
13 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Kafalı, Ö., Torroni, P. (2018). Comodo : Collaborative monitoring of commitment delegations. EXPERT
SYSTEMS WITH APPLICATIONS, 105, 144-158 [10.1016/j.eswa.2018.03.057].

Published Version:

Comodo : Collaborative monitoring of commitment delegations

Published:
DOI: http://doi.org/10.1016/j.eswa.2018.03.057

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/634619 since: 2019-03-07

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.eswa.2018.03.057
https://hdl.handle.net/11585/634619


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Kafalı, Ö., and P. Torroni. "COMODO: Collaborative Monitoring of Commitment 
Delegations." Expert Systems with Applications, vol. 105, 2018, pp. 144-158. 

The final published version is available online at: 
http://dx.doi.org/10.1016/j.eswa.2018.03.057 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1016/j.eswa.2018.03.057


COMODO: Collaborative Monitoring of Commitment Delegations
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Abstract

Understanding accountability in contract violations, e.g., whom is accountable for what, is a tedious, time-consuming,

and costly task for human decision-making, especially when contractual responsibilities are delegated among parties.

Intelligent software agents equipped with expert capabilities such as monitoring and diagnosis help save time and

improve accuracy of diagnosis by formal reasoning upon electronic contracts. Such contracts are represented as com-

mitment norms, a well studied artifact in multi-agent systems, which provide semantics for agent interactions. Due

to the open and heterogeneous nature of multi-agent systems, commitments are often violated. When a commitment

is violated, e.g., an exception occurs, agents need to collaborate to understand what went wrong and which agent is

responsible. We propose COMODO: a framework for monitoring commitment delegations and detecting violations.

We define a complete set of possible rational delegation schemes for commitments, identifying for each combination

of delegations what critical situations may lead to an improper delegation and potentially to a commitment violation.

COMODO provides a sound and complete distributed reasoning procedure that is able to find all improper delegations

of a given commitment. We provide the complete implementation of COMODO using the Reactive Event Calculus,

and present an e-commerce case study to demonstrate its workings. Due to its generic nature, we discuss the appli-

cation of our approach to other distributed diagnosis problems in emergency healthcare, Internet of Things and smart

environments, and security, privacy, and accountability in the context of socio-technical systems.

Keywords: Agent-based commerce, Norms, Commitment delegation, Diagnosis, Computational logic

1. Introduction

A commitment describes a contract between two agents: the debtor commits to bringing about a property for the

creditor (Singh, 1999). Commitments are used to give agent interaction a social semantics (Torroni et al., 2009). The

idea of a social semantics is to abstract away from the agent internals and provide a social meaning to agent message

exchanges. In a contract-based multi-agent system, several such commitments are in effect. Consider Amazon Prime’s
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next-day delivery scheme: Amazon is committed to provide a one day delivery as long as the customer pays until noon.

This can be represented by a conditional commitment:

C(amazon, customer, paid(customer, item) ∧ prime(customer), a[1, 12], delivered(item), a[12, 36])

where paid(customer, item)∧prime(customer) is the condition enabling the commitment (antecedent), and a[1, 12]

specifies the absolute time window for the payment (in this example, each unit represents one hour). The conditional

commitment states that, if the customer pays until noon and is an Amazon Prime customer, then amazon (the debtor)

commits to the delivery of the item (delivered(item) is the consequent of this commitment) in the absolute time

interval a[12, 36]. Now, let’s consider another commitment where the bank is committed to verify the customer’s

payment in three days after the customer initiates the payment. We can represent this commitment with a relative

deadline for the consequent as follows:

C(bank, customer, paid, a[∞,∞], verified, r[0, 3]).

The use of commitments to model agent interaction has been advocated especially in heterogeneous and open

settings where autonomous agents must interact flexibly so as to handle exceptions and seize opportunities (Yolum

& Singh, 2002). In these settings, traditional representations of protocols, such as finite state machines or AUML

interaction protocol diagrams, are inadequate. One reason why commitment-based approaches are more flexible than

traditional approaches is that they enable the stakeholders to delegate their commitments.

Delegation, the act of giving control or authority (e.g., a job, a duty, etc.) to another agent (Castelfranchi & Fal-

cone, 1998; Norman & Reed, 2010), may be desirable for several reasons. For instance, agents may not be capable

of satisfying the properties they are committed to bringing about. This is a very common case in e-commerce sce-

narios. Amazon delegates its deliveries to a courier (e.g., UPS). In our example, a delegation of delivery by Amazon

(delegator) creates a new commitment:

C(ups, amazon,⊤, a[∞,∞], delivered, a[31, 45])

whereby a new agent, in this case UPS (delegatee), commits to Amazon to carrying out the delivery (delegandum).

Note that the absence of a time reference in the antecedent is represented by a[∞,∞]. Here, the commitment for

delivery between Amazon and the customer is extended with UPS. The customer may not be aware of this extension

until the delivery is completed, or something goes wrong (e.g., the deadline passes). In that case, this connection

should be revealed so that if the problem is related to UPS, it can be identified.

We call such problems exceptions in the sense that they do not account for the expected outcome of a commitment.

Some causes of exceptions have been identified by related work as (i) a violation where a commitment is violated by

its debtor (Singh, 1999), (ii) a misalignment where two commitments are not aligned with each other due to different

observations of the participating agents (Kafalı & Torroni, 2012), or (iii) an improper delegation where a commitment

is delegated without respecting the delegandum’s deadline (Kafalı & Torroni, 2011).

This paper significantly extends our previous work on commitment delegation (Kafalı & Torroni, 2011), and
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provides a distributed framework, COMODO, for detecting exceptions caused by inconsistencies regarding such dele-

gations. When there are many commitments in the system at hand, in order to identify an exception we need effective

ways to explore the space of commitments. In particular, we need to identify links between commitments and exclude

irrelevant instances from our search. The process of tracking individual commitment states is called commitment

monitoring (Chesani et al., 2009). We extend monitoring to enable tracking down exceptions by following the links

between commitments of different agents. To this end, we define a language for commitments and deadlines, which

enables modeling a variety of interesting e-commerce situations. The language allows us to define properties as con-

junctions of atomic propositions. Properties are associated with absolute or relative deadlines. We define a complete

set of possible rational delegation schemes, identifying for each combination of delegations what critical situations

may lead to improper delegations and possibly to commitment violations. A naive way of diagnosing exceptions

would be to scan the set of commitments relative to a given transaction, and to look for the property that has been

violated. However, this does not solve the problem if the property changes because of delegations, and if some knowl-

edge is local to agents. Thus, we need to identify types of delegations and define a distributed algorithm that only

makes use of the knowledge that is locally available to the agent. COMODO provides such an algorithm. We prove

that our algorithm is sound and complete. Alongside with the theoretical results, we also provide an implementation

for COMODO based on the Reactive Event Calculus. Finally, we present a case study to demonstrate its workings.

Contributions and Implications: Our core contribution is a fully distributed monitoring and diagnosis procedure

for intelligent agents that mimics the reasoning of a human expert (Jackson, 1986) in the context of e-commerce

exceptions. The knowledge base of an agent contains stateful commitments that keep track of its interactions with

other agents. Using the facts contained in its knowledge base, the agent makes inference using temporal reasoning via

the Reactive Event Calculus engine. Additional contributions include: (i) the extension of the commitment language

presented in (Kafalı & Torroni, 2011) with deadlines for antecedents of commitments; (ii) an exhaustive list of multi-

agent commitment delegation schemes; and (iii) a complete implementation of the diagnosis procedure in the Reactive

Event Calculus. The proposed diagnosis procedure can be extended with an explanation capability since commitments

provide semantics for agents’ interactions. Such explanations would enable human users to understand what has

transcribed during a transaction and help introspection about the exception situation. Intelligent agents equipped with

such expert capabilities have potential implications on several important domains regarding all phases of distributed

exception handling (Kafalı et al., 2017b; Soeanu et al., 2016; Sun et al., 2012; Vasconcelos et al., 2009; Xu et al.,

2011), e.g., planning, monitoring, conflict resolution, semantic reasoning, and diagnosis. While we have applied

the diagnosis procedure on an e-commerce case study, its generic nature enables deployment in application areas

including emergency healthcare, Internet of Things and smart environments, and security and privacy in the context

of sociotechnical systems.

