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A B S T R A C T   

The study presented in this paper analyses and investigates the possibility of introducing a general 
and rapid methodology based on an artificial neural network (ANN) to assess the seismic response 
of existing reinforced concrete (RC) buildings. Starting from investigations carried out on 
buildings located in the outskirts of Bologna, 928 finite element models have been developed on 
the basis of the most recurrent data. The input parameters representing the characteristics of the 
structures were systematically varied and, through modal dynamic and non-linear static analyses, 
the outputs representing the seismic response were recorded. The resulting dataset was used to 
create a function, based on ANN, that can reliably predict the seismic behaviour of a RC structure. 
Finally, by means of k-fold cross-validation, the instruction of the function was optimised and 
simultaneously verified, obtaining a coefficient of determination for the totality of the samples 
and the previously unseen cases of 0,94 and 0,88, respectively. The result obtained not only aims 
at enriching the existing framework on the subject, increasing the awareness of the seismic issues 
affecting this building typology, but also constitutes a prioritization system that could highlight 
the need for structural renovation.   

1. Introduction 

Seismic hazard is a relevant topic for the whole Mediterranean area [1]. Over the years, experts and researchers have devoted their 
efforts to develop new intervention and prevention strategies. In this continuous evolution, even if construction standards and 
techniques have been developed towards a progressive improvement of the design and construction phases, most of the European real 
estate heritage predates the latest technological achievements and modern seismic regulations, resulting in a widespread seismic risk. 
Among all building typologies, this study focuses on reinforced concrete (RC) residential buildings built between the second half of the 
20th century and the early 1990s, potentially characterized by structural criticalities, as reported in §1.2.3 of deliverable D.2.2 [2]. 

In this context, the use of a methodology to assess the seismic response of these structures in a reasonable time and with a good 
degree of accuracy is increasingly important. Especially because of the financial and time constraints associated with the use of 
detailed damage assessment methods on numerous buildings [3,4]. 

With the aim of sharing knowledge on vulnerability assessment and discussing limitations and possible improvements of the know- 
how, a group of 12 experts from academia, engineering and disaster risk modelling community met in Pavia (Italy) in 2017 [5]. They 
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stated that over the last three decades, dozens of methodologies have been proposed for the analytical derivation of fragility and 
vulnerability functions, with different levels of complexity and accuracy. Notable among the factors that mainly determine these 
assessment methods are the strong motions used, the availability of data on existing buildings and finite element modelling (FEM). Two 
approaches seem to be predominant in this context: one that investigates the seismic vulnerability using multi-degree-of-freedom 
(MDOF) models of few most representative buildings (chosen from a much larger population as index buildings) and a second way 
that involves more simplified models with only a single degree of freedom (SDOF) [5]. A distinction is then made on two sources of 
variability: intra-building and inter-building variability. The first refers to variability within the building, mainly caused by uncer
tainty in building properties, FEM, and analysis method; the simpler the modelling approach (and the less data available), the more 
uncertain the index building results will be. The second relates to the typical variability of each construction. It is easier to have greater 
variability between different buildings of the same class than between different plausible models of a given structure. Consequently, 
quantity is promoted with the hope that sampling multiple types will capture the dominant inter-building variability, while 
reduced-order models and simplified analysis approaches may consistently compromise the assessment results, thus not only adding 
some additional uncertainty, but also shifting the estimated vulnerability to higher or lower values [5]. 

The need for rapid screening of existing buildings was first recognized by a group of researchers in Italy [6–9]. On the basis of the 
analyses developed by Benedetti and Petrini, the National Group for the Defence of Earthquakes (in original language Gruppo Nazionale 
per la Difesa dai Terremoti, GNDT) created in 1994 a series of data sheets [10], used to give an immediate evaluation of the state of 
existing buildings after the occurrence of an earthquake as a damage and preventive vulnerability assessment. 

After the Irpinia earthquake of November 23, 1980, a catalogue of about 30.000 buildings in over forty municipalities was collected 
to define Damage Probability Matrices (DPMs) [11–13]. The purpose of those matrices was to estimate the probability that a given 
building would suffer damage from an earthquake. DPMs have been used, more recently, on a sample of masonry churches in Italy 
[14]. These matrices were associated with each collapse mechanism present for each case study and combined to obtain a vulnerability 
index for the individual church. Based on these data, it was possible to statistically analyse the entire sample. The researchers 
introduced binomial probability distribution functions (BPDFs), which express the fragility prediction of the sample, in combination 
with DPMs. The method produced a large-scale post-earthquake assessment tool in terms of fragility and vulnerability prediction that 
can prioritize buildings for retrofit. The disadvantage of DPMs is a great effort in terms of time and costs to create a dataset that covers 
only a small part of the building types present on the territory. Another method for seismic assessment of RC and masonry structures 
has been developed at the University of Bologna: RE.SIS.TO Ref. [15]. This procedure was inspired by existing methods in the literature 
[10] to assess vulnerability on a large-scale. It leads to the definition of a peak ground acceleration (PGA) value, corresponding to the 
collapse of the building, through the calculation of its shear strength. This parameter is evaluated using simplified mechanical con
siderations that require a preliminary technical opinion from an expert to summarise the real complexity of the construction without 
losing accuracy. 

In recent years, analysts have introduced rapid visual screening (RVS) methods with the aim of prioritising buildings at higher 
seismic risk and assisting decision makers in implementing preventive strategies. RVS methods are based on questionnaires, usually 
completed by experts, in which the main characteristics of buildings are collected and processed to define a seismic risk index [16,17]. 
Many countries have adopted these procedures as initial tools to identify the most vulnerable buildings and often focus on certain 
classes or types of buildings such as hospitals [18] or schools [16]. These processes require reporting on the choices made in the 
simplification phase and the data included in the assessment. In the RVS method presented by Ruggieri et al. [14,16]; the focus was on 
school buildings in the Apulia region (southern Italy), most of which were undersized RC structures with three or fewer floors. The 
specific questionnaires were focused on a selection of parameters that well represented the class under investigation, considering both 
structural and non-structural elements. The RSV result attempts to represent the social and economic losses that might follow major 
earthquakes and is a combination of the three main parameters that make up seismic risk: 1) seismic hazard of the region; 2) exposure 
of the affected areas; and 3) vulnerability of the structures [19]. As also reported by M. H. Arslan et al. [20]; this topic concerns most of 
the Mediterranean countries. On the Turkish experience, for example, many other contributions can be cited [21–24]. 

A problem encountered when analysing classical evaluation methodologies is that the accuracy of the results is sacrificed in favour 
of the speed of data processing, or vice versa, hardly managing to combine the two aspects simultaneously. Moreover, these methods 
are often based on expert consultancy, which, as has been shown in various fields (starting with behavioural psychology), is usually the 
much less preferable predictive system in noisy environments [25,26]. 

Tools that are now widely used in research to describe complex relationships influenced by certain parameters are Artificial Neural 
Networks (ANNs). ANN is a type of artificial intelligence application that has already been used by engineers in the building sector for 
many purposes: prediction of various structural quantities [27–31], diagnosis and detection of structural damage [32–34], active 
response control of offshore structures [35,36], identification of the static model of an FRP deck [37] etc. Investigations have also been 
made in the last decades to evaluate the performance of existing RC structures [20,38–41]. In particular, after an evaluation of effective 
design parameters on seismic performance of existing RC buildings [38,39], M. H. Arslan et al. [20] proposed a rapid evaluation 
method based on ANNs to determine their performance level. They characterised the dataset to match the typical properties of the 
Turkish building stock and made specific reference to the national seismic code. Using a linear structural analysis approach applied to 
three-dimensional FEM models, they determined the performance level of a building by quantifying the damage for each structural 
element and considering the percentage of those that were beyond a certain state. Vazirizade et al. [41] used ANNs in reverse: to 
determine the degree of damage of a structure (location and extent) they started from the structural response of two-dimensional (2D) 
steel frames. 

With the same scheme, using non-linear time history analyses on 2D-RC frames and damage indices, de Lautour and Omenzetter 
[40] obtained an ANN capable of predicting damage with a good approximation for cases within the range of input properties. 
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In this study, a similar approach is proposed: 37 different values, divided into mechanical, construction, and morphological pa
rameters, were selected to parameterize a generic RC moment-resisting frame structure (inputs). Then, non-linear static FEM (push
over) and modal dynamic analyses were performed, recording 17 independent structural response values (outputs) on a sample of 928 
different models. As described in previous studies (M. H [20,40]. parameterization of the sample is necessary to create a neural 
network. In their study, De Lautour and Omenzetter [40] introduced 19 parameters describing structural properties and ground 
motions, obtaining an output vulnerability with damage indices. H. Arslan et al. [20] provided the same number of parameters, first 
describing the horizontal loads (reference acceleration and soil type) and then the building characteristics. In this case, the output 
entered in the dataset is directly related to the Turkish standard and represents a performance level. 

