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Fault Tolerant Adaptive Parallel and Distributed Simulation
through Functional ReplicationI

Gabriele D’Angelo∗, Stefano Ferretti∗, Moreno Marzolla∗

Department of Computer Science and Engineering
University of Bologna, Italy

Abstract

This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation
middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation
(PADS) models, which are needed to properly simulate and analyze complex systems arising in
any kind of scientific or engineering field. PADS takes advantage of multiple execution units
run in multicore processors, cluster of workstations or HPC systems. However, large computing
systems, such as HPC systems that include hundreds of thousands of computing nodes, have to
handle frequent failures of some components. To cope with this issue, FT-GAIA transparently
replicates simulation entities and distributes them on multiple execution nodes. This allows the
simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some pro-
tection against Byzantine failures, since interaction messages among the simulated entities are
replicated as well, so that the receiving entity can identify and discard corrupted messages. Re-
sults from an analytical model and from an experimental evaluation show that FT-GAIA provides
a high degree of fault tolerance, at the cost of a moderate increase in the computational load of
the execution units.

Keywords: Simulation, Parallel and Distributed Simulation, Fault Tolerance, Adaptive
Systems, Middleware, Agent-Based Simulation

1. Introduction

Computer simulation is an important tool to model, analyze and understand physical, biologi-
cal and social phenomena. Among the different methodologies Discrete Event Simulation (DES)
is of particular interest, since it is frequently employed to model and analyze many types of
systems, including computer architectures, communication networks, street traffic and others.

In a DES, the system is modeled as a set of entities that interact. The simulation has a state
which evolves through the generation of events issued by simulated entities or by a (human or
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synthetic) supervisor of the simulation. Events occur at discrete points in time. The overall struc-
ture of a sequential event-based simulator is relatively simple: the simulator engine maintains a
list, called Future Event List (FEL), of all pending events, sorted in non decreasing time of oc-
currence. The execution of the simulation consists of a loop: at each iteration, the event with
lower timestamp t is removed from the FEL, and the simulation time is advanced to t. Then, the
event is executed, possibly triggering the generation of new events to be scheduled for execution
at some future time.

Continuous advances in our understanding of complex systems, combined with the need for
higher model accuracy, demand an increasing amount of computational power. The simulation of
complex systems might generate a huge amount of events, due to the enormous amount of entities
to be simulated and the high rate of events they trigger. Just as an example, think at the Internet
of Things (IoT), the network of physical devices, vehicles, home appliances and other items em-
bedded with computational and that communication capabilities, that nowadays is considered the
most prominent infrastructure on top of which novel smart services will be implemented. Simu-
lating such a kind of system is very demanding and imposes the use of sophisticated simulation
techniques [2]. In this kind of scenarios, sequential DES techniques become inappropriate for
analyzing large or detailed models. DES must thus evolve into something that is able to handle
simulations at larger scales.

An alternative approach, called Parallel Discrete Event Simulation (PDES) refers to the ex-
ecution of a single discrete event simulation program on a parallel computer [3]. The goal is to
parallelize the execution of the simulation events for better scalability.

Parallel And Distributed Simulation (PADS) is concerned with the execution of a simulation
program on computing platforms containing multiple processors [4]. PADS takes advantage of
multiple execution units to efficiently handle large simulation models. These execution units
can be distributed across the Internet, or grouped as massively parallel computers or multicore
processors. While PADS has been used for concurrent execution of many different simulation
paradigms (e.g. continuous simulation, concurrent replication), this paper focuses on the dis-
tributed execution of discrete event simulations, i.e. we use the PADS techniques for implement-
ing DES models.

More in detail, in PADS, the simulation model is partitioned in submodels, called Logical
Processes (LPs) which can be evaluated concurrently by different Processing Elements (PEs).
More precisely, the simulation model is described in terms of multiple interacting Simulated
Entities (SEs) which are assigned to different LPs. Each LP runs on a different PE, where a PE is
an execution unit acting as a container of a set of entities. The simulation execution consists of the
exchange of timestamped messages, representing simulation events, between entities. Each LP
has an incoming queue where messages are inserted before being dispatched to the appropriate
entities. Without loss of generality, through this paper we will assume that a PE is a single
core of a multicore processor. Figure 1 shows the general structure of a parallel and distributed
simulator.

Clearly enough, PADS can strongly benefit from the use of cloud computing infrastruc-
tures. Cloud computing allows instantiating and dynamically maintaining computing (virtual)
machines that meet arbitrarily varying resource requirements. Service level agreements can be
employed in order to understand if the cloud provides the Quality-of-Service the user is expect-
ing [5]. QoS guarantees, together with the possibility of arbitrarily adding or removing resources
on demand, provide the simulationist with a very useful computing environment to execute com-
plex simulations, without having to manage the computing infrastructure [6]. However, as in
every distributed system, cloud virtual machines can fail. Thus, fault tolerance schemes are
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Figure 1: Structure of a Parallel And Distributed Simulation that implements a Discrete Event Simulation model.

required [7].
Execution of long-running applications on increasingly larger parallel machines is likely to

hit the reliability wall [8]. This means that, as the system size (number of components) increases,
so does the probability that at least one of those components fails, therefore reducing the sys-
tem Mean Time To Failure (MTTF). At some point the execution time of the parallel application
may become larger than the MTTF of its execution environment, so that the application has little
chance to terminate normally.

As a purely illustrative example, let us consider a PADS with L LPs. Let Xi be the stochastic
variable representing the duration of uninterrupted operation of the i-th LP, 1 ≤ i ≤ L, taking into
account both hardware and software failures. For the sake of simplicity, we assume that each LP
resides on a different PE, so that each hardware failure (i.e. a PE crash) affects an LP only.
Assuming that all Xi are independent and exponentially distributed (this assumption is somewhat
unrealistic but widely used [9]), we have that the probability P(Xi > t) that LP i operates without
failures for at least t time units is

P(Xi > t) = e−λt

where λ is the failure rate. The joint probability that all L LPs operate without failures for at
least t time units is therefore R(L, t) =

∏
i P(Xi > t) = e−Lλt; this is the formula for the reliability

of L components connected in series, where each component fails independently, and a single
failure brings down the whole system.