The rest of the paper is structured as follows. Section 2 describes our extensions to commitments. Section 3

discusses commitment delegation with a temporal analysis. Section 4 introduces COMODO’s distributed monitoring
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procedure and its formal properties. Section 5 presents a case study. Section 6 reviews the relevant literature and

places our contribution in the context of expert and intelligent systems. Section 7 discusses the limitations of COMODO

and presents potential future directions. The Appendix provides proofs of formal properties as well as COMODO’s

implementation.

2. Commitments

Commitments represent contracts or protocols (Yolum & Singh, 2002; Chopra et al., 2010). A commitment, as

originally defined by Singh (Singh, 1999), is a directed obligation between two agents: the debtor commits to the

creditor to bringing about a given property. Our definition of commitments extends Singh’s definition with the notion

of a deadline, following a recent line of research on reasoning with commitments in time (Chesani et al., 2009; Kafalı

& Torroni, 2012).

Definition 1. C(X , Y , Q, a[t1, t2], P , γ[t3, t4]) represents a commitment, where the debtor X commits to the creditor

Y to satisfying the consequent P when the antecedent Q holds. If Q is ⊤, then X is committed to Y unconditionally1.

When Q is not ⊤, it is associated with the temporal constraint a[t1, t2]. Similarly, P is associated with the temporal

constraint γ[t3, t4], where γ[t3, t4] can be one of the following:

• a[t3, t4] defines an absolute deadline, where P has to be brought about at some point between t3 and t4,

• r[t3, t4] defines a relative deadline, where P has to be satisfied between t3 and t4 time units as of the time t Q

gets satisfied, i.e., P has to be brought about at some point between t+ t3 and t+ t4.

In Definition 1, X , Y are agents, and Q, P are atomic (or conjunctions of) propositions. Note that the antecedent

can only have an absolute deadline, and a relative deadline is only defined for the consequent when the antecedent

is not ⊤. In the remainder of the paper, we sometimes call commitments whose antecedent is ⊤ base-level, and

whose antecedent is not ⊤ conditional (Yolum & Singh, 2002). When we discuss commitments independently of the

temporal constraints, we use the simplified notation C(X , Y , Q, P ). Our commitment language currently does not

support negation or disjunction of propositions, nor nested commitments. The reason for this is purely pragmatic,

most realistic e-commerce scenarios can be represented with conjunction, and adding negation or disjunction will

reduce efficiency. When P is a conjunction of propositions, we assume that all the atomic propositions in P have the

same deadline. A commitment is a live object and changes state through its life-cycle (Yolum & Singh, 2002). We

make use of the following five commitment states:

• conditional, when Q is not yet satisfied,

• expired, when a[t1, t2] has expired and Q is not satisfied,

1⊤ is a constant symbol indicating a fictitious property that does not need to be satisfied because it is already true.
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• fulfilled, when P is satisfied with respect to γ[t3, t4],

• violated, when γ[t3, t4] has expired and P is not satisfied, and

• active, otherwise.

Example 1. Consider C(amazon, customer, paid(customer, item) ∧ clothing(item), a[∞,∞], discount(customer,

20, clothing), r[0, 1]). This conditional commitment states that if the customer purchases a clothing item, then Ama-

zon will issue a discount for the next clothing purchase in an hour from the time the payment is made. For example, if

the customer pays at time 3, this commitment will become the active base-level commitment C(amazon, customer,

⊤, a[∞,∞], discount(customer, 20, clothing), a[3, 4]).

3. Delegation

When an agent X is bound to a commitment C, it may decide to carry out the consequent (if X is the debtor) or

the antecedent (if X is the creditor of a conditional commitment) only by itself, or by delegating C in part, or in full,

to other agents, which will act as subcontractors. Multiple commitments may then originate from C. These will be,

directly or indirectly, related to C.

Previous work has looked at commitments and their relations from different angles. In particular, Chopra and

Singh (2009) compare commitments via a strength relation using the commitments’ properties, whereas Kafalı et al.

(2012) focus on the temporal aspects of commitments and provide similarity relations based on the commitments’

deadlines. We combine both approaches, propose direct and indirect delegation relations, and show which cases are

relevant to monitoring.

Definition 2. A delegation of a commitment C(X , Y , Q, P ), called primary, is a new commitment where either X or

Y plays the role of the creditor or debtor (delegator), and a new agent Z (delegatee) is responsible for bringing about

the antecedent Q or part of Q (for conditional commitments only), or the consequent P , or part of P . The common

property between primary and delegation is called delegandum.

In the sequel, we use the notation debtor(C, X) to indicate that C’s debtor is X , and delegatee(C, Cj , Y ) to

indicate that the delegatee of C’s delegation Cj is Y . Next, we show how different kinds of delegations are defined

and combined, considering variations of C(amazon, customer, paid, delivered) as our primary (Cprim).

3.1. Basic Delegations

Basic delegations are instances of Definition 2 involving two commitments. They can be of six types: explicit,

implicit, antecedent, and their duals (inverse delegations).
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Amazon Customer

UPS

primary

C(amazon, customer, paid, delivered)

explicit delegation

C(ups, customer, deliveryFee, delivered)

inverse explicit delegation

C(customer, ups, delivered, deliveryFee)

Figure 1: Explicit delegation. The inverse case is shown with a dashed arrow.

Definition 3. Commitment C(Z, Y , Q′, P ′) is an explicit delegation of commitment C(X , Y , Q, P ) iff P |= P ′.2

This type of delegation was proposed by Yolum and Singh (2002) as the result of a “Delegate” operation. A new

commitment is created, whereby the new debtor is committed to the same creditor, and if P = P ′, the primary is

canceled following a “Cancel” operation (Yolum & Singh, 2002). An explicit delegation is shown in Figure 1. The

new debtor UPS replaces the former debtor Amazon.

Definition 4. Commitment C(Y , Z, Q′, P ′) is an inverse explicit delegation of commitment C(X , Y , Q, P ) iff P |=

Q′.

The creditor Y of the primary is now the debtor of the new commitment, and Y wishes to achieve P (or part of it)

via a new creditor Z. This is an inverse delegation to achieve P since there is no obligation for Z to satisfy P, still, Z

is motivated to satisfy P if he wishes Q to be satisfied. The concept of inverse delegation was introduced by Kafalı

and Torroni (2011), inspired by the work of Chopra et al. (2010). An inverse explicit delegation is shown in Figure 1.

Note that the roles of creditor and debtor are reversed, and accordingly the antecedent and the consequent are reversed

as well.

Definition 5. Commitment C(Z, X , Q′, P ′) is an implicit delegation of commitment C(X , Y , Q, P ) iff P |= P ′.

The debtor of the primary is now the creditor of a new commitment for (part of) the consequent P. The primary

becomes dependent on the delegation, as proposed by Kafalı et al. (2012). An implicit delegation is shown in Figure 2.

Note that the creditor is Amazon, which is the primary’s debtor. The primary is not cancelled, because a commitment

must be kept to the former creditor (the customer).

Definition 6. Commitment C(X , Z, Q′, P ′) is an inverse implicit delegation of commitment C(X , Y , Q, P ) iff P

|= Q′.

2The semantics of |= will depend on the language of the antecedent/consequent properties. In this paper for simplicity we consider properties

to be conjunctions of propositions, therefore P |= P ′ ⇔ (P = P ′) ∨ (P = P ′ ∧ P ′′), where P, P ′, P ′′ are all (conjunctions of) propositions.
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Amazon Customer

UPS

primary

C(amazon, customer, paid, delivered)

implicit delegation

C(ups, amazon, deliveryFee, delivered)

inverse implicit delegation

C(amazon, ups, delivered, deliveryFee)

Figure 2: Implicit delegation. The inverse case is shown with a dashed arrow.

The debtor of the primary also becomes the debtor of a new commitment where the antecedent is (part of) the

primary’s consequent. This type of delegation, as well as the next two ones (antecedent and inverse antecedent

delegation), were introduced by Kafalı and Torroni (2011). An inverse implicit delegation is shown in Figure 2.

