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3D DLO Shape Detection and Grasp Planning
from Multiple 2D Views

Alessio Caporali, Kevin Galassi, Gianluca Palli

Abstract—In this paper, the estimation of the 3D shape of a
deformable linear object such as an electric cable for the purpose
of planning suitable grasping poses is proposed. These poses can
be then exploited by a robot manipulator to grasp and manipulate
the cable for assembling and manufacturing purposes. The pro-
posed method is based on a previously developed algorithm called
ARIADNE providing the segmentation and spline modelling on
a single image of electric cables even in cluttered scenarios.
By exploiting this result and by collecting measurements from
different points of view by means of a 2D camera mounted on
the robot end effector, a method to estimate the 3D shape of the
cable is here presented. This method is experimentally evaluated
in different scenarios showing the capability of providing reliable
estimation of the cable shape. The result is then used to drive to
robot to grasp the cable in controlled positions.

Index Terms—Deformable Object Manipulation, Shape Detec-
tion, Robotic Vision, Robotic Manipulation

I. INTRODUCTION

In many real scenarios, manipulating successfully De-
formable Linear Objects (DLOs) requires an adequate charac-
terization of their shape. This knowledge is usually achieved
via vision systems based on sensors having 2D or 3D capa-
bilities. Concerning the 3D devices, in recent years there have
been advancements in sensor technology for both high-end
industrial depth sensors and consumer-grade ones. Selecting
the correct 3D vision device for a specific application is
commonly a complex job, since their performances heavily
depend on many aspects as the target environment, lightning
conditions and surface materials. Additionally, it is difficult
to benchmark one camera with respect to the others, since
3D capabilities are achieved with different technologies and
comparing the data-sheets does not provide a complete picture.
When dealing with thin objects such as wires and cables,
such cameras are inadequate in characterizing the shape of the
DLOs. In such applications, high-end industrial depth sensors
are used (e.g. Zivid One+ S and Photoneo MotionCam3D)
since they can achieve sub-millimeter depth accuracy. The
issue here is that these sensors are usually expensive and not
really compact, moreover they have specific working distance
to be ensured from the object that may not fit with other
task constrains, in particular in case of flexible robotic cells
and mobile manipulators. On the other hand, 3D cameras and
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Fig. 1: Experimental Setup. A 2D camera is mounted on
the robot end effector, the camera is positioned to capture
objects between the fingers of the robot. The robot used in
the experiments is a 7DOF Panda from Franka Emika.

sensors, such as RGB-D cameras, stereo camera, laser scanners
are becoming more popular and affordable day by day and
they are actually employed in several applications. Recently,
cheap 3D cameras such as the Intel RealSense D435 appeared
in the market enabling broad evaluation and implementation
of tasks like collision avoidance, pick and place of normal
size objects, and many more. However, these cameras typically
have limited capabilities in terms of 3D estimation, and thin
objects like cable are often pretty invisible to them. For the
reasons mentioned above, 2D cameras could be more effective
since they are really cheap, very small and reliable in providing
useful data due to the potential very high resolution. Moreover,
the field of view can be easily adapted and the working optimal
distance to the object can be very small.

In recent works, several approaches have been introduced
related to the detection of DLOs both in 2D and 3D scenarios.
Looking at the 2D ones, in [1] the authors introduced an
approach for the segmentation of DLOs in complex cluttered
backgrounds. Simpler approaches as [2], [3] and [4] can also
be applied since DLOs appear in images as tubular structures.
The 3D detection is instead mostly documented for ropes
manipulation when dealing with problems as knots untangling
[5]. Here the authors segment the background via color and
plane fitting techniques and then built a graph representing
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Fig. 2: The input image (2a) is processed obtaining a binary mask (2b) and a 2D B-Spline model of the DLO (2c). In the
remainder of the paper a white background is used for clarity in the figures.

the rope configuration. Concerning the manipulation of cables
for industrial application, several approaches are discussed in
literature as routing [6], planning and assembly in [7], [8] and
[9].

In this paper, some preliminary results concerning the
estimation of the 3D shape of DLOs via a common 2D eye-in-
hand calibrated camera are presented. The main idea consists
in exploiting multiple views of the same static scene. An
algorithm called ARIADNE [1] is used to detect the DLOs
from each input camera image through deep-learning based
segmentation and providing a B-Spline representation of the
DLO in pixel coordinates. Then, by collecting the estimated
2D splines provided by different points of views, the method
proposed in this paper estimates the 3D shape of the DLO
described by means of a spline in the 3D Cartesian space.
The deformability of the wire has not been considered in the
process of shape reconstruction, since the method proposed is
vision-based only. However, in future works, a model of the
wire deformation can be adopted to enhance the reconstruction
capabilities in case of occluded portions of the cable. The error
between the computed 3D model of the cable projected in each
input image and the 2D input points in the original image is
computed and utilized for the evaluation of the approach.

