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A large covariance matrix estimator
under intermediate spikiness regimes

Matteo Farn&*, Angela Montanaft*

aDepartment of Statistical Sciences, University of Bologna, Bologna, Italy

Abstract

This paper concerns large covariance matrix estimation via composite minimization under the assumption of low rank
plus sparse structure. In this approach, the low rank plus sparse decomposition of the covariance matrix is recovered
by least squares minimization under nuclear norm pluerm penalization. The objective is minimized via a singular

value thresholding plus soft thresholding algorithm. This paper proposes a new estimator based on an additional least-
squares re-optimization step aimed at un-shrinking the eigenvalues of the low rank component estimated in the first
step. We prove that such un-shrinkage causes the final estimate to approach the target as closely as possible in spectral
and Frobenius norm, while recovering exactly the underlying low rank and sparsity pattern. The error bounds are
derived imposing that the latent eigenvalues scalg’tand the maximum number of non-zeros per row in the sparse
component scales @, wherep is the dimensiong € [0, 1], 6§ € [0,0.5], ands < a. The sample siza is imposed to

scale at least tp>. The resulting estimator is called UNALCE (UNshrunk ALgebraic Covariance Estimator), and it

is shown to outperform state-of-the-art estimators, especially for what concerns fitting properties and sparsity pattern
detection. The fectiveness of UNALCE is highlighted by a real example regarding ECB (European Central Bank)
banking supervisory data.

Keywords: Covariance matrix, Nuclear norm, Penalized least squares, Sparsity, Spiked eigenvalues, Un-shrinkage
Classification code62J10, 65F35, 93E24, 65F50, 15A18, 62J07

1. Introduction

Estimation of population covariance matrices from samples of multivariate data is of interest in many high-
dimensional inference problems: principal components analysis, classification by discriminant analysis, inferring
a graphical model structure, and others. Depending on the goal, the interest is sometimes in inferring the eigen-
structure of the covariance matrix (as in principal component analysis) and sometimes in estimating its inverse (as in
discriminant analysis or in graphical models). Examples of application areas include gene arrays, functional magnetic
resonance imaging, text retrieval, image classification, spectroscopy, climate studies, finance, and macro-economic
analysis.

The theory of multivariate analysis for normal variables has been well worked out (see, for ex@iptegvever,
it soon became apparent that exact expressions were cumbersome, and that multivariate data were rarely Gaussian.
The remedy was asymptotic theory for large samples and fixed, relatively small, dimensions. However, in recent
years, datasets that do not fit into this framework have become very common, since nowadays the data can be high-
dimensional, and sample sizes can be very small relative to dimension.

The traditional covariance estimator, the sample covariance matrix, is known to be dramatically ill-conditioned in
a large dimensional context, where the process dimensisfarger than or close to the sample sizeven when the
population covariance matrix is well-conditioned. Two key properties of the matrix estimation process, i.e. numerical
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stability and identifiability, assume a particular relesann large dimensions. Both properties are crucial for the
theoretical derivation and the practical use of the esematbad conditioned estimatefers from collinearity and
causes its inverse, the precision matrix, to dramaticalipldy any error in the data. A large dimension may make it
impossible to identify the unknown covariance structunasthampering the interpretation of the results.

Regularization approaches to large covariance matriresion are therefore being presented and addressed in
the literature, both from theoretical and practical pectipes (see 14] for an exhaustive overview). Some authors
propose shrinking the sample covariance matrix towarddeatity matrix P4], others suggest applying nonlinear
transforms to sample eigenvalue] or regularizing them by sample splittin@3], while some others consider
tapering the sample covariance matrix, i.e. graduallyngtim the df-diagonal elements toward zer®, [21]. At
the same time, a common approach is to encourage spartiitgr by a penalized likelihood approact(] or by
thresholding the sample covariance matrix iffefient ways: hard-thresholding][ soft-thresholding%], generalized
thresholding 81], or adaptive thresholdind]. A consistent bandwidth selection method for all theserapgghes is
described in30].

A different approach is based on the assumption of a low rank pdusesptructure for the covariance matrix:

E*:L*+S*, (1)

whereL " is low rank with rank < p, S" is positive definite and sparse, with at mesibn-zero @-diagonal elements,
andX* is a positive definite matrix. The generic covariance egtim® can be written as

=L +S+W=X+W, (2

whereW is an error term. The error matri%¢ may be deterministic or stochastic, as explained]nlIf the data are
Gaussian an& is the unbiased sample covariance makijx thenW is distributed as a re-centred Wishart random
matrix.

In [15], a large covariance matrix estimator, called POET (PpakOrthogonal complEment Thresholding), is
derived under the assumption it)( POET combines principal component analysis for the regouf the low rank
component and a thresholding algorithm for the recoverhefdparse component. The underlying model assump-
tions prescribe an approximate factor model with spikee@miglues for the data (growing with), thus allowing
to reasonably use the firstprincipal components of the sample covariance matrix. Heurbore, at the same time,
sparsity in the sense db]is imposed on the residual matrix. The ran&f the low rank component is chosen by the
information criteria in f].

Indeed, rank selection represents a relevant issue: phetarge, setting a large rank would cause the estimate
% to be non-positive definite, while setting a small rank woeadse a too relevant variance loss. In the discussion of
[19], Yu and Samworth point out that the probability to undemaate the latent rankdoes not asymptotically vanish
if the eigenvalues are not really spiked at ré{g). In addition, we note that POET systematically overestiamshe
proportion of variance explained by the factors (given tbe tank) because the eigenvalueEpére more spiky than
the true ones (as shown i@4]).

POET consistency holds given that a number of assumpticgatigfied. The key assumption is the pervasiveness
of latent factors, which implies that the principal componanalysis o, asymptotically identifies the eigenvalues
and eigenvectors af* as p diverges. The results  OfLE] prowde the convergence rates of the relative norm of
EpoeT — Z* (defined a$|):po|;T - Xy = p Y2 E 2EPOETE* ;- I pllF), the maximum norm oEpoeT - X*, and
the spectral norm 08roeT — S'. Under stricter conditionsSpoet and Xpoet are proved to be non- smgular with
probability approaching 1.

At the same time, a number of non-asymptotic methods has presented. In11], the exact recovery of the
covariance matrix in the noiseless context is first provetle flesult is achieved by minimizing a specific convex
non-smooth objective, which is the sum of the nuclear northelow rank component and tihenorm of the sparse
component. In10], which is an extension ofi[1], the exact recovery of the inverse covariance matrix inrtbsy
graphical model setting is provided. The authors prove ihahe worst case, the number of necessary samples in
order to ensure consistencynis- O(p3/r2), even if the required condition for the positive definitenetthe estimate
isp<2n.

An approximate solution to the recovery and identifiabitifythe covariance matrix in the noisy context is de-
scribed in [l]. Even there, the conditiop < n is unavoidable for standard results on large deviationsramd
asymptotic random matrix theory. An exact solution to thmegroblem, based on the results 18]} is then shown
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in [27]. The resulting estimator is called LOREC (LOw Rank and sgaCovariance estimator) and is proved to be
both algebraically and parametrically consistent in thesseof [L{].
In [10], algebraic consistency is defined as follows.

Definition 1. A pair of symmetric matriceS, L) with S,L € RP*P is an algebraically consistent estimate of the low
rank plus sparse decompositial) for the covariance matrix* if the following conditions hold:

(i) The sign pattern oB is the same as that &: sign(S;j) = sign((S*)ij). Vi, j. Here, we assume that si@) = 0;
(i) The rank ofL is the same as the rank bf;
(iii) MatricesL + S, S, andL are such that + SandS are positive definite and is positive semidefinite.

Parametric consistency holds if the estima&4&. ) are close to%*, L *) in some norm with probability approaching
1. In[1Q), it is defined as follows.

Definition 2. A pair of symmetric matrice€S,L) with S,L € RP*P is a parametrically consistent estimate of the
low rank plus sparse decompositidl) for the covariance matriZ* if the norm g = max(||S — S'lle /7, IIL — L*[l2),
wherel|.|| denotes the maximum norm, converge@ wath probability approaching.

LOREC shows several advantages compared to POET. The mpsattant is that the estimates are both alge-
braically and parametrically consistent, while POET pde& only parametric consistency. Nevertheless, LOREC
sufers from some drawbacks, especially concerning the estdratent eigenvalues. Moreover, the strict condition
p < nis required, while POET allows fguIn(p) > n.

For these reasons, we propose a new estimator, UNALCE (WNEk#Lgebraic Covariance Estimator), based on
the ‘unshrinkage’ (the technical meaning will be clarifiedSectiond) of the estimated eigenvalues of the low rank
component, which allows to improve the fitting propertied @REC systematically. We assume that the non-zero
eigenvalues of * are proportional tg®, @ € [0, 1] (the so called generalized spikiness context). Undeasisemption
that the maximum number of non-zeros per rovsin called ‘maximum degree’, scales pd (with § € [0,0.5] and
§ < a), we prove that our estimator possesses a non-asymptaticteyund allowingn to be as small ag*>. We
derive absolute bounds depending®ffor the low rank, the sparse component, and the overall agtimWe also
identify the conditions for positive definiteness and itmlity and for rank and sparsity pattern recovery. In this
way, we provide a unique framework for covariance estinmatia composite minimization under the low rank plus
sparse assumption.

The remainder of the paper is organized as follows. In Se@jove establish the notation, set up the model,
briefly recall definitions and key properties of LOREC apptaand outline our novel contributions. In Sect®&nve
define a new estimator, that we call ALCE (ALgebraic Covat@Bstimator), and we state the necessary assumptions
for algebraic and parametric consistency. In Sectipwe then define the UNALCE (UNshrunk ALCE) estimator,
proving that the unshrinkage of thresholded eigenvaluab®fow rank component is the key to improve fitting
properties as much as possible given a finite sample, piagesigebraic consistency. In SectiGhwe propose a
new model selection criterion specifically tailored to ourdal setting. In Sectiof, we provide a real Euro Area
banking data example which clarifies theetiveness of our approach (a thorough simulation studydsemted in
the supplementary material, Sectign Finally, in Section7, we draw conclusions and discuss the most relevant
findings. The proofs of all theorems and corollaries are regan Appendix A

2. Numerical estimation and spiked eigenvalues

2.1. Notation

Let us define @ x p symmetric positive-definite matridd. We denote by;(M), i € {1,..., p}, the eigenvalues
of M in descending order. Then, we recall the following norm dedins:

(i) Element-wise:

(@) Lo norm:([M[lo = 3.7, Z?zl 1(Mj; # 0), which is the total number of non-zeros;
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(b) Ly norm: Ml = 3.7, 3P, IMijl;

(c) Frobenius normiM|lg = ./ i”zlz?leiZj;

(d) Maximum norm{|Mlle = maX<p j<p IMjjl.
(i) Induced by vector:

(@) 1IMlloy = max<p X j<p 1(Mjj # 0), which is the maximum number of non-zeros per column, eefas the
maximum ‘degree’ oM;
(0) IM[lLy = max<p X j<p IMij;
(c) Spectral norm{M|lz = 11(M).
(iii) Schatten:
(a) Nuclear norm oM, here defined as the sum of the eigenvalued ofiM || = Zi”zl Ai(M).