The data set presented in this study is used to train a mathematical-informatics model based on a neural network, capable of 
extending the results obtained to real cases not yet included in the training database. Previous studies have shown that, compared to 
traditional methods, the characteristics of artificial neural networks (ANNs) and their learning capacity are very well suited to the 
purpose [42]. Moreover, the results obtained through this system in various domains seemed encouraging. Morfidis and Kostinakis 
[43]; Ferreira et al. [44] and the approach adopted by Estêvão [45] constitute excellent examples of ANN applications in the field of 
structural engineering and seismic assessment. As illustrated by Abbes Berrais [46]; the main advantages of this approach are the 
ability to gain experience through self-training, the resistance to errors and uncertainties and the ability to extract information from 
noisy and incomplete databases. Although a comparison between regression methods is not the purpose of this research, which is 
limited to testing the applicability of neural networks for the definition of a rapid method of structural evaluation, some tests carried 
out with traditional systems, and reported in Appendix B, highlight their non-applicability to the problem in question. 

The procedure, as illustrated in this text, aims to investigate the possibility of introducing a new type of RVS method that does not 
require a direct survey of a large number of typological buildings, but that, knowing the weight of some characteristic parameters, can 
preventively predict dangerous events for RC moment-resisting structures and therefore prioritize possible interventions. It is 
important to note that the inputs are selected in such a way as to univocally represent the morphology of a RC building, allowing, in 
further phases of the research, to implement the reference database, including building types different from the most recurrent ones in 
the specific area reported in this study [47,48]. 

2. From building data to parameters 

In order to start collecting data for the formulation of the method, a peripheral area of Bologna was identified that presented a good 
recurrence of buildings respecting the typology of interest of the study: residential buildings in RC constructed between the 1950s and 
1990s. During that period in Italian and European cities, the growing demand for housing led to the formation of suburbs, often 
favouring quantity over quality and efficiency. These suburbs are therefore characterized by recurring structures and building tech
nologies that can be generalised on the basis of a prior study of the detail. Therefore, in order to cover most of these recurring structural 
typologies in RC with a small number of FEM models, targeted investigations were conducted on a small sample of the existing building 
stock. This choice allowed to receive feedback on the performance of the system, not precluding the possibility of expanding the 
database to other building types in future updates. In fact, the parameters were chosen in such a way as to allow, in successive phases, 
the inclusion of structures with configurations very different from those analysed in this study. 

The data was collected through two surveys with different objectives: the first, broader and more general, aimed at obtaining the 
most common planimetric shapes, the second, more specific, investigated the geometric characteristics of each building. 

2.1. Data collection performed on case study 

The first survey covered three areas of Bologna: Corticella, Emilia Levante and Emilia Ponente. The study analysed 1.051 con
structions using the municipal technical cartography. This provided a first orientation on the configuration of the structures populating 
the database of the study [47,48]. The result was that 68,8% of the total building stock belongs to the square or rectangular shape 
(Table 1). 

The second survey covered an area of Bologna bounded to the east by the motorway line and to the south by the railway line (see 
Fig. 1). From this sample the information for the creation of the FEM models was obtained. The analysis on cadastral plans indicated 
that 91,6% of the buildings were built before 1970, and 45,8% of those analysed are in RC. The following maps show graphically some 
of the data collected in the second survey area. 

Due to the lack of specific information (structural drawings) concerning all the buildings surveyed, the data collection covered all 
the buildings in the area, including masonry or hybrid structures. The survey, as showed in Table 2, determined some geometric 
recurrences, including storey heights, span dimensions, plan configuration and column dimensions. 

From this analysis it was possible to derive specific data, related to RC buildings, useful for the definition of reference structures:  

• 84,6% of the buildings fall into a rectangular shape compared to 7,7% of square shaped cases;  
• almost all buildings have a 3-bays structural scheme in the y-direction. The central span is always the shortest (Yb in Fig. 2), while 

the two side spans, sometimes equal and sometimes different, are the longest (Ya and Yc in Fig. 2); 

Table 1 
Results of the first survey – Shape recurrences.  

Shapes Rectangular Square T L C S Combined Other 

Percentage 20,20% 48,60% 4,20% 8,90% 3,50% 2,10% 2,20% 10,30%  
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• the maximum span in the y-direction (distance between the frames) range from a minimum of 3,6 m to a maximum of 6,5 m;  
• in the x-direction, buildings are generally made up of repeated modules that have a central staircase (usually a shorter bay, Xc in 

Fig. 2), flanked by larger spans (Xa, Xb). These spans vary in number from two to three and may be characterised by equal or 
different lengths;  

• the length of the maximum spans in the x-direction (Xa and Xb in Fig. 2) are more variable with an average of about 5,3 m;  
• the dimensions of the columns range from a minimum of 250 × 250mm to a maximum of 450 × 450 mm, which is the case only on 

the lower floors. The most frequent dimensions are 250 × 250 and 300 × 300 mm;  
• the number of floors varies from 3 to 8 (with one tower of 22 floors, removed from the analysis), with an average value of 6,4. The 

recurrent typology has a basement and 3 or 4 floors above it;  
• the standard height of the storeys is 3 m, with lower values for basements (h = 2,65 m) and higher values for ground floors (h =

3,40 m); 

The mechanical characteristics, the amount of reinforcement and the construction details, not being obtainable without instru
mental tests, were assumed on the basis of the technical standards in force at the time. 

It is however important to emphasise that the investigations and the use of the codes served only to optimise the procedure and as a 
starting point: any discrepancies between the real building and the mechanical characteristics assumed do not invalidate the study 
carried out, which investigates the possibility of introducing a rapid methodology based on an artificial neural network and not on the 
structural evaluation of existing buildings. 

2.2. Input parameters 

The generation of an algorithm through ANN requires the definition of some parameters suitable to describe the problem to be 
examined, in this case an RC structure. The 37 selected values were chosen among those that bests describe the structural specificities 
of the building category (M. H. [38,49], remaining in a small number to avoid complicated network resolutions. From this perspective, 
it was decided to link some parameters to others (e.g., the dimensions of the main beams with those of the edge beams). The inputs 

Fig. 1. Results from the second survey. The area of the buildings (m2) and the perimeter (m) are represented on the left and right respectively.  

Table 2 
Results from the second survey. Collected parameters divided in (1), values with associated percentages, and (2), statistical data.  

Collected parameters (1) 

Period of 
construction 

% Type of 
structure 

% Shape of the 
building 

% Area of the building % Perimeter of the 
building 

% 

1939–1955 37,5 Concrete 45,8 Rectangular 62,5 5,5–115,1 52,1 9,7–31,5 24,5 
1956–1969 54,1 Masonry 33,3 Square 20,8 115,1–276,2 32,3 31,5–54,2 37,3 
1970–1986 8,4 Hybrid 20,1 Other 16,7 276,2–606,0 12,9 54,2–84,5 22,6 
– – – – – – 606,0–1.360 2,5 84,5–156 12,7 
– – – – – – 1.360–4.352 0,2 156–293 0,3  

Collected parameters (2) 

N. of floor Inter-storey height (m) Span x-direction (m) Span y-direction (m) Columns dimension (m) 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

3 22 6,4 2,1 4,0 3,05 4,0 5,6 4,9 3,6 6,5 5,3 25 × 25 45 × 45 30 × 30  
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were divided into three general categories: mechanical, construction, and morphological parameters. 
Mechanical parameters describe the characteristics of the structural materials. The construction parameters define the proprieties 

of the lateral resisting elements (e.g., column dimensions, reinforcements, etc). A change in a single input does not imply a change in 
the value of the other parameters in the same category, they are independent (for example, it is possible to change the size of a column 
without changing its reinforcements). Morphological parameters characterize the different forms assumed by the structure of buildings 
(e.g., spans, height, number of floors, etc.), and are dependent on each other: a variation on one of them implies a variation of several 
inputs of the same category (e.g., it is impossible to change the area of a building without changing its perimeter, base sides, etc.). 

Although the study conducted is limited to a particular type of building, the selected parameters could characterize any structure, 
including irregular ones. Table 3 shows all the parameters (and their description) considered in the creation of the database. A range of 
values is also given, identifying the maximum and minimum. In Appendix A, all the variations considered between the threshold are 
shown. 

