 2.4 10
-2

 1.6 10
-2

 8.6 10
-2

 

EuF kg P eq. 1.4 10
-4

 4.7 10
-6

 2.6 10
-4

 1.3 10
-4

 1.1 10
-3

 

EuM kg N eq. 1.3 10
-4

 4.7 10
-5

 1.9 10
-4

 1.1 10
-4

 9.8 10
-4

 

EuT Mole of N eq. 2.8 10
-2

 1.5 10
-2

 4.3 10
-2

 3.0 10
-2

 2.5 10
-1

 

PM kg PM2.5eq. 3.9 10
-4

 1.9 10
-4

 6.6 10
-4

 4.7 10
-4

 3.9 10
-3

 

IR kBq U235eq. 5.1 10
1
 1.3 10

0
 6.4 10

1
 1.6 10

1
 4.5 10

2
 

RD kg Sb eq. 1.6 10
0
 1.0 10

0
 3.1 10

0
 2.6 10

0
 2.0 10

1
 

WD m³ eq. 1.0 10
-5

 1.6 10
-6

 1.4 10
-5

 6.0 10
-6

 6.4 10
-5
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Annex A 

Scenario 1 (Slurry-Evap)

Step Process Input/Output Flow Quantity U.M. Note

Pure microbial culture 1.4 10
2 kg from cultivation phase

Electricity 3.7 10
-1 MJ from electricity grid mix

Concentrated wet biomass 1.6 10
1 kg to batch reactor

Water 1.3 10
2 kg reusable for a successive cultivation

Chemicals production DMC new 2.0 kg from production plant

Concentrated wet biomass 1.6 10
1 kg from centrifuge 1

DMC recovered 2.8 10
1 kg from condenser 1 and  condenser 2

Electricity 1.6 10
-1 MJ from electricity grid mix

Steam 7.8 MJ from natural gas

Output Biomass-DMC mixture 4.6 10
1 kg to centrifuge 2

Biomass-DMC mixture 4.6 10
1 kg from batch reactor

Electricity 1.1 10
-1 MJ from electricity grid mix

PHB-DMC solution 2.9 10
1 kg to air dryer 2

Residual biomass-DMC mixture 8.3 10
-1 kg to air dryer 1

Water 1.6 10
1 kg reusable for a successive cultivation

Residual biomass-DMC mixture 8.3 10
-1 kg from centrifuge 2

Electricity 2.2 10
-2 MJ from electricity grid mix

Steam 2.0 10
-1 MJ from natural gas

Residual biomass 4.3 10
-1 kg to waste inceneration

DMC 4.0 10
-1 kg to condenser 1

DMC 4.0 10
-1 kg from air dryer 1

Electricity 9.6 10
-3 MJ from electricity grid mix

DMC recovered 4.0 10
-1 kg to batch reactor

DMC purge 6.3 10
-4 kg to catalytic oxydizer

PHB-DMC solution 2.9 10
1 kg from centrifuge 2

Electricity 1.6 MJ from electricity grid mix

Steam 1.4 10
1 MJ from natural gas

PHB 1.0 kg ready for the product's manufacturing

DMC 2.8 10
1 kg to condenser 2

DMC 2.8 10
1 kg from air dryer 2

Electricity 6.8 10
-1 MJ from electricity grid mix

DMC recovered 2.8 10
1 kg to batch reactor

DMC purge 4.5 10
-2 kg to catalytic oxydizer

Input DMC purge 4.5 10
-2 kg from condenser 1 and condenser 2

DMC emission 3.9 10
-4 kg emission to air

CO2 6.6 10
-2 kg emission to air

Water vapour 2.7 10
-2 kg emission to air

NOx 2.8 10
-5 kg emission to air

PHB extraction

Chemicals recovery

Catalytic oxidizer

Biomass preparation

PHB extraction

Chemicals recovery

Chemicals recovery

PHB extraction

Output

Input

Centrifuge 1

Input
Batch reactor

Input

Output

Centrifuge 2

Input

Output

Air dryer 1

Input

Output

Condenser 1

Air dryer 2

Input

Output

Input

Output

Condendenser 2

Output
Catalytic oxidizer
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Annex B 

Scenario 2 (Dry-Evap)

