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Abstract

Confidence measures aim at detecting unreliable depth

measurements and play an important role for many pur-

poses and in particular, as recently shown, to improve

stereo accuracy. This topic has been thoroughly investi-

gated by Hu and Mordohai in 2010 (and 2012) consider-

ing 17 confidence measures and two local algorithms on

the two datasets available at that time. However, since then

major breakthroughs happened in this field: the availability

of much larger and challenging datasets, novel and more

effective stereo algorithms including ones based on deep

learning and confidence measures leveraging on machine

learning techniques. Therefore, this paper aims at pro-

viding an exhaustive and updated review and quantitative

evaluation of 52 (actually, 76 considering variants) state-

of-the-art confidence measures - focusing on recent ones

mostly based on random-forests and deep learning - with

three algorithms on the challenging datasets available to-

day. Moreover we deal with problems inherently induced by

learning-based confidence measures. How are these meth-

ods able to generalize to new data? How a specific train-

ing improves their effectiveness? How more effective confi-

dence measures can actually improve the overall stereo ac-

curacy?

1. Introduction

Although depth from stereo still represents an open prob-

lem [5, 23, 37], in recent years this field has seen notable im-

provements concerning the effectiveness of such algorithms

(e.g., [47, 40]) and confidence measures, aimed at detecting

unreliable disparity assignments, proved to be very effec-

tive cues when plugged in stereo vision pipelines as shown

in [41, 28, 31, 40]. However, shortcomings of stereo al-

gorithms have been emphasized by the availability of very

challenging datasets with ground-truth such as KITTI 2012

(K12) [5], KITTI 2015 (K15) [23] and Middlebury 2014

(M14) [37]. Thus, the ability to reliably predict failures of a

stereo algorithm by means of a confidence measure is fun-

damental and many approaches have been proposed for this

purpose. Hu and Mordohai [13] exhaustively reviewed con-

fidence measures available at that time, with two variants of

a standard local algorithm, and defined a very effective met-

ric to evaluate their effectiveness on the small and mostly

unrealistic dataset [39] with ground-truth available. How-

ever, since then there have been major breakthroughs in this

field:

• Novel and more reliable confidence prediction meth-

ods, in particular those based on random-forests [8, 41,

28, 31] and deep learning [32, 40]

• Much larger datasets with ground-truth depicting very

challenging and realistic scenes acquired in indoor

[37] and outdoor environments [5, 23]

• Novel and more effective stereo algorithms, some

leveraging on deep learning techniques [47, 22], more

and more often coupled with confidence measures

[40, 31, 28]. Moreover, in recent years, SGM [9] be-

came the preferred disparity optimization method for

most state-of-the-art stereo algorithms (e.g., [47, 40])

Considering these facts, we believe that this field de-

serves a further and deeper analysis. Therefore, in this paper

we aim at i) extending and updating the taxonomy provided

in [13] including novel confidence measure and in particu-

lar those based on machine learning techniques, ii) exhaus-

tively assessing their performance on the larger and much

more challenging datasets [23, 37] available today, iii) un-

derstanding the impact of training data on the effectiveness

of confidence measures based on machine learning, iv) as-

sessing their performance when dealing with new data and

state-of-the-art stereo algorithms, v) and evaluating their be-

havior when plugged into a state-of-the-art stereo pipeline.

Although our focus is mostly on approaches based on

machine learning, for completeness, we include in our tax-

onomy and evaluation any available confidence measure.
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Overall, we assess the performance of 52 measures, actu-

ally 76 considering their variants, providing an exhaustive

evaluation of state-of-the-art in this field with three stereo

algorithms on the three challenging datasets with ground-

truth K12, K15 and M14 available today.

2. Related work

The most recent taxonomy and evaluation of confidence

measures for stereo was proposed by Hu and Mordohai

[13]. They exhaustively categorized the 17 confidence mea-

sures available at that time in six categories according to

the cues exploited to infer depth reliability. Moreover, they

proposed an effective metric to clearly assess the effective-

ness of confidence prediction based on area under the curve

(AUC) analysis and quantitatively evaluated the considered

measures on former indoor Middlebury [39, 12] and out-

door Fountain P11 [42] datasets with a standard local algo-

rithm using sum of absolute differences (SAD) and normal-

ized cross correlation (NCC) as matching costs.

However, since then novel confidence measures were

proposed [14, 15, 25, 2, 7, 8, 41, 28, 31] and more im-

portantly this field was affected by methodologies inspired

by machine learning. In their seminal work, Hausler et al.

[8] proposed to infer match reliability by feeding a random

forest, trained for classification, with multiple confidence

measures showing that this fusion strategy yields much bet-

ter performance with respect to any other considered con-

fidence measure. Following this strategy, the reliability of

confidence measures was further improved in [41] and [28]

considering more effective features. In this context, [31]

enables to infer a confidence measure leveraging only fea-

tures extracted in constant time from the left disparity map.