2.2. Model setup

Let us suppose that the population covariance matrix of ata i$ the sum of a low rank and a sparse component.
A p-dimensional random vectaris said to have a low rank plus sparse structure if its comaganatrixX* satisfies
relationship {):

Y=L"+§5,
where:
1. L* is a positive semidefinite symmetnicx p matrix with at most rank < p;

2. S is a positive definitgp x p sparse matrix with at most < p(p — 1)/2 non-zero f-diagonal elements and
maximum degres'.

According to the spectral theorem, we can wtite= U DU = BB, whereB = U D¥?, U is ap x r semi-
orthogonal matrixD is ar x r diagonal matrix, withD;; > O, j € {1,...,r}. Let us suppose that thex 1 random
vectorx is generated according to the following model:

X = Bf +¢,

wheref is ar x 1 random vector with Ef = O, V(f) = I, ande is ap x 1 random vector with & = 0,,V(e) = S".
The random vectox is thus assumed to be zero mean, without loss of generalien@ sampley, k € {1, ..., n},
X, = (n- 1)1 3R, xikxg is thep x p sample covariance matrix.

It is easy to observe thatfollows a low rank plus sparse structure:

E(xT) = E{(Bf + €)(Bf + )T} = E@TTfB) + E(Bfe") + E(BTfT) + E(ce’) =BBT +S' = L" +S =¥’

under the usual assumption that do¥f = E(fe”) = Orxp (r x p null matrix). Assumingp fixed, it is also useful to
recall that¥,, is asymptotically strongly consistent (sd&]). If we assume a normal distribution fbande, thenX,

is unbiased for any fixed (see P]), and the matridV := X, — (L*+ S") is distributed as a re-centred Wishart random
matrix. In any case, the normality assumption is not esskfati our setting.
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2.3. Nuclear norm plug Inorm heuristics

Under the assumption i), the need arises to develop a method that can consistetitlyate the covariance ma-
trix X* as well as determine the sparsity pattersofnd the spikiness pattern of the eigenvaluds‘afimultaneously.
Such an estimation problem is stated as

1
min Sl +S) - Zallg +yrank() + pliSloorr, (3)

where||S|looff = Zi”:’ll Z?ZM ]l(S’{j # 0) (because the diagonal 8fis preserved as inlp]). This is a combinatorial
problem, which is known to be NP-hard, since both ranlkind||S|lo ¢ are non-convex.

The tightest convex relaxation of probleB),(as shown in17], is
1
min S +S) = Zallg + ALl + plISlor, 4)

wherey andp are non-negative threshold parameters, [{ildo¢ = Zipz_ll Zf:M |S*j|. The use of nuclear norm for
covariance matrix estimation was introducedis][ The feasible set of4] is the set of allp x p symmetric positive
definite matrice$ and allp x p symmetric positive semi-definite matrices

The objective 4) is minimized according to an alternate thresholding atgor, composed of a singular value
thresholding (SVT, T]) and a soft thresholding steft7]. In order to speed up convergence, Nesterov’s acceleratio
scheme for composite gradient mapping minimization proll@8] is applied. Details of the algorithm are reported
in the supplementary material, Sectian

From a statistical viewpoint4] is a penalized least squares heuristics, composed of atereast squares term
(0.5](L + S) — Znll2) and a non-smooth composite penalyil(l. + pllSl10tf). The choice of 4) allows to lower
the condition number of the estimates and the parametee shaensionality simultaneously. In principlefférent
losses could be used, like Stein's od&][ However, the classical Frobenius loss does not requirmality and is
computationally appealing.

From an algebraic viewpoint4) is an algebraic matrix variety recovery problem. In theartance matrix setting
described in equatiori), matriced * andS* are assumed to come from the following sets of matrices:

B(r) = {LeRPP|L =UDUT,U e R™ semi- orthogonalD € R diagona), (5)
A9 {S e RP*P | |supportE)| < s}. (6)

B(r) is the variety of matrices with at most rank#(s) is the variety of (element-wise) sparse matrices with atrao
non-zero elements, where supp8ytis the orthogonal complement kér(S) and|support§)| denotes its dimension.

In [11], a notion of rank-sparsity incoherence is developed. dkjgressed as an uncertainty principle between the
sparsity pattern of a matrix and its r@@lumn space. This notion has been introduced bedausannot be identified
if it is nearly sparse, an8* cannot be identified if it is nearly low rank. Denoting BYL*) andQ(S") the tangent
spaces td(r) andA(s), respectively, the following rank-sparsity incohereneeasures betwedr(L*) andQ(S*) are
defined:

&T(L7)
H(Q(S))

IMlo, (7)
IM]l2. (8

max
MeT(L*).IM[l2<1

max
MeQ(S),IMln<1

Quantities ) and @) control the identifiability ofL* andS* in (1). In fact, a necessary andffaient condition for
identifiability is thatT (L*) andQ(S*) have a transverse intersection, i.e. they intersect drtlyesorigin. In [L1], it is
proved thafl (L*) andQ(S*) are transverse if and only if) and @) are small. Therefore, the produdt2(S*))&(T(L*))
is a rank-sparsity incoherence measure and bounding italetioth for identification and recovery.
The described approach was first used for deriving the LORSithator in P7]. Therein, the reference matrix
class imposed t&* is
I'() = {Z' e RPP: 0< e < Ai(Z) < gt i€ {L,....p}}
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which is the class of positive definite matrices having umifly bounded eigenvalues. In the context so far described,
Luo (cf. [27]) proves thal. andS can be identified and recovered with bounded error, and thleaL as well as
the sparsity pattern @& are exactly recovered.

The proof reproduces a similar proof i]] but neglects a fundamental assumption on which that pafies, i.e.
that maxep Xj<p =, |9 = o(p) for someqg € [0, 1[. As stated in the supplementary material (Sectipithis can happen
only if L* is sparse, which contradicts rank-sparsity incoherehes, making the model ir2[7] not identifiable.

2.4. Contribution of the paper

In this article, we propose an estimation algorithm Xrunder the assumption iri) based on a nuclear norm
plusl; norm penalization, as ir2[/]; however, contrary to47], we derive the properties of the estimator under the
sparsity assumption o (see Assumptiod) and not onz*. This allows to avoid the non-identifiability trap and
to enormously enlarge the set of recoverable pairs of negtrigVe explicitly control the magnitude 6fT (L *)) and
1(Q(S)) with respect tgp. More importantly, we allow for the generalized spikinefthe eigenvalues df * (cf. Yu
and Samworth,T5], p. 656), thus modelling a large variety of real situatiotrs addition, we overcome the strict
assumptiorp < n by linking n to the degree of sparsity & . We call the resulting estimator ALCE (ALgebraic
Covariance Estimator). In the end, since the singular védtesholding procedure has a significantly strong impact
on sample eigenvalues whenis large and the latent eigenvalues are spiked, we apply shunkage step to the
estimates of the latent eigenvalues. We name the resulsittgator UNALCE (UNshrunk ALCE). We prove that
UNALCE is both algebraically and parametrically consistafithin the class of algebraically consistent estimates,
it minimizes the overall loss in Frobenius norm, given thédisample and the threshold paijr, p) in (4).

3. The ALgebraic Covariance Estimator (ALCE)

3.1. Component estimates and consistency

Let us suppose that the eigenvaluesdfare intermediately spiked. This amounts to assume the gkrest
spikiness of latent eigenvalues in the sense of Yu and Sath\{fég], p. 656):
Assumption 1. All the eigenvalues of thex r matrix p~*B™ B are bounded away frofdfor all p anda € [0, 1].

If pis finite, Assumptiorl is equivalent to state that

/ll T(Z*) > 60 p(t» (9)

.....

Ars1 p(Z") < 6.P% (20)

.....

for somes, > 0. We aim to study the properties of the covariance estimatégined by heuristics4f under the
generalized spikiness assumption in a non-asymptotiexant
In order to reach this goal, we need to impose the followirsgagptions in our finite sample context.

Assumption 2. There existk ks > 0, 6 € [0, 0.5], such tha#(T(L*)) = ,/r/(kﬁ p2), n(S)) = ksp’, ks/k. < 1/54
with ¢ < a.

Assumption 3. There exist{,r, > 0and by, by > Osuch that, foranyt 0, k< n,i<r, j < p:
Pr(fi| > s) < exp(by/t), Pr(ej| > s) < exp(ho/t).

Assumption 4. There exist ¢ Cp, C3,62,0, > 0, ¢’ € [0,6 + 0.5] such thati(S")min > €1, mMin; j<p var(exejx) > C2
foranyk<n,ij < p, 5 <csforanyi< p,s = maxe Xjcp I(S; = 0) < 62p° with 62 > ks and [ISll1y =

MaX<p Xj<p S| < 65p°
Assumption 5. There exisbs, ; > 0 such that r= 63In p and n> 6,p*%.

Under those assumptions, we prove the following Thedtevhich provides a hon-asymptotic consistency result,
particularly useful wherp is not that large and < 1. In fact, in that case, principal components are far from
convergence, and therefore, POET approach becomes sulabpti
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Theorem 1. Let T = T(L*) andQ = Q(S") be the tangent spaces t6)(and ©), respectively. Suppose that As-
sumptionsl-5 hold. Definey = (1/4(T))(p%/ vn) andp = ¥, where&(T) has been defined i), o € [0, 1],

v € [94(T), 1/(6u(2))], andu(Q) has been defined ir8). In addition, suppose that the minimum eigenvalué of
(A:(L*)) is greater than Gy /£2(T). Then, with probability. —O(1/ min(p, n)2), the pair(L, S) minimizing @) recovers
the rank ofL* (rank() = rank(*)). Moreover, the matrix losses for each component are bodiaddollows:

IC-Ll2<Cy,  1I5-S'llo < Cp.
We call ALCE (ALgebraic Covariance Estimator) the estimabX" in (2) obtained by estimating” by L and
S*by S . . .
Zaice = Laice + Salce. (11)
Theoreml states that, under all the prescribed assumptions, thedadshe pair I i ce, SaLce) obtained by min-
imizing (4) with respect to the true_(, S*) are bounded, and the rank lof is exactly recovered, provided that the

minimum latent eigenvalue is large enough, as well as thenyidg matrix varietieS andQ are transverse enough.
Exploiting the consistency norm of(], i.e.

ISarce = S'lls :
g, = max %,”LALCE_ L7z,

it follows from Theoremil that

0,(Sarce = S, Laice - L") < C?%I') %
with probability 1— O(1/ min(p, n)?).

In the proof of Theoren, Assumptior? is needed in order to ensure consistency and rank recovefgct, an
identifiability condition for problem4), as shown in Theorer, is &(T(L*))u(Q(S")) < 1/54. According to 11],
Vr/p < ET(L") < 1and ming, 3, 1(S; # 0) < u(Q(S")) < Maxep j<p 1(S]; # 0). It follows thatg(T(L*)) = 1
with § = 0 in the worst case scenario afd@ (L*)) = M with § = 0.5 in the best case scenario, under the condition
ks/k. < 1/54. Such assumption is essential to ensure the parametriistency of the estimated pair in terms of
matrix norms and the recovery of the underlying algebraitrimearieties under modepj (cf. [10]). The assumption
§ < a is required in order to ensure that conditio®% &nd (L0) hold under the condition,(L*) > Cay/&%(T) of
Theoreml and to rule out the degenerate cése .

