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A large covariance matrix estimator
under intermediate spikiness regimes

Matteo Farnéa,∗∗, Angela Montanaria,∗

aDepartment of Statistical Sciences, University of Bologna, Bologna, Italy

Abstract

This paper concerns large covariance matrix estimation via composite minimization under the assumption of low rank
plus sparse structure. In this approach, the low rank plus sparse decomposition of the covariance matrix is recovered
by least squares minimization under nuclear norm plusl1 norm penalization. The objective is minimized via a singular
value thresholding plus soft thresholding algorithm. This paper proposes a new estimator based on an additional least-
squares re-optimization step aimed at un-shrinking the eigenvalues of the low rank component estimated in the first
step. We prove that such un-shrinkage causes the final estimate to approach the target as closely as possible in spectral
and Frobenius norm, while recovering exactly the underlying low rank and sparsity pattern. The error bounds are
derived imposing that the latent eigenvalues scale topα and the maximum number of non-zeros per row in the sparse
component scales topδ, wherep is the dimension,α ∈ [0, 1], δ ∈ [0, 0.5], andδ < α. The sample sizen is imposed to
scale at least top1.5δ. The resulting estimator is called UNALCE (UNshrunk ALgebraic Covariance Estimator), and it
is shown to outperform state-of-the-art estimators, especially for what concerns fitting properties and sparsity pattern
detection. The effectiveness of UNALCE is highlighted by a real example regarding ECB (European Central Bank)
banking supervisory data.

Keywords: Covariance matrix, Nuclear norm, Penalized least squares, Sparsity, Spiked eigenvalues, Un-shrinkage
Classification code: 62J10, 65F35, 93E24, 65F50, 15A18, 62J07

1. Introduction

Estimation of population covariance matrices from samples of multivariate data is of interest in many high-
dimensional inference problems: principal components analysis, classification by discriminant analysis, inferring
a graphical model structure, and others. Depending on the goal, the interest is sometimes in inferring the eigen-
structure of the covariance matrix (as in principal component analysis) and sometimes in estimating its inverse (as in5

discriminant analysis or in graphical models). Examples of application areas include gene arrays, functional magnetic
resonance imaging, text retrieval, image classification, spectroscopy, climate studies, finance, and macro-economic
analysis.

The theory of multivariate analysis for normal variables has been well worked out (see, for example, [2]). However,
it soon became apparent that exact expressions were cumbersome, and that multivariate data were rarely Gaussian.10

The remedy was asymptotic theory for large samples and fixed, relatively small, dimensions. However, in recent
years, datasets that do not fit into this framework have become very common, since nowadays the data can be high-
dimensional, and sample sizes can be very small relative to dimension.

The traditional covariance estimator, the sample covariance matrix, is known to be dramatically ill-conditioned in
a large dimensional context, where the process dimensionp is larger than or close to the sample sizen, even when the15

population covariance matrix is well-conditioned. Two key properties of the matrix estimation process, i.e. numerical
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stability and identifiability, assume a particular relevance in large dimensions. Both properties are crucial for the
theoretical derivation and the practical use of the estimate. A bad conditioned estimate suffers from collinearity and
causes its inverse, the precision matrix, to dramatically amplify any error in the data. A large dimension may make it
impossible to identify the unknown covariance structure, thus hampering the interpretation of the results.20

Regularization approaches to large covariance matrix estimation are therefore being presented and addressed in
the literature, both from theoretical and practical perspectives (see [14] for an exhaustive overview). Some authors
propose shrinking the sample covariance matrix toward the identity matrix [24], others suggest applying nonlinear
transforms to sample eigenvalues [25] or regularizing them by sample splitting [23], while some others consider
tapering the sample covariance matrix, i.e. gradually shrinking the off-diagonal elements toward zero [9, 21]. At25

the same time, a common approach is to encourage sparsity, either by a penalized likelihood approach [20] or by
thresholding the sample covariance matrix in different ways: hard-thresholding [6], soft-thresholding [5], generalized
thresholding [31], or adaptive thresholding [8]. A consistent bandwidth selection method for all these approaches is
described in [30].

A different approach is based on the assumption of a low rank plus sparse structure for the covariance matrix:30

Σ
∗ = L ∗ + S∗, (1)

whereL ∗ is low rank with rankr < p, S∗ is positive definite and sparse, with at mostsnon-zero off-diagonal elements,
andΣ∗ is a positive definite matrix. The generic covariance estimator Σ̂ can be written as

Σ̂ = L ∗ + S∗ +W = Σ∗ +W, (2)

whereW is an error term. The error matrixW may be deterministic or stochastic, as explained in [1]. If the data are
Gaussian and̂Σ is the unbiased sample covariance matrixΣn, thenW is distributed as a re-centred Wishart random
matrix.35

In [15], a large covariance matrix estimator, called POET (Principal Orthogonal complEment Thresholding), is
derived under the assumption in (1). POET combines principal component analysis for the recovery of the low rank
component and a thresholding algorithm for the recovery of the sparse component. The underlying model assump-
tions prescribe an approximate factor model with spiked eigenvalues for the data (growing withp), thus allowing
to reasonably use the firstr principal components of the sample covariance matrix. Furthermore, at the same time,40

sparsity in the sense of [5] is imposed on the residual matrix. The rankr of the low rank component is chosen by the
information criteria in [4].

Indeed, rank selection represents a relevant issue: whenp is large, setting a large rank would cause the estimate
Σ̂ to be non-positive definite, while setting a small rank wouldcause a too relevant variance loss. In the discussion of
[15], Yu and Samworth point out that the probability to underestimate the latent rankr does not asymptotically vanish45

if the eigenvalues are not really spiked at rateO(p). In addition, we note that POET systematically overestimates the
proportion of variance explained by the factors (given the true rank) because the eigenvalues ofΣn are more spiky than
the true ones (as shown in [24]).

POET consistency holds given that a number of assumptions issatisfied. The key assumption is the pervasiveness
of latent factors, which implies that the principal component analysis ofΣn asymptotically identifies the eigenvalues50

and eigenvectors ofΣ∗ as p diverges. The results of [15] provide the convergence rates of the relative norm of
Σ̂POET − Σ∗ (defined as‖Σ̂POET − Σ∗‖Σ = p−1/2‖Σ∗− 1

2 Σ̂POETΣ
∗− 1

2 − I p‖F ), the maximum norm of̂ΣPOET − Σ∗, and
the spectral norm of̂SPOET − S∗. Under stricter conditions,̂SPOET and Σ̂POET are proved to be non-singular with
probability approaching 1.

At the same time, a number of non-asymptotic methods has beenpresented. In [11], the exact recovery of the55

covariance matrix in the noiseless context is first proved. The result is achieved by minimizing a specific convex
non-smooth objective, which is the sum of the nuclear norm ofthe low rank component and thel1 norm of the sparse
component. In [10], which is an extension of [11], the exact recovery of the inverse covariance matrix in thenoisy
graphical model setting is provided. The authors prove that, in the worst case, the number of necessary samples in
order to ensure consistency isn = O

(

p3/r2
)

, even if the required condition for the positive definiteness of the estimate60

is p ≤ 2n.
An approximate solution to the recovery and identifiabilityof the covariance matrix in the noisy context is de-

scribed in [1]. Even there, the conditionp ≤ n is unavoidable for standard results on large deviations andnon-
asymptotic random matrix theory. An exact solution to the same problem, based on the results in [10], is then shown
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in [27]. The resulting estimator is called LOREC (LOw Rank and sparsE Covariance estimator) and is proved to be65

both algebraically and parametrically consistent in the sense of [10].
In [10], algebraic consistency is defined as follows.

Definition 1. A pair of symmetric matrices(S, L ) with S, L ∈ Rp×p is an algebraically consistent estimate of the low
rank plus sparse decomposition (1) for the covariance matrixΣ∗ if the following conditions hold:

(i) The sign pattern ofS is the same as that ofS∗: sign(Si j ) = sign((S∗)i, j), ∀i, j. Here, we assume that sign(0) = 0;70

(ii) The rank ofL is the same as the rank ofL ∗;

(iii) MatricesL + S, S, andL are such thatL + S andS are positive definite andL is positive semidefinite.

Parametric consistency holds if the estimates (S, L ) are close to (S∗, L ∗) in some norm with probability approaching
1. In [10], it is defined as follows.

Definition 2. A pair of symmetric matrices(S, L ) with S, L ∈ R
p×p is a parametrically consistent estimate of the75

low rank plus sparse decomposition (1) for the covariance matrixΣ∗ if the norm gγ = max(‖S− S∗‖∞/γ, ‖L − L ∗‖2),
where‖.‖∞ denotes the maximum norm, converges to0 with probability approaching1.

LOREC shows several advantages compared to POET. The most important is that the estimates are both alge-
braically and parametrically consistent, while POET provides only parametric consistency. Nevertheless, LOREC
suffers from some drawbacks, especially concerning the estimated latent eigenvalues. Moreover, the strict condition80

p ≤ n is required, while POET allows forp ln(p)≫ n.
For these reasons, we propose a new estimator, UNALCE (UNshrunk ALgebraic Covariance Estimator), based on

the ‘unshrinkage’ (the technical meaning will be clarified in Section4) of the estimated eigenvalues of the low rank
component, which allows to improve the fitting properties ofLOREC systematically. We assume that the non-zero
eigenvalues ofL ∗ are proportional topα, α ∈ [0, 1] (the so called generalized spikiness context). Under theassumption85

that the maximum number of non-zeros per row inS∗, called ‘maximum degree’, scales topδ (with δ ∈ [0, 0.5] and
δ < α), we prove that our estimator possesses a non-asymptotic error bound allowingn to be as small asp1.5δ. We
derive absolute bounds depending onα for the low rank, the sparse component, and the overall estimate. We also
identify the conditions for positive definiteness and invertibility and for rank and sparsity pattern recovery. In this
way, we provide a unique framework for covariance estimation via composite minimization under the low rank plus90

sparse assumption.
The remainder of the paper is organized as follows. In Section 2, we establish the notation, set up the model,

briefly recall definitions and key properties of LOREC approach, and outline our novel contributions. In Section3, we
define a new estimator, that we call ALCE (ALgebraic Covariance Estimator), and we state the necessary assumptions
for algebraic and parametric consistency. In Section4, we then define the UNALCE (UNshrunk ALCE) estimator,95

proving that the unshrinkage of thresholded eigenvalues ofthe low rank component is the key to improve fitting
properties as much as possible given a finite sample, preserving algebraic consistency. In Section5, we propose a
new model selection criterion specifically tailored to our model setting. In Section6, we provide a real Euro Area
banking data example which clarifies the effectiveness of our approach (a thorough simulation study is presented in
the supplementary material, Section2). Finally, in Section7, we draw conclusions and discuss the most relevant100

findings. The proofs of all theorems and corollaries are reported inAppendix A.

2. Numerical estimation and spiked eigenvalues

2.1. Notation

Let us define ap× p symmetric positive-definite matrixM . We denote byλi(M ), i ∈ {1, . . . , p}, the eigenvalues
of M in descending order. Then, we recall the following norm definitions:105

(i) Element-wise:

(a) L0 norm: ‖M‖0 =
∑p

i=1

∑p
j=11(M i j , 0), which is the total number of non-zeros;
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(b) L1 norm: ‖M‖1 =
∑p

i=1

∑p
j=1 |M i j |;

(c) Frobenius norm:‖M‖F =
√

∑p
i=1

∑p
j=1 M2

i j ;

(d) Maximum norm:‖M‖∞ = maxi≤p, j≤p |M i j |.110

(ii) Induced by vector:

(a) ‖M‖0,v = maxi≤p
∑

j≤p1(M i j , 0), which is the maximum number of non-zeros per column, defined as the
maximum ‘degree’ ofM ;

(b) ‖M‖1,v = maxi≤p
∑

j≤p |M i j |;
(c) Spectral norm:‖M‖2 = λ1(M ).115

(iii) Schatten:

(a) Nuclear norm ofM , here defined as the sum of the eigenvalues ofM : ‖M‖∗ =
∑p

i=1 λi(M ).

2.2. Model setup

Let us suppose that the population covariance matrix of our data is the sum of a low rank and a sparse component.
A p-dimensional random vectorx is said to have a low rank plus sparse structure if its covariance matrixΣ∗ satisfies120

relationship (1):

Σ
∗ = L ∗ + S∗,

where:

1. L ∗ is a positive semidefinite symmetricp× p matrix with at most rankr ≪ p;

2. S∗ is a positive definitep × p sparse matrix with at mosts≪ p(p− 1)/2 non-zero off-diagonal elements and
maximum degrees′.125

According to the spectral theorem, we can writeL ∗ = ULDU⊤L = BB⊤, whereB = ULD1/2, UL is a p × r semi-
orthogonal matrix,D is a r × r diagonal matrix, withD j j > 0, j ∈ {1, . . . , r}. Let us suppose that thep × 1 random
vectorx is generated according to the following model:

x = Bf + ǫ,

wheref is ar × 1 random vector with E(f ) = 0r , V(f ) = I r , andǫ is a p× 1 random vector with E(ǫ) = 0p,V(ǫ) = S∗.
The random vectorx is thus assumed to be zero mean, without loss of generality. Given a samplexk, k ∈ {1, . . . , n},130

Σn = (n− 1)−1 ∑n
k=1 xkx⊤k is thep× p sample covariance matrix.