Differently from [8], in [41, 28, 31] the random-forests

are trained in regression mode. Concerning methodologies

based on Convolutional Neural Networks (CNN), Seki and

Pollefeys [40] proposed to infer a confidence measure by

processing features extracted from the left and right dis-

parity maps while Poggi and Mattoccia [32] learned from

scratch a confidence measure by feeding to a CNN the left

disparity map. Moreover, in [35] was proposed a method

to combine multiple hand-crafted cues and in [33] a strat-

egy to improve confidence accuracy exploiting local con-

sistency. Concerning unsupervised training of confidence

measures, Mostegel et al. [27] proposed to determine train-

ing labels exploiting contradictions between multiple depth

maps computed from different viewpoints while Tosi et al.

[43] leveraging on a pool of confidence measures.

This field has also seen the deployment of confidence

measures plugged into stereo vision pipelines to improve

the overall accuracy as proposed in [41, 28, 31, 40, 29,

36, 16, 26, 6], to deal with occlusions [9, 25] or to im-

prove accuracy near depth discontinuities [4]. Most of

these approaches are aimed at improving the accuracy of

Semi Global Matching (SGM) [9] algorithm exploiting as

cue an estimated match reliability. Confidence measures

have been effectively deployed for sensor fusion combining

depth maps from multiple sensors [20, 24]. Finally, con-

fidence measures suited for embedded stereo systems have

been analyzed in [34].

Recent years have also witnessed the availability of very

challenging datasets depicting indoor, such as the M14 [37],

and outdoor environments, such as K12 [5] and K15 [23].

Differently from former standard dataset [39] used to test

algorithms, the novel ones clearly emphasize that stereo is

still an open research problem. This fact also paved the

way to most recent trend in stereo vision aimed at tack-

ling stereo with CNNs. In this context [47] Zbontar and

Le Cun proposed the first successful attempt to infer an ef-

fective matching cost from a stereo pair with a CNN now

deployed by almost any top-performing stereo method on

K12, K15 and M14 datasets. Following this strategy Chen

et al. [1] and Luo et al. [18] proposed very efficient ar-

chitectures enabling real-time stereo matching while [30]

enables to combine multiple disparity maps with a CNN.

A further step forward, aimed at departing from a conven-

tional stereo pipeline, is represented by Mayer et al. [22].

In this case, given a stereo pair, the left-right stereo cor-

respondence is regressed from scratch with a CNN trained

end-to-end.

3. Taxonomy of confidence measures

Despite the large number of confidence measures pro-

posed, all of them process (a subset of) information con-

cerning the cost curve, the relationship between left and

right images or disparity maps. Following [13], confidence

measures can be grouped into categories according to their

input cues. To better clarify which cues are processed by

each single measure we introduce the following notation.

Given a stereo pair made of left (L) and right (R) images,

a generic stereo algorithm assigns a cost curve c to each

pixel of L. We denote the minimum of such curve as c1 and

its corresponding disparity hypothesis as d1. We refer to

the second minimum of the curve as c2 (and to its disparity

hypothesis as d2), while c2m denotes the second local min-

imum (it may coincide with c2). In our taxonomy we group

the considered 52 confidence measures (and their variants)

in the following 8 categories.

3.1. Minimum cost and local properties of the cost
curve

These methods analyze local properties of the cost curve

encoded by c1, c2 and c2m. As confidence values for each

point, the matching score measure (MSM) [13] simply as-

sumes the negation of minimum cost c1. Maximum margin

(MM) computes the difference between c2m and c1 while

its variant maximum margin naive (MMN) [13] replaces
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c2m with c2. Non linear margin (NLM) [7] computes a

non linear transformation according to the difference be-

tween c2m and c1 while its variant non linear margin naive

(NLMN) replaces c2m with c2. Curvature (CUR) [13] and

local curve LC [44] analyze the behavior of the cost curve

around the minimum c1 and its two neighbors at (d1-1) and

(d1+1) according two similar, yet different, strategies. Peak

ratio (PKR) [10, 13] computes the ratio between c2m and

c1. In one of its variants, peak ratio naive (PKRN) [13],

c2m is replaced with the second minimum c2. In average

peak ratio (APKR) [14] the confidence value is computed

averaging PKR values on a patch. We include in our eval-

uation a further variant, based on the same patch-based av-

erage strategy adopted by APKR and referred to as aver-

age peak ratio naive (APKRN). Similarly and respectively,

weighted peak ratio (WPKR) [15] and weighted peak ra-

tio naive (WPKRN), average on a patch the original confi-

dence measures PKR and PKRN with binary weights com-

puted according to the reference image content. Finally, we

include in this category two confidence measures belonging

to the pool of features proposed in [8]. Disparity ambigu-

ity measure (DAM) computes the distance between d1 and

d2, while semi-global energy (SGE) relies on a strategy in-

spired by the SGM algorithm [9]. It sums, within a patch,

the c1 costs of points laying on multiple scanlines penalized,

if their disparity is not the same of the point under exami-

nation, by P1 when the difference is 1 and by P2 (>P1)

otherwise.