2.3. Output parameters 

The output parameters are the most important results obtained from the modal dynamic and non-linear static analyses (see 
Table 4). They constitute essential information on the behaviour of the structure and provide an estimate of the vulnerability level. 

For the purpose of the study conducted and the correct training of the network, independent structural response parameters were 
chosen. It should be noted, however, that from this information it is possible to obtain, for a professional, other significant values such 
as the behaviour factor and the acceleration at various limit states. 

3. The index structures: FEM, analyses and variations 

In order to obtain the information needed to fill the database, it was necessary to start from geometrically and mechanically defined 
structures. Taking into account the results of the above investigation, four recurring geometrical and morphological solutions were 
chosen. With these, eight index (or reference) structures (IS) were determined through two dimensioning processes: the first one based 
on outdated normative requirements [51–53] using the permissible-stress method (IS1-4); the second one based on recent re
quirements [54], using the semi-probabilistic limit state method (IS5-8). This decision was taken in order to extend the prediction 
capacity of the system. 

From these ISs, the input values in the FEM were varied systematically. Modifying one parameter at the time, leaving the others 
unchanged and recording the outputs. When all possible variations of a single parameter had been completed, then two or three 
parameters were modified simultaneously. 

Fig. 2. Scheme of the recurring structure.  

L. Stefanini et al.                                                                                                                                                                                                       



International Journal of Disaster Risk Reduction 67 (2022) 102677

6

Table 3 
Input parameters of the data set.   

Name and description Range of 
values 

U.M. 

Mechanical Parameters 

1 Concrete class (Rck) 
Cubic characteristic compressive strength. 

10–60 N/ 
mm2 

2 Steel grade (fyk) 
Characteristic tensile yield strength. 

220–450 N/ 
mm2 

Construction Parameters 

3 Columns dimension in x direction (Cx) 
Measurement of the side of the column in x-direction. 

0,25–0,60 m 

4 Columns dimension in y direction (Cy) 
Measurement of the side of the column in y-direction. 

0,25–0,60 m 

5 Longitudinal reinforcement bars in columns (As,c,long) 
Amount of longitudinal reinforcement in columns, expressed in mm2 

452–4.562 mm2 

6 Stirrups in columns (As,c,trans) 
Amount of stirrups in columns, value expressed as mm2 per meter. 

226–5.655 mm2/ 
m 

7 Columns variation per floor (ΔC) 
The value considers whether the columns vary in section depending on the floor level or not. (0) Indicates a structure with all 
columns equal, (1) indicates a reduction, for each floor following the ground floor, of 50 mm on each side of the element, with 
a minimum of 250 mm. 

0–1 – 

8 Main beam height (hmb) 
Height of the main beams. Where the main beam is the internal beam, part of the moment-resisting frames. 

0,35–0,7 m 

9 Main beam width (bmb) 
Width of the main beams. Where the main beam is the internal beam, part of the moment-resisting frames. 

0,20–0,50 m 

10 Longitudinal reinforcement bars in beams (As,b,long) 
Amount of longitudinal reinforcement in beams, expressed in mm2. 

282–1.582 mm2 

11 Stirrups in beams (As,b,trans) 
Amount of stirrups in beams, value expressed as mm2 per meter. 

703–1.727 mm2/ 
m 

12 Cracking (w) 
The value takes into account the presence or absence of cracking in the resisting elements with reference to the percentages 
recommended in Eurocode 8 (CEN 2004c). (0) Elements have full shear and bending stiffnesses, (1) they have moduli reduced 
by half. 

0–1 – 

13 Live loads (LL) 
The value expresses the accidental loads considered in the calculations. It is expressed in kN/m2. 

2–4 kN/m2 

14 Floor joist direction (Fjd) 
The value indicates the direction provided to the joists and, consequently, to the moment-resisting frames. (0) For joists 
deformed in y-direction, (1) for joists in x-direction. 

0–1 – 

15 Secondary beams (2ndB) 
The value considers the presence or absence of secondary beams. Secondary beams connect the main frames in orthogonal 
direction. (0) if absent, (1) if present. 

0–1 – 

16 Diaphragm constraints (DC) 
The value indicates the presence or absence of the rigid diaphragm. (0) If absent, (1) if present. 

0–1 – 

Morphological parameters 

17 Building Area (BA) 
Geometric area enclosed by the perimeter line of the building. 

120–300 m2 

18 Perimeter (BP) 
Length in meters of the perimeter line of the ground floor plan. 

44–72 m 

19 Min. Moments of inertia of the plan (Jmin) 
The parameter describes the minimum moment of inertia of the plane figure formed by the building plan with respect to the 
two main axes.  

1.440–13.180 m4 

20 Max. Moments of inertia of the plan (Jmax) 
The parameter describes the maximum moment of inertia of the plane figure formed by the building plan with respect to the 
two main axes.  

928–4.210 m4 

21 Columns number (N◦C) 
Number of columns on the ground floor. 

12–24 – 

22 Minimum span x (lx,min) 
The parameter defines the minimum centres distance between two columns with respect to the x direction. 

3 m 

23 Maximum span x (lx,max) 
The parameter defines the maximum centres distance between two columns with respect to the x direction. 

4,5–6,5 m 

24 Minimum span y (ly,max) 
The parameter defines the minimum centres distance between two columns with respect to the y direction. 

3–4 m 

25 Maximum span y (ly,min) 
The parameter defines the maximum centres distance between two columns with respect to the y direction. 

5–7 m 

26 Average span x (Ml,x) 
The parameter defines the average centre distance between columns in x direction. 

4–5 m 

27 4,1–5,3 m 

(continued on next page) 
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3.1. Dimensioning of the index structures 

As mentioned above, the first dimensioning approach used for the reference structures was based on outdated standard re
quirements and the permissible-stress method. After defining the morphology of the structures (see Table 5 and Fig. 3), the first four ISs 
were dimensioned as follows. The available codes were applied with respect to the minimum requirements given and, due to the 
performance orientation of some standards compared to others, the lowest and least demanding values were selected from all outdated 
standards and not exclusively from a particular one.  

1. The slab thickness was determined as 1/25 (≥1/30, [51]) of the maximum span. Then, given the Italian context, a concrete slab of 
4 cm and hollow lightning bricks were assumed. Then, the permanent loads applied on the floors were related to the maximum 
span, the imposed load was fixed for the category at 2,5 kN/m2 and the live loads were established depending on the use of the 
floors, as indicated by the Eurocodes [55]. Diaphragm constraints were entered into the model and assigned to all the points 
belonging to the same plane, depending on the presence or absence of the parameter.  

2. Once the storey loads were determined, it was possible to evaluate, through the area of influence, the design loads for the internal 
beams (main beams). The latter, horizontal elements of the RC frames, were only provided in one of the two main directions 
(depending on the relative parameter), leaving the connection in the opposite direction to the kerbs (when the secondary beam 
parameter was “activated”). These main beams were sized according to the maximum moments affecting their ends, which are ql2/ 
10 at the roof level and ql2/12 at lower levels, where q is the distributed load and l is the length of the element. The dimensions of 
the cross-section and the amount of tensioned reinforcement were determined on the basis of stresses considering a fixed concrete 
cover of 3 cm. The compressed reinforcement was evaluated as 30% of the tensioned reinforcement. A verification of the stresses on 
both sides of concrete and steel was finally carried out considering the homogenised steel/concrete section (n = Es/Ec, [51]). The 
transverse reinforcement was evaluated as minimum percentages per meter (mm2/m) in relation to the dimensions of the beams 
[53].  

3. The kerbs (or secondary beams) were applied in the alternative direction of the main beams and were square in shape, depending 
on the height of the floors, with a minimum reinforcement content of 4φ12 in the longitudinal direction and φ6/30 in transversal 
direction [52].  

4. The edge beams, located on the perimeter of the building, are subjected to half of the loads assigned to the main beams, as they are 
affected by half of the reference area. In addition, linear loads have been added to represent the external masonry infill walls, which 
are 25 cm thick. The dimensions of the edge beam cross-section were derived as a function of those of the main beam with a 
proportion of the applied loads. The longitudinal and transverse reinforcements were determined in the same way.  

5. The cross-sectional dimensions of the columns were defined on the basis of the compressive strength of the concrete at ground level. 
The stresses, evaluated as the ratio of the maximum axial load and the area, were compared with the maximum compressive 
strength of the concrete reduced by 30%, due to the combination with the flexural actions. The longitudinal reinforcement was 
calculated as 0,8% of the concrete cross-section strictly necessary to meet the resistance to axial loads [51]. The transverse re
inforcements are φ6/25 based on the worst condition presented in outdated standards prescriptions [52]. The columns of the 
reference structures (1–4 IS) have the same dimensions for the whole height of the building. 