It is easy to observe thatx follows a low rank plus sparse structure:

E(xx⊤) = E
{

(Bf + ǫ)(Bf + ǫ)⊤
}

= E(B⊤f⊤fB) + E(Bf ǫ⊤) + E(ǫB⊤f⊤) + E(ǫǫ⊤) = BB⊤ + S∗ = L ∗ + S∗ = Σ∗

under the usual assumption that cov(f , ǫ) = E(f ǫ′) = 0r×p (r × p null matrix). Assumingp fixed, it is also useful to
recall thatΣn is asymptotically strongly consistent (see [19]). If we assume a normal distribution forf andǫ, thenΣn

is unbiased for any fixedn (see [2]), and the matrixW := Σn − (L ∗+S∗) is distributed as a re-centred Wishart random135

matrix. In any case, the normality assumption is not essential for our setting.
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2.3. Nuclear norm plus l1 norm heuristics

Under the assumption in (1), the need arises to develop a method that can consistently estimate the covariance ma-
trix Σ∗ as well as determine the sparsity pattern ofS∗ and the spikiness pattern of the eigenvalues ofL ∗ simultaneously.
Such an estimation problem is stated as140

min
L ,S

1
2
‖(L + S) − Σn‖2F + ψrank(L ) + ρ‖S‖0,o f f , (3)

where‖S‖0,o f f =
∑p−1

i=1

∑p
j=i+11(S∗i j , 0) (because the diagonal ofS is preserved as in [15]). This is a combinatorial

problem, which is known to be NP-hard, since both rank(L ) and‖S‖0,o f f are non-convex.
The tightest convex relaxation of problem (3), as shown in [17], is

min
L ,S

1
2
‖(L + S) − Σn‖2F + ψ‖L‖∗ + ρ‖S‖1,o f f , (4)

whereψ andρ are non-negative threshold parameters, and‖S‖1,o f f =
∑p−1

i=1

∑p
j=i+1 |S

∗
i j |. The use of nuclear norm for

covariance matrix estimation was introduced in [18]. The feasible set of (4) is the set of allp× p symmetric positive145

definite matricesS and allp× p symmetric positive semi-definite matricesL .
The objective (4) is minimized according to an alternate thresholding algorithm, composed of a singular value

thresholding (SVT, [7]) and a soft thresholding step [12]. In order to speed up convergence, Nesterov’s acceleration
scheme for composite gradient mapping minimization problems [28] is applied. Details of the algorithm are reported
in the supplementary material, Section2.150

From a statistical viewpoint, (4) is a penalized least squares heuristics, composed of a smooth least squares term
(0.5‖(L + S) − Σn‖2F ) and a non-smooth composite penalty (ψ‖L‖∗ + ρ‖S‖1,o f f ). The choice of (4) allows to lower
the condition number of the estimates and the parameter space dimensionality simultaneously. In principle, different
losses could be used, like Stein’s one [13]. However, the classical Frobenius loss does not require normality and is
computationally appealing.155

From an algebraic viewpoint, (4) is an algebraic matrix variety recovery problem. In the covariance matrix setting
described in equation (1), matricesL ∗ andS∗ are assumed to come from the following sets of matrices:

B(r) = {L ∈ Rp×p | L = UDU⊤,U ∈ Rp×rsemi− orthogonal,D ∈ Rr×rdiagonal}, (5)

A(s) = {S ∈ Rp×p | |support(S)| ≤ s}. (6)

B(r) is the variety of matrices with at most rankr. A(s) is the variety of (element-wise) sparse matrices with at most s
non-zero elements, where support(S) is the orthogonal complement ofker(S) and|support(S)| denotes its dimension.

In [11], a notion of rank-sparsity incoherence is developed. It isexpressed as an uncertainty principle between the160

sparsity pattern of a matrix and its row/column space. This notion has been introduced becauseL ∗ cannot be identified
if it is nearly sparse, andS∗ cannot be identified if it is nearly low rank. Denoting byT(L ∗) andΩ(S∗) the tangent
spaces toB(r) andA(s), respectively, the following rank-sparsity incoherencemeasures betweenT(L ∗) andΩ(S∗) are
defined:

ξ(T(L ∗)) = max
M∈T(L ∗),‖M‖2≤1

‖M‖∞, (7)

µ(Ω(S∗)) = max
M∈Ω(S∗),‖M‖∞≤1

‖M‖2. (8)

Quantities (7) and (8) control the identifiability ofL ∗ andS∗ in (1). In fact, a necessary and sufficient condition for165

identifiability is thatT(L ∗) andΩ(S∗) have a transverse intersection, i.e. they intersect only at the origin. In [11], it is
proved thatT(L ∗) andΩ(S∗) are transverse if and only if (7) and (8) are small. Therefore, the productµ(Ω(S∗))ξ(T(L ∗))
is a rank-sparsity incoherence measure and bounding it controls both for identification and recovery.

The described approach was first used for deriving the LOREC estimator in [27]. Therein, the reference matrix
class imposed toΣ∗ is170

Σ
∗(ǫ0) =

{

Σ
∗ ∈ Rp×p : 0 < ǫ0 ≤ λi(Σ∗) ≤ ǫ−1

0 , i ∈ {1, . . . , p}
}

5



which is the class of positive definite matrices having uniformly bounded eigenvalues. In the context so far described,
Luo (cf. [27]) proves thatL andS can be identified and recovered with bounded error, and the rank of L as well as
the sparsity pattern ofS are exactly recovered.

The proof reproduces a similar proof in [5], but neglects a fundamental assumption on which that paperrelies, i.e.
that maxi≤p

∑

j≤p |Σ∗i j |
q = o(p) for someq ∈ [0, 1[. As stated in the supplementary material (Section1), this can happen175

only if L ∗ is sparse, which contradicts rank-sparsity incoherence, thus making the model in [27] not identifiable.

2.4. Contribution of the paper

In this article, we propose an estimation algorithm forΣ∗ under the assumption in (1) based on a nuclear norm
plus l1 norm penalization, as in [27]; however, contrary to [27], we derive the properties of the estimator under the
sparsity assumption onS∗ (see Assumption4) and not onΣ∗. This allows to avoid the non-identifiability trap and180

to enormously enlarge the set of recoverable pairs of matrices. We explicitly control the magnitude ofξ(T(L ∗)) and
µ(Ω(S∗)) with respect top. More importantly, we allow for the generalized spikiness of the eigenvalues ofL ∗ (cf. Yu
and Samworth, [15], p. 656), thus modelling a large variety of real situations. In addition, we overcome the strict
assumptionp ≤ n by linking n to the degree of sparsity ofS∗. We call the resulting estimator ALCE (ALgebraic
Covariance Estimator). In the end, since the singular valuethresholding procedure has a significantly strong impact185

on sample eigenvalues whenp is large and the latent eigenvalues are spiked, we apply an un-shrinkage step to the
estimates of the latent eigenvalues. We name the resulting estimator UNALCE (UNshrunk ALCE). We prove that
UNALCE is both algebraically and parametrically consistent. Within the class of algebraically consistent estimates,
it minimizes the overall loss in Frobenius norm, given the finite sample and the threshold pair (ψ, ρ) in (4).

3. The ALgebraic Covariance Estimator (ALCE)190

3.1. Component estimates and consistency

Let us suppose that the eigenvalues ofΣ∗ are intermediately spiked. This amounts to assume the generalized
spikiness of latent eigenvalues in the sense of Yu and Samworth ([15], p. 656):

Assumption 1. All the eigenvalues of the r× r matrix p−αB⊤B are bounded away from0 for all p andα ∈ [0, 1].

If p is finite, Assumption1 is equivalent to state that195

λ1,...,r(Σ∗) > δαpα, (9)

λr+1,...,p(Σ∗) < δαpα, (10)

for someδα > 0. We aim to study the properties of the covariance estimatesobtained by heuristics (4) under the
generalized spikiness assumption in a non-asymptotic context.

In order to reach this goal, we need to impose the following assumptions in our finite sample context.

Assumption 2. There exist kL, kS > 0, δ ∈ [0, 0.5], such thatξ(T(L ∗)) =
√

r/(k2
Lp2δ), µ(Ω(S∗)) = kS pδ, kS/kL ≤ 1/54

with δ < α.200

Assumption 3. There exist r1, r2 > 0 and b1, b2 > 0 such that, for any t> 0, k ≤ n, i ≤ r, j ≤ p:

Pr(|f ik| > s) ≤ exp(−b1/t), Pr(|ǫ jk | > s) ≤ exp(−b2/t).

Assumption 4. There exist c1, c2, c3, δ2, δ
′
2 > 0, δ′ ∈ [0, δ + 0.5] such thatλ(S∗)min > c1, mini, j≤p var(ǫikǫ jk) > c2

for any k ≤ n, i, j ≤ p, s∗ii ≤ c3 for any i ≤ p,s′ = maxi≤p
∑

j≤p1(S∗i j = 0) ≤ δ2pδ with δ2 ≥ kS and ‖S‖1,v =
maxi≤p

∑

j≤p |S∗i j | ≤ δ
′
2pδ

′
.

Assumption 5. There existδ3, δ4 > 0 such that r= δ3 ln p and n≥ δ4p1.5δ.205

Under those assumptions, we prove the following Theorem1 which provides a non-asymptotic consistency result,
particularly useful whenp is not that large andα < 1. In fact, in that case, principal components are far from
convergence, and therefore, POET approach becomes suboptimal.

6



Theorem 1. Let T = T(L ∗) andΩ = Ω(S∗) be the tangent spaces to (5) and (6), respectively. Suppose that As-
sumptions1-5 hold. Defineψ = (1/ξ(T))(pα/

√
n) and ρ = γψ, whereξ(T) has been defined in (7), α ∈ [0, 1],

γ ∈ [9ξ(T), 1/(6µ(Ω))], andµ(Ω) has been defined in (8). In addition, suppose that the minimum eigenvalue ofL ∗

(λr(L ∗)) is greater than C2ψ/ξ2(T). Then, with probability1−O(1/min(p, n)2), the pair(L̂ , Ŝ) minimizing (4) recovers
the rank ofL ∗ (rank(L̂ ) = rank(L ∗)). Moreover, the matrix losses for each component are bounded as follows:

‖L̂ − L ∗‖2 ≤ Cψ, ‖Ŝ− S∗‖∞ ≤ Cρ.

We call ALCE (ALgebraic Covariance Estimator) the estimator of Σ∗ in (2) obtained by estimatingL ∗ by L̂ and
S∗ by Ŝ:210

Σ̂ALCE = L̂ ALCE + ŜALCE. (11)

Theorem1 states that, under all the prescribed assumptions, the losses of the pair (̂L ALCE, ŜALCE) obtained by min-
imizing (4) with respect to the true (L ∗,S∗) are bounded, and the rank ofL ∗ is exactly recovered, provided that the
minimum latent eigenvalue is large enough, as well as the underlying matrix varietiesT andΩ are transverse enough.
Exploiting the consistency norm of [10], i.e.

gγ = max

(

‖ŜALCE − S∗‖∞
γ

, ‖L̂ ALCE − L ∗‖2
)

,

it follows from Theorem1 that215

gγ(ŜALCE − S∗, L̂ ALCE − L ∗) ≤ C
1

ξ(T)
pα
√

n

with probability 1−O(1/min(p, n)2).
In the proof of Theorem1, Assumption2 is needed in order to ensure consistency and rank recovery. In fact, an

identifiability condition for problem (4), as shown in Theorem1, is ξ(T(L ∗))µ(Ω(S∗)) ≤ 1/54. According to [11],
√

r/p ≤ ξ(T(L ∗)) ≤ 1 and mini≤p
∑

j≤p1(S∗i j , 0) ≤ µ(Ω(S∗)) ≤ maxi≤p
∑

j≤p1(S∗i j , 0). It follows thatξ(T(L ∗)) = 1

with δ = 0 in the worst case scenario andξ(T(L ∗)) =
√

r/p with δ = 0.5 in the best case scenario, under the condition220

kS/kL ≤ 1/54. Such assumption is essential to ensure the parametric consistency of the estimated pair in terms of
matrix norms and the recovery of the underlying algebraic matrix varieties under model (2) (cf. [10]). The assumption
δ < α is required in order to ensure that conditions (9) and (10) hold under the conditionλr (L ∗) > C2ψ/ξ

2(T) of
Theorem1 and to rule out the degenerate caseδ = α.

Assumption3 is necessary to ensure that large deviation theory can be applied to f ik, ǫ jk, andf ikǫ jk for all i ≤ r,225

j ≤ p, andk ≤ n (cf. [15]). Assumption4 is necessary in order to apply the results of [5] on the sparse component
which prescribe thatS∗ must be well conditioned with uniformly bounded diagonal elements. We stress that the
maximum degrees′ must be bounded to ensure parametric and algebraic consistency, because Assumption2 ensures
µ(Ω(S∗)) = kSpδ with δ ≤ 0.5. This condition is different from the corresponding one in [15], which prescribes
maxi≤p

∑

j≤p |S∗i j |
q < c4, q ∈ [0, 1], c4 > 0.230

In general, we can allow for‖S∗‖2 ≤ ‖S∗‖1,v ≤ δ′2pδ
′
, ‖S∗‖1 ≤ p‖S∗‖1,v ≤ δ′2p1+δ′ , and‖S∗‖0 = p+s≤ ps′ ≤ δ2p1+δ.