3.2. Analysis of the entire cost curve

Differently from previous confidence measures, those

belonging to this category analyze for each point the over-

all distribution of matching costs. Perturbation (PER) [8]

measures the deviation of the cost curve to an ideal one.

Maximum likelihood measure (MLM) [21, 13] and attain-

able likelihood measure (ALM) [24, 13] infer from the

matching costs a probability density function (pdf) with re-

spect to an ideal c1, respectively, equal to zero for MLM and

to the actual c1 for ALM. Number of inflections (NOI) [17]

determines the number of local minima in the cost curve

while local minima in neighborhood (LMN) [14] counts,

on a patch, the number of points with local minimum at the

same disparity d1 of the examined point. Winner margin

measure (WMN) [13] normalizes for each point the differ-

ence between c2m and c1 by the sum of all costs while its

variant winner margin measure naive (WMNN) [13] adopts

the same strategy replacing c2m with c2. Finally, negative

entropy measure (NEM) [38, 13] relates the degree of un-

certainty of each point to the negative entropy of its match-

ing costs.

3.3. Left and right consistency

This category evaluates the consistency between corre-

sponding points according to two different cues: one, sym-

metric, based on left and right maps and one, asymmetric,

based only on the left map. Confidence measures adopting

the first strategy are: left-right consistency (LRC) [3, 13],

that assigns as confidence the negation of the absolute dif-

ference between the disparity of a point in L and its homol-

ogous point in R, and left-right difference (LRD) [13] that

computes the difference between c2 and c1 divided by the

absolute difference between c1 and the minimum cost of the

homologous point in R. We include in this category zero-

mean sum of absolute differences (ZSAD) [8] that evalu-

ates the dissimilarity between patches centered on homolo-

gous points in the stereo pair. It is worth pointing out that

for LRC and ZSAD the full cost volume is not required.

On the other hand, confidence measures based only on the

analysis of the reference disparity map exploit the unique-

ness constraint. Asymmetric consistency check (ACC) [25]

and uniqueness constraint (UC) [2] detect the pool of mul-

tiple colliding points at the same coordinate in the right im-

age. ACC verifies, according to a binary strategy, whether

the candidate with the largest disparity in the pool has the

smallest cost with respect to any other one while UC sim-

ply selects as valid the candidate with the minimum cost.

Moreover, we consider two further non binary variants of

this latter strategy. One referred to as uniqueness constraint

cost (UCC), that assumes as confidence the negative of c1,

and one referred to as uniqueness constraint occurrences

(UCO), that assumes that confidence is inversely propor-

tional to the number of collisions. For the latter four out-

lined strategies the other candidates in the pool of colliding

points are always set to invalid.

3.4. Disparity map features

Confidence measures belonging to this group are ob-

tained by extracting features from the reference disparity

map. Therefore they are potentially suited to infer confi-

dence for any 3D sensing device. Distance to discontinuity

(DTD) [41, 28] determines for each point the distance to

the supposed closest depth boundary while, for the same

purpose, disparity map variance (DMV) computes the dis-

parity gradient module [8]. Remaining confidence measures

belonging to this category extract features on a patch cen-

tered on the examined point. Variance of disparity (VAR)

[28, 31] computes the disparity variance, disparity agree-

ment (DA) [31] counts the number of points having the

same disparity of the central one, median deviation of dis-

parity (MDD) [41, 28, 31] computes the difference between

disparity and its median and disparity scattering (DS) [31]

encodes the number of different disparity assignments on

the patch.
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3.5. Reference image features

Confidence measures belonging to this category use as

domain only the reference image. Distance to border (DB)

[41, 28] aims at detecting invalid disparity assignments of-

ten originated in the image border due to the stereo setup.

Assuming the left image as reference a more meaningful

variant of DB, referred to as distance to left border (DLB),

deploys the distance to the left border. Both measures rely

on prior information and not on image content. The last two

confidence measure of this category extract features from

the reference image: horizontal gradient measure (HGM)

[8, 28] analyses the response to horizontal gradients in or-

der to detect image texture while distance to edge (DTE)

attempts to detect depth boundaries, sometimes unreliable

for stereo algorithms, according to the distance to the clos-

est edge.

3.6. Image distinctiveness

The idea behind these confidence measures is to exploit

the notion of distinctiveness of the examined point within

its neighborhoods along the horizontal scanline of the same

image. Distinctiveness (DTS) [19, 13] exactly leverages

on such definition by assuming as confidence for a given

point the lowest self-matching cost computed within a cer-

tain prefixed range excluding the point under examination.