Table 3 (continued )  

Name and description Range of 
values 

U.M. 

Average span y (Ml,y) 
The parameter defines the average centre distance between columns in y direction. 

28 Standard deviation of spans x (σl,x) 
Index of the span variability measurements in x direction. 

0,7–1,4 – 

29 Standard deviation of spans y (σl,y) 
Index of the span variability measurements in x direction. 

0,75–2,09 – 

30 Regularity index x (IRx) 
Parameter that allows to detect irregularities in the structural mesh such as misaligned or missing pillars in x direction. It is 
calculated as the mean value of the normalised coefficients of variation, considering all spans in the x direction. 

0,66-1 – 

31 Regularity index y (IRy) 
Parameter that allows to detect irregularities in the structural mesh such as misaligned or missing pillars in y direction. It is 
calculated as the mean value of the normalised coefficients of variation, considering all spans in the y direction. 

0,71-1 – 

32 Floor number (N◦St) 
Number of floors in the building. 

2–8 – 

33 Minimum inter-storey height (his,min) 
Minimum inter-storey height of the building. 

3-3,5 m 

34 Maximum inter-storey height (his,max) 
Maximum inter-floor height of the building. Usually the ground floor. 

3,5 m 

35 Average inter-storey height (Mh,is) 
The parameter defines the average inter-floor height. 

3-3,5 m 

36 Standard deviation of the inter-storey height (σh,is) 
The parameter defines the standard deviation of the inter-storey heights 

0-0,25 – 

37 Height of the building (Htot) 
The value describes the total height of the building. 

6,5–24,5 m  
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6. The curtain walls, not being assignable to fixed categories due to their great variability (presence or absence of windows, type of 
material, etc.) have been considered only from the point of view of transferred loads. 

The resulting index structures (1–4 IS) are characterised by very low collapse acceleration values and show premature initiation of 
brittle mechanisms (shear failure of beams or columns). In this type of buildings, the strength hierarchy is often not respected and even 
improving the values of one or more parameters does not lead to significant results in terms of seismic response. Although these 
buildings represent well the majority of the existing building stock, they hardly simulate the behaviour of structures with a more 
ductile behaviour and a lower vulnerability level. Therefore, in order to include this case in the research and to improve the prediction 
possibilities of the network, four additional high-performance models with the same morphology as the previous ones, but dimen
sioned on the basis of more recent Italian regulations [54], have been developed. Moreover, in order to obtain models with the desired 
characteristics, the response spectrum of the city of L’Aquila, where the ground acceleration is one of the highest in Italy, was used for 
the dimensioning of the structures (5-8IS). 

The design of the reinforcements was then carried out directly with the FEM software on the basis of the requirements of NTC2008 
[54] (the latest Italian code available for the RC design in the software at the time of the analysis). Given the regularity in plan and 
elevation of the reference structures, a q-factor of 3 was used. The elastic and design response spectra applied in the analyses are shown 
in Fig. 4. Table 6 shows all the mechanical and construction parameters for IS 1 to 8. 

3.2. FEM and seismic analyses 

The 17-output data were provided by numerical analyses using FEM. For this purpose, SAP2000 [56] was used. 
The class of concrete and the grade of the steel were computed in the model. The former is automatically provided by the software 

database, already characterised by a specific value of compressive strength and modulus of elasticity, depending on the class 

Table 4 
Output parameters of the data set.  

Description N◦ Acronym Specification U. 
M. 

Output Parameters 

Base shear at the base for limit state: limit states of damage limitation, significant damage and near 
collapse defined in accordance with the Eurocode 8 – Part 3 [50]. 

1 VLS-DL-x Damage limitation in x 
directions 

kN 

2 VLS-DL-y Damage limitation in y 
directions 

kN 

3 VLS-SD-x Significant Damage in x 
directions 

kN 

4 VLS-SD-y Significant Damage in y 
directions 

kN 

5 VLS-NC-x Near Collapse in x 
directions 

kN 

6 VLS-NC-y Near Collapse in y 
directions 

kN 

Activated mass: depends on the fundamental mode of vibration. 7 m*x Activated mass in x 
directions 

kg 

8 m*y Activated mass in y 
directions 

kg 

Displacement to the limit state: maximum displacement registered at the roof-floor during the pushover 
analysis. 

9 dLS-DL-x Damage limitation in x 
directions 

mm 

10 dLS-DL-y Damage limitation in y 
directions 

mm 

11 dLS-SD-x Significant Damage in x 
directions 

mm 

12 dLS-SD-y Significant Damage in y 
directions 

mm 

13 dLS-NC-x Near Collapse in x 
directions 

mm 

14 dLS-NC-y Near Collapse in y 
directions 

mm 

Fundamental period of the structure: first two periods bending the structure in the two main directions. 
Evaluated with the modal analysis. 

15 Tx Fundamental period in x 
directions 

s 

16 Ty Fundamental period in y 
directions 

s 

Vulnerability index: ratio between the plastic hinges formed in the pre-seismic phase and the total hinges of 
the building. The value was specially designed for this study so that even structures not verified for vertical 
loads could be evaluated. 
In fact, pushover does not allow distinctions to be made between buildings in which critical values are 
already reached for vertical loads, since the values of the base shear and displacements are 0. 
The vulnerability index can assume values between 0 and 1, where 0 means no flexural criticality for 
vertical loads (the most common case). Therefore, in the case of buildings in which the parameter takes on 
values other than 0, the structure with the highest index can be assumed to be the most vulnerable. 

17 I Vulnerability index –  
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concerned; the latter was entered manually for each structure that did not include B450C (examples of material stress-strain re
lationships are given in Fig. 5). It was therefore necessary to define customised reinforcement materials for the classes: FeB22k, 
FeB32k, FeB38k and FeB44k. The tensile yield strength, ultimate yield strength and maximum elongation were entered into the 
material characteristics in the software based on Table 7 (data collected from D.M. 1972 [52] and NTC 2008 [54]). 

Three-dimensional models of each structure were created to perform the non-linear static analysis (pushover). Fixed joints were 
introduced at the basement level as external restraints to simplify the foundation level. Beam and column elements were modelled as 
non-linear frames with lumped plasticity defining plastic hinges at both ends of the beams and columns. The properties of the hinges 
follow the formulae given in Annex A of Eurocode 8-Part 3 [50] for ductile mechanisms (see (1), (2) and (3)), indicating the three 
performance levels (or limit states, LS) defined in the same standards as damage limitation (LS-DL), significant damage (LS-SD) and 
near collapse (LS-NC). As shown in Fig. 6, five points labelled A, B, C, D, and E define the force–strain behaviour of a plastic hinge with 
controlled deformation. 

θu =
1
γel

0.016 · (0.3ν)
[
max(0.01;ω′

)

max(0.01;ω) fc
]0.225(LV

h

)0.35

25

(

αρsx
fyw
fc

)

(
1.25100ρd

)
− LS NC (1)  

θSD =
3
4
θu − LS SD (2)  

θy =φy
LV + avz

3
+ 0.0014

(

1+ 1.5
h
LV

)

+
εy

d − d′

dbLfy
6
̅̅̅̅
fc

√ − LS DL (3) 

The values assigned to each of these points vary depending on the type and cross-section of the element, the material properties, the 
longitudinal and transverse steel reinforcement, and the level of axial loading on the elements calculated with a quasi-static combi
nation of vertical loads. SAP2000 provides predefined hinge properties and recommends PMM hinges (combined flexural and axial 
loads) for columns and M3 hinges (only flexural loads) for beams. Once the structure is modelled with the properties of the section, the 
steel content and the loads on it, the default hinges are assigned to the elements (PMM for columns and M3 for beams). 

In order to consider brittle failures on the same elements, force-controlled hinges have been placed at the centre of each column and 
at the ends of each beam (V2 for beams and V2–V3 for columns). The shear strength, which is the maximum permissible force for these 
elements, is calculated as the maximum value found by varying the angle θ (between 21,8◦ e 45◦) to match the tensile shear strength 
(failure of the transverse reinforcement) with the compressive shear strength (failure of the compressed concrete rod). Formulas (4), 
(5) and (6) were used in this respect, with reference to § 6.2.3 of Eurocode 2 [57]. 