Step Process Input/Output Flow Quantity U.M. Note

Pure microbial culture 1.5 10
2 kg from cultivation phase

Electricity 3.8 10
-1 MJ from electricity grid mix

Concentrated wet biomass 8.9 kg to batch reactor

Water 1.4 10
2 kg reusable for a successive cultivation

Concentrated wet biomass 8.9 kg from centrifuge 1

Electricity 1.9 MJ from electricity grid mix

Steam 1.7 10
1 MJ from natural gas

Dried biomass 1.5 kg to batch reactor

Water vapour 7.5 kg emission to air

Chemicals production DMC new 5.1 10
-2 kg from production plant

Dried biomass 1.5 kg from air dryer 1

DMC recovered 3.2 10
1 kg from condenser 1 and  condenser 2

Electricity 1.1 10
-1 MJ from electricity grid mix

Steam 4.0 MJ from natural gas

Output Biomass-DMC mixture 3.3 10
1 kg to centrifuge 2

Biomass-DMC mixture 3.3 10
1 kg from batch reactor

Electricity 7.9 10
-2 MJ from electricity grid mix

PHB-DMC solution 3.2 10
1 kg to air dryer 3

Residual biomass-DMC mixture 9.5 10
-1 kg to air dryer 2

Residual biomass-DMC mixture 9.5 10
-1 kg from centrifuge 2

Electricity 2.6 10
-2 MJ from electricity grid mix

Steam 2.3 10
-1 MJ from natural gas

Residual biomass 4.9 10
-1 kg to waste inceneration

DMC 4.6 10
-1 kg to condenser 1

DMC 4.6 10
-1 kg from air dryer 2

Electricity 1.1 10
-2 MJ from electricity grid mix

DMC recovered 4.6 10
-1 kg to batch reactor

DMC purge 7.3 10
-4 kg to catalytic oxydizer

PHB-DMC solution 3.2 10
1 kg from centrifuge 2

Electricity 1.8 MJ from electricity grid mix

Steam 1.6 10
1 MJ from natural gas

PHB 1.0 kg ready for the product's manufacturing

DMC 3.1 10
1 kg to condenser 2

DMC 3.1 10
1 kg from air dryer 3

Electricity 7.5 10
-1 MJ from electricity grid mix

DMC recovered 3.1 10
1 kg to batch reactor

DMC purge 5.0 10
-2 kg to catalytic oxydizer

Input DMC purge 5.1 10
-2 kg from condenser 1 and condenser 2

DMC emission 2.7 10
-4 kg emission to air

CO2 7.4 10
-2 kg emission to air

Water vapour 3.0 10
-2 kg emission to air

NOx 3.2 10
-5 kg emission to air

Chemicals recovery

PHB extraction

Chemicals recovery

Catalytic oxidizer

Biomass preparation

Biomass preparation

PHB extraction

Chemicals recovery

PHB extraction

Output

Air dryer 2

Input

Output

Centrifuge 1

Input

Output

Air dryer 1

Batch reactor

Catalytic oxidizer
Output

Condenser 2

Input

Output

Input

Input

Output

Input

Output

Condenser 1

Input

Output

Air dryer 3

Centrifuge 2

Input
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Annex C 
Scenario 3 (Slurry-Precip)