Distinctive similarity measure (DSM) [45, 13] assigns as

confidence value to a given point the product of two DTSs,

one computed on the reference image and the other one on

the right image in the location of the assumed homologous

point, divided by the square of c1 [13] or c1 [45]. For a given

point the self-aware matching measure (SAMM) [26, 13]

computes the zero mean normalized correlation between the

left-right cost curve, appropriately translated according to

the assumed disparity, and the left-left cost curve.

3.7. Learningbased approaches

Recently, some authors proposed to infer confidence

measures exploiting machine learning frameworks. A com-

mon trend in such approaches consists in feeding a random

forest classifier with multiple confidence measures [8, 41,

28, 31] or deploying for the same purpose deep learning

architectures [40, 32]. A notable difference with conven-

tional confidence measures reviewed so far, is that learning-

based approaches require a training phase, on datasets with

ground-truth or by means of appropriate methodologies

[27, 43], to infer the degree of uncertainty of disparity as-

signments.

3.7.1 Random forest approaches

In this category a seminal approach is represented by en-

semble learning (ENSc) [8]. This method infers a con-

fidence measure by feeding to a random forest, trained

for classification, a feature vector made of 23 confi-

dence measures extracted from the original stereo pair, the

left and right disparity maps and the cost volumes com-

puted on the stereo pair at different scales. Then, the

resulting features are up-sampled to the original resolu-

tion. The feature vector consists of the following mea-

sures: PKR1,2,3, NEM1,2,3, PER1,2,3, LRC1, HGM1,2,3,

DMV1,2,3, DAM1,2,3, ZSAD1,2,3 and SGE1. The super-

script refers to the scale: 1 original resolution, 2 half-

resolution and 3 quarter-resolution. The authors advocate

to train the random-forest with such feature vector for clas-

sification ”as confidence measures do not contain matching

error magnitude information”, by extracting the posterior

probability of the predicted class at inference time. How-

ever, the average response over all the trees in the forest

can be used as well by training in regression. Therefore,

we also include in our evaluation ensemble learning in re-

gression mode (ENSr) that to the best of our knowledge

has not been considered before. In ground control point

(GCP) [41] the confidence measure is inferred by feeding to

a random forest, trained in regression mode, a feature vector

containing 8 measures computed at the original scale. The

features extracted from left image, left and right disparity

maps and the cost volume are: MSM, DB, MMN, AML,

LRC, LRD, DTD and MDD. In leveraging stereo (LEV)

[28] a feature vector containing 22 measures extracted from

the left image, left and right disparity maps and cost vol-

ume is fed to a random forest trained for regression. The

feature vector, superscript encodes the patch size, consists

of: PKR, PKRN, MSM, MM, WMN, MLM, PER, NEM,

LRC, LRD, LC, DTD, VAR1,2,3,4, MDD1,2,3,4, HGM and

DLB. Differently from previous approaches, O(1) dispar-

ity features (O1) [31] proposes a method entirely based on

features extracted in constant time from the left disparity

map. The feature vector, superscript encodes the patch size,

consists of: DA1,2,3,4, DS1,2,3,4, MED1,2,3,4, MDD1,2,3,4

and VAR1,2,3,4, being MED the median of disparity. As for

ENSr, GCP and LEV the feature vector is fed to a random

forest trained in regression mode. We conclude this section

observing that ENS [8] and LEV [28] also propose variants

of the original method with a reduced number of features,

respectively 7 and 8. For LEV, the features are selected an-

alyzing the importance of variable once trained the random

forest with the full 22 feature vector and then retraining the

network. However, as reported in [8] and [28], being higher

the effectiveness of full feature vectors, we consider in our

evaluation such versions of ENS, in classification and re-

gression mode, and LEV.

3.7.2 CNN approaches

As for many other computer vision fields, convolutional

neural networks have recently proven to be very effective
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also for confidence estimation. In patch based confidence

prediction (PBCP) [40] the input of a CNN consists of two

channels p1 and p2 computed, on a patch basis, from left

and right disparity maps. Being patch values strictly related

to their central pixel, confidence map computation is pretty

demanding. A faster solution, made of patches no longer

related to central pixels, allows for a very efficient confi-

dence map prediction according to common optimization

techniques in deep learning, with a minor reduction of ef-

fectiveness. However, being the full-version more effective

we consider this one in our experiments.

A step towards a further abstraction is represented by

confidence CNN (CCNN) [32]. In fact, in this approach

confidence prediction is regressed by a CNN without ex-

tracting any cue from the input data. The deep network,

trained on patches, learns from scratch a confidence mea-

sure by processing only the left disparity map. This prop-

erty, shared with O1, makes these methods potentially

suited to any 3D sensor [31, 32].