Assumption3 is necessary to ensure that large deviation theory can Hedppfy, €, andfiey foralli <,

j £ p, andk < n(cf. [15]). Assumptiond is necessary in order to apply the resultssjfdn the sparse component
which prescribe tha8* must be well conditioned with uniformly bounded diagonaneénts. We stress that the
maximum degres” must be bounded to ensure parametric and algebraic camgisteecause Assumpti@ensures
u(Q(S)) = ksp?® with § < 0.5. This condition is dferent from the corresponding one b5, which prescribes
maxspzjsp|8fj|q < €4,q€[0,1],c4 > 0.

In general, we can allow faiS'[l < [IS'll1y < 6,p”, [IS'Il1 < PISll1y < 65p™*, and[IS*llo = p+S < pS < 62p™*.

In addition, we can also writ§S*|l> < [|S'llov = 52p° (as shown in§]). The assumptiod’ < § + 0.5 is needed to
respect the inequalityS'|l1y < /PlIS'll2. We stress that the assumpti®r: « is enough to ensurS'|l, = o(p) as
p diverges, thus also guaranteeing POET consistency foregiren the true rank (see Yu and Samworttg][ p.
656).

Assumption5 prescribes that the latent rank is infinitesimal with respe@ and the sample size is possibly
smaller tharp, but not smaller thad,p'>. It leads to overcoming the restrictive conditiprx n, sinces < 0.5. The
need for it arises in order to ensure coherence with Asswomgtiand4.

In Corollary1, we prove the asymptotic consistency of ALCE estimates.

Corollary 1. Suppose that Assumptioh hold. If the limitlim,_,., min,(p2**%,n,) = co with the path-wise restric-

v

tionlim, . p2**%/n, = 0 holds, therdim,_,, ¥, = 0for ¢, = p2/(&(T) yN,).

Corollary 1 shows howp andn may cause the probabilistic error to annihilate in the linkibr the terminology
about limit sequences, se8][ Moreover,,/p®*® — 0 as lim_. min,(p2**%,n,) = oo, thus establishing the
asymptotic consistency in relative terms, resembling essing of dimensionality’ described ih4].

7
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In order to prove the recovery of the residual sparsity pattee add to the previous ones the following assump-
tion.

Assumption 6. 26 < a < 26 + 6’ and0 < (Cz6)/(kLda) < &".
We can then prove Theoren

Theorem 2. Suppose that all the assumptions of Theofehold. If the minimum absolute value of the non-zero
off-diagonal entries 08", Sminot1, is greater thar(Csy)/u(€2) and Assumptios holds, then the matri$ minimizing
(4) exactly recovers the sparsity pattern®fwith probability 1 — O(1/ min(p, n)?) (sign(S) = sign(S")).

Theorem2 states that the sparsity patternSifis also recovered if the minimum absolute non-zeffediagonal
entry of S* is large enough and Assumptiérholds. Consequently, we can state that the condition on theammam
latent eigenvalue and the assumptdon « are more important than the condition on the minimum absalon-zero
off-diagonal entry. In fact, the former are strictly neces$enty for proving parametric consistency and rank recovery.
The latter is necessary only for proving sparsity patteoovery, as an additional result, given that the former hold.
The only consequence of its violation is that some non-zieroents ofS* are not recovered.

Assumption6 is necessary for the following reason. Since the productéetn the minimum absolute non-
zero df-diagonal entry ofS", Sminotf, and the maximum degree &, s, cannot overcome the; norm of S,
MaX%<p X j<p |S(J. |, it follows from the conditiorSpminots > (Cay)/u(Q2) of Theorem?2 and Assumptiond that

Cay . e
0 < msl < Smlf‘LOffS, < rrl%x;) |S*]| = 62p : (12)

Inequality (L2), under Assumptions, 4, ands, boils down to C362p*2)/(kLda) < 55p° and 0< (Czd2p™ %) /(K a),
which hold if and only if Assumptio® is satisfied.

We stress that the conditiong(L*) > (Co)/£(T) andSminott > (Cav)/u(Q) under Assumption®ands become
A (L*) > Cop® andSinort > C3p® 2, respectively. The latter in turn leads tt2}, which holds under Assumption
6. Therefore, the resultant model setting is fully consisteith Assumptionsl and4.

A representative selection of the latent eigenvalue antsigpaatterns admitted under the described conditions
is reported in the supplementary material, Secor\We emphasize that, e.g. the algebraic consistency noionge
forces the latent eigenvalues to scaleptgorovided that the maximum degree of the residual compoisesttaled
accordingly. In general, it is necessary that the minimutaniaeigenvalue and absolute non-zero residual entry
should be large enough to ensure algebraic consistencthéytan both depend qot, with a potentially smaller
than 1. In particular, if we increase both A;(L*) and Sminott must be larger to ensure identifiability. The same
happens ifp increases. On the contraryriincreases, thebh* can have less spiked eigenvalues, whilgiiicreases,
thenSninett is allowed to be smaller.

3.2. Error bounds foSa.ce andEaice in spectral and Frobenius norm

Wit[\in the same framgwork, we can complete our analysis thighbounds foBaLcE.
From||Saice — Sll2 < S|ISatce — S'lle, We Obtain

ISaLce — S'll2 < CSE(T)Y = ¢s (13)
From||Saice - S'llF < VPSIISaLce — S'lles, We obtain
ISatce - S'lF < C VPSEM)y. (14)

SaLce is positive definite if and only iftp(S") > ¢s. Bounds (3) and (L4) hold with probability 1— O(1/ min(p, n)?).
For the inverse 08aLce, Si g, the same bounds hold with probability-10(1/ min(p, n)?):

ISatce — S U < CSEMW =ds,  ISatce — S IF < C/PSE(T)y.

if and only if 1,(S") > 2¢s.



285

290

295

300

305

310

315

320

From Theoreni, we can derive with probability 2 O(1/ min(p, n)2) the following bounds foEa ce:
IEaLce — E'll2 < C(SET) + 1)y = ¢, IZaLce — Z7lle < C(+/pSET) + VNy.

TaLce is positive definite if and only iflo(X*) > ¢. The same bounds hold for the inverse covariance estiﬁﬁ@eE
with probability 1— O(1/ min(p, n)?):

IEatce —E U < CEEM) + W = ¢, IEatce - 7 < C(\/pSET) + vy

given that1,(X*) > 2¢.

Overall, ALCE estimator allows to recover a relaxed spikigee-structure, thus overcoming the conditjpg n,
even using the sample covariance matrix as estimation iftpetratiop/n directly impacts the error bound). Our
bounds are in absolute norms and reflect the underlying dexfrepikinessr. Our theory relies on the probabilistic
convergence of the sample covariance matrix under the gggmthat the data follow an approximate factor model
with a sparse residual. If all the assumptions of Theorkarsd2 and Corollaryl hold with 15(S*) > ¢s andAp(Z*) >
¢, then both algebraic and parametric consistency are ethgutke sense of Definitionsand?2, respectively.

Compared to LOREC, ALCE minimizes the same heuristics beoisistent for a much wider range of real situ-
ations, including high-dimensional settings* n). However, they both share a problem related to input eigieies:
aspincreases and the latent eigenvalues are spiked, the nnolea heuristics may lead to eigenvalue over-shrinkage,
as shown in the following Section. For this reason, we furiimprove ALCE by un-shrinking the estimates of latent
eigenvalues.

4. The UNALCE estimator: A re-optimized ALCE solution

4.1. Motivation

As previously mentioned, whepis large and the latent eigenvalues are spiked, the singalae thresholding
procedure may lead to eigenvalue over-shrinkage, becaubati case, the topeigenvalues ok, estimate increas-
ingly better the latent eigenvaluesscreases. Therefore, shrinking the togample eigenvalues leads to too small
estimates of the latent eigenvalues, and this also indyitgfects the residual and overall estimate.

Let us define\| = Laice — L*As = Saice — S, As = Zaice — . Another key aspect of Theorelris that the
two losses irL* andS" are bounded separately. This fact results in a negaffeeteon the overall performance of
TALCE, represented by the lo§as||2, sincel|As||2 is simply derived as a function ¢i\ ||, and||As||; according to the
triangle inequalityj|As|l2 < ||ALllz + ||Asll2- Therefore, the need arises to also correct for this drakybaeshaping
L aLcE, as the ALCE solution is somehow sub-optimal for the wholeaciance matrix.

We approach these issues by a finite-sample analysis, whidd be referred to as a re-optimized least squares
method. We refer to the usual objective functidhwith ||S||1 = [|S||10ff = Z Zp_|+1|si |, which is thel; norm of
Sexcluding the diagonal entries, consistently with POETrapph. We deflnG’ pre andere as the last updates in the
gradient step of the minimization algorithm &f)((see Sectior? in the supplementary materialy. e andZ pre are
the two matrices we condition upon in order to derive ourdisiample re-optimized estimates.

We note some analogies between our approach and the edtmietximum likelihood (REML) method as ex-
plained in R2, 29]. More precisely, the minimization of] acts as the ML estimator of fixedfects, while our
re-optimized least squares step acts as the estimatoriahearcomponents.

Let us define the recovered ranla(rank(l: aLce) and the recovered number of residual non-zerﬂ$s”upportéALCE)|.
In the second step, we exploit the consistency propertidmﬂarieties@(f) and.A(8) recovered in the first step, de-
fined as

B(7)
A

{L € RPP|L = UaceDU}, g, D € R™ diagonal, (15)
{S e RP*P | |supportf)| < &} (16)

In particular, based on Theorerhisand?2, we rely on the parametric guaranted¢teced by@(f) and A9, and we
condition upon the recovered latent rank and residéatliagonal sparsity pattern. In this way, conditioning oa th
first step, we can focus on re-optimizing our pair of estimateimprove the overall fitting as much as possible,
restricting our search intB(f) and.A(3).
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4.2. Optimality

The recovered varieti&g(f) andA(d) ensure the algebraic consistency 8f.(ce, LaLce) under all the assump-
tions of Theorem4 and2. One might look for the solution (say {ew Snew)) Of the problem

min _ STL(L,S) = [I(Zn - (L + 912, (17)
LeB(),SeAS)
where STL(, S) stands foilSample Total LossThe sample covariance matrix follows the molgl= L* + S* + W,
given a sample op—dimensional data vectosg, k € {1,...,n}. Our problem essentially is as follows: which pair
Le é(f), S € A(9) satisfying algebraic consistency shows the best appratiam properties oE,?
We prove the following result.

Theorem 3. Define the spectral decompositioriof ce aSUALCEIﬁALCEUALCE andL new = UaLce(Darce+¥/1) U ce
Wherezp > 0is any prescribed threshold parameter. Deffig., such that its g-diagonal elements are the same as
SALCE, andZyew such that its diagonal elements are the samEASE, respectively. In addition, sei]ag(SNeW)
diag&aLce) — diag new). Then, supposing that all the assumptions of Theotearsl 2 hold, the minimum

min_ |IZ,- (L +9)2
LeB(F),.ScA(3)

conditioning onY yre andZ yr is achieved with probabilit — O(1/ min(p, n)?) if and only ifL = L newandS = Syew

TheorenB essentially states that the sample total Ids3 (s minimized if we un-shrink the e|genvaluesL0/iLCE
(re-adding the threshold). We call the resulting overall estimat@ies = Lnew + Snvew UNALCE (UNshrunk
ALgebraic Covariance Estimator). We stress the importafic®nditioning onY pre andZ pre. SinceY pre andZ pre
are the matrices minimizing.B|X, — (L + S)||2 and yIL |l + plIS|l1 jointly considered (seed]), our finite-sample
re-optimization step aims to re-compute rifiiy — (L + S)||2, once the ffect of the composite penaldzylLH* + plISll1
has been removed.