Figure 2 shows the value of R(L, t) (the probability of no failures for at least t consecutive
time units) for systems with L = 10, 100, 1000 LPs, assuming a MTTF of one year (λ ≈ 2.7573×
10−8s−1). We can see that the system reliability quickly drops as the number of LPs increases:
a simulation involving L = 1000 LPs and requiring one day to complete is very unlikely to
terminate successfully.

Although the model above is overly simplified, and is not intended to provide an accurate
estimate of the reliability of actual PADS, it does show that building a reliable system out of a
large number of unreliable parts is challenging.

To put the numbers above more in context, we report on Table 1 the number of cores in the
top ten High Performance Computing (HPC) systems that appear on the June 2018 edition of
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Figure 2: System reliability of parallel and distributed simulation with different number of LPs, assuming that the MTTF
for each LP is one year; higher is better, log scale on the horizontal axis.

the Top500 Supercomputer list1. Five systems (Summit, Sunway TaihuLight, Sierra, Tianhe-2A,
and Sequoia) have more than one million cores, while the others are in the range of hundreds
of thousands. As the size of HPC systems grows, reliabilty issues become more and more rele-
vant [10].

The reliability of HPC systems has been investigated, among others, in [11, 12]. In [11],
the authors report about 0.5 hardware failures/year per processor on average, across several dif-
ferent HPC systems. It is quite instructive to observe that the root cause of faults include en-
vironmental factors (e.g., power outages), human errors, network failures, software errors, and
hardware failures [12, 13].

Therefore, a 10-million processors HPC system with a MTTF of two years for each processor
will experience 107/2 = 5 × 106 failures/year. In general, it is well understood that no matter
how reliable the basic components are, the future generation of supercomputers will experience
an ever increasing stream of failures and must cope with them [8].

This paper describes a novel approach to deal with fault tolerance in PADS. The proposed
solution, termed FT-GAIA, is a fault tolerant extension of the GAIA/ARTÌS parallel and dis-
tributed simulation middleware [14, 15]. FT-GAIA deals with crash errors and Byzantine faults
by resorting to server groups [16]: simulation entities are replicated, in the cloud / distributed
computing system, so that the model can be executed even if some of them fail. This functional
replication is implemented by adding a related software layer in the GAIA/ARTÌS stack. The
replication of all the simulated entities is transparent to user-level. Thus, FT-GAIA can be used
as a drop-in replacement to GAIA/ARTÌS when fault tolerance is the major concern. Needless to
say, fault tolerance increases the computational and communication loads at LPs, thus causing a
moderate increment on the performance of the simulator.

1https://top500.org/lists/2018/06/, accessed August, 2018
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Name System N. of cores Rmax Rpeak
(TFlop/s) (TFlop/s)

Summit IBM Power System AC922 2, 282, 544 122, 300.0 187, 659.3
Sunway TaihuLight Sunway MPP 10, 649, 600 93, 014.6 125, 435.9
Sierra IBM Power System S922LC 1, 572, 480 71, 610.0 119, 193.6
Tianhe-2A TH-IVB-FEP Cluster 4, 981, 760 61, 444.5 100, 678.7
ABCI PRIMERGY CX2550 M4 391, 680 19, 880.0 32, 576.6
Piz Daint Cray XC50 361, 760 19, 590.0 25, 326.3
Titan Cray XK7 560, 640 17, 590.0 27, 112.5
Sequoia BlueGene/Q 1, 572, 864 17, 173.2 20, 132.7
Trinity Cray XC40 979, 968 14, 137.3 43, 902.6
Cori Cray XC40 622, 336 14, 014.7 27, 880.7

Table 1: The top ten HPC systems in June 2018 Top500 Supercomputer list. Rmax and Rpeak are the maximum and
theoretical peak LAPACK performance, respectively.

The remainder paper is organized as follows. In Section 2 we review the state of the art
related to fault tolerance in PADS. The GAIA/ARTÌS parallel and distributed simulation mid-
dleware is described in Section 3. Section 4 is devoted to the description of FT-GAIA, a fault
tolerant extension to GAIA/ARTÌS. An empirical performance evaluation of FT-GAIA, based on
a prototype implementation that we have developed, is discussed in Section 5. Section 6 dis-
cusses a probabilistic model that drives an analytical evaluation of the proposed scheme. Finally,
Section 7 provides some concluding remarks.

2. Background and Related Work

In distributed systems, two typical approaches used to cope with hardware-related reliability
are checkpointing and functional replication.

The checkpoint-restore paradigm requires the running application to periodically save its
state on non-volatile storage (e.g. disk) so that it can resume execution from the last saved snap-
shot in case of failure. It should be observed that saving a snapshot may require considerable
time; therefore, the interval between checkpoints must be carefully tuned to minimize the over-
head.

Functional replication consists of replicating parts of the application on different execution
nodes, so that failures can be tolerated if there is some minimum number of running instances
of each component. Note that each component must be modified so that it is made aware that
multiple copies of its peers exist, and can interact with all instances appropriately.

It is important to remark that functional replication is not effective against logical errors, i.e.,
bugs in the running applications, since the bug can be triggered at the same time on all instances.
A prominent – and frequently mentioned – example is the failure of the Ariane 5 rocket that
was caused by a software error on its Inertial Reference Platforms (IRPs). There were two IRP,
providing hardware fault tolerance, but both used the same software. When the two software
instances were fed with the same (correct) input from the hardware, the bug (an uncaught data
conversion exception) caused both programs to crash, leaving the rocket without guidance [17].
The N-version programming technique [18] can be used to protect against software errors, and
requires running several functionally equivalent programs that have been independently devel-
oped from the same specifications.