In addition, we can also write‖S∗‖2 ≤ ‖S∗‖0,v = δ2pδ (as shown in [5]). The assumptionδ′ ≤ δ + 0.5 is needed to
respect the inequality‖S∗‖1,v ≤

√
p‖S∗‖2. We stress that the assumptionδ < α is enough to ensure‖S∗‖2 = o(p) as

p diverges, thus also guaranteeing POET consistency for eachα given the true rank (see Yu and Samworth, [15], p.
656).235

Assumption5 prescribes that the latent rank is infinitesimal with respect to p and the sample sizen is possibly
smaller thanp, but not smaller thanδ4p1.5δ. It leads to overcoming the restrictive conditionp ≤ n, sinceδ ≤ 0.5. The
need for it arises in order to ensure coherence with Assumptions1 and4.

In Corollary1, we prove the asymptotic consistency of ALCE estimates.

Corollary 1. Suppose that Assumptions1-5 hold. If the limitlimν→∞minν(p2α+2δ
ν , nν) = ∞ with the path-wise restric-240

tion limν→∞ p2α+2δ
ν /nν = 0 holds, thenlimν→∞ ψν = 0 for ψν = pαν /(ξ(T)

√
nν).

Corollary1 shows howp andn may cause the probabilistic error to annihilate in the limit. For the terminology
about limit sequences, see [3]. Moreover,ψν/pα+δν → 0 as limν→∞minν(p2α+2δ

ν , nν) = ∞, thus establishing the
asymptotic consistency in relative terms, resembling the ‘blessing of dimensionality’ described in [15].
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In order to prove the recovery of the residual sparsity pattern, we add to the previous ones the following assump-245

tion.

Assumption 6. 2δ ≤ α ≤ 2δ + δ′ and0 < (C3δ)/(kLδ4) < δ′.

We can then prove Theorem2.

Theorem 2. Suppose that all the assumptions of Theorem1 hold. If the minimum absolute value of the non-zero
off-diagonal entries ofS∗, Smin,o f f , is greater than(C3ψ)/µ(Ω) and Assumption6 holds, then the matrix̂Sminimizing250

(4) exactly recovers the sparsity pattern ofS∗ with probability1−O(1/min(p, n)2) (sign(Ŝ) = sign(S∗)).

Theorem2 states that the sparsity pattern ofS∗ is also recovered if the minimum absolute non-zero off-diagonal
entry ofS∗ is large enough and Assumption6 holds. Consequently, we can state that the condition on the minimum
latent eigenvalue and the assumptionδ < α are more important than the condition on the minimum absolute non-zero
off-diagonal entry. In fact, the former are strictly necessaryboth for proving parametric consistency and rank recovery.255

The latter is necessary only for proving sparsity pattern recovery, as an additional result, given that the former hold.
The only consequence of its violation is that some non-zero elements ofS∗ are not recovered.

Assumption6 is necessary for the following reason. Since the product between the minimum absolute non-
zero off-diagonal entry ofS∗, Smin,o f f , and the maximum degree ofS∗, s′, cannot overcome theL1 norm of S∗,
maxi≤p

∑

j≤p |S∗i j |, it follows from the conditionSmin,o f f > (C3ψ)/µ(Ω) of Theorem2 and Assumptions4 that260

0 <
C3ψ

µ(Ω)
s′ < Smin,o f f s

′ < max
i≤p

∑

j≤p

|S∗i j | ≤ δ
′
2pδ

′
. (12)

Inequality (12), under Assumptions2, 4, and5, boils down to (C3δ2pα−2δ)/(kLδ4) < δ′2pδ
′
and 0< (C3δ2pα−2δ)/(kLδ4),

which hold if and only if Assumption6 is satisfied.
We stress that the conditionsλr (L ∗) > (C2ψ)/ξ2(T) andSmin,o f f > (C3ψ)/µ(Ω) under Assumptions2 and5 become

λr (L ∗) > C2pα andSmin,o f f > C3pα−2δ, respectively. The latter in turn leads to (12), which holds under Assumption
6. Therefore, the resultant model setting is fully consistent with Assumptions1 and4.265

A representative selection of the latent eigenvalue and sparsity patterns admitted under the described conditions
is reported in the supplementary material, Section2. We emphasize that, e.g. the algebraic consistency no longer
forces the latent eigenvalues to scale top, provided that the maximum degree of the residual componentis scaled
accordingly. In general, it is necessary that the minimum latent eigenvalue and absolute non-zero residual entry
should be large enough to ensure algebraic consistency, butthey can both depend onpα, with α potentially smaller270

than 1. In particular, if we increaseα, bothλr (L ∗) andSmin,o f f must be larger to ensure identifiability. The same
happens ifp increases. On the contrary, ifr increases, thenL ∗ can have less spiked eigenvalues, while ifδ increases,
thenSmin,o f f is allowed to be smaller.

3.2. Error bounds for̂SALCE andΣ̂ALCE in spectral and Frobenius norm

Within the same framework, we can complete our analysis withthe bounds for̂SALCE.275

From‖ŜALCE − S∗‖2 ≤ s′‖ŜALCE − S∗‖∞, we obtain

‖ŜALCE − S∗‖2 ≤ Cs′ξ(T)ψ = φS (13)

From‖ŜALCE − S∗‖F ≤
√

ps′‖ŜALCE − S∗‖∞, we obtain

‖ŜALCE − S∗‖F ≤ C
√

ps′ξ(T)ψ. (14)

ŜALCE is positive definite if and only ifλp(S∗) > φS. Bounds (13) and (14) hold with probability 1−O(1/min(p, n)2).
For the inverse of̂SALCE, Ŝ−1

ALCE, the same bounds hold with probability 1−O(1/min(p, n)2):

‖Ŝ−1
ALCE − S∗−1‖2 ≤ Cs′ξ(T)ψ = φS, ‖Ŝ−1

ALCE − S∗−1‖F ≤ C
√

ps′ξ(T)ψ.

if and only if λp(S∗) ≥ 2φS.280
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From Theorem1, we can derive with probability 1−O(1/min(p, n)2) the following bounds for̂ΣALCE:

‖Σ̂ALCE − Σ∗‖2 ≤ C(s′ξ(T) + 1)ψ = φ, ‖Σ̂ALCE − Σ∗‖F ≤ C(
√

ps′ξ(T) +
√

r)ψ.

Σ̂ALCE is positive definite if and only ifλp(Σ∗) > φ. The same bounds hold for the inverse covariance estimateΣ̂
−1
ALCE

with probability 1−O(1/min(p, n)2):

‖Σ̂−1
ALCE − Σ

∗−1‖2 ≤ C(s′ξ(T) + 1)ψ = φ, ‖Σ̂−1
ALCE − Σ

∗−1‖F ≤ C(
√

ps′ξ(T) +
√

r)ψ

given thatλp(Σ∗) ≥ 2φ.
Overall, ALCE estimator allows to recover a relaxed spiked eigen-structure, thus overcoming the conditionp ≤ n,285

even using the sample covariance matrix as estimation input(the ratiop/n directly impacts the error bound). Our
bounds are in absolute norms and reflect the underlying degree of spikinessα. Our theory relies on the probabilistic
convergence of the sample covariance matrix under the assumption that the data follow an approximate factor model
with a sparse residual. If all the assumptions of Theorems1 and2 and Corollary1 hold withλp(S∗) > φS andλp(Σ∗) >
φ, then both algebraic and parametric consistency are ensured in the sense of Definitions1 and2, respectively.290

Compared to LOREC, ALCE minimizes the same heuristics but isconsistent for a much wider range of real situ-
ations, including high-dimensional settings (p > n). However, they both share a problem related to input eigenvalues:
asp increases and the latent eigenvalues are spiked, the nuclear norm heuristics may lead to eigenvalue over-shrinkage,
as shown in the following Section. For this reason, we further improve ALCE by un-shrinking the estimates of latent
eigenvalues.295

4. The UNALCE estimator: A re-optimized ALCE solution

4.1. Motivation

As previously mentioned, whenp is large and the latent eigenvalues are spiked, the singularvalue thresholding
procedure may lead to eigenvalue over-shrinkage, because in that case, the topr eigenvalues ofΣn estimate increas-
ingly better the latent eigenvalues asp increases. Therefore, shrinking the topr sample eigenvalues leads to too small300

estimates of the latent eigenvalues, and this also inevitably affects the residual and overall estimate.
Let us define∆L = L̂ ALCE − L ∗,∆S = ŜALCE − S∗,∆Σ = Σ̂ALCE − Σ∗. Another key aspect of Theorem1 is that the

two losses inL ∗ andS∗ are bounded separately. This fact results in a negative effect on the overall performance of
Σ̂ALCE, represented by the loss‖∆Σ‖2, since‖∆Σ‖2 is simply derived as a function of‖∆L‖2 and‖∆S‖2 according to the
triangle inequality‖∆Σ‖2 ≤ ‖∆L‖2 + ‖∆S‖2. Therefore, the need arises to also correct for this drawback, re-shaping305

Σ̂ALCE, as the ALCE solution is somehow sub-optimal for the whole covariance matrix.
We approach these issues by a finite-sample analysis, which could be referred to as a re-optimized least squares

method. We refer to the usual objective function (4) with ‖S‖1 = ‖S‖1,o f f =
∑p−1

i=1

∑p
j=i+1 |Si j |, which is thel1 norm of

Sexcluding the diagonal entries, consistently with POET approach. We defineYpre andZpre as the last updates in the
gradient step of the minimization algorithm of (4) (see Section2 in the supplementary material).Ypre andZpre are310

the two matrices we condition upon in order to derive our finite-sample re-optimized estimates.
We note some analogies between our approach and the restricted maximum likelihood (REML) method as ex-

plained in [22, 29]. More precisely, the minimization of (4) acts as the ML estimator of fixed effects, while our
re-optimized least squares step acts as the estimator of variance components.

Let us define the recovered rank ˆr = rank(L̂ ALCE) and the recovered number of residual non-zeros ˆs= |support(̂SALCE)|.315

In the second step, we exploit the consistency properties ofthe varietiesB̂(r̂) andÂ(ŝ) recovered in the first step, de-
fined as

B̂(r̂) = {L ∈ Rp×p | L = ÛALCEDÛ⊤ALCE,D ∈ R
r̂×r̂diagonal}, (15)

Â(ŝ) = {S ∈ Rp×p | |support(S)| ≤ ŝ}. (16)

In particular, based on Theorems1 and2, we rely on the parametric guarantees offered byB̂(r̂) andÂ(ŝ), and we
condition upon the recovered latent rank and residual off-diagonal sparsity pattern. In this way, conditioning on the
first step, we can focus on re-optimizing our pair of estimates to improve the overall fitting as much as possible,320

restricting our search intôB(r̂) andÂ(ŝ).
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4.2. Optimality

The recovered varietieŝB(r̂) andÂ(ŝ) ensure the algebraic consistency of (ŜALCE, L̂ ALCE) under all the assump-
tions of Theorems1 and2. One might look for the solution (say (L̂ New, ŜNew)) of the problem

min
L∈B̂(r̂),S∈Â(ŝ)

STL(L ,S) = ‖(Σn − (L + S)‖2F , (17)

where STL(L ,S) stands forSample Total Loss. The sample covariance matrix follows the modelΣn = L ∗ + S∗ +W,325

given a sample ofp−dimensional data vectorsxk, k ∈ {1, . . . , n}. Our problem essentially is as follows: which pair
L ∈ B̂(r̂),S ∈ Â(ŝ) satisfying algebraic consistency shows the best approximation properties ofΣn?

We prove the following result.

Theorem 3. Define the spectral decomposition ofL̂ ALCE asÛALCED̂ALCEÛ⊤ALCE andL̂ New= ÛALCE(D̂ALCE+ψ̆Ir )Û⊤ALCE,
whereψ̆ > 0 is any prescribed threshold parameter. DefineŜNew such that its off-diagonal elements are the same as330

ŜALCE, andΣ̂New such that its diagonal elements are the same asΣ̂ALCE, respectively. In addition, setdiag(̂SNew) =
diag(Σ̂ALCE) − diag(L̂ New). Then, supposing that all the assumptions of Theorems1 and2 hold, the minimum

min
L∈B̂(r̂),S∈Â(ŝ)

‖Σn − (L + S)‖2F

conditioning onYpre andZpre is achieved with probability1−O(1/min(p, n)2) if and only ifL = L̂ New andS= ŜNew.

Theorem3 essentially states that the sample total loss (17) is minimized if we un-shrink the eigenvalues ofL̂ ALCE

(re-adding the threshold̆ψ). We call the resulting overall estimatorΣ̂New = L̂ New + ŜNew UNALCE (UNshrunk335

ALgebraic Covariance Estimator). We stress the importanceof conditioning onYpre andZpre. SinceYpre andZpre

are the matrices minimizing 0.5‖Σn − (L + S)‖2F and ψ̆‖L‖∗ + ρ̆‖S‖1 jointly considered (see (4)), our finite-sample
re-optimization step aims to re-compute min‖Σn − (L + S)‖2F , once the effect of the composite penalty̆ψ‖L‖∗ + ρ̆‖S‖1
has been removed.