Step Process Input/Output Flow Quantity U.M. Note

Pure microbial culture 1.4 10
2 kg from cultivation phase

Electricity 3.7 10
-1 MJ from electricity grid mix

Concentrated wet biomass 1.6 10
1 kg to batch reactor

Water 1.3 10
2 kg reusable for a successive cultivation

Chemicals production DMC new 2.3 kg from production plant

Concentrated wet biomass 1.6 10
1 kg from centrifuge 1

DMC recovered 2.8 10
1 kg from condenser 1 and  pervaporation

Electricity 1.6 10
-1 MJ from electricity grid mix

Steam 7.8 MJ from natural gas

Output Biomass-DMC mixture 4.6 10
1 kg to centrifuge 2

Biomass-DMC mixture 4.6 10
1 kg from batch reactor 1

Electricity 1.1 10
-1 MJ from electricity grid mix

PHB-DMC solution 2.9 10
1 kg to batch reactor 2

Residual biomass-DMC mixture 8.3 10
-1 kg to air dryer 1

Water 1.6 10
1 kg reusable for a successive cultivation

Residual biomass-DMC mixture 8.3 10
-1 kg from centrifuge 2

Electricity 2.2 10
-2 MJ from electricity grid mix

Steam 2.0 10
-1 MJ from natural gas

Residual biomass 4.3 10
-1 kg to waste inceneration

DMC 4.0 10
-1 kg to condenser 1

DMC 4.0 10
-1 kg from air dryer 1

Electricity 9.6 10
-3 MJ from electricity grid mix

DMC recovered 4.0 10
-1 kg to batch reactor 1

DMC purge 6.3 10
-4 kg to catalytic oxydizer

Chemicals production EtOH new 2.2 10
-1 kg from production plant

PHB-DMC solution 2.9 10
1 kg from centrifuge 2

EtOH recovered 2.2 10
1 kg from pervaporation

Electricity 2.0 10
-1 MJ from electricity grid mix

Output PHB-DMC-EtOH mixture 5.1 10
1 kg to centrifuge 3

PHB-DMC-EtOH mixture 5.1 10
1 kg from batch reactor 2

Electricity 1.4 10
-1 MJ from electricity grid mix

PHB-DMC-EtOH concentrated mixture 2.0 kg to air dryer 2

DMC-EtOH solution 4.9 10
1 kg to pervaporation

PHB-DMC-EtOH concentrated mixture 2.0 kg from centrifuge 3

Electricity 9.8 10
-2 MJ from electricity grid mix

Steam 8.8 10
-1 MJ from natural gas

PHB 1.0 kg ready for the product's manufacturing

DMC-EtOH solution 1.0 kg to condenser 2

DMC-EtOH solution 1.0 kg from air dryer 2

Electricity 4.2 10
-2 MJ from electricity grid mix

DMC-EtOH solution recovered 1.0 kg to pervaporation

DMC purge 2.2 10
-3 kg to catalytic oxydizer

EtOH purge 1,7 10
-3 kg to catalytic oxydizer

DMC-EtOH solution 5,0 10
1 kg from centifuge 3 and condenser 2

Electricity 1.0 10
1 MJ from electricity grid mix

Steam 2.7 10
1 MJ from natural gas

DMC recovered 2.8 10
1 kg to batch reactor 1

EtOH recovered 2.2 10
1 kg to batch reactor 2

DMC purge 2.8 10
-1 kg to catalytic oxydizer

EtOH purge 2.2 10
-1 kg to catalytic oxydizer

DMC purge 2.8 10
-1 kg from condensers 1-2 and pervaporation

EtOH purge 2,2 10
-1 kg from condenser 2 and pervaporation

DMC emission 1.6 10
-2 kg emission to air

EtOH emission 1.2 10
-2 kg emission to air

CO2 8.0 10
-1 kg emission to air

Water vapour 4.1 10
-1 kg emission to air

NOx 3.0 10
-4 kg emission to air

Catalytic oxidizer

PHB extraction

PHB extraction

Chemicals recovery

Chemicals recovery

Biomass preparation

PHB extraction

Chemicals recovery

Chemicals recovery

PHB extraction

Centrifuge 2

Input

Output

Centrifuge 1

Input

Output

Batch reactor 1
Input

Input

Output

Air dryer 1

Input

Output

Condenser 1

Input

Output

PHB extraction

Pervaporation

Input

Output

Catalytic oxidizer

Output

Input

Air dryer 2

Input

Output

Condenser 2

Input

Output

Batch reactor 2
Input

Centrifuge 3
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Annex D 
Scenario 4 (Dry-Precip)