In Fig. 1 the setup used for the experimental evaluation of
the approach presented in this paper is shown. The idea is to
simulate the problem of cable grasping from racks. On the
robot end-effector, is possible to see the used 2D camera.

The remainder of the paper is organized as follow: the cable
segmentation and modelling, is described in Sec. II, while in
Sec. III is presented the 3D DLO shape estimation. Finally, in
Sec. IV, the method is experimentally evaluated.

II. CABLE SEGMENTATION AND MODELLING

For the detection and modelling of cables in images, we
built on top of the approach first presented in [1]. There,
the authors describe a framework for the segmentation and
modelling of cables featuring complex backgrounds. The main
drawbacks of the approach are three: 1) the need of the
bounding boxes of the cables’ terminals at the algorithm
initialization, 2) the computational efficiency quite low, 3) the

small robustness against difficult combinations of cables and
backgrounds. The need of a separate tool for the detection
of the cable terminals is a strong limiting factor. The compu-
tational efficiency of the approach is another relevant issue
since a very long processing time, although not critical in
our scenario, makes the approach less valuable. Lastly, we are
planning to deploy a system in an industrial scenario where
the backgrounds, lighting conditions and cables textures can
not be controlled, thus a strong robustness against all these
factors is mandatory.

Considering the issues just described, we decide to modify
slightly the approach aiming at improving in all the aspects.
We decide to adopt a deep convolution neural network for the
background segmentation. The application of such approach
allow us to solve, at the same time, both the terminal detec-
tion and robustness drawbacks. In fact, once the background
has been removed, the terminal can be easily characterized
(additional details at the end of this section). As network
architecture, DeepLabV3+ [10] is chosen since it represents
the state-of-the-art in semantic segmentation tasks. The net-
work is trained on a synthetic dataset [11] built utilizing a
chroma-key based approach which allows a generation of a
huge dataset automatically. The dataset features both complex
cluttered backgrounds and more simple ones. The lack of
features in cables and DLOs in general, makes the creation of
a good-quality dataset crucial. In Fig. 2b is shown an example
of generated mask for the input image of Fig. 2a.

Given the binary mask of the image, in which background
pixels (black) are separated from the foreground ones (white),
a superpixel segmentation is applied on the latter. The idea
of superpixels is to partition the image into local meaningful
areas making the further processing easier and faster. We
deploy the Simple Linear Iterative Clustering (SLIC) [12]
algorithm in this regard which uses color and proximity
pixel information in a 5D space for the segmentation. In
particular, a modified version, called MaskSlic [13], that is
capable of applying the superpixel segmentation only on a
region of interest (i.e. the foreground pixels) is used, due to
the availability of the binary mask previously computed. The



application of MaskSlic allows us to exploit completely the
result of the initial semantic segmentation.

Based on the superpixel label map, a region adjacency graph
(RAG) is built. It is an undirected and not weighted graph
where each superpixel is represented as a graph node. Instead,
the edges of the graph are used to model the neighbouring
relationships between superpixels. Each graph node is aug-
mented with the centroid information of the associated super-
pixel. Concerning the cables’ terminals detection, they can be
extracted simply from the graph as the nodes characterized by
having only one neighbour. The make the entire 2D detection
efficient at run-time, fast walks are performed on the graph
aiming at organizing the set of graph nodes as an ordered
sequence from one terminal to another of the DLO considered.
Finally, the obtained walk is used to estimate a 2D spline
representing the DLO in the current image plane.

A generic DLO shape can be represented in the Cartesian
space by a 3-rd order spline basis as a function of a free
coordinate u representing the position along the cable starting
from an end point, where u = 0, to the opposite end where
u = L, being L the length of the DLO

q(u) =

nu∑
i=1

bi(u)qi (1)

where q(u) = [x(u) y(u) z(u)]T is the vector of Cartesian
coordinates of each point along the DLO, bi(u) is the i-
th elements of the spline polynomial basis used to represent
the DLO shape and qi are nu properly selected coefficients,
usually called control points, used to interpolate the DLO
shape through the bi(u) function basis. It is worth noticing
that the same spline model can be used to represent the DLO
in the image plane, i.e. the output of the ARIADNE algorithm,
we will refer as p(u) = [px(u) py(u)]T as the 2D vector of
pixel coordinates representing the estimated spline in the input
image.