As shown inAppendix A, problem (17) can be decomposed into two problems: one involvingL and the other340

involvingS(see (A.8)). The problem inL is solved by the covariance matrix formed by the top ˆr principal components
of Ypre, which belongs by construction tôB(r̂) and is equal tôUALCE(D̂ALCE + ψ̆I r )Û⊤ALCE = L̂UNALCE. The problem
in S collapses to the problem inL under the prescribed assumptions on the off-diagonal elements of̂SUNALCE (which
ensureŝSUNALCE ∈ Â(ŝ)) and on the diagonal elements ofΣ̂UNALCE. The new estimate of the diagonal ofS∗ is simply
the difference between the diagonal of the originalΣ̂ALCE and that of the newly computed̂LUNALCE. Note that our345

re-optimization step depends entirely onΣn, asYpre andZpre are functions ofΣn.
Fig. 1 reports the proportion of latent varianceθ̂ = (

∑p
i=1 L̂ ii )/(

∑p
i=1 Σ̂ii ) estimated by UNALCE and ALCE for

three selected latent eigenvalue thresholdsψ over twenty sparsity thresholdsρ. We note that̂θ gets systematically
closer to the trueθ = 0.7 for Σ̂UNALCE with respect tôΣALCE for all threshold pairs, and the performance difference is
proportional toψ. The sample used is drawn from our Setting 1 (see the supplementary material, Section2 for more350

details).

4.3. Consequences

Four consequences of Theorem3 are reported in Corollary2.

Corollary 2. Under the assumptions of Theorem3, the differences between the total losses from the target in the
spectral norm of̂L ALCE and L̂UNALCE and ofŜALCE and ŜUNALCE are strictly positive and bounded with probability355

1−O(1/min(p, n)2) by ψ̆. The differences between the total losses from the target in the Frobenius norm ofL̂ ALCE and
L̂UNALCE and ofŜALCE andŜUNALCE are strictly positive and bounded with probability1−O(1/min(p, n)2) by

√
rψ̆.

Two further relevant consequences of Theorem3 are reported in Corollary3.

Corollary 3. Under the assumptions of Theorem3, the difference between the sample total losses in the spectral norm
of Σ̂ALCE and Σ̂UNALCE is strictly positive and bounded with probability1 − O(1/min(p, n)2) by ψ̆. The difference360

between the sample total losses in the Frobenius norm ofΣ̂ALCE and Σ̂UNALCE is strictly positive and bounded with
probability1−O(1/min(p, n)2) by

√
rψ̆.
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Fig. 1 This figure shows the proportion of latent varianceθ estimated by UNALCE (solid line) and ALCE (dashed line) in correspondence to three
selected values of latent eigenvalue thresholdsψ across twenty values of sparsity thresholdsρ. The reference valueθ = 0.7 is represented as a
dotted line. The used sample is drawn from Setting 1 (see Section 2 in the supplementary material).

The following result compares the losses ofΣ̂UNALCE andΣ̂ALCE from the targetΣ∗.

Theorem 4. Under the assumptions of Theorem3, the difference between the total losses from the targetΣ
∗ in the

spectral norm of̂ΣALCE andΣ̂UNALCE is strictly positive and bounded with probability1−O(1/min(p, n)2) by ψ̆. The365

difference between the total losses from the target in the Frobenius norm ofΣ̂ALCE and Σ̂UNALCE is strictly positive
and bounded with probability1−O(1/min(p, n)2) by

√
rψ̆.

The rationale of the reported claims is as follows. We acceptto pay the price of a non-optimal solution in terms
of nuclear norm (we allow to increase‖L̂‖∗ by rψ̆), but we have a better fitting performance for the whole covariance
matrix, decrementing the squared Frobenius loss ofΣ̂ by a quantity bounded byrψ̆2. The l1 norm ofS excluding the370

diagonal,‖Ŝ‖1,o f f , is unvaried, while the norm‖Ŝ‖1 (including the diagonal) is decreased by a quantity boundedby√
rψ̆.

In Fig. 2 and3 , we report the differences between the sample total losses and the total lossesof ALCE and
UNALCE computed over the same sample of Fig.1 for three selected latent eigenvalue thresholdsψ over twenty
sparsity thresholdsρ. We note that the gain is relevant for UNALCE over all threshold pairs, is proportional toψ, and375

never overcomes its theoretical maximum
√

rψ (in Fig. 2 and3 r = 4). We stress that the gain is positive for each
prescribed threshold pair (ψ̆, ρ̆), satisfying the conditions of Theorem1, while the overall performance also depends
on the threshold selection criterion (see Section5).

A consequence of Corollaries2 and 3 and Theorem4 is that we can reduce the numerical instability of our
estimates as much as possible in terms of the expected variance of estimated eigenvalues. In fact, definingµL =

E(tr(L )/p), µS = E(tr(S)/p), andµΣ = E(tr(Σ)/p) and recalling the following equalities according to [24]

1
p

E















p
∑

i=1

(λ̂L,i − µL)2 | Σn















=
1
p

p
∑

i=1

(λL,i − µL)2 + E(‖L̂ − L ∗‖2|Σn),

1
p

E















p
∑

i=1

(λ̂S,i − µS)2 | Σn















=
1
p

p
∑

i=1

(λS,i − µS)2 + E(‖Ŝ− S∗‖2|Σn),
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Fig. 2 This figure shows the sample total losses ofΣ̂UNALCE (solid line) andΣ̂ALCE (dashed line) in one sample drawn from Setting 1 (see Section
2 in the supplementary material) in correspondence to three selected values of latent eigenvalue thresholdsψ across twenty values of sparsity
thresholdsρ.

1
p

E















p
∑

i=1

(λ̂Σ,i − µΣ)2 | Σn















=
1
p

p
∑

i=1

(λΣ,i − µL)2 + E(‖Σ̂ − Σ∗‖2|Σn),

we note that, under the assumptions of Theorem3 the UNALCE estimated eigenvalues are maximally concentrated
with probability 1−O(1/min(p, n)2), becausêLUNALCE = minL∈B̂(r̂)(‖L−L ∗‖2|Σn), ŜUNALCE = minS∈Â(ŝ)(‖S−S∗‖2|Σn),380

Σ̂UNALCE = min
Σ=L+S,L∈B̂(r̂),S∈Â(ŝ)(‖Σ − Σ∗‖2|Σn), given the finite sample and a threshold pair (ψ̆, ρ̆) satisfying the

conditions of Theorem1.
The following Corollary extends our framework to the performance of the inverse covariance estimateΣ̂−1

UNALCE.

Corollary 4. Under the assumptions of Theorem3, the difference between the total losses from the target in the
spectral norm of̂Σ−1

ALCE andΣ̂−1
UNALCE is strictly positive and bounded with probability1−O(1/min(p, n)2) by ψ̆. The385

difference between the total losses from the target in the Frobenius norm ofΣ̂−1
ALCE and Σ̂−1

UNALCE is strictly positive
and bounded with probability1−O(1/min(p, n)2) by

√
rψ̆.

Finally, we study how the necessary conditions to ensure thepositive definiteness of UNALCE estimates evolve
with respect to the ALCE ones. The following Corollary holds.

Corollary 5. L̂UNALCE is positive semi-definite ifλr (L ∗) > C2pα−ψ̆. ŜUNALCE is positive definite ifλp(S∗) > φS+rψ̆/p.390

Σ̂UNALCE is positive definite ifλp(Σ∗) > φ + rψ̆/p.

Theorems1, 2, and3and Corollaries1 and5 ensure the algebraic and parametric consistency of the pair(L̂UNALCE, ŜUNALCE)
in the sense of Definitions1 and2.

5. A new model selection criterion:MC

In empirical applications, the selection of thresholdsψ andρ in equation (4) requires a model selection criterion395

consistent with the described estimation method and the consistency normgγ (recall that
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Fig. 3 This figure shows the total losses ofΣ̂UNALCE (solid line) andΣ̂ALCE (dashed line) drawn from Setting 1 (see Section2 in the supplementary
material) in correspondence to three selected values of latent eigenvalue thresholdsψ across twenty values of sparsity thresholdsρ.

gγ = max(‖S− S∗‖∞/γ, ‖L − L ∗‖2)). Our aim is to detect the optimal threshold pair (ψ, ρ) with respect to the spiki-
ness/sparsity trade-off. In order to exploitgγ with model selection purposes, we need to make the two terms compa-
rable, i.e. the need of rescaling both arguments ofgγ arises.

First, we note that if all the estimated latent eigenvalues are equal, then we have‖L̂‖∗ = r̂‖L̂‖2. As the condition400

number ofL̂ increases, we have ˆr‖L̂‖2 > ‖L̂‖∗. Consequently, the quantity ˆr‖L̂‖2 acts as a penalization term against the
presence of too small eigenvalues. Analogously, ifŜ is diagonal, it holds‖Ŝ‖∞ = ‖Ŝ‖1,v. As the number of non-zeros
increases, it holds‖Ŝ‖1,v > ‖Ŝ‖∞. Therefore, the quantity‖Ŝ‖1,v acts as a penalization term against the presence of too
many non-zeros.

In order to compare the magnitude of the two quantities, we divide the former by the trace of̂L , estimated by405

θ̂trace(Σn), and the latter by the trace ofŜ, estimated by (1− θ̂)trace(Σn). Our maximum criterionMC can be therefore
defined as follows:

MC(ψ, ρ) = max

{

r̂‖L̂‖2
θ̂

,
‖Ŝ‖1,v
γ(1− θ̂)

}

, (18)

whereγ = ρ/ψ is the ratio between the sparsity and the latent eigenvalue threshold.
MC criterion is by definition mainly intended to catch the proportion of variance explained by the factors. For

this reason, it tends to choose quite sparse solutions with asmall number of non-zeros and a small proportion of410

absolute residual covariance, unless the non-zero entriesof Ŝare prominent, as Theorem2 prescribes. TheMC method
performs considerably better than the usual cross-validation usingH-fold Frobenius loss (cf. [27]). In fact, minimizing
a loss based on a sample approximation such as the Frobenius one causes the parameterθ̂ to be significantly shrunk.
The threshold setting which shows a minimum forMC criterion (given that the estimatêΣ is positive definite) is the
best in terms of composite penalty, considering the latent low rank and sparse structure simultaneously.415

Since we applyMC criterion to choose thresholds both for UNALCE and ALCE, we observe that the overall
performance of the two methods is very similar, even if a little margin in favour of UNALCE is always present (see
Section2.2 in the supplementary material for more details).
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Table 1
Supervisory data: this table reports the main results ofΣ̂UNALCE and Σ̂POET estimated on a selection of 382 supervisory indicators referred to
365 Euro Area banks with reference date Q4,2014. In particular, r̂ is the latent rank, ˆs is the number of recovered off-diagonal non-zeros in̂S, π̂ŝ

is the percentage of recovered non-zeros over the number of off-diagonal elements in̂S, θ̂ = (100
∑p

i=1 L̂ ii )/(
∑p

i=1 Σ̂ii ) is the percentage of latent

variance, ˆρŜ = (100
∑p

i=1

∑p
j=i+1

ˆ|Si j |)/(
∑p

i=1

∑p
j=i+1

ˆ|Σi j |) is the percentage of absolute residual covariance,‖Σ̂ − Σn‖F is the sample total loss,

cond(Σ̂) = λmax(Σ̂)/λmin(Σ̂) is the condition number of the overall estimate,cond(Ŝ) = λmax(Ŝ)/λmin(Ŝ) is the condition number of the sparse
estimate, andcond(L̂ ) = λmax(L̂ )/λmin(L̂ ) is the condition number of the low rank estimate.

Supervisory data UNALCE POET
r̂ 6 6
ŝ 328 404
π̂ŝ 0.45 0.56
θ̂ 32.47 61.23
ρ̂Ŝ 16.87 1.61
‖Σ̂ − Σn‖F 0.0337 0.0645
cond(Σ̂) 6.35e+ 15 6.68e+ 15
cond(Ŝ) 2.78e+ 15 1.11e+ 15
cond(L̂) 3.1335 2.5625

6. A Euro Area banking data example

This Section provides a real example on the performance of POET and UNALCE based on a selection of Euro420

Area banking data. We acknowledge the assistance of the European Central Bank, where one of the authors spent
a semester as a PhD trainee, in providing access to high-level banking data. Here, we use the covariance matrix
computed on a selection of balance sheet indicators relative to the last quarter of 2014 for some of the most relevant
Euro Area banks. The overall number of banks (our sample size) is n = 365. These indicators are the ones needed for
supervisory reporting, and they include capital and financial variables.425

The chosen raw variables were rescaled to the total asset of each bank. Then, a screening based on the importance
of each variable, intended as the absolute amount of correlation with all the other variables, was performed in order to
remove identities. The resulting very sparse data matrix containsp = 382 variables; here, we are in the typicalp > n
case, where the sample covariance matrix is completely ineffective. We plot sample eigenvalues in the left panel of
Fig. 4 .430

UNALCE estimation method selects a solution with a latent rank equal to ˆr = 6. The number of surviving non-
zeros in the sparse component is ˆs = 328, which corresponds to a percentage ˆπŝ = 0.45% of 72771 off-diagonal
elements. Conditioning properties are inevitably very bad. In order to obtain a POET estimate, we exploit the
algebraic consistency of̂ΣUNALCE, setting the rank to ˆr = 6, and we perform cross-validation for threshold selection.
The number of non-zeros estimated by POET is ˆs = 404 (π̂ŝ = 0.56%). The results of both methods are reported in435

Table1.
Apparently, one could argue that POET estimate is better; the estimated percentage of latent varianceθ̂ is 61.23%,

and the percentage of absolute residual covariance ˆρŜ is 1.61%. On the contrary, UNALCE method outputsθ̂ =
32.47% and ˆρŜ = 16.87%. A relevant question thus arises: how much is the true percentage of variance explained
by the factors? In fact, such a large percentage of latent variance, which depends on the use of the first six principal440

components, causes the absolute residual covariance percentage to be very low. Therefore, POET procedure givesa
priori preference to the low rank part. This pattern does not changeeven if we choose a lower value for the rank.