Step Process Input/Output Flow Quantity U.M. Note

Pure microbial culture 1.5 10
2 kg from cultivation phase

Electricity 3,8 10
-1 MJ from electricity grid mix

Concentrated wet biomass 8.9 kg to batch reactor

Water 1.4 10
2 kg reusable for a successive cultivation

Concentrated wet biomass 8.9 kg from centrifuge 1

Electricity 1.9 MJ from electricity grid mix

Steam 1.7 10
1 MJ from natural gas

Dried biomass 1.5 kg to batch reactor

Water vapour 7.5 kg emission to air

Chemicals production DMC new 3.2 10
-1 kg from production plant

Dried biomass 1.5 kg from air dryer 1

DMC recovered 3.2 10
1 kg from condenser 1 and  pervaporation

Electricity 1.1 10
-1 MJ from electricity grid mix

Steam 4.0 MJ from natural gas

Output Biomass-DMC mixture 3.3 10
1 kg to centrifuge 2

Biomass-DMC mixture 3.3 10
1 kg from batch reactor 1

Electricity 7.9 10
-2 MJ from electricity grid mix

PHB-DMC solution 3.2 10
1 kg to reactor batch 2

Residual biomass-DMC mixture 9.5 10
-1 kg to air dryer 2

Residual biomass-DMC mixture 9.5 10
-1 kg from centrifuge 2

Electricity 2.6 10
-2 MJ from electricity grid mix

Steam 2.3 10
-1 MJ from natural gas

Residual biomass 4.9 10
-1 kg to waste inceneration

DMC 4.6 10
-1 kg to condenser 1

DMC 4.6 10
-1 kg from air dryer 2

Electricity 1.1 10
-2 MJ from electricity grid mix

DMC recovered 4.6 10
-1 kg to batch reactor 1

DMC purge 7.3 10
-4 kg to catalytic oxydizer

Chemicals production EtOH new 2.3 10
-1 kg from production plant

PHB-DMC solution 3.2 10
1 kg from centrifuge 2

EtOH recovered 2.3 10
1 kg from pervaporation

Electricity 2.2 10
-1 MJ from electricity grid mix

Output PHB-DMC-EtOH mixture 5.6 10
1 kg to centrifuge 3

PHB-DMC-EtOH mixture 5.6 10
1 kg from batch reactor 2

Electricity 1.5 10
-1 MJ from electricity grid mix

PHB-DMC-EtOH concentrated mixture 2.0 kg to air dryer 3

DMC+EtOH solution 5.4 10
1 kg to pervaporation

PHB-DMC-EtOH concentrated mixture 2.0 kg from centrifuge 3

Electricity 9.7 10
-2 MJ from electricity grid mix

Steam 8.6 10
-1 MJ from natural gas

PHB 1.0 kg ready for the product's manufacturing

DMC-EtOH solution 1.0 kg to condenser 2

DMC-EtOH solution 1.0 kg from air dryer 3

Electricity 1.0 MJ from electricity grid mix

DMC-EtOH solution recovered 1.0 kg to pervaporation

DMC purge 2.2 10
-3 kg to catalytic oxydizer

EtOH purge 1.6 10
-3 kg to catalytic oxydizer

DMC-EtOH solution 5.5 10
1 kg from centifuge 3 and condenser 2

Electricity 1.1 10
1 MJ from electricity grid mix

Steam 2.8 10
1 MJ from natural gas

DMC recovered 3.1 10
1 kg to batch reactor 1

EtOH recovered 2.3 10
1 kg to batch reactor 2

DMC purge 3.1 10
-1 kg to catalytic oxydizer

EtOH purge 2.3 10
-1 kg to catalytic oxydizer

DMC purge 3.2 10
-1 kg from condensers 1-2 and pervaporation

EtOH purge 2.3 10
-1 kg from condenser 2 and pervaporation

DMC emission 1.1 10
-2 kg emission to air

EtOH emission 8.1 10
-3 kg emission to air

CO2 8.8 10
-1 kg emission to air

Water vapour 4.5 10
-1 kg emission to air

NOx 3.3 10
-4 kg emission to air

Chemicals recovery

Catalytic oxidizer

Chemicals recovery

PHB extraction

PHB extraction

Chemicals recovery

PHB extraction

Biomass preparation

Biomass preparation

PHB extraction

Chemicals recovery

PHB extraction

Centrifuge 2

Input

Output

Centrifuge 1

Input

Output

Batch reactor 1
Input

Output

Air dryer 3

Input

Output

Air dryer 2

Input

Output

Condenser 1

Input

Output

Catalytic oxidizer

Input

Output

Air dryer 1

Input

Output

Condenser 2

Input

Output

Pervaporation

Input

Output

Batch reactor 2
Input

Centrifuge 3

Input
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Annex E 

Scenario 5 (DCE)