3.8. SGM specific

This category groups two approaches intrinsically re-

lated to SGM [9]. The idea behind these approaches is to ex-

ploit intermediate results available in such stereo algorithm

to infer a confidence map. Specifically, the local-global

relation (PS) [20] combines the cues available in the cost

curve before and after semi-global optimization, while sum

of consistent scanlines (SCS) [11] counts for each pixel the

number of scanlines voting for the same disparity assigned

by the full SGM pipeline.

4. Evaluation protocol and experimental re-

sults

In this section, we report exhaustive experimental results

concerning different aspects related to the examined con-

fidence measures on the following datasets K12 (194 im-

ages), K15 (200 images) and M14 (15 images). For each

dataset we consider the stereo pairs belonging to the train-

ing set being the ground-truth available. We include in the

evaluation all the measures previously reviewed including

any variant. Moreover, for patch-based ones (i.e., APKR,

APKRN, WPKR, WPKRN, DA, DS, MED, VAR) we con-

sider patches of different size (i.e., 5 × 5, 7 × 7, 9 × 9 and

11 × 11 corresponding to superscript 1,2,3,4 in LEV and

O1 features) being the scale effective according to [28, 31].

Of course, we consider state-of-the-art methods based on

random forests, including variant ENSr, and the two ap-

proaches based on CNNs. Overall, we evaluate 76 confi-

dence measures1. In Section 4.1 we assess with three stereo

algorithms the performance of such measures when deal-

1Source code available at vision.disi.unibo.it/˜mpoggi/

code.html

ing with the selection of correct matches by means of the

ROC curve analysis proposed in [13] and widely adopted

in this field [8, 41, 28, 31, 32, 40]. Moreover, since ma-

chine learning is the key technology behind most recent ap-

proaches, in Section 4.2 we report how training affects their

effectiveness focusing in particular on the amount of train-

ing samples and the capability to generalize across different

data (i.e., datasets). Finally, being confidence measures of-

ten employed to improve stereo accuracy [41, 28, 31, 40],

in Section 4.3 we assess the performance of the most ef-

fective confidence measures when plugged in one of such

state-of-the-art methods [28].

4.1. Detection of correct matches

The ability to distinguish correct disparity assignments

from wrong ones is the most desirable property of a confi-

dence measure. To quantitatively evaluate this, [13] adopted

ROC curve analysis, measuring the capability of removing

errors from a disparity map according to the confidence val-

ues. That is, given a disparity map, a subset p of pixels is

extracted in order of decreasing confidence (e.g., 5% of the

total pixels) and the error rate on such sample is computed,

as the percentage of points with an absolute distance from

ground-truth value higher than a threshold τ , varying with

the dataset. Then, the subset is increased by extracting more

pixels (e.g., an additional 5%) and the error rate is com-

puted, until all the pixels in the image are considered. Ties

are solved by including all the tying pixels in the subsam-

ple. The relation between each sub-sample p and its error

rate draws a ROC curve and its AUC measures the capa-

bility of the confidence measure to effectively distinguish

good matches from wrong ones. Considering a disparity

map with a portion ε ∈ [0, 1] of erroneous pixels, an opti-

mal measure would be able to achieve a 0 error rate when

extracting the first (1 − ε) points. Thus, the optimal AUC

value [13] can be obtained as follows

AUCopt =

∫ ε

1−ε

p− (1− ε)

p
dp = ε+ (1− ε) ln (1− ε)

(1)

Following this protocol, we evaluate the 76 confidence

measures on K12, K15 and M14 with three popular stereo

algorithms adopting the winner takes all strategy for dispar-

ity selection:

• AD-CENSUS: aggregates matching costs, computed

on 5 × 5 patches with census transform [46], with a

5× 5 box-filter.

• MC-CNN [47]: local method inferring costs from im-

age patches using a CNN. We used the same networks

trained by the authors on K12, K15 and M14.
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(a)

K12 (ε = 38.82%) K15 (ε = 35.41%) M14 (ε = 37.78%)

Category measure rank AUC measure rank AUC measure rank AUC

3.1 APKR11 412 0.1806 APKR11 412 0.1541 APKR11 47 0.1355

3.2 WMNN 734 0.2215 WMN 734 0.2024 WMN 623 0.1579

3.3 LRD 520 0.1946 LRD 628 0.1825 LRD 521 0.1519

3.4 DA11 38 0.1668 DA11 37 0.1399 DA11 34 0.1294

3.5 DB 865 0.3446 DB 866 0.3103 DLB 869 0.3333

3.6 SAMM 625 0.2030 SAMM 520 0.1715 DSM 740 0.1798

3.7.1 O1 23 0.1309 O1 23 0.1128 O1 23 0.1211

3.7.2 CCNN 11 0.1223 CCNN 11 0.1041 CCNN 11 0.1128

Optimal 0.1067 0.0884 0.0899

Categories 3.7.1 and 3.7.2

Measure K12 K15 M14

ENSc 7 11 44

ENSr 5 5 33

GCP 6 6 8

LEV 4 4 5

O1 3 3 3

PBCP 2 2 2

CCNN 1 1 1

(b)