VRd =min(VRsd;VRcd) (4)  

VRsd = z ·
Asw
s

· fywd · cot θ (5)  

VRcd = z · bw ·αcw ·
v1 · fcd

(tan θ + cot θ)
(6) 

Table 5 
Morphological parameters implemented in the database and representing the eight index structures (IS) evaluated in the study.  

Morphological parameters Units IS1 – IS5 IS2 – IS6 IS3 – IS7 IS4 – IS8 

BA m2 130 230 169 299 
BP m 46 66 52 72 
Jmin  m4 1083 1917 2380 4211 
Jmax  m4 1831 10139 2380 13181 
N◦C – 12 24 16 24 
lx,max m 5 5 5 5 
lx,min m 3 3 3 3 
Ml,x m 4,33 4,6 4,33 4,6 
σl,x – 0,94 0,8 0,94 0,8 
IRx – 1 1 1 1 
ly,max m 6 6 5 5 
ly,min m 4 4 3 3 
Ml,y m 5,0 5,0 4,33 4,33 
σl,y – 1 1 0,94 0,94 
IRy – 1 1 1 1 
N◦St – 5 3 5 3 
his,max m 3,5 3,5 3,5 3,5 
his,min m 3 3 3 3 
Mh,is m 3,1 3,17 3,1 3,17 
σh,is – 0,2 0,24 0,2 0,24 
Htot m 15,5 9,5 15,5 9,5  
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In this way, it was possible to consider all failure modes in the same pushover analyses. Thus, without neglecting axial and shear 
failures and avoiding fragility analysis errors [5]. 

Rigid diaphragm constraints, as described above, are inserted at each level whenever the case study presented a concrete slab of 
thickness greater than or equal to 4 cm. This constraint is applied at all the joints belonging to the same level. When the diaphragm 
constraint parameter was deactivated, the constraints in the model were also removed. Loads were divided into patterns and applied to 
two-dimensional elements with null cross-section distributing the loads in one or two directions, as required. 

Regarding the analyses, a dynamic modal analysis and a non-linear static analysis were performed. The first required the definition 
of the mass source in the model characterised by a combination of load patterns with certain combination coefficients ΨEi, as indicated 
in Eurocode 8 [58]. Twelve eigen modes were set as properties of the structures ensuring an activated mass greater of 90%. The 
activated mass and fundamental periods were recorded for each building studied. 

A non-linear force-controlled static analysis, based on the quasi-permanent vertical load combination is the starting point for the 
two displacement-control pushover analyses performed in the two main horizontal directions with a force distribution proportional to 
the floor masses. Therefore, the capacity curves were extracted as results of the analyses (see Fig. 7), indicating the shear at the base in 
relation to the displacement of the control point (roof level). The exceeding of the limit states was then recorded in the capacity curves 
when a single plastic hinge exceeded the concerned limit. While the displacement-controlled plastic hinges allowed the progressive 

Fig. 3. Axonometric views of the FEM index structures determined on the basis of the geometrical recurring characteristics obtained from the surveys.  
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damage of the structure to be recorded, going from LS-DL to LS-NC, the force-controlled plastic hinges directly indicated the collapse of 
the building, even if it was only determined by the vertical loads. 

It is well-known that, in methods based on linear analysis, there is the conceptual limitation of considering the dissipative effects of 
the structures through the behaviour factor and therefore having to predict this parameter before carrying out the analysis. By using 

Fig. 4. Elastic response spectrum (E-RS) and project response spectrum (P-RS) located in L’Aquila, Italy.  

Table 6 
Mechanical and construction parameters representing the eight index structures (IS) evaluated in the study.  

Mech. & Const. parameters Units IS 1 IS 2 IS 3 IS 4 IS 5 IS 6 IS 7 IS 8 

Rck N/mm2 30 30 30 30 30 30 30 30 
fyk N/mm2 315 315 315 315 450 450 450 450 
DC – Yes Yes Yes Yes Yes Yes Yes Yes 
LL kN/m2 2 2 2 2 2 2 2 2 
Fjd – Y Y Y Y Y Y Y Y 
As,c,trans mm2/m 226 226 226 226 1371 1035 1371 1169 
As,c,long mm2 1206 804 1206 804 4562 3770 4562 3770 
Cx m 0,4 0,3 0,35 0,3 0,4 0,4 0,45 0,5 
Cy m 0,4 0,3 0,35 0,3 0,4 0,4 0,45 0,5 
ΔC – No No No No No No No No 
As,b,trans mm2/m 1100 1100 1100 1100 1100 1280 1100 1340 
As,b,long mm2 983 925 807 847 1070 1070 983 983 
bmb m 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 
hmb m 0,5 0,45 0,4 0,4 0,5 0,45 0,4 0,4 
2ndB – Yes Yes Yes Yes Yes Yes Yes Yes 
w – Yes Yes Yes Yes No No No No  

Fig. 5. Example of stress-strain relationships provided in the software for a C25/30 concrete class and a FeB32k steel grade.  
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non-linear analysis, this uncertainty can be avoided because the plastic behaviour of the elements is already predicted in the model. 
The pushover analysis considers the progressive deterioration of the structure during the earthquake through the non-linear behaviour 
of materials and plastic-hinges. In addition, a specific stiffness reduction in the resistant elements was considered to account for pre- 
existing cracks and possible failures related to the durability of the concrete. The bending and shear stiffnesses are both reduced by 
50% in the beams, while in the columns by 30% (lower value due to the positive contribution of the axial load) and 50% respectively. 

Due to the nature of this study, the capacity of the building has not been compared at this stage with the seismic demand to which it 
is subjected, as it is not relevant to the research. However, based on of the outputs provided by the proposed system, a user, at a later 
stage, could determine the vulnerability of the structure in relation to a demand value depending on the specific interested location. 

Table 7 
Mechanical properties of the steel grades considered in the FEMs. For each of the grades the reference standard is indicated in the table.  

Steel grade FeB22k FeB32k FeB38k FeB44k B450C 

Tensile yielding strength f yk 
MPa  

≥220 ≥320 ≥380 ≥440 ≥450 

Ultimate yielding strength f tk 
MPa  

≥340 ≥500 ≥460 ≥550 ≥215 

Maximum elongation (As) 
%  

≥24 ≥23 ≥14 ≥12 ≥7,5 

Reference standard DM72 [52] DM72 [52] DM72 [52] DM72 [52] NTC2008 [54]  

Fig. 6. On the left the back-bone curve provided for each deformation-controlled plastic hinges, with relative limit state limits (DL, SD and NC). On the right, a scheme 
representing the positioning of the deformation-controlled plastic-hinges on a frame. 

Fig. 7. The pushover curves for 10 buildings within the database are shown as an example. On the left the results obtained in the x-direction, on the right those in the 
y-direction. 
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In terms of acceleration, with reference to the nomenclature introduced by the Annex to the Italian building code (2019) [59]: 

ζE =
ag,d
ag,c

≤ 1 (7)  

with: 
ζE structural vulnerability. 
ag,d pseudo-acceleration obtained from the elastic response spectrum depending on the reference period. 
ag,c =

Vmax,LS
m* · g collapse acceleration related to the exceedance of the limit state values by a plastic hinge (simplified procedure). 

Vmax,LS maximum horizontal force for which at least one plastic hinge reaches the limit state considered. 
m* activated mass along that direction by the vibration mode. 
The assessment made in (1) provides more conservative values than those that would be obtained with a rigorous target 

displacement verification as indicated by standards [58,60] since the ratio of accelerations does not fully consider the dissipative 
capacity of the structure. However, reinforced concrete constructions vulnerable to earthquakes are often affected by brittle failure due 
to reduced or incorrect arrangement of reinforcement. Future developments of the method will be aimed at providing outputs that can 
allow an assessment aligned with that of legislation, although the purpose of the rapid assessment (as a prioritization tool) is to provide 
values that conservatively represent vulnerabilities of buildings in a short period of time. 

Table 8 
Scheme representing the procedure used for varying the parameters. Specification is made on the models created in each phase.  

Variation made Parameters permutated Total 
models 

No Variation Index Structures (ISs) 8 
One Parameter at thr Time: all the inputs in this row have 

been edited individually, starting from the ISs. They 
assumed the values considered in this study (see  
Appendix A), leaving the others in the initial 
configuration. 

Concrete Class Steel Grade Columns 
Dimension in X 
Direction 

Diaphragm 
Constraints 

208 

Longitudinal 
Reinforcement in 
Columns 

Stirrups in Columns Columns 
Variation Per 
Floor 

Main Beam 
Height 

Main Beam Width Longitudinal 
Reinforcement in 
Beams 

Stirrups in Beams Edge Beams 

Designated Use/ 
Imposed Loads 

Floor Joist Direction   

Two Parameter at the Time: all the inputs in this row have 
been edited in pairs, starting from the ISs. They assumed 
the values considered in this study (see Appendix A), 
leaving the others in the initial configuration. 