Step Process Input/Output Flow Quantity U.M. Note

Pure microbial culture 1.5 10
2 kg from cultivation phase

Electricity 3.9 10
-1 MJ from electricity grid mix

Concentrated wet biomass 9.1 kg to batch reactor

Water 1.4 10
2 kg reusable for a successive cultivation

Concentrated wet biomass 9.1 kg from centrifuge 1

Electricity 1.9 MJ from electricity grid mix

Steam 1.7 10
1 MJ from natural gas

Dried biomass 1.5 kg to batch reactor

Water vapour 7.6 kg emission to air

Chemicals production DCE new 9.5 10
-1 kg from production plant 

Dried biomass 1.5 kg from air dryer 1

DCE recovered 9.4 10
1 kg from condenser 1 and pervaporation

Electricity 7.0 10
-2 MJ from electricity grid mix

Steam 7.3 MJ from natural gas

Output Biomass-DCE mixture 9.7 10
1 kg to centrifuge 2

Biomass-DCE mixture 9.7 10
1 kg from batch reactor 1

Electricity 2.0 10
-1 MJ from electricity grid mix

PHB-DCE solution 9.5 10
1 kg to reactor batch 2

Residual biomass-DCE mixture 1.0 kg to air dryer 2

Residual biomass-DCE mixture 1.0 kg from centrifuge 2

Electricity 2.5 10
-2 MJ from electricity grid mix

Steam 2.2 10
-1 MJ from natural gas

Residual biomass 5.2 10
-1 kg to waste inceneration

DCE 5.1 10
-1 kg to condenser 1

DCE 5.1 10
-1 kg from air dryer 2

Electricity 1.1 10
-2 MJ from electricity grid mix

DCE recovered 5.1 10
-1 kg to batch reactor 1

DCE purge 2.5 10
-3 kg to catalytic oxydizer

Chemicals production Methanol-water solution new 3.1 kg from production plant

PHB-DCE solution 9.5 10
1 kg from centrifuge 2

Methanol-water solution recovered 3.1 10
2 kg from pervaporation

Electricity 1.6 MJ from electricity grid mix

Output PHB-DCE-methanol-water mixture 4.1 10
2 kg to centrifuge 3

PHB-DCE-methanol-water mixture 4.1 10
2 kg from batch reactor 2

Electricity 1.2 MJ from electricity grid mix

PHB-DCE-methanol-water concentrated mixture 2.0 kg to air dryer 3

DCE-methanol-water solution 4.1 10
2 kg to pervaporation

PHB-DCE-methanol-water concentrated mixture 2.0 kg from centrifuge 3

Electricity 2.4 10
-1 MJ from electricity grid mix

Steam 2.2 MJ from natural gas

PHB 1.0 kg ready for the product's manufacturing

DCE-methanol-water solution 1.0 kg to condenser 2

DCE-methanol-water solution 1.0 kg from air dryer 3

Electricity 1.0 10
-1 MJ from electricity grid mix

DCE-methanol-water solution recovered 9.9 10
-1 kg to pervaporation

DCE purge 1.7 10
-3 kg to catalytic oxydizer

Methanol-water purge 5.7 10
-3 kg to catalytic oxydizer

DCE-methanol-water solution 4.1 10
2 kg from centifuge 3 and condenser 2

Electricity 1.1 10
2 MJ from electricity grid mix

Steam 5.0 10
2 MJ from natural gas

1,2-dichloroethane (DCE) 9.4 10
1 kg to batch reactor 1

Methanol-water solution 3.1 10
2 kg to batch reactor 2

DCE purge 9.4 10
-1 kg to catalytic oxydizer

Methanol-water purge 3.1 kg to catalytic oxydizer

DCE purge 9.5 10
-1 kg from condensers 1-2 and pervaporation

Methanol-water purge 3.1 kg from condenser 2 and pervaporation

DCE emission 4.7 10
-3 kg emission to air

Metanolo emission 1.2 10
-2 kg emission to air

CO2 3.3 kg emission to air

Water vapour 3.4 kg emission to air

NOx 1.5 10
-3 kg emission to air

Other emissions to air N.R. kg emission to air (from EEA, 2013)