As shown inAppendix A problem (7) can be decomposed into two problems: one involdingnd the other
involving S(see A.8)). The problemirL is solved by the covariance matrix formed by the tgpincipal components
of Y pre, Which belongs by construction IB(r) and is equal tdJa ce(DaLce + ¥l r)UALCE = Lunacce. The problem
in S collapses to the problem in under the prescribed assumptions on tiiedtagonal elements BunaLce (which
ensureSUNALCE € ﬁ(é)) and on the diagonal elementsileALCE. The new estimate of the diagonal®fis simply
the diference between the diagonal of the origiBial ce and that of the newly computdtnace. Note that our
re-optimization step depends entirely Bg asY pre andere are functions ok,,.

Fig. 1 reports the proportion of latent varianée= (3. L.|)/(Z ):”) estimated by UNALCE and ALCE for
three selected latent eigenvalue threshgldsver twenty sparS|ty thresholqbs We note tha#) gets systematically
closer to the tru@ = 0.7 for )iUNALCE with respect t(ﬁALCE for all threshold pairs, and the performanc#elience is
proportional tay. The sample used is drawn from our Setting 1 (see the supptenyematerial, Sectio for more
details).

4.3. Consequences
Four consequences of Theor8mare reported in Corollarg.

Corollary 2. Under the assumptions of Theorénthe djferences between the total losses from the target in the
spectral norm oI:ALCE and L ynacce and of Sa ce and Synacce are strictly positive and bounded with probability
1-0(1/ min(p, n)2) byy. The djferences between the total losses from the target in the Riab@orm of_ s ce and
LunaLce and ofSa ce andSynacce are strictly positive and bounded with probability- O(1/ min(p, n)2) by vri.

Two further relevant consequences of Theofeane reported in Corollar.

Corollary 3. Under the assumptions of Theor&nthe djference between the sample total losses in the spectral norm
of ZaLce and Zynacce iS strictly positive and bounded with probability— O(1/ min(p, n)?) by . The djference
between the sample total losses in the Frobenius norBunofe and ZynaLce is strictly positive and bounded with

probability 1 — O(1/ min(p, n)?) by vry.
10
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Fig. 1 This figure shows the proportion of latent variamoestimated by UNALCE (solid line) and ALCE (dashed line) inrespondence to three
selected values of latent eigenvalue threshgldeross twenty values of sparsity threshqidsThe reference valué = 0.7 is represented as a
dotted line. The used sample is drawn from Setting 1 (seedBetin the supplementary material).

The following result compares the losseSfyaLce anda cg from the targek*.

Theorem 4. Under the assumptions of Theor@nthe dfference between the total losses from the takjein the
spectral norm oBaLce andEyunaLcE IS strictly positive and bounded with probability- O(1/ min(p, n)?) byz/7. The
difference between the total losses from the target in the Fiaberorm ofEaLce and EunaLce iS strictly positive
and bounded with probability — O(1/ min(p, n)2) by vry.

The rationale of the reported claims is as follows. We actepay the price of a non-optimal solution in terms
of nuclear norm (we allow to increagg||. by ry), but we have a better fitting performance for the whole davere
matrix, decrementing the squared Frobenius loss by a quantity bounded byj2. Thel; norm ofS excluding the
dlagonal,||S||1,off, is unvaried, while the normiS|l; (including the diagonal) is decreased by a quantity bourtjed
Vi,

In Fig. 2 and3, we report the dferences between the sample total losses and the total lok8¢<E and
UNALCE computed over the same sample of Fig.for three selected latent eigenvalue threshalds/er twenty
sparsity thresholds. We note that the gain is relevant for UNALCE over all thrddhmairs, is proportional tgr, and
never overcomes its theoretical maximuwhy (in Fig. 2 and3 r = 4). We stress that the gain is positive for each
prescribed threshold paig(p), satisfying the conditions of Theoreinwhile the overall performance also depends
on the threshold selection criterion (see Secihn

A consequence of Corollariesand 3 and Theoremd is that we can reduce the numerical instability of our
estimates as much as possible in terms of the expected sarafrestimated eigenvalues. In fact, defining =
E(tr(L)/p), us = E(tr(S)/p), andux = E(tr(X)/p) and recalling the following equalities according 8]

1_[ s 1¢ -
—pE{ZuU - p)? | zn} =3 D = )P + EQIC - LRI,
i=1 i=1

1 (s 1 .
BE{Z(ASJ ~ us)? | zn} =3 > (si - us)? + E(IS - S'IPIE,),
i=1 i=1

11
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Fig. 2 This figure shows the sample total Iosseég&ALCE (solid line) andiALCE (dashed line) in one sample drawn from Setting 1 (see Section
2 in the supplementary material) in correspondence to thetected values of latent eigenvalue threshaldacross twenty values of sparsity
thresholdgp.

1_[& - 19 -
oE {Z(Az,i —ps)? | zn} =3 D (s = ) + EQE - Z1PZ,),
i=1 i=1

we note that, under the assumptions of Theogetime UNALCE estimated eigenvalues are maximally concesdrat
with probability 1-O(1/ min(p, n)?), becausé ynaLce = ming i) (1L =L *IP1Zn), SUNALCE = Ming, (s (1S— SPIEn),
LUNALCE = MiNg_| ;s ed)seaeE — X I21Z,), given the finite sample and a threshold pairf) satisfying the
conditions of Theoren.

The following Corollary extends our framework to the perfiance of the inverse covariance estimBg ,, cg-

Corollary 4. Under the assumptions of Theorénthe dfference between the total losses from the target in the
spectral norm oEALCE and):LJNALCE is strictly positive and bounded with probab|l[ty— O(l/ min(p, n)?) by y. The

difference between the total losses from the target in the Fioberorm of£,! .. and £k 5 ¢ is strictly positive
and bounded with probability — O(1/ min(p, n)2) by vry.

Finally, we study how the necessary conditions to ensur@aséive definiteness of UNALCE estimates evolve
with respect to the ALCE ones. The following Corollary holds

Corollary 5. LunaLce is positive semi- defmlteﬂfr(L ) > Cop*—ir. SunaLce is positive definite ip(S) > Ps+IY/p.
LUNALCE IS positive definite ift p(X*) > ¢ + r/p.

Theoremd, 2, and3 and Corollaried and5 ensure the algebraic and parametric consistency of thélpain.ce, SunaLce)

in the sense of Definitionkand?2.

5. A new model selection criterion:MC

In empirical applications, the selection of threshaldandp in equation 4) requires a model selection criterion
consistent with the described estimation method and thsisi@mcy norng, (recall that

12
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Fig. 3 This figure shows the total lossesfnaLCE (solid line) andEaLce (dashed line) drawn from Setting 1 (see Secfan the supplementary
material) in correspondence to three selected valuesasftlaigenvalue thresholdsacross twenty values of sparsity threshqids

g, = max(|S- S'll«/7. lIL — L*[l2)). Our aim is to detect the optimal threshold pair 4) with respect to the spiki-
nesgsparsity trade-f. In order to exploiig, with model selection purposes, we need to make the two teompa-
rable, i.e. the need of rescaling both argumentp,airises.

First, we note that if all the estimated latent eigenvaluesgual, then we havi ||, = f|IL|l.. As the condition
number of_ increases, we havéiC ||, > ||L|].. Consequently, the quant|tyL Il acts as a penalization term against the
presence of too small eigenvalues. Analogousl&imf diagonal, it hoId$|S||m ||S||1V As the number of non-zeros
increases, it holdl§||1\, > [ISlle. Therefore, the quantllusnl\, acts as a penalization term against the presence of too
many non-zeros.

In order to compare the magnitude of the two quantities, waldithe former by the trace df, estimated by
ftraceE,), and the latter by the trace 6f estimated by (% 8)trace,). Our maximum criterioMC can be therefore
defined as follows: . .

MC(y. p) = max{rlll:llz’ |IS|I1,VA }
0 y(1-96)
wherey = p/y is the ratio between the sparsity and the latent eigenvhhestiold.

MC criterion is by definition mainly intended to catch the projmm of variance explained by the factors. For
this reason, it tends to choose quite sparse solutions watimall number of non-zeros and a small proportion of
absolute residual covariance, unless the non-zero eofr&are prominent, as Theorehprescribes. Th#1C method
performs considerably better than the usual cross-vadidasingH-fold Frobenius loss (cf.47]). In fact, minimizing
a loss based on a sample approximation such as the Frobemwcaoses the parameteio be significantly shrunk.
The threshold setting which shows a minimum F€ criterion (given that the estimaiis positive definite) is the
best in terms of composite penalty, considering the lamatrhnk and sparse structure simultaneously.

Since we applyMC criterion to choose thresholds both for UNALCE and ALCE, weserve that the overall
performance of the two methods is very similar, even if #lithargin in favour of UNALCE is always present (see
Section2.2in the supplementary material for more details).

(18)

13
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Table 1

Supervisory data: this table reports the main resultS@fa ce and ZpoeT estimated on a selection of 382 supervisory indicatorsrmedeto
365 Euro Area banks with reference date Q4,2014. In paaticlls the latent ranks is the number of recoveredfediagonal non-zeros i6, 7s

is the percentage of recovered non-zeros over the numbef-dfagional elements i, 6 = (1002ip=1Lii)/(Zip=l Yii) is the percentage of latent
variance,p§ = (1oozipzlzj.p:i+l |AS”-|)/(ZFZIZJP:i+1 IZ;j1) is the percentage of absolute residual covariafiBe; Zqllr is the sample total loss,
condZ) = /lmax(ﬁ)[/lmin()i) is the condition number of the overall estimatendS) = Amax(S)/Amin(S) is the condition number of the sparse
estimate, andondL) = Amax(L)/Amin(L) is the condition number of the low rank estimate.

Supervisory data UNALCE POET

f 6 6

S 328 404

7t 0.45 056

0 3247 6123

P 16.87 161

IZ - Znlle 0.0337 00645
condX) 6.35e+ 15 668e+15
condd) 2.78e+15 1lle+15
condLl) 3.1335 25625

6. A Euro Area banking data example

This Section provides a real example on the performance &TP&hd UNALCE based on a selection of Euro
Area banking data. We acknowledge the assistance of thepEanoCentral Bank, where one of the authors spent
a semester as a PhD trainee, in providing access to highbHawnking data. Here, we use the covariance matrix
computed on a selection of balance sheet indicators reltdithe last quarter of 2014 for some of the most relevant
Euro Area banks. The overall number of banks (our samplé sine= 365. These indicators are the ones needed for
supervisory reporting, and they include capital and finanariables.

The chosen raw variables were rescaled to the total assatbfrnk. Then, a screening based on the importance
of each variable, intended as the absolute amount of cimelaith all the other variables, was performed in order to
remove identities. The resulting very sparse data mattitainsp = 382 variables; here, we are in the typigab n
case, where the sample covariance matrix is completefjeictive. We plot sample eigenvalues in the left panel of
Fig. 4.

UNALCE estimation method selects a solution with a latenkraqual tor"= 6. The number of surviving non-
zeros in the sparse componentsis= "328, which corresponds to a percentage="0.45% of 72771 &-diagonal
elements. Conditioning properties are inevitably very.bdwl order to obtain a POET estimate, we exploit the
algebraic consistency &fynaLce, Setting the rank to = 6, and we perform cross-validation for threshold selection
The number of non-zeros estimated by POET is 404 (ts = 0.56%). The results of both methods are reported in
Tablel.