(c)

K12 (ε = 17.10%) K15 (ε = 15.37%) M14 (ε = 26.70%)

Category measure rank AUC measure rank AUC measure rank AUC

3.1 APKR11 411 0.0566 APKR11 411 0.0508 APKR11 35 0.0728

3.2 WMN 630 0.0748 WMN 631 0.0654 WMN 413 0.0763

3.3 LRD 731 0.0748 LRD 732 0.0712 UCC 522 0.0896

3.4 DS9 38 0.0542 DS9 38 0.0477 DS11 635 0.1061

3.5 DLB 866 0.1543 HGM 867 0.1439 DLB 868 0.2260

3.6 SAMM 516 0.0598 SAMM 521 0.0557 DSM 740 0.1228

3.7.1 O1 22 0.0317 O1 22 0.0324 O1 23 0.0680

3.7.2 CCNN 11 0.0297 CCNN 11 0.0297 CCNN 11 0.0637

Optimal 0.0231 0.0213 0.0459

Categories 3.7.1 and 3.7.2

Measure K12 K15 M14

ENSc 7 7 24

ENSr 5 5 17

GCP 6 6 14

LEV 4 4 4

O1 2 2 3

PBCP 3 3 2

CCNN 1 1 1

(d)

(e)

K12 (ε = 16.78%) K15 (ε = 13.68%) M14 (ε = 25.91%)

Category measure rank AUC measure rank AUC measure rank AUC

3.1 APKR11 37 0.0492 APKR11 37 0.0457 APKR9 22 0.0739

3.2 WMN 411 0.0554 WMN 512 0.0502 WMN 48 0.0.779

3.3 UCC 621 0.0735 UCC 619 0.0640 UCC 623 0.0959

3.4 DS11 512 0.0554 DS11 411 0.0501 DS11 513 0.0884

3.5 DB 967 0.1378 DB 968 0.1265 DLB 970 0.2157

3.6 DSM 736 0.0811 DSM 728 0.0679 DSM 732 0.1041

3.7.1 LEV 22 0.0358 O1 22 0.0323 O1 36 0.0777

3.7.2 CCNN 11 0.0358 CCNN 11 0.0302 CCNN 11 0.0736

3.8 SCS 841 0.0851 SCS 848 0.0790 SCS 836 0.1080

Optimal 0.0227 0.0184 0.0431

Categories 3.7.1 and 3.7.2

Measure K12 K15 M14

ENSc 27 31 44

ENSr 5 5 11

GCP 6 6 28

LEV 2 4 19

O1 3 2 6

PBCP 4 3 7

CCNN 1 1 1

(f)

Table 1. Detection of correct matches with three stereo algorithms - top (a,b) AD-CENSUS, middle (c,d) MC-CNN and bottom (e,f) SGM

- and three datasets K12, K15 and M14. For each algorithm there are two tables. On the left the best confidence measure for each category

(e.g., 3.1 refers to measures belonging to the category reviewed in Section 3.1), the ranking (within categories and, in superscript, absolute)

and the AUC. On the right, the absolute ranking of learning-based confidence measures. We also report average error rate ε for each

dataset on the top labels. Concerning categories 3.7.1 and 3.7.2 we trained each confidence measure on the first 20 images of K12 with the

considered algorithm (i.e., (a,b) with AD-CENSUS, (c,d) with MC-CNN and (e,f) with SGM).

• SGM [9]: eight scanline implementation with AD-

CENSUS aggregated costs as data term and P1 and P2,

respectively, 0.2 and 0.5 (being costs normalized).

Concerning confidence measures based on machine

learning, for each stereo algorithm, we train each one on a

subset of images from the K12 dataset (the first 20 images,

extracting a sample from each pixel with available ground-

truth, for a total of 2.7 million samples) and evaluate it on

all the datasets (for K12 excluding the training images), in

order to assess their performance on very different scenes.

For approaches based on random forests we train on 10 trees

as suggested in [28] and adopting a fixed number of itera-

tion as termination criteria (e.g., proportional to the number

of trees), while we train CNN based measures for 25 epochs

(resulting in about 1 million iterations), with a batch of size

64, learning rate of 0.001 and momentum of 0.9, by min-

imizing the loss functions reported in [32, 40]. Different

training sets (e.g., datasets, number of samples and so on)

may lead to different performance. This fact will be thor-

oughly evaluated in Section 4.2. For the evaluation reported

in this section we trained only on K12 in order to assess

how much a confidence measure is able to generalize its be-

havior across different datasets which is an important and

desirable feature in most practical applications. We adopt

as error bound τ = 3 for K12 and K15 and τ = 1 for M142

as suggested in the corresponding papers.