Although fault tolerance is an important and widely discussed topic in the context of dis-
tributed systems research, it received comparatively little attention by the PADS community. In
what follows, we describe related works on simulation that deal with this main issue.
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2.1. Checkpointing

In [19] the authors propose a rollback based optimistic recovery scheme in which check-
points are periodically saved on stable storage. The distributed simulation uses an optimistic
synchronization scheme in which out-of-order (i.e. “straggler”) events are handled according to
the Time Warp protocol [20]. The novel idea of this approach is to model failures as straggler
events with a timestamp equal to the last saved checkpoint. In this way, the authors can leverage
the Time Warp protocol to handle failures.

In [21, 22] the authors propose a framework called Distributed Resource Management Sys-
tem (DRMS) to implement reliable IEEE 1516 federation [23]. The DRMS handles crash fail-
ures using checkpoints saved to stable storage, that is then used to migrate federates from a
faulty host to a new host when necessary. The simulation engine is again based on an optimistic
synchronization scheme, and the migration of LPs (the so called “federates” in the IEEE 1516
terminology) is implemented through Web services.

In [24] the authors propose a decoupled federate architecture in which each IEEE 1516 fed-
erate is separated into a virtual federate process and a physical federate process. The former
executes the simulation model and the latter provides middleware services at the back-end. This
solution enables the implementation of fault tolerant distributed simulation schemes through mi-
gration of virtual federates.

The CUMULVS middleware [25] introduces the support for fault tolerance and migration
of simulations based on checkpointing. The middleware is not designed to support PADS but it
allows the migration of running tasks for load balancing and to improve a task’s locality with a
required resource.

A slightly different approach is proposed in [26]. In which, the authors introduce the Fault
Tolerant Resource Sharing System (FT-RSS) framework. The goal of FT-RSS is to build fault
tolerant IEEE 1516 federations using an architecture in which a separate FTP server is used as a
persistent storage system. The persistent storage is used to implement the migration of federates
from one node to another. The FT-RSS middleware supports replication of federates, partial
failures and fail-stop failures.

Recently, in [27] the authors proposed a transparent middleware for dealing with Byzantine
fault in HLA-based parallel and distributed simulations. In this case, the solution is based on the
usage of replication, checkpointing and message logging technologies.

Finally, an approach based on the usage of virtualization techniques is described in [28]. The
authors introduce a fault resilient framework that dynamically handles virtual machines failures
inside the cloud environment. The proposed fault resilient framework is based on state saving
and snapshots of processed event list that are implemented in each LP.

2.2. Functional Replication

In [29] the authors propose the use of functional replication in Time Warp simulations with
the aim to increase the simulator performance and to add fault tolerance. Specifically, the idea
is to have copies of the most frequently used simulation entities at multiple sites with the aim of
reducing message traffic and communication delay. This approach is used to build an optimistic
fault tolerance scheme in which it is assumed that the objects are fault free most of the time. The
rollback capabilities of Time Warp are then used to correct intermittent and permanent faults.

In [30] the authors describe DARX, an adaptive replication mechanism for building reliable
multi-agent systems. Being targeted to multi-agent systems, rather than PADS, DARX is mostly
concerned with adaptability: agents may change their behavior at any time, and new agents may
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join or leave the system. Therefore, DARX tries to dynamically identify which agents are more
“important”, and what degree of replication should be used for those agents in order to achieve
the desired level of fault tolerance. It should be observed that DARX only handles crash failures,
while FT-GAIA also deals with Byzantine faults.

3. The GAIA/ARTÌS Middleware

To make this paper self-contained, we provide in this section a brief introduction of the
GAIA/ARTÌS parallel and distributed simulation middleware; the interested reader is referred
to [14] and the software homepage [31].

The Advanced RTI System (ARTÌS) is a parallel and distributed simulation middleware loosely
inspired by the Runtime Infrastructure described in the IEEE 1516 standard “High Level Archi-
tecture” (HLA) [32]. ARTÌS implements a parallel/distributed architectures where the simulation
model is partitioned in a set of LPs [4]. As described in Section 1, the execution architecture in
charge of running the simulation is composed of interconnected PEs and each PE runs one or
more LPs (usually, a PE hosts one LP).

In a PADS, the interactions between the model components are driven by message exchanges.
The low computation/communication ratio makes PADS communication-bound, so that the wall-
clock execution time of distributed simulations is highly dependent on the performance of the
communication network (i.e. latency, bandwidth and jitter). Reducing the communication over-
head can be crucial to speed up the event processing rate of PADS. This can be achieved by
clustering interacting entities on the same physical host, so that communications can happen
through shared memory.

Among the various services provided by ARTÌS, time management (i.e., synchronization)
is fundamental for obtaining correct simulation runs that respect the causality dependencies of
events. ARTÌS supports both conservative (Chandy-Misra-Bryant [33]) and optimistic (Time
Warp [20]) synchronization algorithms. Moreover, a distributed implementation of the time-
stepped synchronization is included.

The Generic Adaptive Interaction Architecture (GAIA) [15, 31, 34] is a software layer built
on top of ARTÌS. In GAIA, each LP acts as the container of some SEs: the simulation model
is partitioned in its basic components (the SEs) that are allocated among the LPs. The sys-
tem behavior is modeled by the interactions among the SEs; such interactions take the form of
timestamped messages that are exchanged among the entities. From the user’s point of view,
a simulation model based on ARTÌS follows a Multi Agent System (MAS) approach. In fact,
each SE is an autonomous agent that performs some actions (individual behavior) and interacts
with other agents in the simulation.

In most cases, the interaction between the SEs of a PADS are not completely uniform, mean-
ing that there are clusters of SEs where internal interactions are more frequent. The structure
of these clusters of highly interacting entities may change over time, as the simulation model
evolves. The identification of such clusters is important to improve the performance of a PADS:
indeed, by putting heavily-interacting entities on as few LPs as possible, we may replace most of
the expensive LAN/WAN communications by more efficient shared memory messages.

