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phosphatidylcholine, even though it can also act upon 
other lipids, such as phosphatidylethanolamine, therefore 
giving rise to a class of nonspecifi c PLCs ( 1, 2 ). PC-PLC iso-
forms are responsible for phosphatidylcholine hydrolysis, 
producing phosphocholine and DAG, and they have been 
isolated but not yet cloned from mammalian sources. How-
ever, accruing evidence points to multiple implications 
of these enzymes in cell signaling through MAPK and 
oncogene-activated protein kinase pathways, as well as pro-
grammed cell death, activation of immune cells, and stem 
cell differentiation ( 3 ). On the other hand, phosphoinositide-
specifi c PLC (PI-PLC) enzymes utilize phosphoinositides 
as a specifi c substrate and their metabolism is implicated 
in a large series of signal transduction pathways. 

 This review is devoted to highlighting PI-PLC, which 
plays an important role in cell physiology and particularly 
in signal transduction pathways in mammals. Thirteen 
kinds of mammalian PI-PLCs are classifi ed into six isotypes 
( � ,  � ,  � ,  � ,  � ,  � ), according to their structure. Here, we 
shall point at the molecular features, function, regulation, 
and splicing variants of these enzymes and discuss their 
role in disease. 

 MOLECULAR FEATURES OF PI-PLC 

 PI-PLC hydrolyzes phosphatidylinositol-4,5-bisphosphate 
(PIP2) to produce DAG and inositol-1,4,5-trisphosphate 
(IP3) (  Fig. 1  )  which, in turn, activate protein kinase C 
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 Phospholipases are quite common enzymes that are pres-
ent in a broad range of organisms, including bacteria, yeast, 
plants, animals, and viruses. Phospholipase C (PLC) consti-
tutes a class of enzymes that cleave phospholipids on the 
diacylglycerol (DAG) side of the phosphodiester bond. In 
plants, a phosphatidylcholine-specifi c PLC (PC-PLC) has 
been recently identifi ed: this PLC acts preferentially on 
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are helix-turn-helix structural domains that bind calcium 
ions in order to enhance the PI-PLC enzymatic activity 
( 14, 15 ). 

 As described above, the PI-PLC isozymes have peculiar 
molecular features, with common conserved domains and 
specifi c regulatory domains. Interestingly, among the PI-
PLC isoenzymes, PI-PLC �  subtypes distinguish themselves 
also by the presence of an elongated C terminus, consist-
ing of about 450 residues, which contains many of the de-
terminants for the interaction with Gq alpha subunit as 
well as for other functions, such as membrane binding and 
nuclear localization   ( 16–18 ). 

 FUNCTION AND REGULATION 

 The activation and regulation of PI-PLC isozymes differ 
in their subtype. For instance, PI-PLC �  enzymes are usu-
ally activated by G protein-coupled receptors (GPCRs) 
through several mechanisms, while PI-PLC �  subtypes are 
commonly activated by receptor tyrosine kinase (RTK), via 
SH2 domain-phospho-tyrosine interaction ( 8 ). 

 Indeed, the regulation of PI-PLC �  isozymes is peculiar. 
Most of them may have a high guanosine triphosphatase 
activating protein (GAP) activity, but not PI-PLC � 1, that 
can also be regulated by a distinct binding region to phos-
phatidic acid or is specifi cally activated by MAPK, there-
fore playing important roles in cell metabolism ( 19–23 ). 
Upon PI-PLC � 1 activation in the nucleus, IP3 generation 
occurs (  Fig. 3  ).  IP3 acts as a substrate for inositol poly-
phosphate multikinase (IPMK), which is located in the 
nucleus and gives rise to higher inositol phosphates ( 24 ). 

 Moreover, except for PI-PLC � 4, PI-PLC �  isozymes can 
also be activated by G �  �  dimers ( 25–28 ), and the relative 
sensitivity of PI-PLC �  isozymes to G �  �  subunits differs 
from that to Gq �  subunits, with PI-PLC � 1 being the least 
sensitive to G �  �  ( 25, 26 ). 