Apparently, one could argue that POET estimate is betteregtimated percentage of latent variafis61.23%,
and the percentage of absolute residual covariggde 1.61%. On the contrary, UNALCE method outputs=
3247% andoz = 16.87%. A relevant question thus arises: how much is the truegp¢age of variance explained
by the factors? In fact, such a large percentage of laternves, which depends on the use of the first six principal
components, causes the absolute residual covariancenpegedo be very low. Therefore, POET procedure gaves
priori preference to the low rank part. This pattern does not chenge if we choose a lower value for the rank.

On the contrary, the UNALCE estimate, which depends on aldestiep iterative thresholding procedure, requires
a larger magnitude of the non-zero elements in the spars@auant. In fact, the percentage of lost covariance
during the procedure is here.39%. Consequently, via rafdparsity detection, UNALCE shows better approximation
properties compared to POET; its Sample Total Loss is sirisilver than that of POET (837 VS 0645).

For UNALCE, the covariance structure appears so compleéathelevant percentage of absolute residual covari-
ance is present. This allows us to explore the importancandbles, i.e. to explore which variables have the largest
systemic power (the most relevant communality) or the lstrgggosyncrasy (the most relevant residual variance).

In the right panel of Fig4 , we plot in descending order the degree of each variablenegtpect to the estimated
residual componerﬁUNALCE. The degree of the variablewith respect to gp—dimensional covariance matriM is

14
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Table 2
Supervisory data: this table reports the top six variabjeedtimated degree with respect3gnaLce, defined for variablé ane%uNAch,i =

ZJP:l ]l(SJNALcEi,- +0)iefl,..., 382. This measure counts how many variables are related tdolafithat their estimated residual covariance
is not null. Therefore, the reported variables are the mashected with all the others.

Supervisory indicator Estimated degree
Financial assets designated at fair value through profisy | 34

Central banks, Impaired assets [gross carrying amount] 25

Credit institutions, Collective allowances for incurrad hot reported losses 20

Other financial corporations, Collective allowances fauimed but not reported losses 19

Cash, Cash balances at central banks and other demandtdeposi 16

Other financial corporations, Specific allowances for fin@rassets, collectively estimated 16

defined as ]

degs; = 1(M;; #0). (19)
=1

We observe that only 62 out of 382 variables have at least onezaro residual covariance with other variables.

35

25 1

20 q

10 J
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Fig. 4 Supervisory data: the left panel of this figure shows the tykargest eigenvalues of the sample covariance matrix cteapon a selection
of 382 supervisory indicators referred to 365 Euro Area banikh reference date Q4,2014. The right panel of this figuoéspn descending
order the estimated degree of each supervisory indicatbrrespect t&ynaLce, defined for variable aneQSUNALCE,i = Z]P=l 1(SunaLceij # 0),
iefl,..., 382.

In Table2, we report the top six variables by estimated degree. Thasables are related to the largest number
of other variables. They are mainly credit-based indicatéinancial assets through profit and loss, impaired assets,
allowances to credit institutions and non-financial cogpions, and cash.

In Table3, we report the top five variables by estimated communaléfined for variablé as

Conaccer
comm = M, ie{l,...,382. (20)
UNALCEii

The results are very meaningful; the most systemic varsadite debt securities, loans and advances to households,
specific allowances for financial assets, and advances wvahnéchot loans to central banks. All these are fundamental
indicators for banking supervision because they reprdagnindicators for the assessment of bank performance.
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Table 3
Supervisory data: this table reports the top six variablgsestimated communality via UNALCE, defined for variakileas comm =
LunaLceii /ZunaLceii - Therefore, the reported variables have a strong exptanatiwer for banking supervision.

Supervisory indicator Estimated communality
Debt securities 0.8414
Households, Carrying amount 0.8210
Non-financial corporations, Specific allowances for finahassets 3110
Loans and advances, Specific allowances for financial ass#isctively estimated 0592
Advances that are not loans, Central banks 0.7439
Table 4

Supervisory data: this table reports the top six variablgsebtimated idiosyncrasy via UNALCE, defined for variabileas idioj =
SunaLceii /XunALceii - Therefore, the reported variables have a marginal exjpitampower for banking supervision.

Supervisory indicator Estimated idiosyncrasy
Credit card debt, Central banks .9995
Other collateralized loans, Other financial corporations .9986
Equity instruments, Central banks, Carrying amount .9901

Equity instruments, Other financial corporations, Camgyamount (0970
General governments, Carrying amount of unimpaired assets 0.9970

In Table4, we report the top five variables by estimated idiosyncrasfimned for variablé as

idio = —UNALCENL ie{l,...,382. (21)

XUNALCEii

We note that those indicators have a marginal power in thiaeagion of the common covariance structure and are
much less relevant for supervisory analysis than the pus\ive.

In conclusion, our UNALCE proceduredfers a more realistic view of the underlying covariance stmecof a
set of variables, allowing a larger part of covariance to xyg@aned by the residual sparse component compared to
POET.

7. Conclusions

In this work, we propose an estimator for large covarianceines which are assumed to be the sum of a low rank
and a sparse component. Estimation is performed by solviegu@arization problem where the objective function
is composed of a smooth Frobenius loss and a non-smooth cimpenalty, which is the sum of the nuclear norm
of the low rank component and thenorm of the sparse component. Our estimator is called UNA(QRshrunk
ALgebraic Covariance Estimator). UNALCE provides coreistrecovery of the low rank and the sparse component,
as well as of the overall covariance matrix, under a germdlassumption of spikiness of latent eigenvalues and
sparsity of the residual component. Thanks to the additi@main-shrinkage step of the estimated latent eigenvalues,
we can also improve numerical properties and minimize tlegadMoss given the finite sample and the threshold pair,
while preserving algebraic consistency. In addition, we @aercome the restrictive conditign< n.

Moreover, in this paper, we also compare UNALCE and POETh{fal Orthogonal complEment Thresholding,
see [19]), an asymptotic estimator which performs principal comgat analysis in order to recover the low rank
component and uses a thresholding algorithm to recovergaess component. Both estimators provide the usual
parametric consistency, while UNALCE also provides theshigic consistency of the estimate, i.e. the rank and
position of residual non-zeros are simultaneously reaxéy the solution algorithm. This automatic recovery is a
crucial advantage compared to POET; the latent rank, in faeutomatically selected and the sparsity pattern of the
residual component is recovered considerably better.

In particular, we prove that UNALCE cartectively recover the covariance matrix even in the presehspiked
eigenvalues with rat®(p), exactly as POET estimator does, allowinig be as small a®(p**’), where the maximum
number of non-zeros per row in the sparse component is piiopattoO(p®). Moreover, we prove that the recovery
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is actually d€fective even if the eigenvalues show an intermediate dedigglonessp®, « € [0, 1]. The resulting loss
is bounded accordingly tp®, and all latent eigenvalues are recovered under the assumdpt «. In this way, we
obtain a generalised estimator of large covariance matligdow rank plus sparse decomposition.

A real example of a set of Euro Area banking data shows thatamnlris particularly useful for mapping the
covariance structure among variables even in a large diomascontext. The variables with the largest systemic
power, i.e. the ones mostlyffacting the common covariance structure, can be identifiedyel as the variables
having the largest idiosyncratic power, that is, the onesatterized by the largest residual variance. In addittoa,
variables showing the largest idiosyncratic covarianegshe identified. Particular forms of the residual covaranc
pattern can thus be detected, if present.

Our research may provide a basis for possible future dewsops in many directions. In the time series context,
this procedure can be potentially extended to covariandexrestimation under dynamic factor models. Another
fruitful extension of our procedure is related to the spdatnatrix estimation context. Finally, this tool can be
potentially used in the Big data context, where both the disian and the sample size are very large. This poses
new computational and theoretical challenges, the salutfavhich is crucial in order to further extend the power of
statistical modelling and itsfectiveness in detecting patterns and underlying driversalfphenomena.

Appendix A. Proofs

Proof of Theorem 1

First, we note that the deterministic analysis needed tarerthe identifiability of the matrix varietie8(r) and
A(9) is directly inherited by 26]. In fact, Propositions 12, 13, and 14 iag may be directly applied to our setting,
provided that the assumpti@iT (L*))u(Q(S?)) < 1/54 and the conditiong, (L*) > Coyr/£%(T) andp = yy hold with
v € [94(T), 1/(6u(2))]. In that case, it descends from the mentioned Propmm'tibatgy(é— S, L - L*)is bounded,
L e T(L*),Se QS), and rank) = rank(L*).

We stress that the remaining assumptions of Thedteare not needed for this purpose. We also remark that
parametric and rank consistency are nidéeted even if Assumptiod and the conditiorSminott > (Cay)/u(Q) do
not hold. The only consequence of that is that some residwakeros are not recovered (ctd, Corollary D.4 and
D.6, and Proposition D.5 for more details).

Hence, we now focus on probabilistic analysis. Recallirgt &, = (n— 1)1 3¢, XkX, andxg = Bfy + e,
wherefy ande, k € {1, ..., n}, are respectively the vectors of factor scores and resdarnkach observation, we can
decompose the error matigq, = X, — X* in four components as follows (cfL§]):

EnZZn—Z*=61+f)2+f)3+f)4,

where:

n n n
ﬁl = (nlB Z fkf; - Ir] BT, 62 =nt Z (Ekq;r - S*) s ﬁg =n'B Z fk€|2—, ﬁ4 = ﬁg
k=1 k=1 k=1
Following [15], we note that

ID1ll2 <

IBB 2 < r
2

1¢ 1<
= Z fif ik — E(fifi) ‘— Z fifik — EFifi)|| p*
n k=1 n k=1 e

where the second inequality depends on standard matrix payperties and Assumptidn
Under Assumptior3, we can apply Lemma 4 irlf], which claims

1
< C%, (Al)

1 n
max,jr| Z fif ik — Efifik)
=1

with probability 1- O(1/n?). Consequently, we obtain

. 1 1
[ID1ll2 < Cr\/;p" <Cp" \/; (A.2)
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because Assumptidnprescribes that = 63In p and Inp = o(n).
Consider now the uniformity class of sparse matrice$jn [

{S* 1S <Cs, maX<p Z ]1(3[] # 0) < co(p), Vi}.

i=p

Therein, our Assumptiod holds withé = 1 (assuming) = 0). Therefore, it is possible to write

Anal(S') < Maviey )" (S # 0) < CaCo(p),
i<p

since the quantitgy(p) is constant with respect tp. Consequently, Lemma A.3 on p. 220 i8] can be applied,

which leads to the claim
n

1
- Z ekejk — E(ekeik)

k=1

Inp

max, j<p <C o (A.3)

that holds with probability - O(1/p?).
Under Assumptiong and4, however, the quantitgy(p) must be replaced bg(p’), § < 0.5. Consequently, with
respect top, the rate in A.3) is now too strong. Therefore, applying the recalled Lemm@iA [6], the following

claim holds with probability - O(1/p?):
<cp? \/?. (A.4)
Consequently, byA.4), we can derive
IB2ll2 < CpiIDzlls = CP/ \/@ =cp \/% (A5)

because Ip < n by Assumptiorb.

n

1
- Z ekejk — E(eeik)

k=1

[ID2]lo = MaXx j<p

To conclude, we study the random term mga;gp'nfl Zﬂzlfiqu’. We know from Lemma 3 in][9] that this term

has exponential-type tails, due to Assumpt&nrhus, we only need to study how its standard deviation @gin
our context. We consider the following Cauchy-Schwarz irsdity:

1 n
- Z fikejk
P

From (A.1), we know that maxy/V(f)) < C/«/n with probability 1— O(1/n?). From @A.4), we know that
max; /V(e;) < Cp~1/2{(In p)/n with probability 1— O(1/p?). It follows that with probability - O(1/ min(p, n)?),

it holds .
_ 1 sqy24/INP
1}: T _ =4+ (6-1)/2 4/ P
”n k:lkak o0 ¢ pl’\/;p n’

Exploiting Assumptiors, the bound then becom&y’/? Vn-1, sincer = §3In pand Inp < n.
Consequently, we obtain with probability-10(1/p?) the following claim

1 d T ) 1 3 @ 9 1
= > el || IBIl < C[ pf 2 |(p?) = Cpte [, (A.6)
k=1

becauséB|| = O(p*/?) by Assumptior.