In GAIA, the analysis of the communication pattern is based on a set of simple self-clustering
heuristics [15] that are provided by the framework. All the provided heuristics are generic and
not model dependent. For example, in the default heuristic, every few timesteps for each SE is
found which LP is the destination of the large percentage of interactions. If it is not the LP in
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Figure 3: Layered structure of the FT-GAIA simulation engine. The user-defined simulation model defines a set of
entities {A, B,C,D, E, F}; FT-GAIA creates multiple (in this example, 3) instances of each entity, that are handled by
GAIA.

which the SE is contained then a migration is triggered. The migration of SEs among LPs is
transparent to the simulation model developer; entities migration is useful not only to reduce the
communication overhead, but also to achieve better load-balancing among the LPs, especially on
heterogeneous execution platforms where execution units are not identical. In these cases, GAIA
can migrate entities away from less powerful PEs, towards more capable processors if available.

4. Fault Tolerant Simulation

FT-GAIA is a fault tolerant extension to the GAIA/ARTÌS distributed simulation middleware.
As will be explained below, FT-GAIA uses functional replication of simulation entities to achieve
tolerance against crashes and Byzantine failures of the PEs.

FT-GAIA is implemented as a software layer on top of GAIA and provides the same func-
tionalities of GAIA with only minor additions. Therefore, FT-GAIA is mostly transparent to
the user, meaning that any simulation model built for GAIA can be easily ported to FT-GAIA.
The FT-GAIA extension will be integrated in the next release of the GAIA/ARTÌS simulation
middleware and will be available from the official GAIA/ARTÌS Web site [31].

FT-GAIA works by replicating simulation entities (see Fig. 3) to tolerate crash-failures and
Byzantine faults of the LPs. A crash may be caused by a failure of the hardware – including the
network connection – and operating system. A Byzantine failure refers to an arbitrary behavior of
a LP that causes the LP to crash, terminate abnormally, or to send arbitrary messages (including
no messages at all) to other LPs.

Replication is based on the following principle. If a conventional, non-fault tolerant dis-
tributed simulation is composed of N distinct simulation entities, FT-GAIA generates N ×M en-
tities, by generating M independent instances of each simulation entity. All instances A1, . . . AM

of the same entity A perform the same computation: if no fault occurs, they produce the same
result.

Replication comes with a cost, both in term of additional processing power that is needed
to execute all instances, and also in term of an increased communication load between the LPs.
Indeed, if two entities A and B communicate by sending a message from A to B, then after
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replication each instance Ai must send the same message to all instances B j, 1 ≤ i, j ≤ M,
resulting in M2 (redundant) messages. Therefore, the level of replication M must be chosen
wisely in order to achieve a good balance between overhead and fault tolerance, also depending
on the types of failures (crash failures or Byzantine faults) that the user wants to address.

Handling crash failures. A crash failure happens when a LP crashes, but operates correctly until
it halts. When a LP terminates, all simulation entities running on that LP stop their execution
and the local state of the computation is lost. From the theory of distributed systems, it is known
that M instances of each simulation entity are required to tolerate up to (M − 1) crash failures.
Each instance must be executed on a different LP, so that the failure of a LP only affects one
instance of all entities executed there. This is equivalent to running M copies of a monolithic
(sequential) simulation, with the difference that a sequential simulation does not incur in com-
munication and synchronization overhead. However, unlike sequential simulations, FT-GAIA
can take advantage of more than M LPs, by distributing all the N × M entities on the available
execution units. This reduces the workload on the LPs, reducing the wall-clock execution time
of the simulation model.

Handling Byzantine Failures. Byzantine failures include all types of abnormal behaviors of
a PE. Examples are: the crash of a component of the distributed simulator (e.g., LP or entity);
the transmission of erroneous/corrupted data from an entity to other entities; computation errors
that lead to erroneous results. In this case M instances of each SE are necessary to tolerate up to
b(M − 1)/2c Byzantine faults using the majority rule: a SE instance Bi can process an incoming
message m from A j when it receives one copy of m from the (strict) majority of the instances of
sender A (the strict majority of M instances is d(M + 1)/2e). This applies to synchronous systems
where the message delay is bounded and faulty nodes cannot forge messages (i.e., messages are
in some sense authenticated). Again, all M instances of each SE must be located on different LPs.

In is worth noting that, GAIA (and therefore FT-GAIA) is based on a time-stepped approach,
leading to a synchronous system. Moreover, the presence of a specific end-of-step synchroniza-
tion message that needs to be received by all LPs represents a bound on the possible latency for
correct messages. Thus, we can conclude that FT-GAIA works in a synchronous scenario.

The majority rule, as implemented in FT-GAIA, requires that the sequences of messages pro-
duced by each working instance of the same simulation entity are equal, i.e. the payload of the
i-th message of each sequence is exactly the same. This comes from the fact that many simu-
lation models require reproducibility of the results, irrespective from the implementation details
such as the number of LPs used, or how entities are mapped to the LPs. In turn, reproducibility
requires that once started, the behavior of the simulation as a whole is fully deterministic. How-
ever, there might be scenarios where strict determinism is not required, e.g. in mixed simulations
relying on Monte Carlo methods [35] when different execution paths are actually required. For
such scenarios, Byzantine failures are difficult if not impossible to identify, because the messages
produced by the instances of the same SE could be different yet correct. In these situations, de-
ciding whether a message is correct or not would require some model-specific knowledge, if such
knowledge exists at all. Extending FT-GAIA to allow the modeler to specify such knowledge is
relatively straightforward, but so far we have not encountered any use case demanding it.

Allocation of Simulation Entities. Once the level of replication M has been set, it is necessary
to decide where to create the M instances of each SE, so that the constraint that each instance is
located on a different LP is met. In FT-GAIA the deployment of instances is performed during
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the setup of the simulation model. In the current implementation, there is a centralized service
that keeps track of the initial location of all SE instances. When a new SE is created, the service
creates the appropriate number of instances according to the redundancy model to be employed,
and assigns them to the LPs so that all instances are located on different LPs. Note that all
instances of the same SE receive the same initial seed for their internal pseudo-random number
generators; this guarantees that their execution traces are the same, regardless of the LP where
execution occurs and the degree of replication. At the cost of some extra coordination among
the LPs even the initial SEs deployment could be decentralized. This not challenging under the
design viewpoint but would require a more complex implementation and thus it has been left as
future work.