 Although not fully understood, PI-PLC � 1 regulatory 
mechanisms involve polypeptide growth factor receptors 
that bind to RTKs, such as the epidermal growth factor 
receptor (EGFR) and the platelet-derived growth factor 

(PKC) and induce the release of calcium ions from intra-
cellular stores, respectively ( 4, 5 ). Since the fi rst report of 
PI-PLC existence ( 6 ), 13 mammal PI-PLC isozymes have 
been identifi ed and, at a molecular level, they can be di-
vided into six subgroups: PI-PLC � (1–4), - � (1 and 2), - � (1, 
3, and 4), - � , - � , and - � (1 and 2). Interestingly, the struc-
ture of these PI-PLC isozymes shows highly conserved do-
mains as well as peculiar characteristics (  Fig. 2  ).  In fact, 
the X and Y domains are two highly conserved regions, 
whereas the C2 domain, the EF-hand motif, and the pleck-
strin homology (PH) domain are regulatory domains that 
are mingled in a specifi c manner in PI-PLC subtypes ( 7 ). 
Therefore, each PI-PLC isozyme shows a unique combina-
tion of X-Y and regulatory domains, so that each PI-PLC 
isozyme can have a different regulation, function, and tis-
sue distribution ( 8 ). 

 The X and Y domains are usually located between the 
EF-hand motif and the C2 domain, and are composed of 
 � -helices alternated to  � -strands, with a structure that is 
similar to an incomplete triose phosphate isomerase  � / � -
barrel ( 9 ). 

 Conversely, the PH domain, although being a membrane-
phospholipid binding region along with the C2 domain, 
has other specifi c functions according to the different iso-
zymes. For instance, in PI-PLC � 1, the PH domain binds 
PIP2 and contributes to the access of PI-PLC � 1 onto the 
membrane surface ( 10 ). On the other hand, the PH do-
main specifi cally binds the heterotrimeric G �  �  subunit in 
PI-PLC � 2 and PI-PLC � 3 isozymes ( 11 ), and mediates in-
teractions with phosphatidylinositol-3,4,5-trisphosphate 
(PIP3) in PI-PLC � 1, where it is required for inducing a 
phosphoinositide 3-kinase (PI3K)-dependent translocation 
and activation ( 12 ). As for this latter, it is worthwhile to note 
that PI-PLC � 1 and PI-PLC � 2 isozymes contain an additional 
PH domain, which is split by two tandem Src homology 
(SH)2 and SH3 domains, in order to interact directly with 
the calcium-related transient receptor potential cation 
channel 3, thereby providing a direct coupling mechanism 
between PI-PLC �  and agonist-induced calcium entry ( 13 ). 

 Finally, the C2 and EF-hand motifs are important for 
the regulation of calcium: the EF-hand motifs, in particular, 

  Fig.   1.  PI-PLC-mediated enzymatic reaction. PIP2, 
which is located within the plasma membrane, is 
cleaved by PI-PLC enzymes, generating the two well-
known second messengers, DAG and IP3. DAG re-
mains bound to the plasma membrane, whereas IP3 is 
located within the cytosol, but both of them can act as 
second messengers and activate downstream targets.   
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mechanisms ( 37 ). Indeed, several GPCR ligands, such as 
lipoprotein A, thrombin, and endothelin, can activate 
PI-PLC � , but PI-PLC �  also associates with Rap and trans-
locates to the perinuclear area, where it interacts with acti-
vated RTKs ( 38 ). 

 As for PI-PLC � 1 and PI-PLC � 1, they are activated via 
GPCR-mediated calcium mobilization. In particular, the PI-
PLC � 1 isozyme is one of the most sensitive enzymes to cal-
cium, suggesting that its activity is directly regulated by 
calcium ( 39, 40 ), whereas PI-PLC � 1 specifi cally acts as a cal-
cium sensor during the formation and maintenance of the 
neuronal network in the postnatal brain ( 41 ). Moreover, 
both PI-PLC � 1 and PI-PLC � 1 subtypes are involved in the 
positive feedback signal amplifi cation of PI-PLC ( 39, 42 ). 
Indeed, the overall PI-PLC activity may be amplifi ed and 

receptor (PDGFR). Besides this, the SH2 domains of PI-
PLC � 1 can also mediate the binding to auto-phosphorylated 
tyrosine residues within the intracellular region of the re-
ceptor ( 29 ). Moreover, it is remarkable that PI-PLC � 1 can 
also be activated downstream of a series of receptors that 
lack intrinsic tyrosine kinase activity, including the angio-
tensin II and bradykinin receptors, cytokine receptors, 
and the T cell receptor ( 30–33 ). This is also the case for 
PI-PLC � 2, that can be activated downstream of immuno-
globulin and adhesion receptors on immune cells, such as 
B-cells, platelets, and mast cells, by nonreceptor tyrosine 
kinases interacting with other membrane-localized molec-
ular signaling pathways ( 34–36 ). 