< Cmax +/V(fiymax; \/V(e)).

maX<r j<p

n
< \/W”n’lsze[
k=1

ID3ll2 <

18



530

535

540

545

550

Putting @.2), (A.5), and @A.6) together, the following bound is proved with probability- 1D(1/ min(p, n)?)

IZn -l < C %
becausé < « from Assumptior2. In fact, if § > «, the condition of Theorerh A,(L*) > (Cay)/£%(T) would result
in 2;(L*) > C,p°, thus violating Assumptiot under Assumptios.

In other words, the bound\(7) meang|En|l; — 0 & p*/+vn — 0. Exploiting the basic propertyl. < ||.|l> and
the minimum fory in the range of Theorerh, we can also writdE,|l.. — 0 & &T)p*/ +vn — 0.

In order to prove Theorerti, we observe fromZ6] that the only probabilistic component of the error norm
gy(é— S L*) is g,(En) = max(||Enlle /7, lIEnll2), which in turn depends olfE,|l> and||Eqll.. Therefore, setting
W = (1/&(T))(p?/ /n), it follows that the claims

(A7)

1 p(l/
&) VR
hold with probability 1- O(1/ min(p, n)?) under all the assumptions of TheordmParametric and rank consistency
are thus guaranteed.

gy(é— S,.L-L9<C rank() = rank(")

Proof of Corollary 1

We observe that, under Assumptignthe boundy = (1/£(T))(p®/ v/n) tends to 0 if and only iH?**% /n = o(1)
as lim_,., min,(p2**%,n,) = co. As expected, the absolute bound vanishes only in the srmadirgsional casen(>

p**? log(p)).

Proof of Theorem 2

If, in addition to all the assumptions and conditions of T 1, Assumption6 and the conditiorSminors >
(Csy)/u(€2) hold, then we can fully apply Corollary D.4, D.6, PropasitiD.5, and Lemma D.7 inl{)] and conclude
that the recovered sparsity pattern is also consisggt(Sa ce) = signS").

Proof of Theorem 3
Conditioning onY pre, Z pre, @NdXpre = Y pre + Z pre, We &im to solve

MIN ) sesi@.z-L +sl1E — il =T - Lpre + Xpre — ZollE.
By Cauchy-Schwarz inequality, it can be shown that
IZ — Zpre + Epre — Znllf < IIE — Eprell + IEpre — Zallz-

Zpre SOlves the problem
H . R _ 2
MIN 37 seA(9),z-L +8l Epre — Znllp

conditioning on the fact tha]t||L||* + pl|Sll1 is minimum over the same set.
Then, we can write
IZ - ZprellZ = IL +S= Y pre = ZprellZ.

By Cauchy-Schwarz inequality, it can be shown that
IL +S—Ypre+ Zpre|||2: <L - Ypre|||2: +[IS- Zpre|||2:- (A.8)
Hence,

o 2 i 2 L 2
M 3 sc@z=L sl +S=Yopre + Zprellp < MiNg ) [IL = Y prelle + Ming. jg[1S = Zprellf-
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The probleminL is solved by taking out the firstprincipal components of ye. By construction, the solution
is UALCE(DALCE + l//lr)UALCE = LUNALCE The problem inS, assuming that the diagonal EKLCE is given and the
off-diagonal elements & are invariant, leads to:

minSeﬁ(é)”S_ Zpre||,2: = minLeé(f)”(i - L) - (Zpre - Ypre)|||2: = minLeé(f)”(i - Epre) - (L - Ypre)|||2: <
<IE - Zprell +1IL = Yprell2 =B’ +B”.
The following question now arises: which diagonal elements ensure the minimum d’ + B”? TermB' is fixed
with respect td. because we are assuming the invariance of diagonal elemebi&iagEynaLce) = diag&aLce)).

The minimization of termB”, given that rank() = f, falls back into the previous case, i.B! is minimum if and

only if L = Cuynatce = Uunarce(Dunatce + ¥/10) U] yaLce:
Optimality holds over the Cartesian product of the set ofathmetric positive semi-definite matrices with a rank

smaller or equal to, B(f), and the set of all symmetric sparse matrices with the s@aesity pattern aSa.ce such
that diagf) = diag&aice — L), L € B(F) (we call this setAgiag(9)))-
Consequently, we can write:

SunaLcEii = ZALcEii — LunaLcEii» SUNALCEIj = SaLcEij. | # |.

Proof of Corollary 2

We know that]Cynacce — Laicellz = ¢. We can prove thdt ynaice = min, . #nllL — L*II2, conditioning on the
event Min c4¢) sesig =L +sll® — X,ll2 under prescribed assumptions (see Thedderin fact, we can write

H 2 H 2 2
min_ . é(f)”L - L7l <min_ gé(f)“l- = Yprellg + 1Y pre = L*IIE,

because yre is uniquely determined by the conditioning event. The sameguality holds in the spectral norm.
Since

ILarce — L¥|l2 < lILunaLce — Laccellz + ILunacce — L2,

it follows R R
O<|lILace —L7ll2 — lILunace — Ll < ¢

given the conditioning event. Consequently, S|nicgNALCE - LALCEHF = tr(LUNALCE - LALCE)2 n//z we obtain
0 < [ICacce — L¥lIF — ICunaLce — L'[IF < VI
The analogous triangular inequality for the sparse compiise
ISace — S'II2 < lISunaLce — Satcell? + ISunatce — SII2.

In order to quantifylSunatce — Satcell?, we need to study the behaviour of the te¥f, (Cunatcei — Laccei)?
which is less or equal tn//2 because it is less or equaltrtQLUNALCE - LALCE)2
Consequently, we havSunaLce — Sacellr < \fz,b Analogously to unaLcE, WE can prove that

SUNALCE = MiNg_49IS — S'IIZ,

conditioning on the event
i 2
MIN 47 se (9. z-L+slI= = Enll
under prescribed assumptions (see Thedgrm fact, we can write

H 2 H 2 2
mmSlediag(g)“S_ Sl < mmsgj[diag(g)us_ Zorellg + 11Z pre — SIE,

becausé e is uniquely determined by the conditioning event.
Therefore, we can write

0 < lISarce — S'lle — lISunatce — S'llF < VY.
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The claim on||SUNALCE — S| is less immediate. We recall thaILUNALCE - LALCE||2 = ||U(//I UT||2 = J/
le UT can be divided in the contribution coming from d|agonal etams and the resttdlag(I: UNALCE — LALCE) +
off — dlaga_ UNALCE — LALCE)HZ Both contributions are part chjz,bl o,

Given the matrix of elgenvectorti we can write dlag(UNALCE - LALCE) = Z 1||uT||2K.., whereKj is a
null matrix, except for thé-th diagonal element equal b, and(; is thei-th row of U. Similarly, we can write
off — diag(ﬁUNALCE - I:ALCE) = ZLZM 07 0;K;; whereK;; is a null matrix, except for the elementequal toy.
Note that the rows of, differently from the columns, are not orthogonal.

Since all summands are orthogonal to each otharR < tr(ABT) = 0), the triangular inequalities relative to
IdiagC unacce — Lacce)llz, lloff — diagCunaice — Laice)llz andliLunaice — Laicell. become equalities. Therefore,
we can write:

IdiagC unaLce — Lace)ll2

p p
DTGP X Kl = aT 112
i=1 i

|
M=
g
()
-
£
=
n
g
g
(]
-
o
<

lloff — diagCunacce — Lacce)ll2

|
M-
=
—
N
Bad
x
T
INg
INg
C>
C>
=
n
&«

[ILunacce — LaLcell2

From this consideration, it follows that

IdiagCunarce — Laice)llz < ICunacce — Laccells = ¥
Since, by definition|ldiagSunace — Saice)llz = lldiagCunaLce — Laice)llz (because dia§inaice — Saice) =
—diagL unaLce — LaLcE)), and recalling thaSynaLce has the best approximation property (for Theo®rgiven the
conditioning event, we can conclude
0 < I1Sacce - S'll2 — ISunatce — S'll2 < ¢

Proof of Corollary 3
The relevant triangular inequality for the overall estieist

IZn — Zaccelle < Eunacce — Zatcellz + IEn — Zunaccellz-
By definition, | Eunacce — 2accellz = |loff — diagCunacce — Lace)llz. For the same considerations explained before,
lloff — diagCunacce — Lacce)llz < ICunacce — Eaccellz = ¥
Consequently, recalling thANALCE = minz=L+SLEé(f)’S€ﬁ(§)||E - En||§ under the described assumptions, it follows
0 < |[Zn - Zaccellz = I1Zn — Zunarcell2 < 4. (A.9)
SincellLunatce — Laccel2 = tr(Cunacce — Laice)? = ryg?, we have
0 < |loff — diagC unarce — Laice)llF < Vi,

We can then claim
0 < [IZn — Zarcellr — IEn — Zunatcellr < Vry.

Therefore, the real gain in terms of the approximatiorEgfwith respect to ALCE measured in the squared
Frobenius norm is strictly positive and bounded frofA.
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Proof of Theorem 4
Conditioning onx,, we can easily write

IEunaLce — 27112 = IEUNALCE — En + En — 712 < |EunaLce — Znll2 + [1Zn — Z7[l2. (A.10)

ss  The term||Z, — £*||> only depends on the estimation ingt
Therefore, by £.9) and A.10), it is straightforward that

0 < [[Zarce — Z'll2 — IEunaLce — Z7ll2 < 4.
Analogously, it is easy to prove that
0 < [IEarce — Z°lIF - IEunaLce — E'lle < VI (A.11)

Proof of Corollary 4
Let us recall the following expression:

IE+9™ = @ Hlle = IC + 7L +S=ZIEDle < IE + 972+ I +S -l - =2
From (A.11), we can conclude that
0 < IIC aLce + Satce) ™ = 7Y — I(Cunacce + Sunatce) ™ = 7Y < VIY.
Analogously, since it holds
IE+9™ =@l = IC + 9L +S-ZIE 2 < IC + 72 IE +S= 2+ IZ 2,
wo it is straightforward that
0 < IC acce + Satce) ™ = 72 — I(Cunarce + Sunatce) ™ =272 < .

Proof of Corollary 5
The three claims of the corollary are proved in sequence.