Message Handling. We have already stated that fault tolerance through functional replication
has a cost in term of increased message load among SEs. Indeed, for a replication level M
(i.e., there are M instances of each SE) the number of messages exchanged between entities
grows by a factor of M2.

A consequence of message redundancy is that message filtering must be performed to avoid
that multiple copies of the same message are processed more than once by the same SE instance.
FT-GAIA takes care of automatically filtering the excess messages according to the fault model
adopted; filtering is done outside of the SE, which are therefore totally unaware of this step.
In the case of crash failures, only the first copy of each message that is received by a SE is
processed; all further copies are dropped by the receiver. In the case of Byzantine failures with
replication level M = 2 f +1, each entity must wait for at least ( f +1) copies of the same message
before it can handle it. Once a strict majority has been reached, the message can be processed
and all further copies of the same messages that might arrive later on can be dropped.

Entities Migration. PADS can benefit from the migration of SEs to balance computation/communication
load and reduce the communication cost, by placing the SEs that interact frequently “next” to
each other (e.g. on the same LP) [15]. In FT-GAIA, the entity migration is subject to a new
constraint: the instances of the same SE can never reside on the same LP. More specifically,
the SEs migration is handled by the underlying GAIA/ARTÌS middleware: each LP runs a clus-
tering mechanism based on a heuristic function that tries to put together (on the same LP) the SEs
that interact frequently through message exchanges. Special care is taken to avoid putting too
many entities on the same LPs that would become a bottleneck. Once a new feasible allocation
is found, the migration of a SE is implemented through moving its state variables to the desti-
nation LP. In different terms, our design choice has been to maintain GAIA and FT-GAIA as
separate as possible. In fact, the clustering heuristics used by GAIA are totally unaware of the
functional replication of SEs. This has simplified the development of FT-GAIA as a separate
software module at the cost of using the generic self-clustering heuristics provided by GAIA.
Most likely, specifically tailored heuristics would be able to obtain a better clustering of SEs
when considering the presence of copies of the same SEs.

5. Experimental Performance Evaluation

In this section we evaluate a prototype implementation of FT-GAIA by implementing a sim-
ple simulation model of a Peer-to-Peer (P2P) communication system. The simulation model built
on top of FT-GAIA is executed under different workload parameters that will be described in the
following. The Wall Clock Time (WCT) of the simulation runs is recorded (excluding the time
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to setup the simulation) such as other metrics of interest. The tests were performed on a cluster
of workstations, each host being equipped with an Intel Core i5-4590 3.30 GHz processor with
4 physical cores and 8 GB of RAM. The operating system was Debian Jessie. The workstations
are connected through a Fast Ethernet LAN.

5.1. Simulation Model

We simulate a simple P2P communication protocol over randomly generated directed overlay
graphs. Nodes of the graphs are peers while links represent communication connections [36, 37].
In these overlays, all nodes have the same out-degree, that has been set to 5 in our experiments.
During the simulation, each node periodically updates its neighbor set. Latencies for message
transmission over overlay links are generated using a lognormal distribution [38].

The simulated communication protocol works as follows. Periodically, nodes send PING
messages to other nodes, that in turn reply with a PONG message that is used by the sender to
estimate the average latencies of the links (note that communication links are, in fact, bidirec-
tional). The destination of a PING is randomly selected to be a neighbor (with probability p),
or a non-neighbor (with probability 1 − p). A neighbor is a node that can be reached through an
outgoing link in the directed overlay graph.

Each node of the P2P overlay is represented by a SE within some LP. Unless stated otherwise,
each LP was executed on a different PE, so that no two LPs shared the same CPU core. Three
different scenarios are considered: a no fault scenario, where no faults occur, a crash scenario,
where crash failures occurs and finally a Byzantine scenario where Byzantine faults occurs.

We executed 15 independent replications of each simulation run. In most of the charts in this
section, mean values are reported with a 99.5% confidence interval.

5.2. Impact of the number of LPs and SEs

Figure 4 shows the WCT of the simulation that was executed for 10000 timesteps with a
varying number of SEs; recall that the number of SEs is equal to the number of nodes in the P2P
overlay graph. The number of LPs was set to 3, 4, and 5; the number of hosts is equal to the
number of LPs, so that each LP is executed on a different physical machine. The WCT for the
three failure scenarios is shown (i.e., no failure, single crash and single Byzantine failure). In all
cases, the adaptive migration heuristic provided by GAIA is disabled.

Results with 3 and 4 LPs are similar, with a slight improvement with 4 LPs. Conversely,
higher WCT is observed when 5 LPs are used. As expected, the higher the number of SEs the
higher the WCT. This happens since the simulation incurs in a higher communication overhead.
All curves show a similar trend: in particular, it is worth noting that the increment due to the faults
management schemes is mainly caused by the higher number of messages that are exchanged
among nodes.

Figures 5 and 6 show the WCT with 8000 and 16000 SEs with varying number of LPs; again,
each LP has been executed on a different physical host. The two charts emphasize the increment
of the time required to complete the simulations with 5 LPs and in presence of Byzantine faults.
This is due to the increased number of messages exchanged among the LPs: each message needs
to be sent to three (2M+1) different destinations in order to guarantee the expected fault tolerance.