Definition 7. Commitment C(Z, Y , Q′, P ′) is an antecedent delegation of commitment C(X , Y , Q, P ) iff Q is not

⊤and Q |= P ′.

The creditor of the primary also becomes the creditor of a new commitment for (part of) the antecedent of the

primary. An antecedent delegation is shown in Figure 3. Since the former consequent (delivered) does not appear

in the antecedent delegation, in order to maintain a commitment about the former consequent, the primary is not

cancelled. Antecedent delegations and implicit delegations can be combined together and bind multiple commitments

into causal relations (see Section 3.2). The last type of delegation we consider is the inverse variant of antecedent

delegation.

Definition 8. Commitment C(Y , Z, Q′, P ′) is an inverse antecedent delegation of commitment C(X , Y , Q, P ) iff

Q is not ⊤and Q |= Q′.

The creditor of the primary is now the debtor of a new commitment whose antecedent is (part of) the antecedent

of the primary. As in the previous case, the primary is not canceled. An inverse antecedent delegation of the primary

is shown in Figure 3.

Definitions 3 - 8 give an exhaustive account of how a commitment can be rationally delegated, i.e., so as to

preserve the responsibilities of roles in relation with the primary’s properties (Kafalı & Torroni, 2011). We denote via

dlg(Ci, C), that Ci is a delegation of C.

3.2. Causal Delegations

We will now shift the focus to commitments that are linked to each other via other commitments. To this end, in

(Kafalı & Torroni, 2011) we introduced the concept of commitment similarity. Here we extend similarity, in order to
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Amazon Customer

Bank

primary

C(amazon, customer, paid, delivered)

antecedent delegation

C(bank, customer, account, paid)

inverse antecedent delegation

C(customer, bank, paid, account)

Figure 3: Antecedent delegation. The inverse case is shown with a dashed arrow.

capture the notion of chains of delegations. We are interested in cases where two seemingly unrelated commitments

are connected to each other via a third commitment. Let us review all possible combinations of delegations described

previously:

I. Explicit delegations: There are no possible chains with explicit delegations since the primary is cancelled in the

process.

II. Implicit delegations: Consider the case where an implicit delegation is followed by another implicit delegation

as depicted below.

C1 = C(X, Y, Q, P)

C2i = C(Z, X, R, P)

C3i = C(W, Z, O, P)

Now, assume that X respects the deadline for P when delegating to Z, but Z does not when delegating to W .

Eventually, this would lead to the violation C1. But, it would also violate C2i. Thus, this can be identified by

only looking at the individual delegation of C2i to C3i. That is, we do not need to consider more than one implicit

delegation at a time.

III. Antecedent delegations: Consider the case where an antecedent delegation is followed by another antecedent

delegation as depicted below.

C1 = C(X, Y, Q, P)

C2a = C(Z, Y, R, Q)

C3a = C(W, Y, O, R)

Assume that Y delegates Q to Z with a deadline relative to R, and Y further delegates R to W with an absolute

deadline. Now, there is a no way of knowing C1 would be violated due to C2a (since it has a relative deadline) unless

we take into account C3a. Thus, all three commitments are connected. Accordingly, we may need to consider more

than one antecedent delegation at a time, in order to identify the source of an exception.

8



IV. Implicit delegation followed by antecedent delegation:

C1 = C(X, Y, Q, P)

C2i = C(Z, X, R, P)

C3a = C(W, X, O, R)

Now, assume that X delegates P to Z with a deadline relative to R, and X further delegates R to W with an absolute

deadline. Similar to the antecedent delegations case, all three commitments should be considered in order to identify

a problem.

V. Antecedent delegation followed by implicit delegation:

C1 = C(X, Y, Q, P)

C2a = C(Z, Y, R, Q)

C3i = C(W, Z, O, Q)

Again, a problem with this case can be identified by looking at two commitments at a time as in the implicit delegations

case.

Definition 9. Commitment C1 = C(X1, Y1, Q1, P1) is a causal delegation of commitment C2 = C(X2, Y2, Q2, P2)

via commitment C3 = C(X3, Y3, Q3, P3) if

(a) P2 |= P3 and X2 = Y3 (implicit delegation), and Q3 |= P1 and Y3 = Y1 (antecedent delegation), or

(b) Q2 |= P3 and Y2 = Y3 (antecedent delegation), and Q3 |= P1 and Y3 = Y1 (antecedent delegation).

We call C1 cause, C2 outcome, and C3 connective. The sequence of delegations from the outcome to the cause

forms a causal delegation chain. Note that the number of connectives might increase making the delegation chain

longer, e.g., a series of implicit delegations followed by a series of antecedent delegations. Note that the first part

(series of implicit delegations) is Case II, and can be tackled by looking at commitments pairwise.

Definition 9 connects three commitments through two delegations; either (i) an implicit delegation followed by an

antecedent delegation, or (ii) an antecedent delegation followed by another antecedent delegation. This allows us to

trace chained commitments where the delegandum changes along the delegation chain. We account for all relations

between a given commitment (primary) and its direct and indirect delegations, within the scope of a single agent.

Now, let us demonstrate a typical case for Definition 9.

Example 2. Consider the following set of commitments as depicted in Figure 4:

C2.1 = C(amazon, customer, paid, delivered)

C2.2 = C(ups, amazon, deliveryFee, delivered)

C2.3 = C(bank, amazon, account, deliveryFee)
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Amazon Customer

UPS

Bank

outcome

C(amazon, customer, paid, delivered)

connective

C(ups, amazon, deliveryFee, delivered)

cause

C(bank, amazon, account, deliveryFee)

Figure 4: Causal delegation. Cause and outcome are connected via connective. That is, Amazon’s commitment for delivery depends on UPS, which

in turn depends on the bank for the payment of delivery.

According to C2.1 (Cprim), once the customer pays, Amazon will have the goods delivered. Now, Amazon delegates

the delivery to UPS via C2.2. However, in order to deliver, UPS needs payment for delivery. Amazon makes another

delegation to the bank for payment via C2.3. Thus, Amazon’s delivery (C2.1, outcome) is now connected via C2.2

(connective) to bank’s payment (C2.3, cause), which is an example of case (a) in Definition 9.

For each commitment whose antecedent or consequent is a conjunction of properties, there may be more than one

delegation. We thus obtain a delegation tree. We can trace all delegations of a given commitment by exhaustive search

of the delegation tree.

3.3. Delegation Tree

A delegation tree is a set of connected delegations. This is formally described in the next two definitions.

Definition 10. A delegation chain σ = C1, . . . , Cj ⊂ C is a set of commitments such that ∀i, 1 < i ≤ j, Ci is a

direct3 delegation of Ci−1. The first element is called the root of the chain.

Definition 11. A delegation tree τ = (V,A) is a tree, whose nodes are commitments, V ⊆ C, such that for every

edge (Ci, Cj) ∈ A, Cj is a direct delegation of Ci.

3.4. Temporal Analysis

We will now enrich the relations we have defined so far, by taking into account temporal constraints. We seek to

identify and understand the reasons behind exceptional situations that can lead to faulty behaviour. To this end we

will define cases of delegations where the deadline of the primary is not properly propagated onto the delegation. We

will use the term improper to label a delegation whose deadline exceeds the primary’s deadline, and that can possibly

3A direct delegation is one of the cases described in Definitions 3 - 8.
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cause a mismatch between the satisfaction conditions believed by the delegator and delegatee. We will consider the

overall system as it is observed at a specific time, the time of observation. First, we describe how two time intervals

are compared.

Definition 12. Let t be the time of observation. An interval I1=γ1[t1, t2] exceeds an interval I2=γ2[t3, t4], iff either

of the following holds:

• I1 is absolute, I2 is absolute, and t1 < t3 or t2 > t4,

• I1 is absolute, I2 is relative, and t1 < t3 + t or t2 > t4 + t,

• I1 is relative, I2 is absolute, and t+ t1 < t3 or t+ t2 > t4,

• I1 is relative, I2 is relative, and t1 < t3 or t2 > t4.

Next, we use the notion of exceeding intervals to define improper delegations4.