III. 3D DLO SHAPE ESTIMATION

A robot equipped with an eye-in-hand 2D camera is used
to perform pre-determined trajectories in a circular fashion
around the object of interest. The trajectory is parametrized
with a user-defined number of poses for the acquisition of
sample images between two starting and ending reference
poses. In details, the two reference poses are interpolated in
order to generate a number n of final poses. The orientation
between the two reference poses is interpolated utilizing the
spherical linear interpolation method. Instead, the position is
interpolated linearly.

For each acquired image, the detection pipeline described in
Sec. II is applied and the computed spline of the frame under
exam is stored together with the relative pose of the camera.
The method to estimate the 3D coordinates of a single point
observed from multiple points of view is illustrated first, then
the method is extended to the estimation on the whole DLO
shape.

A. Ray Tracing and Nearest Point Search

Let us consider the case in which a single unknown point x
in the Cartesian space and expressed with respect to the world
reference frame is observed by the camera mounted on the
robot from multiple points of view. Provided that the camera
frame with respect to world frame at the i-th points of view
is

wT ci =

[
wRci

wtci
0 0 0 1

]
where wRci is the rotation matrix and wtci is the position of
the camera frame origin in world coordinates, we assume the
point x is seen in the image related to the i-th points of view at
pi = [pxi pyi ]

T , being pxi and pyi the point pixel coordinates
in the image.

A so-called unit ray vi passing through the image reference
frame origin and x can be expressed in the image frame
considering the pixel coordinates pi and the camera focal
distance f

v′i =

 pxi
− cx

pyi − cy
f

 , vi =
v′i
‖v′i‖

(2)

where cx and cy are the pixel coordinates of the image center
(assuming the camera frame is centered with respect to the
image). Then, vi can be expressed in the world frame by

wvi = wRcivi (3)

Provided that np distinguished points of view are available,
the estimation x̃ of the unknown point x can be obtained by
looking for the point having the minimum distance from all
the rays. By defining the symmetric Vi matrix

Vi = I − wvi
wvTi (4)

providing the seminorm on the ray distance, the point location
estimate x̃ is provided by nearest point search algorithm, i.e.

x̃ =

(
np∑
i=1

Vi

)−1( np∑
i=1

Vi
wtci

)
(5)

B. Estimation of the 3D DLO Spline

Here the objective is to estimate the 3D spline providing the
best fitting of the cable shape observed from multiple points of
view by the 2D camera. We assume here that the ARIADNE
algorithm provide us as input to this procedure a 2D spline on
the image plane representing the observed DLO.

By assuming that the same portion of the DLO is seen in
all the images (this can be achieved by moving the camera
along the normal direction with respect to the main spline axis
detected by each image and adjusting the mean distance from
the DLO to a constant value as estimated by the progressive
inclusion of successive images, this will be subject of future
research), it is possible to apply the aforementioned method
for the estimation of single point via ray tracing and nearest
point search to a suitable set of sample point along the DLO
spline. Let us call the set of spline samples pij = pi(uj),



j = 1, . . . , ns, i = 1, . . . , np, where ns is the number of
spline samples, np is the number of points of view, pi(·) is
the spline provided for by the i-th image and uj are the spline
sample points.

The vector of control points qv = [q1 · · · qnu
]T of the

3D spline q(u) that optimally approximated the set of point
estimates pij can be defined as

qv = B#x̃v (6)

where # represents the matrix pseudoinverse and

B =


b1(u1) · · · bnu

(u1)
b1(u2) · · · bnu

(u2)
...

...
...

b1(uns
) · · · bnu

(uns
)



x̃v =


(∑np

i=1 Vi1

)−1 (∑np

i=1 Vi1
wtci

)(∑np

i=1 Vi2

)−1 (∑np

i=1 Vi2
wtci

)
...(∑np

i=1 Vins

)−1 (∑np

i=1 Vins
wtci

)


being Vij the matrix computed according to eq. (4) for the
j-th sample provided by the i-th image.