5.3. Impact of the number of LPs per host

In the previous experiments, each LP has been allocated in a different host. Figure 7 shows
the WCT when more than one LP is run in each host. In particular, the following setups are
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considered: (i) 4 LPs placed over 4 hosts (1 LP per host), (ii) 8 LPs placed over 8 hosts (1 LP per
host), (iii) 8 LPs placed over 4 hosts (2 LPs per host), and (iv) 16 LPs over 4 PEs (4 LPs per host).
Note that, in any case, the number of LPs/host never exceeds the number of cores/host, so that
every LP runs on a separate processor core. For each setup, the three failure scenarios already
mentioned (no failures, crash, Byzantine failures) are considered. Again, the migration heuristic
provided by GAIA is disabled. Each curve in the figure is related to one of those scenarios,
when varying the amount of SEs. It is worth noting that, when two or more LPs are run on
the same host, they can communicate using shared memory rather than through the LAN. This
means that, in this case the inter-LP communication is more efficient. For better readability, in
this experiment the confidence intervals have been calculated but not reported in the figure.

We observe that the scenario with 4 LPs over 4 hosts is influenced by the number of SEs and
the failure scenario, while in the other cases it is the number of LPs that mainly determines the
simulator performance. When 8 LPs are executed on 4 hosts, the performance is slightly better
than the case where 8 LPs are executed on 8 hosts. This is due to the better communication
efficiency provided by shared memory with respect to the LAN interface.

The worst performance is measured when 16 LPs are executed on 4 hosts. This is due to
the fact that the amount of computation in the simulation model is quite limited. Therefore,
partitioning the SEs in 16 LPs has the effect to increase the communication cost without any
benefit from the computational point of view (i.e., in the model there is not enough computation
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to be parallelized).

5.4. Impact of the number of failures

The impact of the number of faults on the simulation WCT is now studied. Two different
setups are considered, one with 5 LPs over 5 hosts (Figure 8), and one with 8 LPs over 4 hosts
(Figure 9). The choice of 5 LPs is motivated by the fact that this is the minimum number of LPs
that allows us to tolerate up to two Byzantine faults. Furthermore, the P2P simulation model
used in this performance evaluation shows a significant degradation of performance when the
number of LPs is larger than 8. As described before, this is due to the specific characteristics of
the simulation model, in which there is a limited amount of computation that can be parallelized.
On the other hand, partitioning the model on a large number of LPs sharply increases the com-
munication cost. More in detail, the setup with 8 LPs on 4 hosts allows testing 3 Byzantine faults
with 2 LPs per host in a setup with a limited communication overhead.

Figure 8 shows the WCTs measured with 0, 1 and 2 faults. Each curve refers to a scenario
with 2000 or 6000 SEs with crash or Byzantine failures. As expected, the higher the number
of faults, the higher the WCTs, especially when Byzantine faults are considered. Indeed, in this
case a higher amount of communication messages is required among SEs in order to properly
handle faults.

A higher WCT is measured with 8 LPs, as shown in Figure 9. In this case, the amount of
faults has a limited influence on the simulation performance. As before, the computational load
of this simulation model is too low for gaining from the partitioning in 8 LPs. In other words,
the latency introduced by network communications is so high that both the number of SEs and
the number of faults have a negligible impact on performances.
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5.5. Impact of SEs migration

Finally, Figure 10 shows the WCT of a simulation composed of 4 LPs (in which each LP was
executed on a different host) with different failure schemes, when the adaptive migration of SEs
provided by the GAIA framework is enabled/disabled. Also in this case, for better readability,
the confidence intervals are not reported in figure.

In this case, the trend obtained with the SEs migration is similar to that obtained when no
migration is performed but the overall performance are better when the migration is turned off.
This is due to the overhead introduced by the self-clustering heuristics and the state of the SEs
that are transfered between the LPs. In other words, the adaptive clustering of SEs that in many
other simulation models has provided a significant gain, in this case, is unable to give a speedup.

The main motivation behind this result is the fact that, in this prototype, we have decided to
use the very general clustering heuristics that are already implemented in GAIA/ARTÌS. These
heuristics assume that the simulation model is composed of a set of agents, each one with its
specific behavior and communication pattern. In the case of FT-GAIA, this not true. In fact, all
the copies of a given SE share exactly the same behavior and interactions. Moreover, as described
before, FT-GAIA adds the constraint that the instances of the same SE can never reside on the
same LP. This constraint affects the free flow on SEs among the LPs and consequently reduces
the clustering efficiency.

For these reasons, we think that more specific replication-aware clustering heuristics need to
be designed to improve the clustering performance while balancing the overhead introduced by
the fault tolerance mechanism.
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6. Analytical Reliability Evaluation

In Section 4 we have seen that the FT-GAIA extension of the GAIA/ARTÌS middleware
works by making M copies of each SE, and ensuring that each copy resides on a different LP.
This requirement, that we call FT-GAIA constraint from now on, guarantees that FT-GAIA can
tolerate up to M − 1 crash failures of LPs, or up to b(M − 1)/2c Byzantine failures.

In this section we perform a reliability analysis of an FT-GAIA simulation to complement
the experimental performance evaluation from Section 5. The goal of this analysis is to estimate
the reliability of FT-GAIA when the number of failures is higher than the thresholds above; also,
we want to study what happens if the FT-GAIA constraint is not enforced, that is, what happens
if more than one instance of the same simulation entity is allowed reside on the same LP. These
kinds of analyses would be complex and time-consuming if performed through actual experi-
ments as in the previous section, so we resort to a simpler probabilistic evaluation. We remark
that the analysis below is only concerned with the system reliability, and does not consider any
performance metric. Indeed, the content of this section is orthogonal to the performance analysis
described in Section 5. Analytical performance models for distributed simulations have been
proposed in the past [39], but their extension to FT-GAIA would be non-trivial and is outside the
scope of this work.

We analyze the system reliability of FT-GAIA under crash or Byzantine failures of the LPs,
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since they are the basic component that can fail in GAIA-FT. Indeed, a crash of a whole host
implies a crash of all the LPs running on it, and a crash of a SE implies a crash of the whole LP
where the SE is executed.

The analysis presented below relies on the following assumptions:

• All crashes are permanent: a crashed LP is never brought back to a functioning state.