Definition 13. Let Cid = C(Z, X , Q′, , P ′, I ′) be an implicit delegation of Cprim = C(X , Y , Q, , P , I). Cid is an

improper consequent delegation of Cprim iff I ′ exceeds I. The inverse case is defined similarly.

Example 3. Consider the following set of commitments:

C3.1 = C(amazon, customer, paid, a[1, 12], discount ∧ delivered, a[31, 45])

C3.2 = C(office, amazon, ⊤, a[∞, ∞], discount, [31, 31])

C3.3 = C(ups, amazon, ⊤, a[∞, ∞], delivered, a[35, 50])

Now, discount has been delegated correctly, since C3.2’s deadline does not exceed that of C3.1. C3.3 instead is an

improper delegation, whose deadline exceeds that of C3.1. Note that the occurrence of an exception is not inevitable,

since UPS may still complete delivery before time 45. However, C3.3 creates a vulnerability, and may be the root of

future exceptions.

Definition 14. Let Cad = C(Z, X , Q′, , P ′, I ′) be an antecedent delegation of Cprim = C(X , Y , Q, I, P , ). Cad

is an improper antecedent delegation of Cprim iff I ′ exceeds I. The inverse case is defined similarly.

Definition 15. Let σ be a delegation chain rooted in C, and let Cj ∈ σ be a (direct or causal) delegation of Ci ∈ σ.

Let I=γ[ts, te] be C’s interval and Ii=γi[ti,s, ti,e] be Ci’s interval, for each Ci in σ. Let t be the time of observation.

Cj is an improper causal delegation of C iff either of the following holds:

• I and all Ii are relative, and Σj
i=0

ti,s < ts or Σj
i=0

ti,e > te,

• assuming Ik is the last absolute deadline in σ, and tk is the time Ck’s property is satisfied

4We omit the deadline interval in the commitment with ‘ ’ when it is not relevant to the discussion.
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Symbol Description

δpro set of proper delegations of a given commitment

δimp set of improper delegations of a given commitment

C = {〈C, δpro, δimp〉, . . .} for each known commitment C, a triplet consisting of: C, its proper delegations

δpro, and its improper delegations, δimp

X ▽REC C C contains all (locally) known information about X’s commitments, extracted

by a REC reasoner such as ComMon

δexc commitments to be excluded from a monitoring process

δout, δj , δk output of monitoring processes (sets of improper delegations)

X �
δexc

δout
C the result of a monitoring process issued by X about C and excluding δexc, is

the set of improper delegations δout

X �
δexc

δout
Y ≫ C the result of a monitoring process requested by X to agent Y about C and

excluding δexc, is the set of improper delegations δout

Table 1: Notation for COMODO’s monitoring process.

– I is absolute and tk +Σj
i=k+1

ti,s < ts or tk +Σj
i=k+1

ti,e > te, or

– I is relative and tk +Σj
i=k+1

ti,s < t+ ts or tk +Σj
i=k+1

ti,e > t+ te.

Definition 16. Let C,Cj ∈ C. Cj is an improper delegation of C, denoted dlgimp(Cj , C), iff

• Cj is an improper consequent delegation of C, or

• Cj is an improper antecedent delegation of C, or

• Cj is an improper causal delegation of C, or

• ∃ Ck ∈ C such that dlg(Ck, C) and dlgimp(Cj , Ck).

A delegation which is not improper is called a proper delegation and denoted by dlgprop(Ci, C) (meaning that Ci

is a proper delegation of C).

4. Monitoring

In this section, we describe COMODO’s distributed monitoring procedure. At a given time of observation t, a

monitoring process M records all the improper delegations Mt that occurred up to t.

Definition 17. A monitoring process M is a process whose inputs are
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• a set A of agents,

• a set C of commitments among agents in A,

• a narrative Tt of events up to a given time of observation t, and

• a commitment model and domain knowledge defining the states of commitments in C based on Tt,

and whose output is Mt = {(Ci, Cj)|dlgimp(Ci, Cj)}, where Ci, Cj ∈ C.

The purpose of monitoring is to identify all the exceptions (e.g., improper delegations) among agents’ commit-

ments at a given time of observation, considering the available knowledge. Note that M is an abstract concept, as we

cannot assume that there is always an agent who has complete global knowledge. We use this to demonstrate that our

distributed monitoring procedure produces the same output as the global monitoring process.

Typically, a monitoring process starts from a specific commitment Cm whose delegations need to be analysed.

For example, Cm’s creditor X might want to check the situation with Cm some time before P ’s (the property of Cm)

deadline expires, in order to prevent potential problems. So, X will ask Y ’s collaboration (as the debtor of Cm).

Accordingly, Y will run a local monitoring process about P , and report back to X . The initial commitment about P

may in turn be linked to a number of other commitments, thus originating a chain of commitments, possibly involving

additional agents, other than X and Y .

We refer to a narrative Tt of events to trace a protocol execution. In particular, the successful completion of a

given action by a given agent will be represented by a particular event in Tt. We do not model action duration, but

only completion. Tt contains all the elements that describe a specific protocol execution up to time point t.

4.1. Distributed Monitoring

We will now describe the distributed monitoring procedure that agents follow to detect improper delegations. The

monitoring procedure is a derivation process, described by the local rules L1 and L2 (intra-agent reasoning) and the

social rules S1 - S3 (inter-agent reasoning). Table 1 summarizes the notation.

Given an agent X ∈ A and a commitment Cm ∈ C, a derivation X�
∅
δout

Cm starts when X decides to monitor one

of its commitments Cm. The ∅ symbol (which is an input to the derivation) signifies that no commitment is initially

excluded from the monitoring process, because no commitment has been analysed yet. The output δout is a set of

improper delegations, which might be empty in some cases. The monitoring procedure may propagate from agent to

agent, as described by the social rules. As commitments get analysed by the agents involved in the monitoring process,

they are included in the set δexc when performing further derivation. In this way, we prevent agents from analysing

the same commitment more than once. In a concrete implementation, answering to a monitoring request could be

implemented as a background agent behaviour, whereas issuing a monitoring request could be implemented by a

communicative act from an agent X to an agent Y , that implements the “answering to a monitoring request” behaviour.

A possible architecture for distributed monitoring is described in (Kafalı & Torroni, 2012), where observations are
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local to the agent, and commitment-based contract specifications are instead shared, i.e., accessible to both the debtor

and the creditor of each commitment.

Each agent involved will only use its local knowledge of commitments to contribute to the derivation by applying

local and social monitoring rules. Part of the local reasoning amounts to checking which commitments are linked to

the subject commitment, via proper or improper delegations. This is defined in the REC5 language, assuming that

for commitment tracking purposes each agent relies upon tools such as ComMon. However, in the general case, the

delegation check could be done by using any procedure that queries a local database of commitments.

Local monitoring: These are the rules used for monitoring the agent’s commitments locally. They describe intra-

agent reasoning, which is based on the agent’s local knowledge base (i.e., own commitments and fluents). This is

performed via the agent’s internal REC engine, for which the details will be given in the implementation part (see

Section 4.2).

L1)
X ▽REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ δout = δimp \ δexc ∧ δout 6= ∅

X �
δexc

δout
Cm

By rule L1, if the agent identifies any improper delegations of the currently monitored commitment Cm via

querying its REC engine locally, and these commitments are not already contained in δexc (the set containing the

commitments that are already processed during monitoring), then they are added to the output (δout) of the monitoring

process. Consider the commitments in Example 3: let X be Amazon, Cm be C3.1, and δexc = ∅. Now, when Amazon

queries their REC engine, he will find out that δpro = {C3.2} and δimp = {C3.3}. Thus, δout = {C3.3} which

contains the only improper delegation of C3.1.

L2)
X ▽REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ (δpro ∪ δimp) \ δexc = ∅ ∧ debtor(Cm, X)

X �
δexc

∅ Cm

By rule L2, if there are no locally known delegations of the monitored commitment Cm, and X is Cm’s debtor, the

result is an empty set. This rule complements L1, and is a termination condition for some branches of the distributed

monitoring process, when there are no more delegations left in the corresponding delegation chain for the subject

commitment.

Social monitoring: These rules describe how the derivation process propagates from one agent to another agent, and

how the results are combined. They describe the inter-agent reasoning, which is based on the monitoring interactions

(e.g., requests and responses) among the agents. In the following rules, we use the notation ≫, whose semantics is

given in Table 1, to indicate a request for monitoring.