1. We start to note thdtunaice, Laice, andUaicedl U}, ¢ arer-ranked. Let the respective spectral decompo-
sitions be:

605 (@) BunaiceBlyaLce With Bunatce = Uaice VDunaLce ;
(b) BarceBjx, cg With Barce = Uarce VDarce:
(©) Oarce Vi) (Oace Vi)™

Consequently, we note that

A (Cunacce) = A (Cacce + Uarced! Uf cp) =
Ar(UaLceDacceUacce + Uatced! UA cg) = Ar(Lacce) + ¥,

which proves the claim oD yUNALCE.

610 2. By Lidskii dual inequality (se€3?]), we note that

Ap(Sunacce) = Ap(Sarce — diagUacedl U ce)) = Ap(Sarce) + Ap(~diagUaLcedl : Ux ce))-
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The matrix—diag(UALCEJ/IrU;LCE) is a p-dimensional squared matrix having agh element the quantity
—lluf 1%, whereuT, i € {1,..., p}, is the i-th row of the matriXJace. Since trediagUaiced! U}, cp)) =
tr(=Uacey!l UL cg) = -1y, it follows thatAp(diagUaLcey!l UL cg)) < ry/p, i.e.

¥ < Ap(~diagUarced! U}, cg)) < 0.

_r
p
Therefore, we obtain

/lp(élJNALCE) > /lp(gALCE) - 'Z’

ol=

which proves the claim 0BUNALCE.

3. By Lidskii dual inequality, we note that

Ap(Zunarce) = ApEarce + Uaiced! U} o — diagUarced! UR cp))
> Ap(ZaLce) + Ap(UaLced!rUa ce) — Ap(diagUarcey!r Up ce))-

Recalling the argument above and noting that
Ap(Uarcev!l U, ) = 0 because rankla ceyl U, cg) = T, it follows

Ap(Zunacce) = Ap(EaLce) + 0 — ¥ = Ap(Earce) — —¥,

ol

which proves the claim oBynaLce.

Supplementary material

This paper is complemented by a supplement containing aisigm of LOREC assumptions and a simulation

study. In addition, the MATLAB function8NALCE .m andPOET . m, performing UNALCE and POET procedures, re-
spectively, can be downloaded &g[. Both functions contain the detailed explanation of in@nitl output arguments.
Finally, the MATLAB datasetupervisory_data.mat, which contains the covariance matrix, and the relative
labels of supervisory indicatorsabgood, can also be downloaded at the same link, which we refer tthéodetails.
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1. Discussion of LOREC assumptions

The key model-based results for deriving the LORBdonsistency bounds are a lemma Ky, which details
the sample loss in infinity (element-wise) norm:

o Inp
||En—2||w—0[ T]’ 1)

and a lemma byd], which details the sample loss in spectral norm:

10 — 72 = O(\@). 2)

We stress that?) strictly requires the assumptigns< n.

From a theoretical point of view, the LOREC approach is hirdeby some deficiencies and incongruities. In
contrast to the POET approach, where the sparsity assumiptimposed on the sparse compongitthe LOREC
approach imposes it directly on the covariance maitixAs a consequence, the assumpiiire X*(e), where

() = {E e RPP: 0< e < A(Z7) < " i €{L.....p}}. (3)
is necessary and leads to some non-identifiability issues:

e to guarantee the validity of a bount){the assumption max, <, |):i*j|q = o(p) for someq € [0, 1[ must hold.

Since we can write
ma<, Y X7 < maey Y 1L 1T+ maxzp IS,
i<p jp i<p
, the aforementioned assumption would impose the same bmubd max<, 3., |Li*j|q = o(p). In turn, this
would mean, by definition, thg(T(L*)) is larger. This is because, according 3, (T (L*)) directly depends
on the alignment of the eigenvectorslof with the canonical basis vectors. Thereforeqakecreases, it is not
clear what happens to the prodyg€t (L *))u(2(S")). This potentially &ects identifiability.

e applying Lidskii dual inequality (seel[]) to 4,(X*), we obtain
AE) =4 (L7 +8) = A4(L7) + 2p(S).

Therefore, the assumption(X*) > const in (3) inevitably leads tol,(S") > const andA,(L*) > const. The
latter formulation conflicts with the identifiability assption A,(L*) > (C2/£%(T))+/p/n in [8], and dfects
identifiability. This is the case even when= o(n), because in that casg(L*) > const implies thatL* is
expected to be close to the identity matrix, thus increagiegroduct(T (L*))u(Q(S)).
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2. A simulation study

2.1. Smulation settings

To compare the performance of UNALCE, LOREC, and POET, we tato consideration four simulated low
rank plus sparse settings, which give an exhaustive idd@eaftcoverable situations under our assumptions. The key
simulation parameters are:

. the dimensiom, the sample sizg;
. the rankr and the condition numbepnd(L*) = Amax(L*)/Amin(L*) of the low rank componerit*;

. the trace ot.*, 76p, wherer is a magnitude parameter afiés the percentage of variance explained iy

. the percentage of non-zerosover the number of f-diagonal elements;

1
2
3
4. the number of fi-diagonal non-zerosin the sparse compone§t;
5
6. the percentage of the (absolute) residual covariagce

7

. N =100 replicates for each setting.

For POET, the soft-thresholding parameter is estimateccraas-validation, cf. §]. For ALCE and UNALCE,
spikiness and sparsity thresholds are picked up via the Mé€rion (see 14) in the main paper). The data generation
algorithm is described in detail ir7].

In TableS.1, we summarize the features of our settings. Settings 1 aady2according to the degree of spikiness
and sparsity. Settings 3 and 4 are intermediately spikedpacse and vary according to the rapin. In TableS.2,
we report all the norms and condition numbers relative tosaftings. In addition, we report the minimum latent
eigenvaluel, (L *) and the minimum residual non-zero entry in absolute v8l4gos ¢ (the identifiability parameters).
We stress that we assume equispaced latent eigenvaluelowts that for each setting, the eigenvalues dbtindx*
are pretty similar, while the ones 8f are much smaller.

TableS.1
Simulated settings: main parameters and synthetic déscrip
Setting p n p/n r T 0 s ps  Spikiness  sparsity
1 100 1000 @ 4 001 70 238 045 low high
2 100 1000 @ 3 003 80 1172 Q72 high low
3 150 150 1 5 M1 80 320 033 middle middle
4 200 100 2 6 M1 80 366 039 middle middle
Table S.2

Simulated settings: spectral norms, condition numberjdentifiability parameters.

Setting L'z A(L) cond(L) [ISTl2 Swinotr _cond(S) =l cond(X)

1 2333 1167 2 378 00275 226e+07 2449  94%+ 07
2 128 32 4 $8 00226 253e+05 13014 407e+06
3 32 16 2 256 00161 235 +13 3248 158e+10
4 3556 1778 2 469 00138 117e+13 3639 309%+09

Our objective function (seel) in the main paper) is minimized according to an alternatestolding algorithm,
composed of singular value thresholding (SVZ]) pnd a soft thresholding steg][ To speed convergence, Nesterov's
acceleration scheme for composite gradient mapping miaitioin problemsq] is applied. Given a prescribed preci-
sion levele, the algorithm assumes the form (c8))

1' Set (‘07 S)) = 05(d|ag®n)’ dlag@n))a )70 = 1
2. InitializeYg = Lo andZy = S. Sett = 1.
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AZIY 1+ Ze 1=l AFIY1+Zia—Eall2
. te2 F _ 22 F
3. Repeat: compute Nl a7

=Yi1+Zi1— Xn.

4. Apply the SVT operatof,, t0 Ey; = Yi_1 — 0.5(Y_1 + Zi_1 — £n) and seL; = T,(Ey;) = UD,UT.
5. Apply the soft-thresholding operat®dy to Ez; = Zi-1 — 0.5(Y-1 + Z1-1 — Zp) and sets; = T,(Ezy).

6. Setlf1.Zy) = (L, S) + (-1 — /mH(L1, S) — (L1, S-1)} wheren = 0.5+ 0.5 /1 + 452 .

7. Until the convergence criteriofil(; — L1llr)/(1 + L ialle) + (IS = Scalle)/(1 + ISlle) < & (we sete =
1074).

The reported scheme achieves a convergence speed propbiti®(t?). We defing* as the number of steps needed
for convergence. We sétpe = Y1 — 0.5(Y¢_1 + Zp_1 — X)) andere =Zp1—05(Y¢o1 + Zp-1 — Xp). The
computational cost of the solution algorithm is proporéibto £ 7 wheree is the required precision. By contrast,
POET reflects the cost of a full-SVD (proportionalg?). For more details, sed].

Lots of metrics are computed to comparatively describe #réopmance of the three methods using the same

simulated data. We call the low rank estimatehe sparse estimaf and the covariance matrix estimate- [ + S.
The error norms used are:

Loss= |IL - L7l +1I5-Sllr, (4)
TotalLoss= [|I£ — *||e, (5)
SampleTotalLoss: [|IZ — |- (6)

The estimated percentage of latent variaficeesidual covariancgs, and residual non-zeros are also computed.
Their estimation performance is measured by the mean seuane defined fop as

N
MSER) = = > (fh 6" @)
h=1

whered, is the estimate of on theh-th replicate. We also compute the estimation bias for eachrpeter, defined
for § as
bias@) = Ormean — 6, (8)
Wherefmean is the mean estimate éfover theN replicates.
The performance in terms of the sparsity pattern recove@ isfassessed by the following measures. Let us
denote the number of non-zerosSiby 3, the false non-zeros bfp, the false zeros b§n, the false positive elements
by f pos, and the false negative elementsfneg. We define:

e theerror measureerr = (fp+ fn)/nv, wherenv = p(p — 1)/2 is the number of i-diagonal elements;

e errplus = (fpos+ fneg)/s, which is the same asr, exceptitis computed for non-zeros only whereby positive
and negative are distinguished in the usual way;

e the overall error raterrtot, using the number of false zeros, false positive, and fagative elementsrrtot =
(fpos+ fneg+ fn)/nv.

The correct classification rates of (true) non-zero and ements (denoted respectively 8ns and spec) are
derived, as well as the correct classification rates of pesnd negative elements, which are considered separately
(denoted respectively bsenspos and specpos).

The performance in terms of eigenstructure recovery is aredsorX* by /l(f:), which is defined as the Euclidean
distance between the estimated and true eigenvalugs of

P
A®) = J DUAE) - ai(z))2 9)

i=1

The measured) is similarly defined folL* andS'.
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2.2. Smulation results

Table S.3 shows the superior performance of UNALCE and ALCE than tHeROET for the estimates df,
ps andrs across dierent degrees of spikiness (Settings 1 and 2). This occwaule the percentage of residual
variance detected by POET is biased upward, due to the hhtassof sample eigenvalues. The bias decreases as the
dimension and degree of spikiness increase. Comparing UWNA&Gnd ALCE, we observe a remarkable superiority
on behalf of the UNALCE estimates 8fandps- over Settings 1 and 2, while ALCE prevails for the estimafesso

TableS.4shows the same statistics computed over Settings 3 and 4€Boeibed pattern for the estimated latent
variance percentage still holds. On the contrary, the perdoce of the estimated residual covariance percentage is
poor, even for UNALCE and ALCE. This is because the estinmabias is significant. This occurs because Settings 3
and 4 do not fulfil the assumptions of Theor@ndue to the small ratio gb/n. As a consequence, any estimaterof
is biased.