In Table 1 we summarize results in terms of AUC aver-

aged on each dataset (K12, K15 and M14) for AD-CENSUS

(a,b), MC-CNN (c,d) and SGM (d,e), reporting the aver-

2Middlebury frames have been processed at quarter resolution to level

out the original disparity range with other datasets (800 vs 228 for KITTIs).
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age error rate ε for each dataset. For each algorithm we

report on the left table the best measure for each category

described in Section 3 and its absolute ranking and, on the

right table, the absolute ranking for confidence measures

based on machine learning. Observing tables 1 (a,c,e),

we can notice that these latter measures always yield the

best results, with CCNN systematically the top-performing

one in terms of AUC, and the ones based on random for-

est following very close (with O1 the best in its category

in 7 out of 9 experiments). Focusing on categories 3.7.1

and 3.7.2, we can notice that in most cases PBCP, O1 and

LEV perform very well with the exception of the SGM al-

gorithm and M14 (Table 1(f)). In this specific case, ex-

cluding CCNN, APKR11 performs better than approaches

based on machine learning. Anyway, in this case too, the

effectiveness of O1 and PBCP seems acceptable. This fact

highlights that some confidence measure based on learning

approaches (in particular CCNN but also O1 and PBCP)

have excellent performance across different data. Interest-

ingly, such measures use as input cue only the disparity

maps. Tables 1 (b,d,f) also show that for other measures

such as ENSc, ENSr, GCP and LEV this behavior is not

always verified, in particular with M14. Finally, we ob-

serve that ENSr always (and sometimes significantly) out-

performs ENSc. Concerning other categories, we can no-

tice that APKR yields good results in all the experiments

and not only with M14 and SGM as already highlighted.

Other interesting confidence measures are those belonging

to category 3.4 and in particular DA with AD-CENSUS and

DS with MC-CNN and SGM. Such results confirm that pro-

cessing cues from the disparity map only, as done by best

learning-based approaches, yields reliable confidence esti-

mation. Other categories do not seem particularly effective,

especially those based only on left image cues have always

the overall worst performance. For measures belonging to

category 3.2, though not very effective excluding experi-

ments with SGM, WMN always achieves the best results.

Besides, it’s worth pointing out that naive versions of tradi-

tional strategies produce worse AUC values than their orig-

inal counterparts. Regarding SGM-specific methods, SCS

always outperforms PS but with AUC values quite far from

the top-performing approaches. Finally, concerning cate-

gories 3.3 and 3.6, such measures on the three datasets do

not grant reliable confidence prediction.

4.2. Impact of training data

Having assessed the performance of the confidence mea-

sure with different algorithms and datasets, this section aims

at analyzing the impact of training data on the effectiveness

of learning-based measures. To quantitatively compare the

results between different training configuration, we define

∆k as the ratio between the AUC value achieved by the

measure k and the AUCopt as,

Figure 1. Ratio between the average AUC achieved by learning-

based confidence measures trained with different number of sam-

ples from K12 and the optimal AUC. Evaluated on the rest of K12

with AD-CENSUS algorithm.

∆k =
AUCk

AUCopt

(2)

The lower the ∆k, the better the training configuration.

The first issue we are going to evaluate is the amount

of training samples required and how it affects the over-

all effectiveness of each confidence measure. We carried

out multiple trainings with a different number of samples

obtained from 5, 10, 15, 20 and 25 stereo pairs of K12

dataset starting from the first image. These subsets pro-

vide, respectively, about 0.7, 1.5, 2, 2.7 and 3.5 million

samples with available ground-truth for training. By using

more data we can deploy more complex random forests as

well. Nevertheless, we keep the same parameters and ter-

mination criteria described in Section 4.1 to compare the

behavior of the same forest fed with different feature vec-

tors when more samples are available. Figure 1 reports ∆k,

as a function of the number of training samples, for the best

six measures based on machine learning (i.e., ENSr, GCP,

LEV, O1, CCNN and PBCP) trained on AD-CENSUS al-

gorithm. We can notice how the amount of training data

slightly changes the effectiveness of the methods based on

random forest (less than 0.05 ∆k improvement), highlight-

ing how the best AUC is obtained starting from 2.7 million

samples. Conversely, measures based on CNNs improve

their effectiveness by a significant margin only when trained

on a sufficiently larger amount of data, but such improve-

ment almost saturates at 2.7 million samples. In particular,

we can observe how CCNN achieves the worst results when

trained with the smallest subset of images, resulting to be

the best measure with a larger training set (with a ∆k mar-

gin of about 0.25). Excluding LEV and ENSr at 3.5M, all

the measures show a monotonic improvement in terms of

AUC by increasing the number of samples.