5REC (Reactive Event Calculus) is an event calculus-based language and reasoning framework (Chesani et al., 2009). ComMon is a REC-

based monitoring engine that can be downloaded from http://ai.unibo.it/projects/comMon.

14



S1)

X ▽REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ Cj ∈ δpro \ δexc ∧ delegatee(Cm, Cj , Y ) ∧

X �
δexc

δj
Y ≫ Cj ∧ X �

δexc∪{Cj}
δk

Cm ∧ δout = δj ∪ δk

X �
δexc

δout
Cm

By rule S1, if there is a locally known proper delegation Cj which is not to be excluded (Cj ∈ δpro \ δexc), X

delegates monitoring to Cj’s delegatee Y , thereby obtaining a result δj . X will then continue monitoring its other

delegations, excluding Cj from the process, thereby obtaining a result δk. The final result δout is the union of the two

partial results, δj ∪ δk.

S2)

X ▽REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ (δpro ∪ δimp) \ δexc = ∅ ∧ debtor(Cm, Y ) ∧

X 6= Y ∧ X �
δexc

δout
Y ≫ Cm

X �
δexc

δout
Cm

By rule S2, if there is no locally known delegation of the monitored commitment Cm, Cm’s creditor X makes a

monitoring request to Cm’s debtor Y , and the result δout is provided by Y as the response.

S3)
Y �

δexc

δout
Cm

X �
δexc

δout
Y ≫ Cm

By rule S3, an agent Y answers to X’s request for monitoring concerning a given commitment Cm by executing

a monitoring process about Cm and propagating the result back to X .

This procedure relies on local reasoning and collaboration among agents to produce monitoring results that, ide-

ally, should be equivalent to the global results produced by the abstract monitoring process M. Under the assumption

that the REC reasoner provides sound and complete results, we can prove the following theorems (see Appendix A):

Theorem 1 (Soundness). Given a commitment Cm ∈ CT , and an agent X ∈ A, if X �
∅
δout

Cm and Ci ∈ δout, then

(Ci, Cm) ∈ MT .

By Theorem 1, if the distributed monitoring process identifies an exception in the form of an improper delegation

Ci of a given commitment Cm, then (Ci, Cm) is an outcome of the global monitoring (see Definition 17).

Theorem 2 (Completeness). ∀ (Ci, Cm) ∈ MT , ∃ an agent X ∈ A and a derivation X �
∅
δout

Cm such that

Ci ∈ δout.

By Theorem 2, for any two given commitments Ci, Cm ∈ CT , if Ci is an improper delegation of Cm, then there

is a possible run of the distributed monitoring process starting from some agent X that identifies it as such.

4.2. Implementation

We have provided an implementation for COMODO. We have written specifications in the REC language, and

utilised ComMon for monitoring of commitments. More specifically, the input to ComMon is the following:
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• a commitment theory that contains the rules for manipulation of commitments,

• a domain model that contains the protocol rules that describe the agents’ domain,

• an event trace that contains the actions of the agents throughout time.

Given these inputs, ComMon produces an outcome that displays the agents’ fluents through time. This is used to

monitor the individual states of the commitments at run-time. Moreover, we have defined a subset of the commitment

relations introduced in this paper in the REC language, thus extending the the commitment model with a delegation

model and an exception model, in order to accommodate local reasoning. Additional details on the implementation

can be found in Appendix B.

5. Case Study

Let us now use Amazon’s Prime next-day delivery scheme6 to demonstrate how COMODO works. We have the

following three commitments to represent the process for the customer to order an item from Amazon:

• C1 = C(amazon, customer, paid ∧ prime, a[1, 12], delivered, r[12, 36]): Amazon must deliver the client’s

order within the following day,

• C2 = C(ups, amazon, packaged, a[1,∞], delivered, r[6, 24]): When the item is packaged, UPS can deliver

it in the next 24 hours,

• C3 = C(office, amazon, confirmed, a[1,∞], packaged, r[6, 24]): Confirmed orders are packaged in the

next 24 hours.

Note that the customer only knows about the first commitment C1. In addition, the following two actions are

known to the customer:

• pay(customer, amazon) → paid.

• deliver(ups, customer) → delivered.

The semantics of the actions given by the above rules is that when the action on the left-hand side is executed, then

the fluent on the right-hand side holds. For the sake of simplicity, we assume that action executions are successful and

their effects are independent of the context. Now, consider the following trace of events:

12 pay(customer, amazon)

17 confirm(amazon, office)

30 package(office, amazon)

That is, customer pays for the item at noon. Amazon confirms the order at 5 pm, and the item is packaged next

morning at 6 am. The following commitments are in place at time 30:

6www.amazon.com/prime
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C1 = C(amazon, customer, ⊤, a[∞, ∞], delivered, a[24, 48])

C2 = C(ups, amazon, ⊤, a[∞, ∞], delivered, a[36, 54])

C3 = C(office, amazon, ⊤, a[∞, ∞], packaged, a[23, 41])

Notice the pattern among these three commitments; C2 is an implicit delegation of C1 (Definition 5), and C3 is an

antecedent delegation of C2 (Definition 7). Then, C3 is a causal delegation of C1 via C2 (Definition 9).

First, we look at the global monitoring result considering all the commitments in the system. Assume that no

delivery has occurred until time 48. C1 is indeed violated since its deadline has passed. Because of the causal

delegation, C2 and C3’s deadlines together affect that of C1. Even though the packaging of the item is completed at

time 30, UPS has 24 hours for delivery, which will eventually exceed C1’s deadline. If the delivery is completed at

time 54, C2 is fulfilled. However, C1 is still violated. Here, Amazon should have confirmed customer’s order earlier,

or set a tighter deadline for C2. Next, we look at the agents’ local reasoning:

• Customer: C = {〈C1, {}, {}〉}

– Rules L1, L2, and S1 do not apply,

– Rule S2 delegates to Amazon.

• Amazon: C = {〈C1, {}, {C2, C3}〉, ...}

– Rule L1 applies, and finds an improper delegation,

– Rule S3 propagates the result to the customer.

Now, let us change the trace of events so that the protocol will not lead to any improper delegations. Consider the

following trace:

12 pay(customer, amazon)

13 confirm(amazon, office)

16 package(office, amazon)

Notice that the confirmation of the order is performed earlier in this case, which leads to an earlier deadline for

packaging (C3). This also affects the delivery of the item which depends on packaging C2. Figure 5 shows the output

of the ComMon tool for Amazon and the customer’s reasoning. The horizontal axis shows the timeline of events that

have occurred during execution. Alongside such events, we inserted additional tick events, whose only purpose is to

force ComMon to update and display the state of commitments and fluents at every time point. The commitments

and fluents are shown alongside the vertical axis together with how their states change over time. Note that we omit

antecedent deadlines for brevity.
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Customer (exception) Customer (no exception)

Amazon (exception) Amazon (no exception)

Figure 5: ComMon output for Amazon’s Prime next-day delivery.

6. Related Work

We have presented a commitment-based approach to support automated reasoning in expert systems, where intel-

ligent agents employ distributed monitoring and diagnosis to resolve exceptions caused by commitment delegations.

Commitments are a specific type of norm to regulate interactions among various stakeholders in sociotechnical sys-

tems (Barth et al., 2006; Singh, 2013; Hao et al., 2016; Kafalı et al., 2016, 2017a,b; Vasconcelos et al., 2009). In

the rest of this section, we first summarize the strengths and limitations of relevant approaches from the literature

(including COMODO) in Table 2, and then we review each approach in more depth.

A good deal of related work on commitments investigates formal properties of commitments (Lorini, 2010; Singh,

2008; Khan & Lespérance, 2006; Verdicchio & Colombetti, 2003), temporal extensions of commitment languages
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Approach Pros Cons

Chesani et al. (2013); Kafalı & Tor-

roni (2012)

Temporal commitments Centralised approach

Sun et al. (2012); Xu et al. (2011) Domain ontologies; Automated ne-

gotiation

Focused on e-commerce domain

Ajmeri et al. (2016); Günay &

Yolum (2013); Vasconcelos et al.