On the contrary, the UNALCE estimate, which depends on a double-step iterative thresholding procedure, requires
a larger magnitude of the non-zero elements in the sparse component. In fact, the percentage of lost covariance
during the procedure is here 29.39%. Consequently, via rank/sparsity detection, UNALCE shows better approximation445

properties compared to POET; its Sample Total Loss is sensibly lower than that of POET (0.337 VS 0.645).
For UNALCE, the covariance structure appears so complex that a relevant percentage of absolute residual covari-

ance is present. This allows us to explore the importance of variables, i.e. to explore which variables have the largest
systemic power (the most relevant communality) or the largest idiosyncrasy (the most relevant residual variance).

In the right panel of Fig.4 , we plot in descending order the degree of each variable withrespect to the estimated450

residual component̂SUNALCE. The degree of the variablei with respect to ap−dimensional covariance matrixM is
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Table 2
Supervisory data: this table reports the top six variables by estimated degree with respect toŜUNALCE, defined for variablei asdeĝSUNALCE,i

=
∑p

j=11(ŜUNALCE,i j , 0), i ∈ {1, . . . , 382}. This measure counts how many variables are related to variable i that their estimated residual covariance
is not null. Therefore, the reported variables are the most connected with all the others.

Supervisory indicator Estimated degree
Financial assets designated at fair value through profit or loss 34
Central banks, Impaired assets [gross carrying amount] 25
Credit institutions, Collective allowances for incurred but not reported losses 20
Other financial corporations, Collective allowances for incurred but not reported losses 19
Cash, Cash balances at central banks and other demand deposits 16
Other financial corporations, Specific allowances for financial assets, collectively estimated 16

defined as

degM ,i =

p
∑

j=1

1(M i j , 0). (19)

We observe that only 62 out of 382 variables have at least one non-zero residual covariance with other variables.
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Fig. 4 Supervisory data: the left panel of this figure shows the twenty largest eigenvalues of the sample covariance matrix computed on a selection
of 382 supervisory indicators referred to 365 Euro Area banks with reference date Q4,2014. The right panel of this figure plots in descending
order the estimated degree of each supervisory indicator with respect tôSUNALCE, defined for variablei asdeĝSUNALCE,i

=
∑p

j=11(ŜUNALCE,i j , 0),
i ∈ {1, . . . , 382}.

In Table2, we report the top six variables by estimated degree. These variables are related to the largest number
of other variables. They are mainly credit-based indicators: financial assets through profit and loss, impaired assets,455

allowances to credit institutions and non-financial corporations, and cash.
In Table3, we report the top five variables by estimated communality, defined for variablei as

commi =
L̂UNALCE,ii

Σ̂UNALCE,ii

, i ∈ {1, . . . , 382}. (20)

The results are very meaningful; the most systemic variables are debt securities, loans and advances to households,
specific allowances for financial assets, and advances whichare not loans to central banks. All these are fundamental
indicators for banking supervision because they representkey indicators for the assessment of bank performance.460

15



Table 3
Supervisory data: this table reports the top six variables by estimated communality via UNALCE, defined for variablei as commi =

L̂UNALCE,ii /Σ̂UNALCE,ii . Therefore, the reported variables have a strong explanation power for banking supervision.

Supervisory indicator Estimated communality
Debt securities 0.8414
Households, Carrying amount 0.8210
Non-financial corporations, Specific allowances for financial assets 0.8110
Loans and advances, Specific allowances for financial assets, collectively estimated 0.7592
Advances that are not loans, Central banks 0.7439

Table 4
Supervisory data: this table reports the top six variables by estimated idiosyncrasy via UNALCE, defined for variablei as idioi =

ŜUNALCE,ii /Σ̂UNALCE,ii . Therefore, the reported variables have a marginal explanation power for banking supervision.

Supervisory indicator Estimated idiosyncrasy
Credit card debt, Central banks 0.9995
Other collateralized loans, Other financial corporations 0.9986
Equity instruments, Central banks, Carrying amount 0.9971
Equity instruments, Other financial corporations, Carrying amount 0.9970
General governments, Carrying amount of unimpaired assets 0.9970

In Table4, we report the top five variables by estimated idiosyncrasy,defined for variablei as

idioi =
ŜUNALCE,ii

Σ̂UNALCE,ii

, i ∈ {1, . . . , 382}. (21)

We note that those indicators have a marginal power in the explanation of the common covariance structure and are
much less relevant for supervisory analysis than the previous five.

In conclusion, our UNALCE procedure offers a more realistic view of the underlying covariance structure of a
set of variables, allowing a larger part of covariance to be explained by the residual sparse component compared to465

POET.

7. Conclusions

In this work, we propose an estimator for large covariance matrices which are assumed to be the sum of a low rank
and a sparse component. Estimation is performed by solving aregularization problem where the objective function
is composed of a smooth Frobenius loss and a non-smooth composite penalty, which is the sum of the nuclear norm470

of the low rank component and thel1 norm of the sparse component. Our estimator is called UNALCE(UNshrunk
ALgebraic Covariance Estimator). UNALCE provides consistent recovery of the low rank and the sparse component,
as well as of the overall covariance matrix, under a generalized assumption of spikiness of latent eigenvalues and
sparsity of the residual component. Thanks to the addition of an un-shrinkage step of the estimated latent eigenvalues,
we can also improve numerical properties and minimize the overall loss given the finite sample and the threshold pair,475

while preserving algebraic consistency. In addition, we can overcome the restrictive conditionp ≤ n.
Moreover, in this paper, we also compare UNALCE and POET (Principal Orthogonal complEment Thresholding,

see [15]), an asymptotic estimator which performs principal component analysis in order to recover the low rank
component and uses a thresholding algorithm to recover the sparse component. Both estimators provide the usual
parametric consistency, while UNALCE also provides the algebraic consistency of the estimate, i.e. the rank and480

position of residual non-zeros are simultaneously recovered by the solution algorithm. This automatic recovery is a
crucial advantage compared to POET; the latent rank, in fact, is automatically selected and the sparsity pattern of the
residual component is recovered considerably better.

In particular, we prove that UNALCE can effectively recover the covariance matrix even in the presenceof spiked
eigenvalues with rateO(p), exactly as POET estimator does, allowingn to be as small asO(p1.5δ), where the maximum485

number of non-zeros per row in the sparse component is proportional toO(pδ). Moreover, we prove that the recovery
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is actually effective even if the eigenvalues show an intermediate degree of spikinesspα, α ∈ [0, 1]. The resulting loss
is bounded accordingly topα, and all latent eigenvalues are recovered under the assumption δ < α. In this way, we
obtain a generalised estimator of large covariance matrices by low rank plus sparse decomposition.

A real example of a set of Euro Area banking data shows that ourtool is particularly useful for mapping the490

covariance structure among variables even in a large dimensional context. The variables with the largest systemic
power, i.e. the ones mostly affecting the common covariance structure, can be identified, as well as the variables
having the largest idiosyncratic power, that is, the ones characterized by the largest residual variance. In addition,the
variables showing the largest idiosyncratic covariances can be identified. Particular forms of the residual covariance
pattern can thus be detected, if present.495

Our research may provide a basis for possible future developments in many directions. In the time series context,
this procedure can be potentially extended to covariance matrix estimation under dynamic factor models. Another
fruitful extension of our procedure is related to the spectral matrix estimation context. Finally, this tool can be
potentially used in the Big data context, where both the dimension and the sample size are very large. This poses
new computational and theoretical challenges, the solution of which is crucial in order to further extend the power of500

statistical modelling and its effectiveness in detecting patterns and underlying drivers ofreal phenomena.

Appendix A. Proofs

Proof of Theorem 1

First, we note that the deterministic analysis needed to ensure the identifiability of the matrix varietiesB(r) and
A(s) is directly inherited by [26]. In fact, Propositions 12, 13, and 14 in [26] may be directly applied to our setting,505

provided that the assumptionξ(T(L ∗))µ(Ω(S∗)) ≤ 1/54 and the conditionsλr (L ∗) > C2ψ/ξ
2(T) andρ = γψ hold with

γ ∈ [9ξ(T), 1/(6µ(Ω))]. In that case, it descends from the mentioned Propositions thatgγ(Ŝ− S∗, L̂ − L ∗) is bounded,
L̂ ∈ T(L ∗), Ŝ ∈ Ω(S∗), and rank(̂L ) = rank(L ∗).

We stress that the remaining assumptions of Theorem1 are not needed for this purpose. We also remark that
parametric and rank consistency are not affected even if Assumption6 and the conditionSmin,o f f > (C3ψ)/µ(Ω) do510

not hold. The only consequence of that is that some residual non-zeros are not recovered (cf. [10], Corollary D.4 and
D.6, and Proposition D.5 for more details).

Hence, we now focus on probabilistic analysis. Recalling that Σn = (n − 1)−1 ∑n
k=1 xkx⊤k and xk = Bfk + ǫk,

wherefk andǫk, k ∈ {1, . . . , n}, are respectively the vectors of factor scores and residuals for each observation, we can
decompose the error matrixEn = Σn − Σ∗ in four components as follows (cf. [15]):

En = Σn − Σ∗ = D̂1 + D̂2 + D̂3 + D̂4,

where:

D̂1 =















n−1B
n

∑

k=1

fkf⊤k − Ir















B⊤, D̂2 = n−1
n

∑

k=1

(

ǫkǫ
⊤
k − S∗

)

, D̂3 = n−1B
n

∑

k=1

fkǫ
⊤
k , D̂4 = D̂⊤3 .

Following [15], we note that

‖D̂1‖2 ≤
∥

∥

∥

∥

∥

1
n

n
∑

k=1

f ikf jk − E(f ikf jk)
∥

∥

∥

∥

∥

2
‖BB⊤‖2 ≤ r

∥

∥

∥

∥

∥

1
n

n
∑

k=1

f ikf jk − E(f ikf jk)
∥

∥

∥

∥

∥∞
pα

where the second inequality depends on standard matrix normproperties and Assumption1.
Under Assumption3, we can apply Lemma 4 in [15], which claims515

maxi, j≤r

∣

∣

∣

∣

∣

1
n

n
∑

k=1

f ikf jk − E(f ikf jk)
∣

∣

∣

∣

∣

≤ C
1
√

n
, (A.1)

with probability 1−O(1/n2). Consequently, we obtain

‖D̂1‖2 ≤ Cr

√

1
n

pα ≤ Cpα
√

1
n

(A.2)
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because Assumption5 prescribes thatr = δ3 ln p and lnp = o(n).
Consider now the uniformity class of sparse matrices in [5]:



















S∗ : S∗ii ≤ c3, maxi≤p

∑

j≤p

1(S∗i j , 0) ≤ c0(p), ∀i



















.

Therein, our Assumption4 holds withδ = 1 (assumingq = 0). Therefore, it is possible to write

λmax(S∗) ≤ maxi≤p

∑

j≤p

1(S∗i j , 0) ≤ c3c0(p),

since the quantityc0(p) is constant with respect top. Consequently, Lemma A.3 on p. 220 in [6] can be applied,
which leads to the claim520

maxi, j≤p

∣

∣

∣

∣

∣

1
n

n
∑

k=1

ǫikǫ jk − E(ǫikǫ jk)
∣

∣

∣

∣

∣

≤ C

√

ln p
n
, (A.3)

that holds with probability 1−O(1/p2).
Under Assumptions2 and4, however, the quantityc0(p) must be replaced byc0(pδ), δ ≤ 0.5. Consequently, with

respect top, the rate in (A.3) is now too strong. Therefore, applying the recalled Lemma A.3 in [6], the following
claim holds with probability 1−O(1/p2):

‖D̂2‖∞ = maxi, j≤p

∣

∣

∣

∣

∣

1
n

n
∑

k=1

ǫikǫ jk − E(ǫikǫ jk)
∣

∣

∣

∣

∣

≤ Cpδ−1

√

ln p
n
. (A.4)

Consequently, by (A.4), we can derive525

‖D̂2‖2 ≤ Cp‖D̂2‖∞ = Cpδ
√

ln p
n
= Cpδ

√

1
n
, (A.5)

because lnp≪ n by Assumption5.

To conclude, we study the random term maxi≤r, j≤p

∣

∣

∣

∣

∣

n−1 ∑n
k=1 f ikǫ jk

∣

∣

∣

∣

∣

. We know from Lemma 3 in [15] that this term

has exponential-type tails, due to Assumption3. Thus, we only need to study how its standard deviation evolves in
our context. We consider the following Cauchy-Schwarz inequality:

maxi≤r, j≤p

∣

∣

∣

∣

∣

1
n

n
∑

k=1

f ikǫ jk

∣

∣

∣

∣

∣

≤ Cmaxi

√

V̂(f i)maxj

√

V̂(ǫ j).

From (A.1), we know that maxi
√

V̂(f i) ≤ C/ 4
√

n with probability 1− O(1/n2). From (A.4), we know that

maxj

√

V̂(ǫ j) ≤ Cp(δ−1)/2 4
√

(ln p)/n with probability 1−O(1/p2). It follows that with probability 1−O(1/min(p, n)2),
it holds

∥

∥

∥

∥

∥

n−1
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∑

k=1

fkǫ
⊤
k

∥

∥

∥

∥

∥

2
≤ √pr

∥

∥

∥

∥

∥
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k=1

fkǫ
⊤
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∥

∥

∥

∥

∥

∞
= C
√

pr
4

√

1
n

p(δ−1)/2 4

√

ln p
n
.