Concrete Class Concrete Class Concrete Class Concrete Class 352 
+ + + +

Stell Grade Designated Use Cracking Columns 
Dimension in X 

Concrete Class Concrete Class Concrete Class Edge Beams 
+ + + +

Long. Reinf. in 
Columns 

Stirrups in Columns Edge Beams Stell Grade 

Edge Beams Edge Beams Edge Beams Edge Beams 
+ + + +

Designated Use Columns Variation 
Per Floor 

Main Beam 
Height 

Main Beam 
Width 

Edge Beams Edge Beams Edge Beams Edge Beams 
+ + + +

Long. Reinf. in Beams Stirrups in Beams Long. Reinf. in 
Columns 

Stirrups in 
Columns 

Stell Grade Stell Grade Cracking Cracking 
+ + + +

Designated Use Cracking Designated Use Columns 
Dimension in X 

Cracking Cracking Cracking Cracking 
+ + + +

Floor Joist Direction Main Beam Height Main Beam Width Long. Reinf. in 
Beams 

Cracking Columns Dimension 
in Y   

+ +

Stirrups in Beams Columns Dimension 
in X 

Tree or more Parameter at the Time: After the first 560 variations, three or more inputs were varied at the time. In particular: the morphological parameters 
(changing one implies changing the others e.g., the area and perimeter of the building) and the parameters that most commonly vary together (e.g., number of 
floors with pillar size and concrete class). 

368 

Total Number of Models 928  
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3.3. Variations 

Any neural network, in order to learn a given problem, must be trained on a sufficiently large number of case studies. Considering 
only the mechanical and construction parameters chosen, the models to be analysed to cover all the case studies would have resulted: 

Pn= Ipt1 · Ipt2 ·… · Iptn = 7 · 4 · 6 · 6 · 12 · 13 · 2 · 8 · 3 · 8 · 16 · 2 · 3 · 2 · 2 · 2 = 46 · 109 (8)  

where Pn is the total number of structures (considering only the mechanical and construction parameters) and Ipti is the number of 
configurations that a given input can assume among the chosen values (see Appendix A). In addition, the number reported does not 
consider the multiple shapes that buildings may take in plan. Therefore, the aim of this contribution, among the others previously 
mentioned, is to verify the method based on neural networks, highlighting that from a limited number of models it is possible to 
approximate reliable results for a much larger set of similar structures. 

From the initial configurations illustrated above (IS 1–8) the inputs were varied, recording, for each modification, the relative 
outputs. The variation of morphological inputs is provided using the eight ISs together with a limited number of modifications 
specified in Appendix A. On the contrary, the mechanical, and construction parameters were punctually varied in different steps. 

In particular, the first step of the procedure was to vary one parameter at a time, leaving the others unchanged, and then several 
parameters were varied simultaneously (Table 8). For example, the concrete grade was varied (10, 15, 20, etc.), while keeping 
everything else unchanged. Then the operation was repeated with the steel grade, returning the concrete to the starting conditions, and 
so on, until all variables were exhausted. After this first round of data collection, a similar procedure was followed, but changing two 
parameters at a time. Table 8 schematically illustrates some of the changes made. 

4. Resolution of the problem through ANN 

The structure of the ANN must be adapted to the specific problem, and it is therefore necessary to define the best setting to process 
the algorithm. Different tests were carried out with this aim, comparing each time the obtained results. In Fig. 8 it is shown the 
configuration that guaranteed the best accuracy, both for the know and predicted results. The ANN used for the study were developed 
using MATLAB’s Deep Learning Tool Box plug-in Ref. [61]. 

The architecture of the network is based on the multilayer feed-forward type perceptron. Thus, it can approximate different types of 
functions, including integrable and continuous functions. As a setting for data processing, two hidden layers characterised by 10 
neurons each and a sigmoid activation function (9) were chosen. The outputs, on the other hand, use a linear function (10). 

f (x)=
1

1 + e− x
(9)  

f (x)= x (10) 

To improve the network performance, Bayesian backpropagation regularisation was used as a training function. The algorithm 
reduces the combination of weights and errors (mean squared error) improving the ability to generalise the results at the end of the 
training. Moreover, it provides excellent results in the cases of quantitative studies, handling complex relationships, as illustrated by 
Kayri [62] who compared this procedure with the Levenberg-Marquardt algorithm. 

The refinement of the ANN proceeded with the optimization of the exploited dataset. The wide range of values assumed by the 
parameters in absolute terms, with both high and low numbers (e.g., base shear expressed in kN and pseudo-acceleration in m/s2) 
required an a priori normalization of the values. The traditional min-max algorithm was performed separately for each input and 
output value (11). 

v′ =
v − min

max − min
(11)  

where v′ represent the normalised value, v the initial one and min and max are, respectively, the maximum and minimum values 

Fig. 8. Schematic representation of the system.  
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associated to the specific parameter. 
Finally, in order to facilitate the convergence of the neural network and to vary the percentage of the dataset used in the ANN 

training test, the order of insertion of the rows of data was randomised, eliminating the possibility of incorrect associations of the 
prediction. 

5. Results and discussion 

The ANN validation was performed using k-fold cross-validation. This made it possible to optimise the database, exploiting all the 
data without losing important information during the analyses and systematically testing the results. 

Furthermore, the collected data were analysed in a parallel study focused on the incidence of input parameters towards the seismic 
response of buildings. It was evaluated how some characteristics of the structure (concrete class, steel grade, etc.) can influence the 
seismic response of a generic RC building, confirming the results of previous studies (M. H [38]. The investigation lays the foundations 
for a future optimization of the research (e.g., by streamlining the procedure by excluding less relevant parameters) and aims at 
increasing the practitioner’s awareness of the impact of certain variables on the global behaviour of a structure. 

5.1. Assessment of the ANN through k-fold cross-validation 

As mentioned above, in order to assess the predictive capabilities of the neural network used, it was decided to employ k-fold cross- 
validation. The method requires the dataset to be divided into k-subsets and was performed as listed below:  

• training of the model considering k-1 folds (or partitions);  
• validation of the results based on the left fold;  
• repetition of the process until all subsets were used once as a sample for validation (k-times). 

As shown in Table 9, the database was divided into 5 partitions (k = 5), each consisting of approximately 185 samples. In order to 
quantitatively compare the results predicted by the algorithm with the collected observation, a regression analysis was performed in 
which the Pearson coefficient (R) and the determination coefficient (R2) were calculated for each partition. This evaluation was 
performed for the whole dataset (all), for the partition of samples never seen before by the ANN (test) and for the partitions used as 
training set (train). 

R2 =

( ∑(
x − mx

)(
y − my

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(x − mx)
2∑(

y − my
)2

√

)2

(12)  

where x and y are two vectors of length n, and mx and my are the mean values of x and y. Fig. 9 shows the distribution of results 
calculated with Matlab for iteration 1 in terms of Pearson’s coefficient. As illustrated above, the box “train” refers to the training 
condition of the network (known values), the box “test” to the verification condition (unknown values), “all” considers all cases 
simultaneously. 

Table 10 shows the determination coefficients (R2) for the 17 outputs resulting from the five iterations. The separation between the 
three conditions: train, test and all was maintained. 

The values obtained for the individual outputs in terms of R2 denote in general very good network generalisation capabilities. Both 
the period of the structure and the base shear offer good results (0,88–0,98 for the tests and 0,95–0,98 for all the cases). On the other 
hand, the vulnerability index (I) is characterised by very low values denoting almost no correlation between observed and predicted 
values. This is probably caused by the nature of the parameter studied and by the variability of the input, characterised by a strong 
recurrence of the 0 value. The remaining parameters denote generalisation values of 0,72–0,98 with higher results for displacements in 
both x and y directions. 

Table 11 shows the general Pearson’s coefficient and the general coefficient of determination referred to each iteration in the three 
conditions train, test, and all. 

In order to have a general measure of the network performance, the values shown in Table 12 were averaged using the Fisher 
transformation [63]. The following results were obtained from this operation. 

It follows that the neural network manages to create a good correlation between the predicted and observed values when it comes 
to considering the totality of samples: the R value is equal to 0,971 and R2 is 0,944, while, as expected, the value decreases for the 
previously unseen cases 0,938 (R) and 0,8814 (R2). 