 Interestingly, PI-PLC �  isoenzymes can be activated 
by both GPCR and RTK systems, with distinct activation 

  Fig.   2.  Molecular structure of PI-PLC isozymes. Each PI-PLC subfamily is characterized by a different pattern and function of PH, EF, X, 
Y, and C2 domains. In particular, the PH domain of PI-PLC �  enzymes is bound to G proteins, whereas the same PH domain in PI-PLC �  and 
PI-PLC �  enzymes interacts with PIP3, in order to activate PI3K or favor the membrane binding, respectively. Moreover, the region between 
the X and Y domains is important for calcium regulation: in PI-PLC �  and PI-PLC �  enzymes this region is important for calcium release and 
sensitivity, while in PI-PLC �  enzymes there are additional specifi c domains that are important for calcium interaction. As for PI-PLC �  en-
zymes, there are additional RA domains that interact with RAS and modulate both enzyme translocation and inhibition  .   
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variants were identifi ed from rat and bovine brain ( 50, 
54 ), while the third splicing variant of rat PI-PLC � 4 has an 
additional 37 nucleotide exon at the C-terminal region 
( 55 ). In humans there are also three alternative splicing 
variants of the PI-PLC � 4 gene, so that variant 1 lacks an 
internal segment and has a longer and distinct C terminus, 
variant 2 lacks an alternate in-frame exon in the central 
coding region, and variant 3 represents the longest tran-
script ( 55 ). 

 Altogether, all PI-PLC �  genes have at least two alterna-
tive splicing variants, which differ mostly in their C-terminal 
sequences and potentially play different roles in cellular 
processes. 

 Also human PI-PLC � 1 gene has two alternative splicing 
variants that differ in their C-terminal sequences, but in 
this case the precise function of the two alternative splic-
ing variants is still unknown ( 56 ). 

 Alternative splicing variants of PI-PLC �  isozymes show 
several different patterns of splicing variants. Indeed, 
mouse PI-PLC � 1b differs from PI-PLC � 1a by 274 amino 
acid residues that extend from the catalytic Y domain to 
the stop sequence, which are replaced with 21 distinct 
amino acid residues. Moreover, mouse PI-PLC � 1b has a 
truncated catalytic Y domain, which implies that this vari-
ant may have no enzymatic activity. Also, the human PI-
PLC � 1 gene has two splicing variants, and the second 
variant contains an alternate 5 ′ -terminal exon that results 
in a shorter isoform and a different N terminus, as com-
pared with the wild-type sequence ( 57 ). 

 As for PI-PLC � 4 gene, only the mouse gene shows alter-
native splicing variants. Two splicing variants have been 
well-characterized and seem to be functional, whereas the 
third showed no catalytic activity. In particular, the second 
variant is slightly different from the wild-type isoform in the 
5 ′ -untranslated region but includes an alternate in-frame 
exon in the coding region, thus resulting in a longer pro-
tein that, however, has the same N and C termini as com-
pared with the wild-type isoform. As for the third isoform, 

sustained by both intracellular calcium mobilization and ex-
tracellular calcium entry, through either a negative or a posi-
tive feedback amplifi cation of PI-PLC signaling ( 43–46 ). 

 All in all, it has been suggested that PI-PLC �  and PI-
PLC �  isoenzymes (primary PI-PLCs) are primarily acti-
vated by extracellular stimuli. On the contrary, secondary 
PI-PLCs, such as PI-PLC � , are activated by Rho and Ras 
GTPases, while the activation of other secondary PI-PLCs   
(mainly PI-PLC � 1 and PI-PLC � 1) might be enhanced by 
intracellular calcium mobilization that amplifi es the PI-
PLCs activity. As for PI-PLC � , its activation and nuclear 
translocation mechanisms remain unknown ( Fig. 3 ). 

 SPLICING VARIANTS OF PI-PLC 

 Alternative splicing variants have been reported for sev-
eral of PI-PLC isozymes, including human and rat PI-PLC � 1, 
human PI-PLC � 2, rat PI-PLC � 4, rat PI-PLC � 4, and human 
PI-PLC �  ( 47–52 ). 

 Indeed, two splicing variants of the PI-PLC � 1 isozyme 
have been identifi ed both in rat and mouse, and they dif-
fer in their C-terminal sequences ( 48 ). As for the human 
PI-PLC � 1 gene, also in this case there are two alternative 
splicing variants, with PI-PLC � 1a containing a putative 
nuclear localization sequence and a nuclear export se-
quence region and PI-PLC � 1b showing only a putative 
nuclear localization sequence. Therefore, these variants of 
PI-PLC � 1 may differ in their cellular localization, suggest-
ing that the transit in and out of the nucleus is fi nely regu-
lated, and possibly hinting at a different role for these two 
splicing variants ( 47 ). 