Exploiting Assumption5, the bound then becomesCpδ/2
√

n−1, sincer = δ3 ln p and lnp≪ n.
Consequently, we obtain with probability 1−O(1/p2) the following claim

‖D̂3‖2 ≤
∥

∥

∥

∥

∥

1
n

n
∑

k=1

fkǫ
⊤
k

∥

∥

∥

∥

∥

× ‖B‖ ≤ C














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δ
2

√

1
n















(

p
α
2

)

= Cp
α
2+

δ
2

√

1
n
, (A.6)

because‖B‖ = O(pα/2) by Assumption1.
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Putting (A.2), (A.5), and (A.6) together, the following bound is proved with probability 1−O(1/min(p, n)2)530

‖Σn − Σ∗‖2 ≤ C
pα
√

n
, (A.7)

becauseδ < α from Assumption2. In fact, if δ > α, the condition of Theorem1 λr (L ∗) > (C2ψ)/ξ2(T) would result
in λr (L ∗) > C2pδ, thus violating Assumption1 under Assumption5.

In other words, the bound (A.7) means‖En‖2 → 0⇔ pα/
√

n→ 0. Exploiting the basic property‖.‖∞ ≤ ‖.‖2 and
the minimum forγ in the range of Theorem1, we can also write‖En‖∞ → 0⇔ ξ(T)pα/

√
n→ 0.

In order to prove Theorem1, we observe from [26] that the only probabilistic component of the error norm535

gγ(Ŝ− S∗, L̂ − L ∗) is gγ(En) = max(‖En‖∞/γ, ‖En‖2), which in turn depends on‖En‖2 and‖En‖∞. Therefore, setting
ψ = (1/ξ(T))(pα/

√
n), it follows that the claims

gγ(Ŝ− S∗, L̂ − L ∗) ≤ C
1

ξ(T)
pα
√

n
, rank(L̂ ) = rank(L ∗)

hold with probability 1− O(1/min(p, n)2) under all the assumptions of Theorem1. Parametric and rank consistency
are thus guaranteed.

Proof of Corollary 1540

We observe that, under Assumption2, the boundψ = (1/ξ(T))(pα/
√

n) tends to 0 if and only ifp2α+2δ/n = o(1)
as limν→∞minν(p2α+2δ

ν , nν) = ∞. As expected, the absolute bound vanishes only in the small dimensional case (n≫
pα+δ log(p)).

Proof of Theorem 2

If, in addition to all the assumptions and conditions of Theorem1, Assumption6 and the conditionSmin,o f f >545

(C3ψ)/µ(Ω) hold, then we can fully apply Corollary D.4, D.6, Proposition D.5, and Lemma D.7 in [10] and conclude
that the recovered sparsity pattern is also consistent:sign(ŜALCE) = sign(S∗).

Proof of Theorem 3

Conditioning onYpre, Zpre, andΣpre = Ypre + Zpre, we aim to solve

minL∈B̂(r̂),S∈Â(ŝ),Σ=L+S||Σ − Σn||2F = ||Σ − Σpre + Σpre − Σn||2F .

By Cauchy-Schwarz inequality, it can be shown that

||Σ − Σpre + Σpre − Σn||2F ≤ ||Σ − Σpre||2F + ||Σpre− Σn||2F .

Σpre solves the problem550

minL∈B̂(r̂),S∈Â(ŝ),Σ=L+S||Σpre − Σn||2F
conditioning on the fact that̆ψ||L ||∗ + ρ̆||S||1 is minimum over the same set.

Then, we can write
||Σ − Σpre||2F = ||L + S− Ypre − Zpre||2F .

By Cauchy-Schwarz inequality, it can be shown that

||L + S− Ypre+ Zpre||2F ≤ ||L − Ypre||2F + ||S− Zpre||2F . (A.8)

Hence,

minL∈B̂(r̂),S∈Â(ŝ),Σ=L+S||L + S− Ypre + Zpre||2F ≤ minL∈B̂(r̂)||L − Ypre||2F +minS∈Â(ŝ)||S− Zpre||2F .
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The problem inL is solved by taking out the first ˆr principal components ofYpre. By construction, the solution
is ÛALCE(D̂ALCE + ψ̆I r )Û⊤ALCE = L̂UNALCE. The problem inS, assuming that the diagonal ofΣ̂ALCE is given and the555

off-diagonal elements of̂S are invariant, leads to:

minS∈Â(ŝ)||S− Zpre||2F = minL∈B̂(r̂)||(Σ̂ − L ) − (Σpre− Ypre)||2F = minL∈B̂(r̂)||(Σ̂ − Σpre) − (L − Ypre)||2F ≤
≤ ||Σ̂ − Σpre||2F + ||L − Ypre||2F = B′ + B′′.

The following question now arises: which diagonal elementsof L ensure the minimum ofB′ + B′′? TermB′ is fixed
with respect toL because we are assuming the invariance of diagonal elementsin Σ̂ (diag(Σ̂UNALCE) = diag(Σ̂ALCE)).
The minimization of termB′′, given that rank(L ) = r̂, falls back into the previous case, i.e.B′′ is minimum if and
only if L̂ = L̂UNALCE = ÛUNALCE(D̂UNALCE + ψ̆Ir )Û′UNALCE.560

Optimality holds over the Cartesian product of the set of allsymmetric positive semi-definite matrices with a rank
smaller or equal tor, B̂(r̂), and the set of all symmetric sparse matrices with the same sparsity pattern aŝSALCE such
that diag(S) = diag(Σ̂ALCE − L ), L ∈ B̂(r̂) (we call this setÂdiag(ŝ))).

Consequently, we can write:

ŜUNALCE,ii = Σ̂ALCE,ii − L̂UNALCE,ii , ŜUNALCE,i j = ŜALCE,i j , i , j.

Proof of Corollary 2565

We know that‖L̂UNALCE − L̂ ALCE‖2 = ψ̆. We can prove that̂LUNALCE = minL ∈ B̂(r̂)‖L − L ∗‖2F , conditioning on the
event minL∈B̂(r̂),S∈Â(ŝ),Σ=L+S‖Σ − Σn‖2F under prescribed assumptions (see Theorem3). In fact, we can write

minL ∈ B̂(r̂)‖L − L ∗‖2F ≤ minL ∈ B̂(r̂)‖L − Ypre‖2F + ‖Ypre − L ∗‖2F ,

becauseYpre is uniquely determined by the conditioning event. The same inequality holds in the spectral norm.
Since

‖L̂ ALCE − L ∗‖2 ≤ ‖L̂UNALCE − L̂ ALCE‖2 + ‖L̂UNALCE − L ∗‖2,

it follows
0 < ‖L̂ ALCE − L ∗‖2 − ‖L̂UNALCE − L ∗‖2 ≤ ψ̆

given the conditioning event. Consequently, since‖L̂UNALCE − L̂ ALCE‖F = tr(L̂UNALCE − L̂ ALCE)2 = rψ̆2, we obtain

0 < ‖L̂ ALCE − L ∗‖F − ‖L̂UNALCE − L ∗‖F ≤
√

rψ̆.

The analogous triangular inequality for the sparse component is

‖ŜALCE − S∗‖2F ≤ ‖ŜUNALCE − ŜALCE‖2F + ‖ŜUNALCE − S∗‖2F .

In order to quantify‖ŜUNALCE − ŜALCE‖2F , we need to study the behaviour of the term
∑p

i=1(L̂UNALCE,ii − L̂ ALCE,ii )2,
which is less or equal torψ̆2, because it is less or equal totr(L̂UNALCE − L̂ ALCE)2.570

Consequently, we have‖ŜUNALCE − ŜALCE‖F ≤
√

rψ̆. Analogously toL̂UNALCE, we can prove that

ŜUNALCE = minS∈Â(ŝ)‖S− S∗‖2F ,

conditioning on the event
minL∈B̂(r̂),S∈Â(ŝ),Σ=L+S‖Σ − Σn‖2F

under prescribed assumptions (see Theorem3). In fact, we can write

minS∈Âdiag(ŝ)‖S− S∗‖2F ≤ minS∈Âdiag(ŝ)‖S− Zpre‖2F + ‖Zpre − S∗‖2F ,

becauseZpre is uniquely determined by the conditioning event.
Therefore, we can write

0 < ‖ŜALCE − S∗‖F − ‖ŜUNALCE − S∗‖F ≤
√

rψ̆.
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The claim on‖ŜUNALCE − S∗‖2 is less immediate. We recall that‖L̂UNALCE − L̂ ALCE‖2 = ‖Ûψ̆I rÛ⊤‖2 = ψ̆.
Ûψ̆I rÛ⊤ can be divided in the contribution coming from diagonal elements and the rest:‖diag(L̂UNALCE − L̂ ALCE) +
off − diag(L̂UNALCE − L̂ ALCE)‖2. Both contributions are part of̂Uψ̆I r Û⊤.575

Given the matrix of eigenvectorŝU, we can write diag(̂LUNALCE − L̂ ALCE) =
∑p

i=1 ‖û
⊤
i ‖2K ii , whereK ii is a

null matrix, except for thei-th diagonal element equal tŏψ, andû⊤i is the i-th row of Û. Similarly, we can write
off − diag(L̂UNALCE − L̂ ALCE) =

∑p
i=1

∑

j,i û⊤i û jK i j whereK i j is a null matrix, except for the elementi j equal toψ̆.
Note that the rows of̂U, differently from the columns, are not orthogonal.

Since all summands are orthogonal to each other (A⊥B ⇔ tr(AB⊤) = 0), the triangular inequalities relative to580

‖diag(L̂UNALCE− L̂ ALCE)‖2, ‖off − diag(L̂UNALCE − L̂ ALCE)‖2 and‖L̂UNALCE − L̂ ALCE‖2 become equalities. Therefore,
we can write:

‖diag(L̂UNALCE − L̂ ALCE)‖2 =

p
∑

i=1

‖û⊤i ‖2 × ‖K ii ‖ =
p

∑

i=1

‖û⊤i ‖2ψ̆;

‖off − diag(L̂UNALCE − L̂ ALCE)‖2 =

p
∑

i=1

∑

j,i

û⊤i û j‖K i j ‖ =
p

∑

i=1

∑

j,i

û⊤i û jψ̆;

‖L̂UNALCE − L̂ ALCE‖2 =

p
∑

i=1

‖û⊤i ‖2 × ‖K ii ‖ +
p

∑

i=1

∑

j,i

û⊤i û j‖K i j ‖ = ψ̆.

From this consideration, it follows that

‖diag(L̂UNALCE − L̂ ALCE)‖2 ≤ ‖L̂UNALCE − L̂ ALCE‖2 = ψ̆.

Since, by definition,‖diag(̂SUNALCE − ŜALCE)‖2 = ‖diag(L̂UNALCE − L̂ ALCE)‖2 (because diag(ŜUNALCE − ŜALCE) =
−diag(L̂UNALCE− L̂ ALCE)), and recalling that̂SUNALCE has the best approximation property (for Theorem3) given the585

conditioning event, we can conclude

0 < ‖ŜALCE − S∗‖2 − ‖ŜUNALCE − S∗‖2 ≤ ψ̆.

Proof of Corollary 3

The relevant triangular inequality for the overall estimate is

‖Σn − Σ̂ALCE‖2 ≤ ‖|Σ̂UNALCE − Σ̂ALCE‖2 + ‖Σn − Σ̂UNALCE‖2.

By definition,‖Σ̂UNALCE− Σ̂ALCE‖2 = ‖off − diag(L̂UNALCE− L̂ ALCE)‖2. For the same considerations explained before,

‖off − diag(L̂UNALCE − L̂ ALCE)‖2 ≤ ‖L̂UNALCE − Σ̂ALCE‖2 = ψ̆.

Consequently, recalling thatΣ̂UNALCE = min
Σ=L+S,L∈B̂(r̂),S∈Â(ŝ)‖Σ − Σn‖2F under the described assumptions, it follows

0 < ‖Σn − Σ̂ALCE‖2 − ‖Σn − Σ̂UNALCE‖2 ≤ ψ̆. (A.9)

Since‖L̂UNALCE − L̂ ALCE‖2F = tr(L̂UNALCE − L̂ ALCE)2 = rψ̆2, we have

0 < ‖off − diag(L̂UNALCE − L̂ ALCE)‖F ≤
√

rψ̆.

We can then claim590

0 < ‖Σn − Σ̂ALCE‖F − ‖Σn − Σ̂UNALCE‖F ≤
√

rψ̆.

Therefore, the real gain in terms of the approximation ofΣn with respect to ALCE measured in the squared
Frobenius norm is strictly positive and bounded fromrψ̆2.
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Proof of Theorem 4

Conditioning onΣn, we can easily write

‖Σ̂UNALCE − Σ∗‖2 = ‖Σ̂UNALCE − Σn + Σn − Σ∗‖2 ≤ ‖Σ̂UNALCE − Σn‖2 + ‖Σn − Σ∗‖2. (A.10)

The term‖Σn − Σ∗‖2 only depends on the estimation inputΣn.595

Therefore, by (A.9) and (A.10), it is straightforward that

0 < ‖Σ̂ALCE − Σ∗‖2 − ‖Σ̂UNALCE − Σ∗‖2 ≤ ψ̆.

Analogously, it is easy to prove that

0 < ‖Σ̂ALCE − Σ∗‖F − ‖Σ̂UNALCE − Σ∗‖F ≤
√

rψ̆. (A.11)

Proof of Corollary 4

Let us recall the following expression:

‖(L̂ + Ŝ)−1 − (Σ∗−1)‖F = ‖(L̂ + Ŝ)−1[L̂ + Ŝ− Σ∗](Σ∗−1)‖F ≤ ‖(L̂ + Ŝ)−1‖2 · ‖L̂ + Ŝ− Σ∗‖F · ‖Σ∗−1‖2.