Table 9 
Schematic diagram of the k-fold cross-validation procedure.  

Dataset – 928 Models 

Iteration 1 Test Train Train Train Train 
Iteration 2 Train Test Train Train Train 
Iteration 3 Train Train Test Train Train 
Iteration 4 Train Train Train Test Train 
Iteration 5 Train Train Train Train Test  
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5.2. Impact of parameters on vulnerability 

The collection of data and their association with outputs allowed to conduct a parallel study on the impact of the inputs on the 
seismic response, evaluating the results obtained from the FEM modelling. 

The investigation was carried out with reference to the acceleration to the limit state of significant damage in both directions for the 
Mechanical and Construction parameters, excluding the morphological ones, due to the high aleatory nature that characterises them. 
The acceleration at the limit state of significant damage is calculated as follows: 

aLS =
VLS
g ·m* (13)  

where g is the acceleration of gravity and m*is the activated mass. 
An example is shown below, carried out on the concrete-class variations (Table 13). On IS 1–4, the percentages of variation of 

acceleration in the LS-SD were calculated for the different strength classes (10, 15, 20, etc.). Through a series of arithmetic averages 

Fig. 9. Graphs referring to the Partition 1.  

Table 10 
Determination-coefficients for the 17 outputs in the five iterations.   

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Outputs Train Test All Train Test All Train Test All Train Test All Train Test All 

VLS-DL-x 0,97 0,96 0,97 0,98 0,95 0,97 0,97 0,95 0,97 0,98 0,92 0,97 0,95 0,98 0,97 
VLS-SD-x 0,98 0,96 0,97 0,98 0,95 0,97 0,98 0,93 0,97 0,98 0,94 0,97 0,93 0,98 0,97 
VLS-NC-x 0,98 0,96 0,97 0,98 0,95 0,97 0,98 0,93 0,97 0,98 0,94 0,97 0,93 0,98 0,97 
m*x 0,70 0,75 0,71 0,69 0,66 0,68 0,71 0,61 0,69 0,67 0,66 0,67 0,50 0,63 0,60 
Tx 0,98 0,97 0,98 0,98 0,90 0,96 0,98 0,97 0,98 0,97 0,95 0,97 0,95 0,98 0,97 
dLS-DL-x 0,86 0,76 0,84 0,85 0,78 0,84 0,86 0,78 0,84 0,87 0,83 0,86 0,78 0,87 0,85 
dLS-SD-x 0,94 0,77 0,91 0,94 0,87 0,93 0,94 0,75 0,90 0,95 0,81 0,92 0,72 0,95 0,90 
dLS-NC-x 0,94 0,76 0,91 0,94 0,87 0,93 0,94 0,75 0,90 0,95 0,81 0,92 0,73 0,95 0,90 
VLS-DL-y 0,97 0,96 0,97 0,97 0,94 0,96 0,97 0,93 0,96 0,97 0,90 0,96 0,92 0,97 0,96 
VLS-SD-y 0,98 0,97 0,98 0,98 0,95 0,97 0,98 0,94 0,97 0,98 0,92 0,97 0,92 0,98 0,96 
VLS-NC-y 0,98 0,97 0,98 0,98 0,95 0,97 0,98 0,94 0,97 0,98 0,91 0,97 0,92 0,98 0,96 
m*y 0,72 0,83 0,74 0,72 0,66 0,71 0,73 0,74 0,73 0,72 0,69 0,71 0,48 0,71 0,63 
Ty 0,97 0,95 0,97 0,97 0,88 0,95 0,96 0,97 0,96 0,97 0,95 0,97 0,93 0,97 0,96 
dLS-DL-y 0,88 0,73 0,85 0,88 0,69 0,83 0,86 0,74 0,84 0,90 0,73 0,85 0,64 0,90 0,83 
dLS-SD-y 0,96 0,72 0,90 0,96 0,84 0,94 0,96 0,81 0,93 0,95 0,77 0,91 0,75 0,96 0,91 
dLS-NC-y 0,96 0,72 0,90 0,96 0,84 0,94 0,96 0,81 0,93 0,95 0,76 0,91 0,75 0,97 0,91 
I 0,13 0,08 0,12 0,14 0,06 0,13 0,17 0,10 0,16 0,10 0,42 0,18 0,02 0,12 0,10  

Table 11 
Correlation between predicted and observed outputs for each iteration.   

Rtrain  Rtest  Rall  R2
train  R2

test  R2
all  

Iteration 1 0,980 0938 0,971 0,9604 0,8798 0,9428 
Iteration 2 0,980 0952 0,974 0,9604 0,9063 0,9487 
Iteration 3 0,980 0941 0,972 0,9604 0,8855 0,9448 
Iteration 4 0,981 0935 0,972 0,9624 0,8742 0,9448 
Iteration 5 0,981 0925 0,969 0,9624 0,8556 0,9390  
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aimed at normalising the results, an average percentage variation was obtained, which expresses the incidence of this input on the 
acceleration value. 

The same assessment is made for all important input parameters (Fig. 10). 
As expected, the investigation shows that the parameters most affected in the calculation of the seismic response are those related to 

the vertical resisting elements. In particular, the most significant parameter on the pseudo-acceleration value seems to be the size of the 
columns and their reinforcement percentage (Cx, Cy, As,c,trans and As,c,long). 

It can also be observed that the designated use and the degree of reinforcement of the beams (stirrups and longitudinal bars) 
although fundamental for the verification against vertical loads are less influent towards the horizontal actions. 

It is also possible to observe a different impact of the parameters on the two directions considered: even if the relative ratios remain 
similar, there is a difference in absolute terms. For example, the size of the columns, which in both cases is the most important 
parameter, is more relevant in the y direction (48%) than in the x direction (38%). A similar behaviour is observed on the results 
obtained for the column reinforcement parameters. It is interesting to note that in the cases of less impactful parameters (beams and 
their reinforcement) the relative differences in the two directions are also minimal. 

The only significant parameter on which the impact in the x-direction is greater than in the y-direction, although minimal, is the 
concrete strength. 

6. Conclusions and further steps 

The methodology illustrated in this article is based on interdisciplinary research work combining fields and results from structural 
engineering and statistics. This dualism of the process is what makes the difference from the classic methods (DPM, RVS, etc.) and 
where its real potential lies. After a collection of data, characterising the RC residential building stocks, focused on Bologna districts, 
but representative of the dominant building typology in most Italian and European city suburbs, a set of reference structures were 
determined. A database collecting the inputs and related outputs was then generated through FEM analyses performed on eight ISs. 

Table 12 
Pearson coefficient (R) and determination coefficient (R2) for the whole neural network.   

Rtrain  Rtest  Rall  R2
train  R2

test  R2
all  

ANN 0,9804 0,9388 0,9716 0,9612 0,8814 0,9441  

Table 13 
Impact of parameters, concrete class.   

Rck aLS-SD-x % Δ aLS-SD-y % Δ 

IS 1 30 0,08485 100% 0% 0,05882 100% 0%  
10 0,05941 70% 30% 0,04350 74% 26%  
15 0,06202 73% 27% 0,04168 71% 29%  
20 0,06676 79% 21% 0,04819 82% 18%  
25 0,07360 87% 13% 0,05301 90% 10%  
35 0,08867 105% 5% 0,06044 103% 3%  
60 0,10864 128% 28% 0,09507 162% 62%  
30 0,08485 100% 0% 0,05882 100% 0% 

IS 2 30 0,11010 100% 0% 0,10020 100% 0%  
10 0 0% 100% 0 0% 100%  
15 0 0% 100% 0 0% 100%  
20 0,09899 90% 10% 0,10011 100% 0%  
25 0,09918 90% 10% 0,09798 98% 2%  
35 0,11555 105% 5% 0,10561 105% 5%  
50 0,12529 114% 14% 0,11318 113% 13%  
60 0,13131 119% 19% 0,12210 122% 22% 

IS 3 30 0,11533 100% 0% 0,10571 100% 0%  
10 0,07439 65% 35% 0,07742 73% 27%  
15 0,06803 59% 41% 0,08848 84% 16%  
20 0,08539 74% 26% 0,09414 89% 11%  
25 0,10301 89% 11% 0,10014 95% 5%  
35 0,11889 103% 3% 0,10846 103% 3%  
50 0,13097 114% 14% 0,11660 110% 10% 

IS 4 30 0,10729 100% 0% 0,11073 100% 0%  
10 0,07949 74% 26% 0,08232 74% 26%  
15 0,10659 99% 1% 0,10259 93% 7%  
20 0,10359 97% 3% 0,10697 97% 3%  
25 0,10270 96% 4% 0,10622 96% 4%  
35 0,10942 102% 2% 0,11245 102% 2%  
50 0,12246 114% 14% 0,12580 114% 14%  
60 0,12969 121% 21% 0,13266 120% 20%  
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Based on this database, the neural network was first created and then optimised using the most suitable settings to solve the problem. 
Through k-fold cross-validation procedure, the ANN training was finally improved and simultaneously verified, showing a relevant 
predictive capacity. Considering the totality of the samples (all), the coefficient of determination stood at a value of 0,94, with a 
Pearson coefficient of 0,97. With reference to previously unseen cases (test) the correlation between predicted and observed values 
indicated an R2 of 0,88 and an R of 0,93. 