• Every LP has the same probability to crash.

• All instances of each simulation entity are randomly and uniformly placed on the avail-
able LPs, either respecting or not respecting the FT-GAIA constraint (we will analyze both
scenarios).

• SEs are never migrated from one LP to another.

While some of the assumptions above are quite limiting, they simplify the analysis consider-
ably and still provide useful qualitative information.

6.1. Crash Failure Model
Given a simulation with L LPs and N simulation entities, with M instances of each entity

(1 ≤ M ≤ L), we assume that X randomly chosen LPs crash during the simulation (0 ≤ X ≤ L).
We want to compute the system reliability, that is, the probability that a sufficient number of
instances of each entity survived to ensure that the simulation produces the intended results. In
the crash failure model, the reliability RC is the probability that at least one instance of each
entity resides on a LP that does not crash; in case of byzantine failures, the reliability RB is the
probability that at least d(M + 1)/2e entities (the majority) reside on LPs that do not crash.
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For each SE i, let Ni be the random variable denoting the number of instances of i that reside
on LPs that did not crash. The pmf (probability mass function) Pr(Ni = k), 0 ≤ k ≤ M, can be
derived easily by casting the original problem into an “urn problem”. If k is greater than L − X,
then Pr(Ni = k) is zero since less than k LPs survived through the end of the simulation. If
0 ≤ k ≤ L − X, then P(Ni = k) is the probability of getting k white balls out of M extracted
without replacement from an urn containing X black balls (representing crashed LPs) and L − X
white balls (representing LPs that did not crash). Therefore we have:

Pr(Ni = k) =


(

X
M − k

)(
L − X

k

)
/

(
L
M

)
if 0 ≤ k ≤ L − X

0 if L − X < k ≤ M
(1)

The system reliability RC under the crash failure model is the probability that the simulation
terminates successfully. This is the joint probability that Ni ≥ 1 for each i. If there are more
instances of each SE than crashed LPs, then RC = 1 since the FT-GAIA constraint ensures that
there is at least one live instance of each entity. On the other hand, if M ≤ X ≤ L it may happen
that all instances of the same entity fail, and the system reliability can then be computed in this
case as:

N∏
i=1

Pr(Ni ≥ 1) =

N∏
i=1

(1 − Pr(Ni = 0)) =

[
1 −

(
X
M

)
/

(
L
M

)]N

Therefore, RC is defined as:
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RC =


1 if 0 ≤ X < M[
1 −

(
X
M

)
/

(
L
M

)]N

if M ≤ X ≤ L
(2)

Note that if X = L (all LPs failed) then RC is zero as expected. Also, observe that RC tends
to zero as the number of entities N approaches infinity.

6.2. Byzantine Failure Model
The reliability RB under the Byzantine failure model can be computed in a similar way.

The minimum number of working instances of each SE that are required to guarantee that the
simulation terminates is d(M+1)/2e. If the number of failures X is strictly lower than d(M+1)/2e,
then RB = 1. If the number of failed LPs is greater than or equal to d(M + 1)/2e, the reliability
becomes strictly less than 1 and can be computed as the joint probability that the majority of the
instances of each entity i are active:

N∏
i=1

Pr(Ni ≥ d(M + 1)/2e) =

N∏
i=1

 L∑
k=d(M+1)/2e

Pr(Ni = k)


=

 L∑
k=d(M+1)/2e

Pr(Ni = k)


N

Hence we have:
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Figure 11: Reliability of FT-GAIA to crash (top) and Byzantine failures (bottom), as a function of the number of fail-
ures X; we assume L = 100 LPs and M = 21 instances of each entity. The vertical line is at M.

RB =


1 if 0 ≤ X < d(M + 1)/2e L∑

k=d(M+1)/2e

Pr(Ni = k)


N

if d(M + 1)/2e ≤ X ≤ L
(3)

Figure 11 shows the reliability of FT-GAIA using L = 100 LPs with M = 21 instances of
each entity, as a function of the number of crashes X. Under the crash failure model (top figure)
the system tolerates up to M−1 = 20 crashes; under the Byzantine failure model (bottom figure),
the system tolerates up to d(M + 1)/2e − 1 = 10 crashes. When X exceeds the thresholds, the
reliability drops; in fact, RB drops faster than RC , because the Byzantine failure model requires a
higher number of active instances to guarantee that the simulation terminates successfully.

Figure 12 shows the reliability of FT-GAIA as a function of the number of entities N for
different number of faults X (note that the values of X differ for the crash and Byzantine failure
models); we assume L = 100 LPs and M = 21 instances of each entity. Protecting the simulation
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Figure 12: Reliability of FT-GAIA for crash failures as a function of the number of simulation entities N, with L = 30
LPs and M = 11 instances of each entity.

against Byzantine faults requires a higher number of active instances for each SE, since the
model is more general than the crash failure model. However, the drawback is that the reliability
RB drops very quickly as N increases even when the number of faults X slightly exceeds the
threshold. Therefore, the user must be aware that Byzantine faults are much more sensitive to
the choice of the “correct” value of M than crash failures.

6.3. Impact of the FT-GAIA Constraint

We now study what would happen if the FT-GAIA constraint is not applies, i.e., if FT-GAIA
were allowed to put more than one instance of same entity on the same LP. Given a simulation
with L LPs, N entities that are replicated M times, and X LPs that crash during the simulation,
let N∗i be the number of surviving instances of entity i under the assumption that the FT-GAIA
constraint does not apply. This scenario can again be analyzed as an urn problem, in this case
where the balls are extracted with replacement. The random variables N∗i follow a binomial
distribution B

(
M, L−X

L

)
, so we have:
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Pr(N∗i = k) =

(
M
k

) (L − X
L

)k (X
L

)M−k

As above, the system reliability R∗C under the crash failures model can be expressed as:

R∗C =

N∏
i=1

Pr(N∗i ≥ 1) =

N∏
i=1

(
1 − Pr(N∗i = 0)

)
=

[
1 −

(X
L

)M]N

(4)

Eq. (4) tells us that the system reliability R∗C is strictly less than 1 even in presence of a single
crash failure. Indeed, if the instances of each SE are randomly placed on the LPs, there is a
small but non-negligible probability that all instances of, say, entity i are placed on the same LP
that will crash, aborting the whole simulation. This can not happen if the FT-GAIA constraint is
enforced.