(2009)

Conflict resolution; Generalizable

to all norm types

Centralised approach

Al-Saqqar et al. (2016); El-

Menshawy et al. (2013); Herd et al.

(2015)

Formal verification of protocol

properties

Design-time approach

Castelfranchi & Falcone (1998);

Norman & Reed (2010); Falcone &

Castelfranchi (2001); Santos et al.

(1997)

Attribution of responsibility and

accountability; Foundational con-

cepts; Theoretical analysis

No practical application explored

Gao & Singh (2014) Automated extraction of norms

from business contracts Both prac-

tical and dialectical commitments

No exception handling or diagno-

sis; Design-time approach

COMODO Distributed monitoring and diagno-

sis; Generic and generalizable pro-

cess; Run-time approach; Flexible

agent execution

Single application domain; Single

norm type

Table 2: Comparison of COMODO with relevant literature.

(Fornara & Colombetti, 2004; Mallya et al., 2004; Venkatraman & Singh, 1999), normative models (Antoniou et al.,

2009; Kafalı et al., 2017a; Vasconcelos et al., 2012), and norm monitoring and planning (Alechina et al., 2016;

Fornara & Colombetti, 2010; Gasparini et al., 2016; Meneguzzi et al., 2015; Spoletini & Verdicchio, 2009). The

temporal extensions to commitment languages and monitoring procedures proposed in (Chesani et al., 2009, 2013)

are used in this paper for local reasoning. Temporal constraints are also used in (Kafalı & Torroni, 2012) to compare

commitments. This approach, as well as others, mainly focuses on the relations between pairs of commitments in

two-agent interactions. In (Chopra & Singh, 2015), delegation is also taken into account from the perspective of

19



commitment alignment, but no temporal aspects are considered.

Agent-based approaches have been utilized for monitoring, detection, and handling of exceptions. Kafalı and

Yolum (2016) propose an approach for monitoring an agent’s interactions to determine whether the agent is pro-

gressing as expected. In particular, they verify whether the agent’s expectations (represented by a set of propositions

and commitments) are satisfiable by its current state. Sun et al. (2012) propose a distributed environment for e-

procurement processes, where each agent is assigned to different a task such as search, negotiation, monitoring, or

exception handling. Xu et al. (2011) propose a taxonomy of logistics exceptions based on previous work in the lit-

erature. They differentiate among potential problems related to deliveries such as late or partial delivery, and explore

dependencies between all logistics components. It would be interesting to apply COMODO on these domains as well

as extend our delivery scheme with a domain ontology.

Günay and Yolum (2013) discuss the feasibility of a set of commitments, i.e., whether it is possible for an agent

to honor all its (existing and prospective) commitments. They formulate feasibility as a constraint satisfaction prob-

lem. Vasconcelos et al. (2009) propose methods for resolving conflicts among norms. Their resolution method,

norm curtailment, manipulates the constraints associated with norms, e.g., reduce the scope of a prohibition to avoid

conflict with an obligation. Ajmeri et al. (2016) propose Coco, a formalism to express and reason about conflicting

commitment instances at runtime, and dominance among them. Coco employs Answer Set Programming to compute

nondominated commitment instances and uses Alechina et al.’s (2013) framework to determine compliance of actions

with nondominated commitment instances. Compared to Coco, while we do not explicitly deal with conflicts among

commitment delegations, a detected violation during monitoring indicates a potential conflict.

In the general context of commitment frameworks, not addressing monitoring, many authors considered the use

of commitments to represent, model and verify protocols. Among them, El-Menshawy et al. (2013) propose several

methods for commitment-based protocol verification using model checking. Similar verification based approaches

(Al-Saqqar et al., 2016; Herd et al., 2015) are performed at design time. We focus instead on run-time verification.

We do not elaborate here on how to use our analysis at design time, although that may be a possible application.

The concept of commitment delegation has been proposed by Singh and Yolum (2002). The delegation mechanism

gives great flexibility to commitment-based protocols. However, it also lays itself open to misuse and may induce

possible mismatches among agent beliefs about deadlines associated with properties. Improper delegations eventually

drive the system into a state of violation, where some agents believe that there has been no violation at all. In this

work, we presented an in-depth analysis of improper delegations, and proposed an effective distributed reasoning

procedure for finding all improper delegations of a given commitment.

Santos et al. (1997) investigate aspects of organised interaction and propose a characterisation of “transmission

of agency” (a concept related to delegation and attribution of responsibility) and the analysis of the conditions under

which a given organisation recognises that an agent has fulfilled his responsibilities. Castelfranchi and Falcone (1998;

2001) develop a theory of delegation and adoption, using a plan-based approach. The authors’ perspective is more

general than that of Santos et al. It does not necessarily target an institutionalised environment, but it considers task
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and delegation to be foundational concepts of agency and autonomy in the broader perspective. In any case, when an

agent delegates a task to another agent, the latter takes care of the interests of goals of the former remotely, i.e., far

from it, and without its monitoring and intervention (control). According to Castelfranchi and Falcone, in delegation,

an agent A tries to achieve some of its goals through another agent B’s actions, thus A has the goal that B performs

a given action. Delegation and adoption are thus characterised in terms of mental states of the agents involved in

the interaction. The authors distinguish between “weak” adoption, i.e., based on spontaneous initiative, and “strict”

adoption, i.e., accompanied by a formal agreement (contract). Both Santos et al. and Castelfranchi and Falcone stress

the fundamental importance of expressing agent behaviour without referring to concrete actions when delegating, as

a basis for flexibility (“open” delegation in (Castelfranchi & Falcone, 1998)). The relationship between openness and

control is further explored in (Falcone & Castelfranchi, 2001), where Falcone and Castelfranchi propose a theory of

adjustable autonomy, where trust is the cognitive basis for adjusting autonomy.

Gelati et al. (2004) provide a formal analysis of the idea of normative coordination, in the belief that the adoption

of a normative perspective would allow a substantial progress in the creation of agent societies. Agents can achieve

flexible co-ordination by conferring normative positions to other agents. The building blocks of their analysis are

declarative power (the capacity of the power-holder of creating normative positions by proclaiming such positions),

representation (the representative’s capacity of acting in the name of its principal) and mandate (the mandate’s duty to

act as the mandator has requested). Norms are also investigated in agent-based supply-chain environments (Vasconce-

los et al., 2012), and conflicts are discussed in the form of exceptions. Moreover, agents are used to resolve exceptions

in e-procurement systems, where several agents enact different roles (Sun et al., 2012). Another use for agents is

discussed in (Chen & Nof, 2012), where agents detect and prevent errors in sequential production lines. Governa-

tori (2013) proposes a conceptual abstract framework to model normative requirements, formalizes different types of

obligations, and verifies whether a business process is compliant with requirements (set of obligations). Integrating

delegations into the above approaches would be an interesting directions to pursue.

Several authors, including Lorini et al. (2007; 2009) and Norman and Reed (2010), proposed a semantic charac-

terisation of delegation in relation with agent mental states such as beliefs and intentions (Lorini et al., 2007), with

the semantics of speech acts (Longin et al., 2009), and with the concept of responsibility (Norman & Reed, 2010).

In contrast to these approaches, we do not follow a normative perspective, and we do not make any formal refer-

ence to the foundational concepts above. We refer instead to the intuitive notion of responsibility and accountability,

to justify the links that may bind two commitments together. In particular, we will say that when a commitment be-

tween two agents X and Y is delegated, a third agent (the delegatee), will be responsible for bringing about a property

derived from the initial commitment (the delegandum). To the best of our knowledge, there are no other works in the

literature that propose ways to reason about chains of commitment delegations and identify (potentially) problematic

situations. Our work also has a practical interest. We show how the monitoring process can be implemented using

efficient, off-the-shelf tools. We are not aware of other works that cover both theoretical and practical aspects of the

problem we address.
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Verifying agent executions against commitment specifications (or interaction protocols in general) has been the

focus of recent research, both at design-time as well as run-time. Gao and Singh (2014) propose a method for

extracting contracts from actual business relationships. Contracts are represented as both practical and dialectical

commitments. In this paper, we only focus on practical commitments since our focus is on e-commerce protocols.