The second issue evaluated concerns how much a con-
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Figure 2. Experimental results on M14. Ratio between the average

AUC achieved by each confidence measure, trained on K12 (blue)

and M14 (orange), and the optimal AUC evaluated on the rest of

M14 with AD-CENSUS algorithm.

fidence measure can generalize across different environ-

ments/scenes (i.e., datasets). To quantitatively evaluate

this behavior, we trained with AD-CENSUS the confidence

measures on a subset of M14, processing an almost equiv-

alent amount of training samples with respect to the train-

ing configuration adopted in Section 4.1. Then, we com-

pared the results achieved with this configuration to the one

used in Section 4.1 with AD-CENSUS on the remaining

data from M14, computing ∆k as defined in Equation 2. A

confidence measure achieving similar ∆k in the two con-

figuration is able to generalize well between the two very

different scenarios. Figure 2 plots the two values for the six

confidence measures. We can clearly notice how measures

based on CNNs better generalize with respect to random

forest approaches, with CCNN being more effective in this

sense than PBCP. Moreover, O1 appears to better adapt to

different data, achieving a lower margin between the two

∆k with respect to ENSr, GCP and LEV. This experiment

highlights once again that confidence measures using as in-

put cue the disparity map(s) (i.e., CCNN, PBCP and O1)

seem less prone to under-fitting.

4.3. Improvements to stereo accuracy

The final issue we investigated is the impact of confi-

dence measures on stereo accuracy, a topic that recently

gained a lot of attention (e.g., [41, 28, 31, 40]). For this

evaluation we choose the cost modulation proposed by Park

and Yoon [28]. The reason is that differently from [31],

which is specific for SGM algorithm, and [41, 40], based on

parameters potentially different from measure to measure,

[28] is suited for any stereo algorithm and parameter-free.

SGM was tuned as reported in Section 4.1. We plugged in

[28] the machine learning based measures, as well as three

standalone measures (i.e., APKR, SAMM and DA11). On

the three datasets K12, K15 and M14, from Table 2 we can

notice that confidence measures based on machine learn-

K12 K15 M14

bad3 avg bad3 avg bad1 avg

SGM 16.53 7.40 13.68 6.13 25.91 7.11

APKR11 11.2610 3.6010 9.5710 2.9410 23.798 5.1510

SAMM 10.956 3.156 9.136 2.586 24.0710 4.944

DA11 11.189 3.409 9.509 2.779 23.989 5.109

ENSc 10.422 2.714 9.024 2.334 23.494 5.008

ENSr 10.635 2.955 9.085 2.465 23.747 4.966

GCP 11.058 3.268 9.287 2.677 23.545 4.977

LEV 10.977 3.227 9.348 2.728 23.676 4.945

O1 10.411 2.361 8.792 1.842 23.183 4.072

PBCP 10.634 2.603 8.863 1.913 22.922 3.951

CCNN 10.613 2.412 8.791 1.801 22.861 4.123

Table 2. Error rate (percentage) and average pixel error on the

three datasets achieved by vanilla SGM (first row) and the con-

fidence modulation proposed in [28] plugging: APKR11, SAMM,

DA11, ENSc, ENSr , GCP, LEV (the one proposed in [28]), O1,

PBCP and CCNN. Learning-based confidence measures trained,

with AD-CENSUS, on the first 20 images of K12.

ing are overall more effective than other ones. In particu-

lar, O1 achieves the lowest error rate with K12 and CCNN

and PBCP outperforms other ones in K15 and M14. This

experiment highlights that there is not a direct relationship

with the effectiveness of the confidence measure in terms of

AUC. However, most effective confidence measures (i.e.,,

CCNN, PBCP and O1) according to this metric achieve

the best results. Finally we point out that in this experi-

ments, ENSc and ENSr, frequently perform better than oth-

ers confidence measures, conventional and learning-based

ones. Moreover, for their deployment in cost modulation

ENSc outperforms ENSr most of the times, conversely to

what observed in terms of AUC.

5. Conclusions

In this paper we have reviewed and evaluated state-of-

the-art confidence measures focusing our attention on recent

ones based on machine learning techniques. Our exhaus-

tive evaluation, with three stereo algorithms and three large

and challenging datasets, clearly highlights that learning-

based ones are much more effective than conventional ap-

proaches. In particular, those using as input cue the dis-

parity maps achieve better results in terms of detection of

correct match, capability to adapt to new data and effective-

ness to improve stereo accuracy. In such methods training

is certainly an additional issue but, as reported in our evalu-

ation, the overall amount of training data required is limited

and best learning-based confidence measures much better

generalize to new data.
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