 Also, human PI-PLC � 2 shows two splicing variants: PI-
PLC � 2a and PI-PLC � 2b, differing in 15 amino acid resi-
dues at the C-terminal region, so that the second transcript 
variant results in a shorter protein ( 49, 53 ). 

 Interestingly, several alterative splicing variants of the 
PI-PLC � 4 gene have been reported: two alternative splicing 

  Fig.   3.  Function and regulation of PI-PLC isozymes. 
Most of the PI-PLC isozymes play a role at the plasma 
membrane. PI-PLC �  enzymes are usually activated by 
GPCRs through several mechanisms, while PI-PLC �  
subtypes are commonly activated by RTK, via SH2 
domain-phospho-tyrosine interaction. It is important 
to note that a specifi c PI-PLC �  enzyme, that is PI-
PLC � 1, can be activated by MAPK and translocate to 
the nucleus, where it is involved in specifi c signaling 
pathways involving IPMK and gene promoter regula-
tion. On the other hand, PI-PLC �  isoenzymes can be 
activated by both GPCR and RTK systems, with dis-
tinct activation mechanisms, whereas both PI-PLC � 1 
and PI-PLC � 1 are activated via a GPCR-mediated cal-
cium mobilization. As for PI-PLC � , its activation and 
nuclear translocation mechanisms remain unknown, 
but it has been described as a sperm-specifi c protein 
that, at the nuclear level, has been specifi cally con-
nected with the molecular activation of oocytes fol-
lowing fertilization in zygotic interphase.   
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proliferation and a reduced apoptosis that have been molec-
ularly associated with Stat5 inhibition ( 75 ). 

 Within the hematological fi eld, not only PI-PLC � 3, but 
also other PI-PLC �  isozymes have been demonstrated to 
play a role in the pathophysiology of hematologic diseases 
( 76–79 ). Indeed, the PI-PLC � 1 gene has been associated 
with myelodysplastic syndrome (MDS), not only because 
its lack is linked to MDS progression toward acute myeloid 
leukemia ( 80, 81 ), but also because its expression is regu-
lated by epigenetic mechanisms ( 82–85 ). Moreover, PI-
PLC �  enzymes have also been implicated in leukemias. In 
particular, the molecular interaction between PI-PLC �  
enzymes and G proteins that induces PI-PLC �  to localize 
in the cytosol or at the nuclear level has been demonstrated 
to be determined by the intervention of a binding partner: 
TRAX (translin-associated protein X), i.e., a nuclease 
and part of the machinery involved in RNA interference 
processes   ( 86 ). 

 Among the PI-PLC isozymes, PI-PLC �  is important be-
cause it can play a specifi c key role in cell migration and 
invasion, therefore contributing to carcinogenesis. Indeed, 
PI-PLC �  is an important enzyme that regulates cell me-
tabolism, so that at fi rst its molecular targeting has been 
considered as a possible new therapeutic strategy. How-
ever, it has been diffi cult to fi nd specifi c PI-PLC �  inhibi-
tors that can be effective in cancer treatment. That is why 
scientists are now trying to identify new specifi c interact-
ing partners that could become new therapeutic targets 
for cancer therapy ( 87 ). On the other hand, other PI-PLC 
isozymes have also been demonstrated to play important 
roles in cancer. This is the case for PI-PLC � , that is specifi -
cally linked to tumor suppression ( 88, 89 ), mainly in colorec-
tal cancer, where its reduction is associated with a more 
aggressive disease ( 90 ). 

 PI-PLC isozymes are not only associated with cancer, but 
their deregulation is also implicated in other diseases and 
disorders. Another important role for a PI-PLC isozyme 
has indeed been recently discovered in infertility, where 
PI-PLC � , a sperm-specifi c protein, has been specifi cally 
connected with the molecular activation of oocytes follow-
ing fertilization ( 91 ). In fact, the earliest event subsequent 
to gamete fusion is the onset of a series of intracellular 
calcium oscillations within the oocyte, which modulate 
several molecular processes that are known as “oocyte 
activation”, and together, they represent a fundamental 
mechanism for the early embryonic development. Impor-
tantly, all of these processes are initiated and controlled by 
calcium release from ooplasmic sources during zygotic in-
terphase in response to PI-PLC �  activity, via the IP3 path-
way, thus activating nuclear transport receptors. That is 
why a correlation between certain types of male infertility 
and the aberrant expression, localization, structure, and 
function of PI-PLC �  in human sperm has been deter-
mined. The potential therapeutic role of PI-PLC �  could 
therefore be linked to the identifi cation of male patients 
that are defi cient in PI-PLC � , and for them an alternative 
therapeutic approach, based on assisted reproductive 
technology, could be useful for rescuing the impaired 
oocyte activation ( 92 ). 

it lacks the linker region between X and Y domains, and 
instead, contains 32 additional amino acids, so that this 
isoform shows no catalytic activity ( 58 ). 