Figure 13 compares the system reliability with and without the FT-GAIA constraint. We
consider a system with L = 100 LPs and N = 106 simulation entities that are replicated M = 21
times. The FT-GAIA constraint allows the system to sustain up to M − 1 = 20 failures; indeed,
when X < M the reliability RC computed using Eq. (2) is 1. When X < M the reliability R∗C
computed using Eq. (4) is slightly less than 1; however, the difference is so tiny to be almost
negligible. Indeed, Eq. 4 shows that the probability that all instances of one SE reside on the
same (crashed) LP gets smaller as the number of replicas M increases. However, it is important
to remember that this is true if the SE instances are randomly placed on the LPs.

In practice, however, the placement is not random, at least when the automatic clustering and
migration facilities of GAIA/ARTÌS are enabled. Indeed, GAIA/ARTÌS monitors the communi-
cation pattern of the SEs, and migrate those that exhibit a high level of interaction on the same LP
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to reduce the number of remote communications [15]. If the placement of SEs is not random,
the FT-GAIA constraint becomes essential to limit the probability that too many instances of the
same SE fail at the same time.

6.4. Discussion
We can use the results above to provide some guidelines on how the replication level M can

be chosen in practice. Note that choosing the “best” value of M is a difficult problem, since the
answer depends on the simulation model that is executed, on the execution environment, and on
the failure model that is considered.

If the user requests a strong guarantee that the simulation run is completed without failures,
then it is necessary to choose a value of M that produces a system reliability equal to 1. Assuming
that the GAIA-FT constraint is enforced, Eq. 2 and (3) tells us that the system reliability is one if
the number of expected failures X is strictly less than M for the crash failure model, and strictly
less than b(M + 1)/2c for the Byzantine failure model.

The number of expected failures X can be expressed as

X = Lλt (5)

where λ is the failure rate of each LP, and t is the duration of the simulation run. Both parameters
can be estimated empirically; in particular, λ can be computed as the inverse of the MTTF, that
is a quantity that can be easily observed from the operational history of the system.

Therefore, the simulation can be completed with probability 1 in the crash failure model
if X < M; taking into account Eq. (5) we get:

M > Lλt (6)

Similarly, the simulation can be completed with probability 1 in the Byzantine failure model
if X < b(M + 1)/2c; again, taking into account Eq. (5) we get:

M > 2Lλt − 1 (7)

The user is responsible for deciding which failure model to use. Once the choice is made, the
smallest integer value M satisfying (6) or (7) is the replication level that provides the strongest
guarantee to complete the simulation, under the simplifying assumptions stated at the beginning
of this section.

The experimental evaluation illustrated in Section 5 shows that providing protection against
Byzantine failures is more costly in term of wall clock time; however, Byzantine failures are more
general than crash failures. If the user trusts the computation and assumes that a running SE will
always compute the correct result, the more lax crash failure model can be considered, allowing
a lower replication level M to be chosen.

7. Conclusions and Future Work

In this paper we described an approach to provide fault tolerance through functional replica-
tion in parallel and distributed simulations. Our solution, called FT-GAIA, is an extension to the
GAIA/ARTÌS simulation middleware that acts transparently to the user that creates and manages
the simulation. Fault tolerance is provided by replicating simulation entities and distributing
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them on multiple execution nodes. This is a particularly important issue to cope with, espe-
cially if we expect to have execution nodes running complex simulation over virtual machines
hosted by public or private cloud systems. Replication of their execution guarantees tolerance to
crash-failures and Byzantine faults of computing nodes. In order to mitigate the costs of commu-
nication among simulation entities, the middleware exploits an automatic migration of simulated
entities among execution nodes with the aim to balance the computational load and minimize the
communication overhead.

A preliminary performance evaluation of FT-GAIA has been presented, based on a prototype
implementation. Results show that a high degree of fault tolerance can be achieved, at the cost of
a moderate increase in the computational load of the execution units. Moreover, a probabilistic
model that drives an analytical evaluation of the proposed scheme is introduced.

As a future work, we aim at improving the efficiency of FT-GAIA by leveraging on ad-hoc
clustering heuristics that are aware of the fault tolerance mechanism implemented by FT-GAIA.
For example, evaluating the impact on the clustering of all the copies of a given simulation entity
instead of considering each entity by itself. Indeed, we believe that specifically tuned clustering
and load balancing mechanisms can significantly reduce the overhead introduced by the repli-
cation of the simulated entities. Another aspect that needs to be investigated is the impact of
the functional replication on different synchronization algorithms used in distributed simulations,
e.g. the Chandy-Misra-Bryant (CMB) conservative approach based on NULL messages [33], or
the Time Warp optimistic protocol [20] based on rollbacks, that are the most commonly used in
practice.

Symbols

L := Number of Logical Processes (LPs)
N := Number of Simulation Entities (SEs)
M := Number of copies of each SE (M ∈ {0, . . . , L})
X := Number of crashed LPs (X ∈ {0, . . . , L})

Ni := Number of instances of SEs i that do not crash
RC := System reliability under the crash failure model
R∗C := System reliability under the crash failure model (without the FT-GAIA

constraint)
RB := System reliability under the Byzantine failure model

Acronyms

DES Discrete Event Simulation

FEL Future Event List

GVT Global Virtual Time

HPC High Performance Computing

IRP Inertial Reference Platform

LVT Local Virtual Time

LP Logical Process
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MTTF Mean Time To Failure

PADS Parallel And Distributed Simulation

PDES Parallel Discrete Event Simulation

PE Processing Element

SE Simulated Entity

WCT Wall Clock Time
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