N.R. = not reported

Chemicals recovery

Catalytic oxidizer

Chemicals recovery

PHB extraction

PHB extraction

Chemicals recovery

PHB extraction

Biomass preparation

Biomass preparation

PHB extraction

Chemicals recovery

PHB extraction

Centrifuge 1

Input

Output

Air dryer 1

Input

Output

Centrifuge 3

Input

Output

Batch reactor 1
Input

Centrifuge 2

Input

Output

Air dryer 2

Input

Output

Condenser 1

Input

Output

Batch reactor 2
Input

Air dryer 3

Input

Output

Condenser 2

Input

Output

Pervaporation

Input

Output

Input

Output

Catalytic oxidizer
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Annex F 

ID CHEMICALS 
CAS 

NUMBER 
ID CHEMICALS 

CAS NUMBER 

1 1,1-dichloroethene 75-35-4 22 tetrachloroethylene 127-18-4 

2 chloromethane 74-87-3   23 chlorobenzene 108-90-7 

3 vinyl chloride  75-01-4 24 ethylbenzene 100-41-4 

4 dichloromethane 75-09-2 25 meta- and para-xylene N/A
§
 

5 1,2-dichloroethene trans 156-60-5 26 bromoform 75-25-2 

6 tert-butyl methyl ether  1634-04-4 27 styrene 100-42-5 

7 1,1-dichloroethane 
75-34-3 

28 
1,1,2,2-

tetrachloroethane 

79-34-5 

8 1,2-dichloroethene cis 156-59-2 29 o- xylene 95-47-6 

9 chloroform 67-66-3 30 1,2,3-trichloropropane 96-18-4 

10 tert-butyl ethyl ether 637-92-3 31 isopropylbenzene 98-82-8 

11 1,2-dichloroethane 107-06-2   32 2-chlorotoluene 95-49-8 

12 1,1,1-trichloroethane 71-55-6   33 4-chlorotoluene 106-43-4 

13 tetrachloromethane 56-23-5   34 1,3-dichlorobenzene 541-73-1 

14 benzene 71-43-2 35 1,4-dichlorobenzene 106-46-7 

15 1,2-dichloropropane 78-87-5 36 1,2-dichlorobenzene 95-50-1 

16 1,1,2-trichlorethylene 79-01-6 37 nitrobenzene 98-95-3 

17 bromodichloromethane 75-27-4 38 naphthalene 91-20-3 

18 1,1,2-trichloroethane 79-00-5 39 1,2,4-trichlorobenzene 120-82-1 

19 toluene 
108-88-3 

40 
Hexachloro-1,3-

butadiene 

87-68-3 

20 dibromochloromethane 124-48-1 41 2-methylnaphthalene 91-57-6 

21 1,2-dibromoethane 106-93-4 42 1-methylnaphthalene 90-12-0 

§
 not applicable 
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Figure captions 

Fig. 1: Process block diagram of each production scenario. 

 

Fig. 2: Process contributions to GWP, AC, EuT, EuM and POF of each considered step: biomass 

preparation, chemical production, PHB extraction, chemicals recovery, catalytic oxidation and 

solid waste treatment (FU: 1 kg of PHB). 

 

Fig. 3: Process contributions to PM, HTnc, RD and WD of each considered step: biomass 

preparation, chemical production, PHB extraction, chemicals recovery, catalytic oxidation and 

solid waste treatment (FU: 1 kg of PHB). 

 

Fig. 4: Process contributions to EuF, FE, HTc, IR and OD of each considered step: biomass 

preparation, chemical production, PHB extraction, chemicals recovery, catalytic oxidation and 

solid waste treatment (FU: 1 kg of PHB). 
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Fig. 1 

 



Fig. 2

http://ees.elsevier.com/jclepro/download.aspx?id=828304&guid=1dd1c8d3-9305-4d23-8f40-79b8b753c6dd&scheme=1


Fig. 3

http://ees.elsevier.com/jclepro/download.aspx?id=828305&guid=98f1d3f5-772e-4307-ba17-3dc0ce85bacc&scheme=1


Fig. 4

http://ees.elsevier.com/jclepro/download.aspx?id=828306&guid=221a9038-1d08-41cf-a731-1776df342761&scheme=1
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