 Three splicing variants of the human PI-PLC � 1 gene 
have been reported, with the second variant showing a dif-
ferent N-terminal region, and the third variant using an 
alternate in-frame splice site in the coding region that re-
sults in a shorter protein ( 52 ). 

 As for the PI-PLC �  gene, in this case an alternative splic-
ing variant, named s-PI-PLC � , has been recently reported 
( 59 ): structurally, it contains two internal stop codons at 
the N terminus and lacks one and a half of the EF-hand 
motifs; functionally, this splicing variant does not affect 
calcium oscillations. 

 Finally, three splicing variants of the PI-PLC � 1 gene have 
been reported in both humans and mice ( 60 ), whereas fi ve 
alternative splicing variants of the PI-PLC � 2 gene are re-
ported in humans, and in mice there are three of them ( 61 ). 

 PI-PLC IN DISEASE 

 Given their peculiar roles and their fi ne regulation in 
physiology, alterations affecting PI-PLC isozymes have 
been associated with several diseases that can target differ-
ent tissues and organs ( 62–65 ). 

 For instance, PI-PLC � 1 plays an important role in brain 
function and is thus associated with brain disorders ( 66 ). 
In fact, it is highly expressed in the cerebral cortex, hip-
pocampus, amygdala, lateral septum, and olfactory bulb 
( 67, 68 ), where it regulates both cortical development and 
synaptic plasticity by specifi cally modulating hippocampal 
muscarinic acetylcholine receptor signaling. Moreover, a 
PI-PLC � 1 gene deletion was observed in orbito-frontal 
cortex samples from human patients with schizophrenia 
and bipolar disorders ( 69–71 ), and patients with these dis-
eases also showed an abnormal expression pattern of PI-
PLC � 1 in specifi c brain areas ( 66 ). 

 PI-PLC �  isozymes also participate in the differentiation 
and activation of immune cells that control both the in-
nate and adaptive immune systems ( 72 ). In particular, loss 
of both PI-PLC � 2 and PI-PLC � 3 isozymes is associated 
with an impaired T-cell migration that is caused by an in-
ability to increase the intracellular calcium. Interestingly, 
human T-cells from elderly people show a reduced expres-
sion of PI-PLC � 2, suggesting that a specifi c impairment of 
this enzyme in aged T lymphocytes might contribute to 
the immune suppression mechanisms in this group of peo-
ple ( 72, 73 ). Moreover, PI-PLC � 2 downregulation plays an 
important role in M1-M2 macrophage differentiation, 
whereas PI-PLC � 3 activity is essential for promoting mac-
rophage survival, especially in atherosclerotic plaques, so 
that PI-PLC � 3 could be a potential specifi c molecular tar-
get for the treatment of atherosclerosis ( 74 ). 

 PI-PLC � 3 defi ciency is also linked to the development of 
myeloproliferative neoplasm in mice. In fact, aged PI-PLC � 3-
null mice typically have increased numbers of hematopoietic 
stem cells and myeloid progenitors in bone marrow and 
spleen, and their hematopoietic stem cells show an increased 
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 As for the other PI-PLC isozymes, PI-PLC �  enzymes are 
a peculiar example of enzymes playing several roles in dif-
ferent tissues and organs. Indeed, PI-PLC � 1 and PI-PLC � 3 
share a high sequence homology, so that they can play re-
dundant roles in various tissues. In fact, PI-PLC � 1 is required 
for the maintenance of homeostasis in skin and metabolic 
tissues, while PI-PLC � 3 specifi cally regulates microvilli for-
mation in enterocytes and the radial migration of neurons 
in the cerebral cortex of the developing brain. Furthermore, 
it has been shown that the simultaneous loss of PI-PLC � 1 
and PI-PLC � 3 in mice causes placental vascular defects, 
thus leading to embryonic lethality ( 93 ). 

 CONCLUSIONS 

 PI-PLC isozymes play essential roles in cell metabolism, 
by regulating calcium and other intracellular signaling 
pathways that are important for cell proliferation and dif-
ferentiation. This means that these enzymes have the capa-
bility to infl uence normal and pathological conditions. This 
is particularly important, because the regulation of PI-PLCs 
or PI-PLC-dependent signaling pathways can be important 
for understanding both the normal cellular physiology and 
the pathogenesis of important diseases, possibly leading to 
the development of innovative therapeutic strategies or the 
comprehension of new molecular processes.  
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