From (A.11), we can conclude that

0 < ‖(L̂ ALCE + ŜALCE)−1 − Σ∗−1‖F − ‖(L̂UNALCE + ŜUNALCE)−1 − Σ∗−1‖F ≤
√

rψ̆.

Analogously, since it holds

‖(L̂ + Ŝ)−1 − (Σ∗−1)‖2 = ‖(L̂ + Ŝ)−1[L̂ + Ŝ− Σ∗](Σ∗−1)‖2 ≤ ‖(L̂ + Ŝ)−1‖2 · ‖L̂ + Ŝ− Σ∗‖2 · ‖Σ∗−1‖2,

, it is straightforward that600

0 < ‖(L̂ ALCE + ŜALCE)−1 − Σ∗−1‖2 − ‖(L̂UNALCE + ŜUNALCE)−1 − Σ∗−1‖2 ≤ ψ̆.

Proof of Corollary 5

The three claims of the corollary are proved in sequence.

1. We start to note that̂LUNALCE, L̂ ALCE, andÛALCEψ̆I r Û⊤ALCE arer-ranked. Let the respective spectral decompo-
sitions be:

(a) B̂UNALCEB̂⊤UNALCE with B̂UNALCE = ÛALCE

√

D̂UNALCE ;605

(b) B̂ALCEB̂⊤ALCE with B̂ALCE = ÛALCE

√

D̂ALCE;

(c) (ÛALCE

√

ψ̆)(ÛALCE

√

ψ̆)⊤.

Consequently, we note that

λr (L̂UNALCE) = λr (L̂ ALCE + ÛALCEψ̆I rÛ⊤ALCE) =

λr (ÛALCED̂ALCEÛALCE + ÛALCEψ̆I r Û⊤ALCE) = λr (L̂ ALCE) + ψ̆,

which proves the claim on̂LUNALCE.

2. By Lidskii dual inequality (see [32]), we note that610

λp(ŜUNALCE) = λp(ŜALCE − diag(ÛALCEψ̆I r Û⊤ALCE)) ≥ λp(ŜALCE) + λp(−diag(ÛALCEψ̆I rÛ⊤ALCE)).
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The matrix−diag(ÛALCEψ̆I r Û⊤ALCE) is a p-dimensional squared matrix having asi−th element the quantity
−‖u⊤i ‖

2ψ̆, whereu⊤i , i ∈ {1, . . . , p}, is the i-th row of the matrix̂UALCE. Since tr(−diag(ÛALCEψ̆I rÛ⊤ALCE)) =
tr(−ÛALCEψ̆I rÛ⊤ALCE) = −rψ̆, it follows thatλp(diag(ÛALCEψ̆I rÛ⊤ALCE)) ≤ rψ̆/p, i.e.

− r
p
ψ̆ ≤ λp(−diag(ÛALCEψ̆I r Û⊤ALCE)) ≤ 0.

Therefore, we obtain
λp(ŜUNALCE) ≥ λp(ŜALCE) − r

p
ψ̆,

which proves the claim on̂SUNALCE.615

3. By Lidskii dual inequality, we note that

λp(Σ̂UNALCE) = λp(Σ̂ALCE + ÛALCEψ̆I r Û⊤ALCE − diag(ÛALCEψ̆I rÛ⊤ALCE))

≥ λp(Σ̂ALCE) + λp(ÛALCEψ̆I rÛ⊤ALCE) − λp(diag(ÛALCEψ̆I r Û⊤ALCE)).

Recalling the argument above and noting that
λp(ÛALCEψ̆I r Û⊤ALCE) = 0 because rank(ÛALCEψ̆I rÛ⊤ALCE) = r̂, it follows

λp(Σ̂UNALCE) ≥ λp(Σ̂ALCE) + 0− ψ̆ = λp(Σ̂ALCE) − r
p
ψ̆,

which proves the claim on̂ΣUNALCE.

Supplementary material620

This paper is complemented by a supplement containing a discussion of LOREC assumptions and a simulation
study. In addition, the MATLAB functionsUNALCE.m andPOET.m, performing UNALCE and POET procedures, re-
spectively, can be downloaded at [16]. Both functions contain the detailed explanation of inputand output arguments.
Finally, the MATLAB datasetsupervisory_data.mat, which contains the covariance matrix,C, and the relative
labels of supervisory indicators,Labgood, can also be downloaded at the same link, which we refer to forthe details.625
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Supplementary Material

Matteo Farnéa,∗∗, Angela Montanaria
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1. Discussion of LOREC assumptions

The key model-based results for deriving the LOREC [8] consistency bounds are a lemma by [1], which details5

the sample loss in infinity (element-wise) norm:

‖Σn − Σ∗‖∞ = O















√

ln p
n















, (1)

and a lemma by [5], which details the sample loss in spectral norm:

‖Σn − Σ∗‖2 = O

(
√

p
n

)

. (2)

We stress that (2) strictly requires the assumptionp ≤ n.
From a theoretical point of view, the LOREC approach is hindered by some deficiencies and incongruities. In10

contrast to the POET approach, where the sparsity assumption is imposed on the sparse componentS∗, the LOREC
approach imposes it directly on the covariance matrixΣ∗. As a consequence, the assumptionΣ∗ ∈ Σ∗(ǫ0), where

Σ
∗(ǫ0) =

{

Σ
∗ ∈ Rp×p : 0 < ǫ0 ≤ λi(Σ

∗) ≤ ǫ−1
0 , i ∈ {1, . . . , p}

}

, (3)

is necessary and leads to some non-identifiability issues:

• to guarantee the validity of a bound (1), the assumption maxi≤p
∑

j≤p |Σ∗i j|q = o(p) for someq ∈ [0, 1[ must hold.
Since we can write

maxi≤p

∑

j≤p

|Σ∗i j|q ≤ maxi≤p

∑

j≤p

|L∗i j|q +maxi≤p

∑

j≤p

|S∗i j|q,

, the aforementioned assumption would impose the same boundon L∗: maxi≤p
∑

j≤p |L∗i j|
q = o(p). In turn, this

would mean, by definition, thatξ(T (L∗)) is larger. This is because, according to [3], ξ(T (L∗)) directly depends15

on the alignment of the eigenvectors ofL∗ with the canonical basis vectors. Therefore, asq decreases, it is not
clear what happens to the productξ(T (L∗))µ(Ω(S∗)). This potentially affects identifiability.

• applying Lidskii dual inequality (see [10]) to λr(Σ∗), we obtain

λr(Σ∗) = λr(L∗ + S∗) ≥ λr(L∗) + λp(S∗).

Therefore, the assumptionλr(Σ∗) > const in (3) inevitably leads toλp(S∗) > const andλr(L∗) > const. The
latter formulation conflicts with the identifiability assumption λr(L∗) > (C2/ξ

2(T ))
√

p/n in [8], and affects
identifiability. This is the case even whenp = o(n), because in that caseλr(L∗) > const implies thatL∗ is20

expected to be close to the identity matrix, thus increasingthe productξ(T (L∗))µ(Ω(S∗)).
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2. A simulation study

2.1. Simulation settings

To compare the performance of UNALCE, LOREC, and POET, we take into consideration four simulated low
rank plus sparse settings, which give an exhaustive idea of the recoverable situations under our assumptions. The key25

simulation parameters are:

1. the dimensionp, the sample sizen;

2. the rankr and the condition numbercond(L∗) = λmax(L∗)/λmin(L∗) of the low rank componentL∗;

3. the trace ofL∗, τθp, whereτ is a magnitude parameter andθ is the percentage of variance explained byL∗;

4. the number of off-diagonal non-zeross in the sparse componentS∗;30

5. the percentage of non-zerosπs over the number of off-diagonal elements;

6. the percentage of the (absolute) residual covarianceρS∗ ;

7. N = 100 replicates for each setting.

For POET, the soft-thresholding parameter is estimated viacross-validation, cf. [6]. For ALCE and UNALCE,
spikiness and sparsity thresholds are picked up via the MC criterion (see (14) in the main paper). The data generation35

algorithm is described in detail in [7].
In TableS.1, we summarize the features of our settings. Settings 1 and 2 vary according to the degree of spikiness

and sparsity. Settings 3 and 4 are intermediately spiked andsparse and vary according to the ratiop/n. In TableS.2,
we report all the norms and condition numbers relative to oursettings. In addition, we report the minimum latent
eigenvalueλr(L∗) and the minimum residual non-zero entry in absolute valueS min,o f f (the identifiability parameters).40

We stress that we assume equispaced latent eigenvalues. It follows that for each setting, the eigenvalues ofL∗ andΣ∗

are pretty similar, while the ones ofS∗ are much smaller.

Table S.1
Simulated settings: main parameters and synthetic descriptions.

Setting p n p/n r τ θ πs ρS∗ spikiness sparsity
1 100 1000 0.1 4 0.01 70 2.38 0.45 low high
2 100 1000 0.1 3 0.03 80 11.72 0.72 high low
3 150 150 1 5 0.01 80 3.20 0.33 middle middle
4 200 100 2 6 0.01 80 3.66 0.39 middle middle

Table S.2
Simulated settings: spectral norms, condition numbers, and identifiability parameters.

Setting ‖L∗‖2 λr(L∗) cond(L∗) ‖S∗‖2 S min,o f f cond(S∗) ‖Σ∗‖2 cond(Σ∗)
1 23.33 11.67 2 3.78 0.0275 2.26e + 07 24.49 9.49e + 07
2 128 32 4 5.58 0.0226 2.53e + 05 130.14 4.07e + 06
3 32 16 2 2.56 0.0161 2.35e + 13 32.48 1.58e + 10
4 35.56 17.78 2 4.69 0.0138 1.17e + 13 36.39 3.09e + 09

Our objective function (see (4) in the main paper) is minimized according to an alternate thresholding algorithm,
composed of singular value thresholding (SVT, [2]) and a soft thresholding step [4]. To speed convergence, Nesterov’s
acceleration scheme for composite gradient mapping minimization problems [9] is applied. Given a prescribed preci-45

sion levelε, the algorithm assumes the form (cf. [8]):

1. Set (L0, S0) = 0.5(diag(Σn), diag(Σn)), η0 = 1.

2. InitializeY0 = L0 andZ0 = S0. Sett = 1.

2



3. Repeat: compute
∂ 1

2 ‖Yt−1+Zt−1−Σn‖2F
∂Yt−1

=
∂ 1

2 ‖Yt−1+Zt−1−Σn‖2F
∂Zt−1

= Yt−1 + Zt−1 − Σn.

4. Apply the SVT operatorTψ to EY,t = Yt−1 − 0.5(Yt−1 + Zt−1 − Σn) and setLt = Tψ(EY,t) = ÛD̂ψÛ⊤.50

5. Apply the soft-thresholding operatorTρ to EZ,t = Zt−1 − 0.5(Yt−1 + Zt−1 − Σn) and setSt = Tρ(EZ,t).

6. Set (Yt,Zt) = (Lt, St) + {(ηt−1 − 1)/ηt} {(Lt, St) − (Lt−1, St−1)} whereηt = 0.5+ 0.5
√

1+ 4η2
t−1.

7. Until the convergence criterion (‖Lt − Lt−1‖F)/(1+ ‖Lt−1‖F ) + (‖St − St−1‖F)/(1+ ‖St−1‖F ) ≤ ε (we setε =
10−4).

The reported scheme achieves a convergence speed proportional toO(t2). We definet∗ as the number of steps needed55

for convergence. We setYpre = Yt∗−1 − 0.5(Yt∗−1 + Zt∗−1 − Σn) andZpre = Zt∗−1 − 0.5(Yt∗−1 + Zt∗−1 − Σn). The

computational cost of the solution algorithm is proportional to p4
√
ε
, whereε is the required precision. By contrast,

POET reflects the cost of a full-SVD (proportional top3). For more details, see [7].
Lots of metrics are computed to comparatively describe the performance of the three methods using the same

simulated data. We call the low rank estimateL̂, the sparse estimatêS, and the covariance matrix estimateΣ̂ = L̂+ Ŝ.60

The error norms used are:

Loss= ‖L̂ − L∗‖F + ‖Ŝ − S∗‖F , (4)

TotalLoss= ‖Σ̂ − Σ∗‖F , (5)

SampleTotalLoss= ‖Σ̂ − Σn‖F . (6)

The estimated percentage of latent varianceθ̂, residual covariance ˆρŜ, and residual non-zeros ˆπ ŝ are also computed.
Their estimation performance is measured by the mean squareerror, defined for̂θ as

MSE(θ̂) =
1
N

N
∑

h=1

(θ̂h − θ)2, (7)

whereθ̂h is the estimate ofθ on theh-th replicate. We also compute the estimation bias for each parameter, defined
for θ̂ as65

bias(̂θ) = θ̂mean − θ, (8)

whereθ̂mean is the mean estimate ofθ over theN replicates.
The performance in terms of the sparsity pattern recovery ofŜ is assessed by the following measures. Let us

denote the number of non-zeros inŜ by ŝ, the false non-zeros byf p, the false zeros byf n, the false positive elements
by f pos, and the false negative elements byf neg. We define:

• theerror measure:err = ( f p + f n)/nv, wherenv = p(p − 1)/2 is the number of off-diagonal elements;70

• errplus = ( f pos + f neg)/s, which is the same aserr, except it is computed for non-zeros only whereby positive
and negative are distinguished in the usual way;

• the overall error rateerrtot, using the number of false zeros, false positive, and false negative elements:errtot =
( f pos + f neg + f n)/nv.