Table S.5 contains the fitting measures described in SecZidnwhich were computed for Settings 1 and 2. It
is clear that UNALCE outperforms POET for all losses and soajenerally superior to ALCE by a small margin.
A similar pattern can be deduced from TalB&5 which contains the same results for Settings 3 and 4. Hawitve
can be observed that the gap with POET progressively dexseap/n increases because in that case, the setting
becomes more consistent with the POET assumptions.

Table S.3
This table shows the mean square error and bias, as defin@dand @), respectively, of the percentage of latent variaficeesidual covariance
pg, and residual non-zerag,"as estimated by UNALCE, ALCE, and POET over 100 runs of Sgitil and 2.

Setting 1 Setting 2

UNALCE ALCE POET UNALCE ALCE POET
MSE@) 055 0.75 1010 o021 0.24 245
MSE({ps) 0.02 0.04 020 0.02 0.03 023
MSE(@s) 0.89 0.23 553 1125 9.20 11974
biasf) -0.48 -069 314 -014 -0.17 151
biaspgy) -0.11 -0.19 -045 -0.36 -0.38 -0.72
bias@ts) 0.61 -0.06 -235 123 1.37 1093

TableS4
This table shows the mean square error and bias, as defin@dand 8), respectively, of the percentage of latent variaficeesidual covariance
pg, and residual non-zerog,"as estimated by UNALCE, ALCE, and POET over 100 runs of SgitB and 4.

Setting 3 Setting 4

UNALCE ALCE POET UNALCE ALCE POET
MSE(9) 1.18 3.03 629 1.90 6.13 881
MSE(pg) 0.03 0.02 0.11 013 0.12 0.15
MSE(7s) 343 2.64 4.84 1231 1188 1270
biasf) -0.20 -1.34 233 -0.68 -215 284
biaspy) -0.13 -0.10 -0.33 -0.34 -0.35 -0.39
bias(rs) -157 -1.38 -2.05 -351 -361 -357

TablesS.7andS.8contain the error measures regarding the recovery of th@uassparsity pattern (see Section
2.1) for Settings 1-2 and 3-4, respectively. We note that POH®,td the lack of algebraic consistency, is completely
unable to classify positive and negative elements. On theaxy, UNALCE shows a recovery rate around 70% when
p/nis small. This rate is larger than for ALCE, although the ey capability deteriorates ggn increases.

TablesS.9andS.10report the Euclidean distance between the vectors of etthzand true eigenvalues (s&)(
the condition number of the estimates, and the estimatedrsp@orms. This table can be compared to Teéb2
which contains the true spectral norms and condition numaeross settings. All statistics suggest that UNALCE
is the preferable method, with some notable exceptions @weit thresholding procedure. jf/n is small and the
eigenvalues are not spiked, the spectral norh'odndX* tend to be underestimated by UNALCE with respect to
POET. On the contrary, UNALCE may overestimate the conditiamber ofL* if p/nis large. At the same time,

4
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Table S.5

This table shows the los&@ss), the total lossTL), and the sample total losS&mpleT L) for UNALCE, ALCE, and POET estimates computed
as in @), (5) and @) over 100 runs of Settings 1 and 2. In particulamss, TL andSampleT L refer to the overall estimatéoss, refers to the low
rank estimate antosss refers to the sparse estimate. Mean values are reportedtaitdard deviations in parentheses.

Setting 1 Setting 2

UNALCE ALCE POET UNALCE  ALCE POET
TL 6.98(0.82) 698(082) 7.39(075) 9.93(2.30) 994(232) 1047(221)
SampleTL 0.72(0.08) 089(009) 279(007) 1.25(0.15) 135(013) 385(008)
Loss 7.63(0.82) 7.64(082) 930(073) 11.38(2.29) 1140(234) 1322(227)
Loss_ 6.91(081) 6.90(0.82) 7.58(073) 9.82(2.30) 983(232) 1Q074(227)
Losss 0.72(0.06) 074(005) 172(010) 1.56(0.18) 158(017) 248(012)

Table S.6

This table shows the losdss), the total lossTL) and the sample total losSémpleT L) for UNALCE, ALCE, and POET estimates computed
as in @), (5) and @) over 100 runs of Settings 3 and 4. In particulamss, TL andSampleTL refer to the overall estimatéoss, refers to the low
rank estimate antosss to the sparse estimate. Mean values are reported with sthddaiations in parentheses.

Setting 3 Setting 4

UNALCE ALCE POET UNALCE ALCE POET
TL 13.01(1.98) 1301(190) 1331(212) 20.93(2.68) 2096(261) 2141(279)
SampleTL 1.95(0.16) 235(016) 290(012) 3.91(0.19) 466(029) 438(032)
Loss 14.22(2.01) 1424(193) 1489(218) 22.51(2.73) 2257(263) 2380(283)
Loss. 1291(200) 12.90(1.92) 1338(217) 20.86(2.71) 2086(263) 2153(283)
Losss 1.32(0.16) 134(014) 147(012) 1.65(0.20) 171(022) 228(031)

if p/nis large, ALCE may provide a better estimate of the specwais of the targets, due to the upper bias of the
largest sample eigenvalues.

References

[1] P.J.Bickel, E. Levina, Covariance regularization bsetholding, The Annals of Statistics 36 (2008) 2577—2604.

[2] J.-F. Cai, E. J. Candés, Z. Shen, A singular value tholelihg algorithm for matrix completion, SIAM Journal on @pization 20 (2010)
1956-1982.

[3] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, A. S.4kjll Rank-sparsity incoherence for matrix decomposit®i#\M Journal on Opti-
mization 21 (2011) 572-596.

[4] 1. Daubechies, M. Defrise, C. De Mol, An iterative thresting algorithm for linear inverse problems with a sparsibnstraint, Communi-
cations on pure and applied mathematics 57 (2004) 14131457

[5] K. R. Davidson, S. J. Szarek, Local operator theory, candnatrices and banach spaces, Handbook of the geometrynatBapaces 1
(2001) 131.

[6] J.Fan, Y. Liao, M. Mincheva, Large covariance estimatiy thresholding principal orthogonal complements, Jalofthe Royal Statistical
Society: Series B (Statistical Methodology) 75 (2013) 688«

[7] M. Farné, Large Covariance Matrix Estimation by Comio#linimization, Ph.D. thesis, Alma Mater Studiorum, 2016

[8] X.Luo, Recovering model structures from large low ramki @parse covariance matrix estimation, Arxiv preprint111133 (2011).

[9] Y. Nesterov, Gradient methods for minimizing compoditections, Mathematical Programming 140 (2013) 125-161.

[10] T. Tao, Topics in random matrix theory, volume 132, Aioan Mathematical Society, 2012.



TableS.7

This table shows the sparsity pattern recovery measuréaddeat the end of Sectiok 1) with respect to UNALCE, ALCE, and POET over 100
runs of Settings 1 and 2. Mean values are reported with stdnt#iations in parentheses.

Setting 1 Setting 2

UNALCE ALCE POET UNALCE  ALCE POET
err 1.95(045) 1.70(0.17) 242(004) 8.08(0.95) 970(135) 978(127)
errplus  1.12(099) 120(096) 0.00(0.00) 0.03(0.10) 183(070) 221(071)
errtot 0.70(0.25) 091(023) 238(000) 4.45(0.95) 447(075) 1172(001)
senspos  70.19(10.89) 6164(1042) 000(000) 60.98(8.55) 6084(684) 002(009)
specpos 71.05(1141) 6214(1Q76) 000(000) 63.12(8.00) 6299(657) 000(0.00)
spec 9869(056) 9916(027) 99.97(0.04) 9381(249) 9368(228) 99.11(0.58)

Table S.8

This table shows the sparsity pattern recovery measuréiaddeat the end of Sectio2. 1) computed for UNALCE, ALCE, and POET over 100
runs of Settings 3 and 4. Mean values are reported with stdntéwiations in parentheses.

Setting 3 Setting 4

UNALCE ALCE POET UNALCE ALCE POET
err 3.21(0.30) 322(31) 4.35(078) 359(006) 3.57(0.05) 375(006)
errplus  1.77(100) 199(097) 0.01(0.04) 025(032) 041(032) 0.00(0.00)
errtot 2.45(35) 2.36(0.29) 320(000) 356(010) 3.52(0.07) 366(000)
senspos  23.02(1118) 25.76(9.28) 001(008) 286(287) 3.84(2.24) 000(000)
specpos 2398(1112) 26.60(9.41) 000(000) 265(268) 3.65(2.21) 000(000)
spec 99.16(6.64)  9905(58) 9882(81) 99.95(0.05) 9994(004) 9990(006)

TableS.9

This table shows the performance in terms of eigenstruaterevery (via the measure i9)j and the estimated spectral norms and condition
numbers with respect to the overall, the low rank, and thesgpeomponent estimates obtained by UNALCE, ALCE, and POET 00 runs of
Settings 1 and 2. Mean values are reported with standardtd®s in parentheses.

Setting 1 Setting 2

UNALCE ALCE POET UNALCE ALCE POET
AZ) 5.51(0.86) 551(0386) 574(106) 5.62(2.66) 565(266) 6.07(260)
A5 0.29(0.08) 030(0.08) 155(011) 0.44(0.21) 045(019) 186(017)
A(L) 7.75(275) 7.73(265) 7.16(2.29) 5.62(2.63) 564(265) 6.16(284)
cond(£) 104180(38855) 58366(7785) 34048(2537)2312900(1160600) 1896300(713370) 1141400(369010)
cond(S) 21571(7719) 11829(1626) 4778403) 130610(63271) 113850(120320)  40407(12802)
cond(L) 1.32(007) 132(007) 1.32(0.07) 4.06(022) 4.07(023) 3.97(0.21)
1212 20.84(089) 20.73(0.89)  2184(092) 130.20(5.14) 13004(513) 13158(514)
1Sil2 3.77(0.18) 373(016) 275(012) 5.68(0.30) 559(0.36) 4.14(020)
IIC ]I 19.84(0.83) 1976(083) 21.00(0.88)  12842(513) 128.34(5.12) 13039(514)

Table S.10

This table shows the performance in terms of eigenstrugerevery (via the measure i9)f and the estimated spectral norms and condition
numbers with respect to the overall, the low rank, and thesgpeomponent estimates obtained by UNALCE, ALCE, and POET 00 runs of
Settings 3 and 4. Mean values are reported with standardtd®s in parentheses.

Setting 3 Setting 4

UNALCE ALCE POET UNALCE ALCE POET
AX) 6.06(2.59) 6.16(240) 6.24(293) 10.05(3.63) 1028(344) 1057(402)
PIE) 0.50(0.15) 052(014) 115(016) 0.81(0.31) 083(032) 192(038)
A(L) 6.07(2.64) 6.15(244) 6.34(309) 10.43(3.79)  1045(353) 1057(421)
cond(E) 28355(10242) 11456(1804) 19279(3329) 12817(3526) 7685(123X)171(3746)
cond(S) 2469(1828) 958(148) 1132(181) 1424(460) 875(140) 1515(316)
cond(L) 2.41(032) 244(033) 2.35(0.30) 299(052) 308(055) 2.85(0.47)
Il 35.36(368) 34.99(3.69) 3603(368) 4246(467) 41.89(4.68) 4357(468)
1SIl2 2.73(0.30) 276(028) 198(019) 448(063) 459(0.67) 315(047)
I 34.51(3.68) 3489(368) 3568(368) 4198(466) 41.37(4.67) 4317(467)
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