Kafalı et al. (2014) propose a distributed algorithm to verify at run-time whether the goals of the agent will be satisfied

via its commitments. They make use of temporal constraints and implement their work with REC like we do here.

However, their commitment relations are basic compared to our extensive study of commitment delegations. Abushark

et al. (2014) also focus on detecting exceptions in the form of defects. However, this is not designed for run-rime

detection as we do here. They compare agent designs with protocol specifications, and aim to help agent developers

to reduce defects in design.

7. Discussion

In this paper, we have built upon previous work (Kafalı & Torroni, 2011), where we discuss a systematic clas-

sification of commitment delegation types using a simple commitment language. There, we have used motivating

examples inspired from an e-commerce scenario, to show that delegation can follow meaningful patterns, other than

the traditional way of delegating commitments proposed in the literature (Yolum & Singh, 2002). Moreover, we have

introduced the concept of similarity, improper delegation, and monitoring process. In COMODO, we have extended

the language for commitments by introducing relative and absolute deadlines represented as time intervals. We have

further explored the concepts of similarity and improper delegation by giving an exhaustive account of all possible

improper delegations, and we have provided a sound and complete distributed reasoning procedure that is able to find

all improper delegations of a given commitment.

Limitations

• In this work, we have focused on a specific type of norm, commitment, which is a dominant artifact in e-

commerce contracts. However, in other domains such as healthcare, authorization and prohibition norms are

commonly used to represent regulations.

• We have not evaluated the expressiveness of our commitment language in multiple contract domains. While the

deadline conditions we introduced are helpful in representing e-commerce contracts, extending the language

with disjunction and maintenance properties would further increase expressiveness. Maintenance properties

can be related with a maintenance goal (Chesani et al., 2009), where a certain property should hold at all times

during a specified interval. Moreover, temporal constraints such as those proposed by several languages for

temporal representation and reasoning (e.g., before, after, until) may indeed be useful in some applications

(Marengo et al., 2011). However, this would significantly increase the complexity of our temporal reasoning

agents.
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• We have demonstrated the working of COMODO on one case study from e-commerce, which constitutes a

threat to external validity. Other works on normative models explore emergency healthcare (Kafalı et al., 2016,

2017a), and security and privacy (Barth et al., 2006; Kafalı et al., 2017b). Exploring norm delegations in such

settings would provide valuable insight to our distributed diagnosis procedure.

Implications

• All phases of distributed exception handling (Soeanu et al., 2016; Sun et al., 2012; Vasconcelos et al., 2009; Xu

et al., 2011), e.g., planning, monitoring, conflict resolution, and diagnosis, are crucial capabilities for any expert

system that deals with private and confidential information. Intelligent agents should detect and resolve incon-

sistencies that arise from their interactions using partial information and without violating their users’ privacy.

In this work, we focused on an e-commerce application by representing electronic contracts with commitments,

which provide flexible execution for software agents. Apart from the e-commerce domain, our distributed mon-

itoring and diagnosis process can be adopted in safety-critical domains such as intrusion detection (Geib &

Goldman, 2001) and other crime detection (Jarvis et al., 2005) by integrating it with additional AI-based meth-

ods. Commitments and additional normative representations can be combined with ontologies and semantic

reasoning to provide additional expert capabilities to agents (Kafalı et al., 2017b; Xu et al., 2011).

• Explainable AI is a great concern in existing machine learning applications. The diagnosis process we have

proposed can be extended with additional explanation capabilities since commitments add semantics to agents’

interactions, and help human users understand exception situations. Intelligent agents equipped with such expert

capabilities have potential implications on several other important domains including emergency healthcare,

Internet of Things and smart environments, and security and privacy in the context of sociotechnical systems.

Future Work

• In principle, some of the notions that we introduced for the purpose of run-time monitoring could also be used

for auditing or at design-time. For example, it may be useful to introduce design constraints, or guarantee mech-

anisms to prevent agents from causing improper delegations. We do not deal with design issues here, but as a

future work it would be interesting to study the application of the improper delegation notion in contexts other

than monitoring, or monitoring in the planning domain (Soeanu et al., 2016). Moreover, extending commit-

ments with sanctions (Nardin et al., 2016) would add another dimension to COMODO’s delegation monitoring

procedure. Sanctions provide compensation for commitment violations, therefore act as deterrence against

violating commitments.

• It would be interesting to elaborate on how agents use the outcome of monitoring, e.g., in order to detect

inconsistencies, contradictory facts or inappropriate situations, as well as to investigate the integration of the

agent’s monitoring capability with other reasoning capabilities in concrete agent architectures.
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• Our diagnosis process can be extended with other AI-based approaches such as plan recognition (Kautz, 1987),

goal recognition (Lesh & Etzioni, 1995), and intention recognition (Sadri, 2012) to extend the application

domain beyond e-commerce. Such recognition approaches often have implementations in the Event Calculus

(EC), therefore we can seamlessly integrate those into the COMODO framework.
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Appendix A. Proofs

Proof of Theorem 1

Given a commitment Cm ∈ CT , and an agent X ∈ A, if X �
∅
δout

Cm and Ci ∈ δout, then (Ci, Cm)

∈ MT .

Proof 1. We prove soundness by contradiction. Given an agent X and two commitments Ci, Cm, assume that X�
∅
δout

Cm and Ci ∈ δout, and (Ci, Cm) /∈ MT . We have the following possibilities:

• Rule L1 applies, and Ci is an improper delegation of Cm. MT finds it since both Cm and Ci are members of

CT . Thus, (Ci, Cm) ∈ MT . We reach a contradiction.

• Rule S1 applies. There is no improper delegation of Cm, but other (proper) delegations exist.

• Rule S2 applies. There are no delegations of Cm.

Note that Rule L2 does not hold initially since the monitoring result is not empty. The first case immediately

ends with a contradiction while the second and third cases propagate monitoring to other agents. At some point,

delegations of Cm cease to exist7. Let Z be the last agent that delegates Cm. Let us review each monitoring case:

• Rule L2 does not apply since δout cannot be empty.

• Rule S2 does not apply since Z delegated Cm.

• Assume rule L1 applies, and Cj is an improper delegation of Ci (which is a delegation of Cm). MT finds it

since Cm, Ci and Cj are all members of CT . Thus, (Cj , Cm) ∈ MT . We reach a contradiction.

• Assume rule S1 applies, and let the delegatee be W . For W , let us review each monitoring case:

– Rule L1 does not apply since δimp is empty.

– Rule S1 does not apply since δpro is empty.

– Rule S2 does not apply since the debtor of the commitment Cm is W itself.

– Assume rule L2 applies. This results in an empty set for the monitoring result. However, δout cannot be

empty. We reach a contradiction.

This demonstrates that every possible case of local monitoring, that identifies an exception, leads to a contradic-

tion against the global monitoring process not identifying that exception, thus proving soundness.

7Since protocol trace time is fixed, infinite delegations cannot occur.
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Proof of Theorem 2

∀ (Ci, Cm) ∈ MT , ∃ an agent X ∈ A and a derivation X �
∅
δout

Cm such that Ci ∈ δout.

Proof 2. We prove completeness by contradiction. Let us consider two commitments Ci and Cm, such that (Ci, Cm) ∈

MT and ∀X, δout X �
∅
δout

Cm and Ci /∈ δout. Then, by Definition 17 dlgimp(Ci, Cm). Let debtor(Cm, X). The

following cases are possible (Definition 16):

• Ci is an improper consequent delegation of Cm, or

• Ci is an improper antecedent delegation of Cm, or

• Ci is an improper causal delegation of Cm, or

• ∃ Cj ∈ C such that dlg(Cj , Cm) and dlgimp(Ci, Cj).

In the first three cases, X ▽REC C, 〈Cm, δpro, δimp〉 ∈ C and Ci ∈ δimp. Then by rule L1, X �
∅
δout

Cm and

Ci ∈ δout. Now, assume X �
∅
δout

Cm where Ci /∈ δout. If X is the debtor of Cm, then Ci is also a commitment of X .

When X queries the REC reasoner, < Cm, δpro, {Ci, ...}> ∈ C. Thus, rule L1 applies with Ci ∈ δout. We reach a

contradiction.