C. Evaluation of Estimation Error by Reprojection

To evaluate the estimation error, the estimated 3D DLO
spline is reprojected on each image and the difference with
respect to the initial estimation provided on the image plane
by the ARIADNE algorithm is computed. Considering a
generic 3D spline sample q(uj) = B qv , its homogeneous
representation is represented by q̄(uj) = [q(uj)

T 1]T . The
projected coordinates p̃ij = [p̃xij

p̃yij
]T of the j-th spline

sample on the i-th image plane can be written as

p̃′ij =

 p̃′xij

p̃′yij

p̃′zij

 = A [wRT
ci | −

wRT
ci

wtci ] q̄(uj) (7)

p̃ij =

[
p̃xij

p̃yij

]
=

[
p̃′xij

/p̃′zij
p̃′yij

/p̃′zij

]
(8)

where

A =

 f 0 cx
0 f cy
0 0 1

 (9)

is the camera matrix containing the camera intrinsic param-
eters, such as the focal length and center point coordinates.
Then, the overall error is provided by collecting all together
in a single vector the error related to each single image, i.e.
e = [· · · eij · · · ]T , j = 1, . . . , ns, i = 1, . . . , np, where
eij = ‖pij − p̃ij‖ is the distance between the corresponding
initial spline sample provided by ARIANDE and the projection
on the image plane of the estimated 3D spline sample. Finally,
the mean error norm ‖e‖nsnp

=
√
eT e/(ns np) can be used

to evaluate the quality of the estimation result.

IV. RESULTS

To validate the proposed approach, several experiments are
performed aiming at evaluating the performances and the
capabilities of the system in correctly capturing the shape
of the cable in 3D (Sec. IV-A) and hence in providing a
reliable 3D model of the DLO for grasp tasks (Sec. IV-B). In
addition, the quality of the estimation result is analyzed from
two different point of views, the type of trajectory (Sec. IV-C)
and the number of samples ns employed (Sec. IV-D).

The Panda 7-DoFs robotic arm from Franka Emika
equipped with his panda-hand parallel fingers gripper is
adopted in the experiments reported in this paper, and the
robot is controlled via ROS interface. A low-cost 2D camera
with USB interface is mounted on the robot end-effector.
In the experiments, the camera resolution is constrained to
640x480 pixels. The experimental scenario is composed by
the robot placed near two racks, commonly used in electrical
cabinets, holding the cable at a suitable distance from the
underneath table. The cable under test is roughly aligned with
the robot x axis. This assumption is required following the
discussion made in Sec. III in order to see almost the same
cable section in the camera images. Anyway, it is fairly simple
to develop a correcting procedure aiming at bringing the cable
aligned using the first sample in this regard. The 2D vision
algorithm for the cable detection is based on the ARIADNE
algorithm, thus a machine equipped with a Nvidia GPU is
required. In our case the vision node is deployed on a separate
computer having an Nvidia GTX-2080Ti. The communication
and deployment of the robotic system is achieved thanks to the
ROS middle-ware framework. The robot trajectory is planned
thought the MoveIt! package. A ROS service is used for the
communication between the planning node and the vision
one. The vision node takes approximately 0.2 seconds for the
detection and spline modelling of the cable in each image.

A. Cable Reconstruction

First, the reconstruction capabilities of the approach pre-
sented are tested from the point of view of the fidelity with
respect the real shape of the cable. In Fig. 3a the 3D spline
obtained by detecting the shape of a test DLO is shown. Then,
in Figs. 3b and 3c the projections of the plot in the XZ and
XY planes are shown together with two associated images
displaying the real cable. From these pictures it is possible to
appreciate the accuracy in the shape behavior for both views,
meaning that the approach was able to capture well the cable
characteristics. The figure shown was obtained by utilizing a
linear trajectory of 10 centimeters along the y axis, with ns

equal to 15 and np equal to 20.

B. Grasp Evaluation

The second part of the evaluation activities consists in the
estimation of the cable position using the method discussed
and by concluding the experiment by attempting a grasp of
the cable. The point of grasp is computed using the obtained
3D shape by taking the middle point of the 3D spline. Thus,
given the parameter u ∈ [0, 1] of the spline the point is taken at
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Fig. 3: 3D shape reconstruction based on the 2D camera acquisition.

(a) Representation of the 3D cable shape estimation in RViz.
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Fig. 4: The resulting method can be applied to obtain the
grasping point in different condition in term of shape, dimen-
sion and colour of the desired cable.

u = 0.5. From the conducted test it results that the grasp can
be achieved with cable of different plain color Fig. 4b, 4d or
mixed colour such as a ground cable Fig. 4c. Another variation
of the characteristic studied is differences in terms of cable
dimension. Even in this case no issues have been observed
and it is possible to conclude that the system is capable in
handling cables of different sizes and colors.