Although the study reported here testifies to the effectiveness of the method, it also confirms also that the accuracy of the ANN is 
highly dependent on the number and variety of models included in the dataset and that the variations included in the training are still 
not sufficient to cover all existing building types in RC. The results illustrated for the single outputs also show an uneven predictive 
capacity of the network: while most of the parameters have high correlation values (especially the period of the structure and the base 
shear), the vulnerability index (I) seems unsuitable for the type of approach adopted and will have to be redesigned in future updates of 
the work. 

The authors’ intention was to validate the procedure as a method to create a prioritising tool capable of identifying, on a large scale, 
the most vulnerable buildings among some recurrent typologies. Furthermore, the parameters determining the ISs were chosen in such 
a way as to allow the database to be expanded in subsequent phases. This possibility would allow an increase in the accuracy of the 
ANN as well as a greater coverage of the building typologies also with reference to different territorial areas. The study carried out 
suggests that in the future it will be possible to create a method, based on this preliminary system, capable of covering the majority of 
RC structures whose vulnerability can be determined in a few steps. 

Finally, a parallel study on the impact of specific construction parameters on the performance of RC moment-resisting frames 
against horizontal loads is also reported as a further contribute to the framework concerning vulnerability assessment of RC buildings. 

With the aim of prioritising the buildings at higher seismic risk, assisting decision makers in the implementation of seismic risk 
reduction strategies, and the undeniable advantage of reducing the time and cost of structural analysis, the large-scale application of 
rapid seismic vulnerability assessment methods will play a key role in the years to come. 
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Appendix A 

The complete list of parameters used as inputs in the creation of the database is given below in Table 14. The designation of the 
values is given in Section 2.2. 

Fig. 10. Impact of parameters, direction x (above) and direction y (below).  
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Table 14 
List of parameters used as inputs in the database.   

Designation Provided variables U.M. 

Mechanical Parameters 

1 Rck 10; 15; 20; 25; 30; 35; 50; 60 N/mm2 

2 fyk 220; 320; 380; 440; 450 N/mm2 

Construction Parameters 

3 Cx 0,25; 0,30; 0,35; 0,40; 0,45; 0,50; 0,55; 0,60; 0,65 m 
4 Cy 0,25; 0,30; 0,35; 0,40; 0,45; 0,50; 0,55; 0,60; 0,65 m 
5 As,c,long 452; 616; 804; 923; 1.018; 1.206; 1.256; 1.526; 1.884; 2.280; 3.770; 4.562 mm2 

6 As,c,trans 226; 283; 396; 402; 503; 565; 670; 704; 1.005; 1.169; 1.371; 1.571; 2.827; 3.789; 5.655 mm2/ 
m 

7 ΔC 0; 1 – 
8 hmb 0,35; 0,40; 0,45; 0,50; 0,55; 0,60; 0,65; 0,70 m 
9 bmb 0,20; 0,25; 0,30; 0,35; 0,40; 0,45; 0,50 m 
10 As,b,long 282; 424; 528; 565; 646; 678; 740; 762; 807; 833; 847; 925; 932; 968; 983; 1.018; 1.055; 1.070; 1.110; 1.130; 1.203; 1.475; 

1.582 
mm2 

11 As,b,trans 703; 785; 1.047; 1.090; 1.100; 1.280; 1.340; 1.583; 1.649; 1.727 mm2/ 
m 

12 w 0; 1 – 
13 LL 2; 3; 4 kN/m2 

14 Fjd 0; 1 – 
15 2ndB 0; 1 – 
16 DC 0; 1 – 

Morphological parameters 

17 BA 120; 123,5; 130; 135; 136,5; 140; 143; 150; 156; 162,5; 169; 175,5; 182; 195; 230; 300 m2 

18 BP 44; 45; 46; 47; 48; 50; 51; 52; 53; 54; 56; 66; 72 m 
19 Jmin  1.440; 1.628; 1.739; 1.831; 1.922; 2.014; 2.050; 2.197; 2.287; 2.289; 2.380; 2.665; 2.813; 2.973; 3.656; 10.139; 13.181 m4 

20 Jmax  928; 1.000; 1.042; 1.083; 1.125; 1.167; 1.250; 1.442; 1.872; 1.917; 2.116; 2.380; 2.472; 2.563; 2.746; 4.210 m4 

21 N◦C 12; 15; 16; 24 – 
22 lx,min 3,0 m 
23 lx,max 4,5; 5,0; 5,5; 6,0; 6,5 m 
24 ly,max 3,0; 4,0 m 
25 ly,min 5,0; 5,5; 6,0; 6,5; 7,0 m 
26 Ml,x 4,0; 4,2; 4,3; 4,5; 4,6; 4,7; 4,9 m 
27 Ml,y 4,1; 4,2; 4,3; 4,4; 4,5; 4,6; 4,8; 5,0; 5,3 m 
28 σl,x 0,71; 0,77; 0,80; 0,82; 0,85; 0,94; 1,08; 1,18; 1,23; 1,25; 1,41 – 
29 σl,y 0,75; 0,85; 0,94; 1,00; 1,08; 1,25; 1,25; 1,33; 1,50; 2,09 – 
30 IRx 0,66; 0,85; 0,96; 1 – 
31 IRy 0,71; 0,75; 0,81; 0,93; 0,95; 1 – 
32 N◦St 2; 3; 4; 5; 6; 8 – 
33 his,min 3; 3,5 m 
34 his,max 3,5 m 
35 Mh,is 3; 3,05; 3,08; 3,12; 3,16; 3,25; 3,5 m 
36 σh,is 0; 0,16; 0,17; 0,18; 0,19; 0,20; 0,21; 0,23; 0,25 – 
37 Htot 6,5; 9,5; 12,5; 15,0; 15,5; 17,5; 18,5; 24,5 m  

Appendix B 

Some tests carried out with more traditional prediction methods, which generally allow for greater interpretability of the results 
provided, have shown low predictive capabilities even in relation to known cases. Specifically, the tests were carried out on three 
simple linear regression models with logarithmic transformation of the values. The transformations concerned in one case the domain 
values, in another the codominant values and finally both (domain and codominant). A summary table comparing the 3 linear 
regression models is given in terms of the coefficient of determination (Table 15).  

Table 15 
Coefficient of determination for linear regressions  

Target output R2
dom  R2

cod  R2
dom− cod  

VLS-DL-x 0,806 0560 0,559 
VLS-SD-x 0,800 0561 0,568 
VLS-NC-x 0,799 0561 0,567 
m*x 0,729 0759 0,681 
Tx 0,875 0953 0,955 
dLS-DL-x 0,743 0449 0,454 

(continued on next page) 
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Table 15 (continued ) 

Target output R2
dom  R2

cod  R2
dom− cod  

dLS-SD-x 0,630 0519 0,541 
dLS-NC-x 0,626 0518 0,539 
VLS-DL-y 0,755 0568 0,532 
VLS-SD-y 0,781 0582 0,561 
VLS-NC-y 0,780 0581 0,559 
m*y 0,934 0968 0,941 
Ty 0,832 0909 0,903 
dLS-DL-y 0,511 0306 0,296 
dLS-SD-y 0,482 0475 0,419 
dLS-NC-y 0,480 0474 0,417 
I 0,099 0079 0,060 

The mean values of all three models are well below 1, showing a poor generalisation capacity. 
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[5] Vitor Silva, Sinan Akkar, Jack Baker, Paolo Bazzurro, José Miguel Castro, Helen Crowley, Matjaz Dolsek, Carmine Galasso, Sergio Lagomarsino, 
Ricardo Monteiro, Daniele Perrone, Kyriazis Pitilakis, Dimitrios Vamvatsikos, Current challenges and future trends in analytical fragility and vulnerability 
modeling, Earthq. Spectra 35 (4) (2019) 1927–1952, https://doi.org/10.1193/042418eqs101o. 
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