The correct classification rates of (true) non-zero and zeroelements (denoted respectively bysens andspec) are75

derived, as well as the correct classification rates of positive and negative elements, which are considered separately
(denoted respectively bysenspos andspecpos).

The performance in terms of eigenstructure recovery is measured forΣ∗ byλ(Σ̂), which is defined as the Euclidean
distance between the estimated and true eigenvalues ofΣ

∗:

λ(Σ̂) =

√

√

p
∑

i=1

(λ̂i(Σ̂) − λi(Σ∗))2. (9)

The measure (9) is similarly defined forL∗ andS∗.80
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2.2. Simulation results

TableS.3 shows the superior performance of UNALCE and ALCE than that of POET for the estimates ofθ,
ρS∗ andπs across different degrees of spikiness (Settings 1 and 2). This occurs because the percentage of residual
variance detected by POET is biased upward, due to the natural bias of sample eigenvalues. The bias decreases as the
dimension and degree of spikiness increase. Comparing UNALCE and ALCE, we observe a remarkable superiority85

on behalf of the UNALCE estimates ofθ andρS∗ over Settings 1 and 2, while ALCE prevails for the estimates of πs.
TableS.4shows the same statistics computed over Settings 3 and 4. Thedescribed pattern for the estimated latent

variance percentage still holds. On the contrary, the performance of the estimated residual covariance percentage is
poor, even for UNALCE and ALCE. This is because the estimation bias is significant. This occurs because Settings 3
and 4 do not fulfil the assumptions of Theorem2, due to the small ratio ofp/n. As a consequence, any estimate ofπs90

is biased.
TableS.5contains the fitting measures described in Section2.1, which were computed for Settings 1 and 2. It

is clear that UNALCE outperforms POET for all losses and is also generally superior to ALCE by a small margin.
A similar pattern can be deduced from TableS.6, which contains the same results for Settings 3 and 4. However, it
can be observed that the gap with POET progressively decreases asp/n increases because in that case, the setting95

becomes more consistent with the POET assumptions.

Table S.3
This table shows the mean square error and bias, as defined in (7) and (8), respectively, of the percentage of latent varianceθ̂, residual covariance
ρ̂Ŝ, and residual non-zeros ˆπŝ, as estimated by UNALCE, ALCE, and POET over 100 runs of Settings 1 and 2.

Setting 1 Setting 2
UNALCE ALCE POET UNALCE ALCE POET

MSE(θ̂) 0.55 0.75 10.10 0.21 0.24 2.45
MSE(ρ̂Ŝ) 0.02 0.04 0.20 0.02 0.03 0.23
MSE(π̂ ŝ) 0.89 0.23 5.53 11.25 9.20 119.74
bias(̂θ) −0.48 −0.69 3.14 −0.14 −0.17 1.51
bias(ρ̂Ŝ) −0.11 −0.19 −0.45 −0.36 −0.38 −0.72
bias(π̂ ŝ) 0.61 −0.06 −2.35 1.23 1.37 10.93

Table S.4
This table shows the mean square error and bias, as defined in (7) and (8), respectively, of the percentage of latent varianceθ̂, residual covariance
ρ̂Ŝ, and residual non-zeros ˆπŝ, as estimated by UNALCE, ALCE, and POET over 100 runs of Settings 3 and 4.

Setting 3 Setting 4
UNALCE ALCE POET UNALCE ALCE POET

MSE(θ̂) 1.18 3.03 6.29 1.90 6.13 8.81
MSE(ρ̂Ŝ) 0.03 0.02 0.11 0.13 0.12 0.15
MSE(π̂ ŝ) 3.43 2.64 4.84 12.31 11.88 12.70
bias(̂θ) −0.20 −1.34 2.33 −0.68 −2.15 2.84
bias(ρ̂Ŝ) −0.13 −0.10 −0.33 −0.34 −0.35 −0.39
bias(π̂ ŝ) −1.57 −1.38 −2.05 −3.51 −3.61 −3.57

TablesS.7andS.8contain the error measures regarding the recovery of the residual sparsity pattern (see Section
2.1) for Settings 1-2 and 3-4, respectively. We note that POET, due to the lack of algebraic consistency, is completely
unable to classify positive and negative elements. On the contrary, UNALCE shows a recovery rate around 70% when
p/n is small. This rate is larger than for ALCE, although the recovery capability deteriorates asp/n increases.100

TablesS.9andS.10report the Euclidean distance between the vectors of estimated and true eigenvalues (see (9)),
the condition number of the estimates, and the estimated spectral norms. This table can be compared to TableS.2,
which contains the true spectral norms and condition numbers across settings. All statistics suggest that UNALCE
is the preferable method, with some notable exceptions due to our thresholding procedure. Ifp/n is small and the
eigenvalues are not spiked, the spectral norm ofL∗ andΣ∗ tend to be underestimated by UNALCE with respect to105

POET. On the contrary, UNALCE may overestimate the condition number ofL∗ if p/n is large. At the same time,
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Table S.5
This table shows the loss (Loss), the total loss (T L), and the sample total loss (S ampleT L) for UNALCE, ALCE, and POET estimates computed
as in (4), (5) and (6) over 100 runs of Settings 1 and 2. In particular,Loss, T L andS ampleT L refer to the overall estimate,LossL refers to the low
rank estimate andLossS refers to the sparse estimate. Mean values are reported withstandard deviations in parentheses.

Setting 1 Setting 2
UNALCE ALCE POET UNALCE ALCE POET

T L 6.98(0.82) 6.98(0.82) 7.39(0.75) 9.93(2.30) 9.94(2.32) 10.47(2.21)
S ampleT L 0.72(0.08) 0.89(0.09) 2.79(0.07) 1.25(0.15) 1.35(0.13) 3.85(0.08)
Loss 7.63(0.82) 7.64(0.82) 9.30(0.73) 11.38(2.29) 11.40(2.34) 13.22(2.27)
LossL 6.91(0.81) 6.90(0.82) 7.58(0.73) 9.82(2.30) 9.83(2.32) 10.74(2.27)
LossS 0.72(0.06) 0.74(0.05) 1.72(0.10) 1.56(0.18) 1.58(0.17) 2.48(0.12)

Table S.6
This table shows the loss (Loss), the total loss (T L) and the sample total loss (S ampleT L) for UNALCE, ALCE, and POET estimates computed
as in (4), (5) and (6) over 100 runs of Settings 3 and 4. In particular,Loss, T L andS ampleT L refer to the overall estimate,LossL refers to the low
rank estimate andLossS to the sparse estimate. Mean values are reported with standard deviations in parentheses.

Setting 3 Setting 4
UNALCE ALCE POET UNALCE ALCE POET

T L 13.01(1.98) 13.01(1.90) 13.31(2.12) 20.93(2.68) 20.96(2.61) 21.41(2.79)
S ampleT L 1.95(0.16) 2.35(0.16) 2.90(0.12) 3.91(0.19) 4.66(0.29) 4.38(0.32)
Loss 14.22(2.01) 14.24(1.93) 14.89(2.18) 22.51(2.73) 22.57(2.63) 23.80(2.83)
LossL 12.91(2.00) 12.90(1.92) 13.38(2.17) 20.86(2.71) 20.86(2.63) 21.53(2.83)
LossS 1.32(0.16) 1.34(0.14) 1.47(0.12) 1.65(0.20) 1.71(0.22) 2.28(0.31)

if p/n is large, ALCE may provide a better estimate of the spectral norms of the targets, due to the upper bias of the
largest sample eigenvalues.
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Table S.7
This table shows the sparsity pattern recovery measures (defined at the end of Section2.1) with respect to UNALCE, ALCE, and POET over 100
runs of Settings 1 and 2. Mean values are reported with standard deviations in parentheses.

Setting 1 Setting 2
UNALCE ALCE POET UNALCE ALCE POET

err 1.95(0.45) 1.70(0.17) 2.42(0.04) 8.08(0.95) 9.70(1.35) 9.78(1.27)
errplus 1.12(0.99) 1.20(0.96) 0.00(0.00) 0.03(0.10) 1.83(0.70) 2.21(0.71)
errtot 0.70(0.25) 0.91(0.23) 2.38(0.00) 4.45(0.95) 4.47(0.75) 11.72(0.01)
senspos 70.19(10.89) 61.64(10.42) 0.00(0.00) 60.98(8.55) 60.84(6.84) 0.02(0.09)
specpos 71.05(11.41) 62.14(10.76) 0.00(0.00) 63.12(8.00) 62.99(6.57) 0.00(0.00)
spec 98.69(0.56) 99.16(0.27) 99.97(0.04) 93.81(2.49) 93.68(2.28) 99.11(0.58)

Table S.8
This table shows the sparsity pattern recovery measures (defined at the end of Section2.1) computed for UNALCE, ALCE, and POET over 100
runs of Settings 3 and 4. Mean values are reported with standard deviations in parentheses.

Setting 3 Setting 4
UNALCE ALCE POET UNALCE ALCE POET

err 3.21(0.30) 3.22(3.1) 4.35(0.78) 3.59(0.06) 3.57(0.05) 3.75(0.06)
errplus 1.77(1.00) 1.99(0.97) 0.01(0.04) 0.25(0.32) 0.41(0.32) 0.00(0.00)
errtot 2.45(3.5) 2.36(0.29) 3.20(0.00) 3.56(0.10) 3.52(0.07) 3.66(0.00)
senspos 23.02(11.18) 25.76(9.28) 0.01(0.08) 2.86(2.87) 3.84(2.24) 0.00(0.00)
specpos 23.98(11.12) 26.60(9.41) 0.00(0.00) 2.65(2.68) 3.65(2.21) 0.00(0.00)
spec 99.16(6.64) 99.05(5.8) 98.82(8.1) 99.95(0.05) 99.94(0.04) 99.90(0.06)

Table S.9
This table shows the performance in terms of eigenstructurerecovery (via the measure in (9)) and the estimated spectral norms and condition
numbers with respect to the overall, the low rank, and the sparse component estimates obtained by UNALCE, ALCE, and POET over 100 runs of
Settings 1 and 2. Mean values are reported with standard deviations in parentheses.

Setting 1 Setting 2
UNALCE ALCE POET UNALCE ALCE POET

λ(Σ̂) 5.51(0.86) 5.51(0.86) 5.74(1.06) 5.62(2.66) 5.65(2.66) 6.07(2.60)
λ(Ŝ) 0.29(0.08) 0.30(0.08) 1.55(0.11) 0.44(0.21) 0.45(0.19) 1.86(0.17)
λ(L̂) 7.75(2.75) 7.73(2.65) 7.16(2.29) 5.62(2.63) 5.64(2.65) 6.16(2.84)
cond(Σ̂) 104180(38855) 58366(7785) 34048(2537)2312900(1160600) 1896300(713370) 1141400(369010)
cond(Ŝ) 21571(7719) 11829(1626) 4776.3(403) 130610(63271) 113850(120320) 40407(12802)
cond(L̂) 1.32(0.07) 1.32(0.07) 1.32(0.07) 4.06(0.22) 4.07(0.23) 3.97(0.21)
‖Σ̂‖2 20.84(0.89) 20.73(0.89) 21.84(0.92) 130.20(5.14) 130.04(5.13) 131.58(5.14)
‖Ŝ‖2 3.77(0.18) 3.73(0.16) 2.75(0.12) 5.68(0.30) 5.59(0.36) 4.14(0.20)
‖L̂‖2 19.84(0.83) 19.76(0.83) 21.00(0.88) 128.42(5.13) 128.34(5.12) 130.39(5.14)

Table S.10
This table shows the performance in terms of eigenstructurerecovery (via the measure in (9)) and the estimated spectral norms and condition
numbers with respect to the overall, the low rank, and the sparse component estimates obtained by UNALCE, ALCE, and POET over 100 runs of
Settings 3 and 4. Mean values are reported with standard deviations in parentheses.

Setting 3 Setting 4
UNALCE ALCE POET UNALCE ALCE POET

λ(Σ̂) 6.06(2.59) 6.16(2.40) 6.24(2.93) 10.05(3.63) 10.28(3.44) 10.57(4.02)
λ(Ŝ) 0.50(0.15) 0.52(0.14) 1.15(0.16) 0.81(0.31) 0.83(0.32) 1.92(0.38)
λ(L̂) 6.07(2.64) 6.15(2.44) 6.34(3.09) 10.43(3.79) 10.45(3.53) 10.57(4.21)
cond(Σ̂) 28355(10242) 11456(1804) 19279(3329) 12817(3526) 7685(1237)20171(3746)
cond(Ŝ) 2469(1828) 958(148) 1132.2(181) 1424(460) 875(140) 1515(316)
cond(L̂) 2.41(0.32) 2.44(0.33) 2.35(0.30) 2.99(0.52) 3.08(0.55) 2.85(0.47)
‖Σ̂‖2 35.36(3.68) 34.99(3.69) 36.03(3.68) 42.46(4.67) 41.89(4.68) 43.57(4.68)
‖Ŝ‖2 2.73(0.30) 2.76(0.28) 1.98(0.19) 4.48(0.63) 4.59(0.67) 3.15(0.47)
‖L̂‖2 34.51(3.68) 34.89(3.68) 35.68(3.68) 41.98(4.66) 41.37(4.67) 43.17(4.67)
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