In the last case where there is a delegation chain rooted in Cm and that includes Cj , let Y be the delegatee

or debtor of Cj and Y 6= X . When Y is the delegatee, then rule S1 applies. When Y is the debtor, then rule S2

applies. Both cases lead to rule S3. Rule S3 recursively starts a new derivation starting from Y . By iterating the same

reasoning, we eventually reach the case where Cj is a direct delegation of Cm (since the delegation chain is finite).

Thus, rule L1 applies as above. We reach a contradiction.

This demonstrates that every possible case of global monitoring, that identifies an exception, leads to a contradic-

tion against the local monitoring process not identifying that exception, thus proving completeness.
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Appendix B. Implementation

We have provided an implementation for COMODO using the ComMon tool. Below we explain some important

code segments8 from the case study presented in Section 5. The ComMon tool only needs Java. The simplest way

to run the example is to execute java -jar ComMon.jar (or double-click on the ComMon.jar file icon) on a

selected agent folder.

To run tests such as this one, select tab (Model) from the left-hand side menu and copy-paste the KB of your agent

of choice. Then hit the Run, and copy-paste on the right-hand box called trace the desired evolution of events. Once

the events are in place, select Start and then Log from the bottom. Use Stop to restart and Export to save the output

on a file.

Now, we describe parts of the REC code. Listing 1 shows the commitment theory that is shared by all the agents.

First, the states of the commitments are described. Note that, in addition to the four states described in Section 2, we

have detached to describe a conditional commitment that has become active. This is for implementation purposes so

that we do not lose track of origin of the active commitment (i.e., the original condition commitment). Then, the rules

that describe the state transitions are defined. Following the Event Calculus, in REC, we can express that an event

initiates (or terminates) a temporal fluent, by way of initiates(Event, Fluent, Time) relations. A commitment with its

state is considered a temporal fluent.

Listing 2 shows the rules that describe the domain model of Amazon. This covers most of the process, and the

domain models for other agents are described similarly. First, an exception is described either as a direct improper

delegation, or an indirect improper delegation. Then, the rules for fluent manipulation are given in terms of action-

consequence relations. For example, a payment from the customer to Amazon initiates the fluent paid at the time of

the event. The rules for contract execution are given in terms of commitment create operations. For example an offer

from Amazon to the customer creates a conditional commitment between the two agents regarding the Prime delivery

scheme. Note that this exact rule is also contained in the customer’s domain model as they share this commitment.

However, not all such rules are in the customer’s domain model, e.g., the details of the transaction between Amazon

and the office is omitted from the customer.

Here, we also support conjunction of fluents for the consequents of commitments. If the consequent of a commit-

ment is a conjunction of fluents, then we represent it as a Prolog list, which contains all the fluents that are elements

of the conjunction. We describe how delegations with conjunctions are handled below.

Listing 3 shows the rules that describe explicit delegation, which is based on the discussion in Section 3.2. Other

delegation types are described similarly. Delegations with conjunction of fluents is handled by parsing the list of

fluents that make up the conjunction. Note that the deadline intervals are not taken into consideration while describing

the delegation similarity relations. The description for improper (causal) delegation is given in Listing 4 by taking

into consideration the deadline intervals of the commitments (see Section 3.4).

8The complete implementation can be downloaded from http://mas.cmpe.boun.edu.tr/ozgur/code.html, Section 3.
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Listing 1: Commitment theory.

% commitment states

conditional(C, T):- holds_at(status(C, conditional), T).

detached(C, T):- holds_at(status(C, detached), T).

active(C, T):- holds_at(status(C, active), T).

fulfilled(C, T):- holds_at(status(C, fulfilled), T).

violated(C, T):- holds_at(status(C, violated), T).

% create as conditional or active

initiates(E, status(C, conditional), T):- ccreate(E, C, T).

initiates(E, status(C, active), T):- create(E, C, T).

% conditional to active

terminates(E, status(C1, conditional), T):- detach(E, C1, C2, T).

initiates(E, status(C1, detached), T):- detach(E, C1, _, T).

initiates(E, status(C2, active), T):- detach(E, _, C2, T).

detach(E, c(Tc, X, Y, Q, _, P, r(T1,T2)),

c(Tc, X, Y, true, _, P, a(T3,T4)), T):-

conditional(c(Tc, X, Y, Q, _, P, r(T1,T2)), T),

initiates(E, Q, T), T3 is T + T1, T4 is T + T2.

% active to fulfilled

terminates(E, status(C, active), T):- discharge(E, C, T).

initiates(E, status(C, fulfilled), T):- discharge(E, C, T).

discharge(E, c(Tc, X, Y, true, _, P, a(T1,T2)), T):-

active(c(Tc, X, Y, true, _, P, a(T1,T2)), T),

T >= T1, T =< T2, initiates(E, P, T).

% active to fulfilled

terminates(E, status(C, active), T):- violate(E, C, T).

initiates(E, status(C, violated), T):- violate(E, C, T).

violate(_, c(Tc, X, Y, true, _, P, a(T1, T2)), T):-

active(c(Tc, X, Y, true, _, P, a(T1, T2)), T),

T > T2.
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Listing 2: Domain model (Amazon).

% exception model

initiates(_, exception(C1, C2), T):-

holds_at(improperDelegation(C1, C2), T).

initiates(_, exception(C1, C2), T):-

holds_at(improperDelegation(C1, C), T), active(C2, T), delegation(C, C2).

% fluent manipulation

initiates(exec(pay(customer, amazon, Item)), paid(Item), _).

initiates(exec(confirm(amazon, office, Item)), confirmed(Item), _).

initiates(exec(package(office, amazon, Item)), packaged(Item), _).

initiates(exec(deliver(ups, customer, Item)), delivered(Item), _).

% contract execution

ccreate(exec(offer(amazon, customer, Item)),

c(T, amazon, customer, paid(Item), delivered(Item), r(12,36)), T):-

prime(customer).

ccreate(exec(offer(ups, amazon, Item)),

c(T, ups, amazon, packaged(Item), delivered(Item), r(6,24)), T).

create(exec(confirm(amazon, office, Item)),

c(T, office, amazon, true, packaged(Item), rel(6,24)), T).
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Listing 3: Delegation model.

% cases of explicit delegation

explicitDelegation(c(Tc1, Z, Y, true, _, P1, _), c(Tc2, X, Y, true, _, P2, _)):-

partOf(P1, P2), Tc1 > Tc2, X \= Z.

explicitDelegation(c(Tc1, Z, Y, _, _, P1, _), c(Tc2, X, Y, true, _, P2, _)):-

partOf(P1, P2), Tc1 > Tc2, X \= Z.

explicitDelegation(c(Tc1, Z, Y, true, _, P1, _), c(Tc2, X, Y, _, _, P2, _)):-

partOf(P1, P2), Tc1 > Tc2, X \= Z.

explicitDelegation(c(Tc1, Z, Y, _, _, P1, _), c(Tc2, X, Y, _, _, P2, _)):-

partOf(P1, P2), Tc1 > Tc2, X \= Z.

% conjunction

partOf(P, P).

partOf(P, [P|_]).

partOf(P, [_|L]):- partOf(P, L).

partOf([P|L1], L2):- partOf(P, L2), partOf(L1, L2).

Listing 4: Improper delegation.

% improper causal delegation

initiates(_, improperDelegation(

c(Tc3, X3, Y3, true, _, P3, a(T5, T6)),

c(Tc1, X1, Y1, true, _, P1, a(T1, T2))), T):-

active(c(Tc1, X1, Y1, true, _, P1, a(T1, T2)), T),

conditional(c(Tc2, X2, Y2, Q2, _, P2, r(T3, T4)), T),

active(c(Tc3, X3, Y3, true, _, P3, a(T5, T6)), T),

implicitDelegation(c(Tc2, X2, Y2, Q2, _, P2, r(T3, T4)),

c(Tc1, X1, Y1, true, _, P1, a(T1, T2))),

antecedentDelegation(c(Tc3, X3, Y3, true, _, P3, a(T5, T6)),

c(Tc2, X2, Y2, Q2, _, P2, r(T3, T4))),

(T4 + T6) > T2.

32