C. Comparison Between Linear and Circular Trajectories

How the robot trajectory during the acquisition of camera
views affects the DLO shape estimation result is now analyzed.
In this regard, a linear trajectory of 10 centimeters along the
robot y axis in which the camera maintains a fixed orientation
is compared to a circular one in which the camera rotates

around an axis approximating the cable oriented as the robot
x axis and characterized by a rotation of about 90 degrees.
Fig. 5 displays the 3D points projected back on the plane
of a test image for the sake of a visual comparison between
real and estimated data. It is worth noticing that the pose
corresponding to the test image utilized is not used during
the 3D shape estimation procedure. Instead, it corresponds to
a view from the left side of the cable and it is used to gain
a better understanding of the cable’s real shape. This figure
shows how the linear approach seems to be able to produce
a better reconstruction of the real cable. This phenomenon
can be justified by considering that, in the linear case: 1)
The camera orientation is kept fixed, hence the propagation of
errors due to the extrinsic calibration in the algorithm is less
significant; 2) It is easier to guarantee the correspondence of
the points between the different samples, since in the circular
trajectory the camera can only rotate around an estimation of
the cable axis.

D. Effect of Samples Number

Another aspect investigated in this work is how the number
of samples ns can affect the estimation quality. The experiment
is started by evaluating a number of samples ns equal to 5,
then progressively augmented to 15, 50 and 100 respectively.
While the number of samples is varied, the same object to
be reconstructed and the same robot trajectory defined by the
same starting and ending pose, interpolated in a number of
point np equal to the desired number of samples, are used. The
test is performed for both the linear and circular trajectories.

As it can be seen in Fig. 6, it comes out that the number of
samples affects the estimation quality, reducing the norm of the
error from his highest value (in case of two samples) 4.8 pixel
to 2.8 (with 100 samples) in the case of the linear trajectory.
However, the larger error decrease is observed passing from 2
to 5 observation poses, and an acceptable error in the x axis
can be obtained even with a number of samples equal to 5



(a) circular n = 5 (b) circular n = 15 (c) circular n = 50

(d) linear n = 5 (e) linear n = 15 (f) linear n = 50

Fig. 5: Comparison between linear and circular trajectories and
relation with the number of poses used for the estimation.

or 15. This result is confirmed by the grasp test of Sec. IV-A
where the grasp is successfully achieved with ns = 15. For
the circular trajectory, the error values are in general higher
than the ones provided by the linear trajectory, in accordance
with the discussion of Sec. IV-C. For this type of trajectory,
the improvement with a bigger number of samples is not
substantial.

V. CONCLUSION

In this paper, we evaluated the use of a 2D camera to
reconstruct the position in the Cartesian space of a deformable
linear object with a precision that allows the perform grasps
with a robotic manipulator. An adequate knowledge of the
extrinsic and intrinsic parameters of the camera is a require-
ment, however this parameters are also a prerequisite for other
methods involving 3D camera as well. At contrary, the cable
parameters are not a requisite for the 3D estimation. The
results can be accomplished with a suitable estimation in
the range of few image pixels even with a limited number
of images samples, in the order of 5. This result makes the
proposed method suitable for the implementation of a more
realistic task, that will be evaluated in future research. The
precision of the algorithm is limited by how much the camera
is capable to takes the same portion of the cable in each sample
image, in facts if different portions of the cable are observed
during the acquisition, the shape estimation will be very likely
diverted. To solve this issue, a new recursive version of the
algorithm will be implemented in future research to obtain a
more robust measure and to take into account the presence of
outliers in the data acquisition process. Another step forward
in future research will be to consider scenarios in which
multiple cables are present, considering also the possibility of
intersection between cables. In this case, the different cables
must be identified separately and the corresponding spline
estimations organized accordingly.

REFERENCES

[1] D. De Gregorio, G. Palli, and L. Di Stefano, “Let’s take a walk on
superpixels graphs: Deformable linear objects segmentation and model

2 5 15 50 100

No. of Trials

0

1

2

3

4

5

6

7

8

Lin. Traj. Y

Lin. Traj. X

Rot. Traj. Y

Rot. Traj. X

Fig. 6: The graph shows how the norm of the error over the
x axis of the image frame decreases asymptotically with the
increase of the number of pictures taken. The error in the y
axis remains bounded.

estimation,” in Lecture Notes in Computer Science - Asian Conference
on Computer Vision. Springer, 2018, pp. 662–677.

[2] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever,
“Multiscale vessel enhancement filtering,” in MICCAI 1998.
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