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A modified Newton Projection method for

ℓ1-regularized Least Squares Image Deblurring

G. Landi∗

May 19, 2014

Abstract

In recent years, ℓ1-regularized least squares have become a popular ap-
proach to image deblurring due to the edge-preserving property of the ℓ1-
norm. In this paper, we consider the nonnegatively constrained quadratic
program reformulation of the ℓ1-regularized least squares problem and we
propose to solve it by an efficient modified Newton projection method only
requiring matrix-vector operations. This approach favors nonnegative so-
lutions without explicitly imposing any constraints in the ℓ1-regularized
least squares problem. Experimental results on image deblurring test
problems indicate that the developed approach performs well in compar-
ison with state-of-the-art methods.

1 Introduction

Image deblurring is an important inverse problem arising in many image pro-
cessing applications in which an unknown image x ∈ Rn has to be estimated
from noisy observations b ∈ Rm defined by

b = Ax+ η (1)

where η is the unknown white Gaussian noise vector and A ∈ Rm×n is the
discretized linear blur operator. As usual, images are assumed to be represented
as vectors, by storing the pixel values in some (e.g. lexicographical) order.

Least squares optimization with ℓ1-regularization is now the state-of-the-art
approach to image restoration. In fact, in imaging problems, the presence of
edges often causes the prior distribution of the unknown image x to be not
Gaussian and leads to outliers in the regularization term. In this context, the
ℓ1-norm, which is less sensitive to outliers, is advantageous compared to the
ℓ2-norm employed in Tikhonov-like regularization, and can be effectively used
to promote sparse solutions [50, 48, 42, 11]. For these reason, the ℓ1-regularized
least squares problem

min
x

ϕ(x) =
1

2
∥Ax− b∥22 + λ∥x∥1, λ > 0 (2)
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has recently attracted considerable attention both in the context of imaging
inverse problems [26, 58, 41, 1] and of compressed sensing [14, 17, 21, 52, 15,
18, 19, 16]. (For simplicity of notation, hereafter ∥ · ∥ will denote the ℓ2-norm
∥ · ∥2.)

In this work, we focus on ℓ1-regularized least squares problems (2) arising
in image deblurring applications where the observation operator A describes
spatially invariant blur [6]. Under periodic boundary conditions, A is a block
circulant with circulant blocks (BCCB) matrix and matrix-vector products can
be efficiently performed via the FFT [32]. We suppose that m ≥ n and that
AHA has full rank. This assumption is satisfied in a variety of practical ap-
plications and is frequently used in image deblurring and in the literature of
imaging inverse problems (see, for example, [32, 27, 33, 4, 58, 28, 23, 29]).

A variety of algorithms have been proposed in the literature for the solution
of (2), especially in compressed sensing. The state-of-the-art methods for (2)
are probably gradient descent-type methods since their computational cost is
mainly due to matrix-vector products with A and AH . This class of methods
includes the following popular methods: IST [20], TwIST [10], SparSA [56],
FISTA [4], NESTA [5] and AdaptiveSPARSA [43]. SPGL1 [53] and GPSS [41]
are gradient projection-type methods for the equivalent Lasso formulation of
(2).

Fixed-point continuation methods [30, 31], as well as methods based on
Bregman iterations [25, 57] and variable splitting, as SALSA [1] and C-SALSA
[2], have also been recently proposed.

The dual formulation of (2) has been considered in the literature; in [27] and
[33], a Newton projection method and an active-set-type method are respectively
proposed to solve the dual problem.

A different approach to handle the nondifferentiability of the objective func-
tion of (2) consists in reformulating the nondifferentiable unconstrained problem
(2) as a constrained differentiable one. The disadvantage of this strategy is that,
usually, the number of variable is doubled. The interior point method of [34]
solves a quadratic programming formulations of (2) obtained by introducing an
auxiliary variable; it has been shown to be efficient for large scale problems since
a preconditioned gradient method is used to compute the search direction.

An equivalent formulation of (2) as a quadratic programming problem with
nonnegativity constraints can be done by splitting x into two nonnegative vari-
ables representing its positive and negative parts. Several methods have been
proposed for the solution of the resulting bound constrained quadratic program
as gradient projection [22], interior point [23] and Newton projection [45, 47, 46]
methods.

The Newton projection methods (also referred to as Two-Metric projection
methods) can be interpreted as scaled gradient projection methods where the
scaling matrix is the inverse of a modified Hessian [8, 24, 9]. In particular, only
the variables in the working set are scaled by the inverse of the corresponding
submatrix of the Hessian, where the working set is defined as the complementary
of the set of the null variables with positive gradient. Under proper hypothesis
on the scaling matrix, the global convergence and local superlinear convergence
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of Newton projection methods con be proved [8, 24].
In the literature, Newton-like projection methods have been recently de-

veloped which are tailor-made for image restoration problems formulated as
ℓ2-regularized optimization problems under nonnegativity constraints, both in
the case of Gaussian and Poisson noise [39, 37, 38]. In these methods, the Hes-
sian matrix is suitably approximated so that its inversion can be performed in
the Fourier space at a very low computational cost. Then, the variables in the
working set are scaled by the corresponding submatrix of the inverse approxi-
mated Hessian. It is worth mentioning that, using this scaling, the superlinear
convergence rate of Newton-based methods is lost. However, this Newton-like
projection methods have been shown to perform well compared to accelerated
gradient projection algorithms for ℓ2-regularized least squares problems [12, 36].

This work aims at developing a new efficient and effective ℓ1-based method
for the restoration of images corrupted by blur and Gaussian noise. In particular,
we consider the analysis formulation of the ℓ1-regularized least squares problem
for the restoration of images which are quite sparse in the pixel representation
as, for example, medical images and astronomical images. This approach has
been introduced in [35, 23] and recently in [58]. Observe that in astronomical
imaging, the ℓ1-norm penalty is used as a flux conservation constraint. There-
fore, the contribution of this paper is twofold. First, we show, by numerical
evidence, that the ℓ1-regularized least squares problem can be effectively used
as a mathematical model of the problem of restoring images degraded by blur
and Gaussian noise. Second, we develop an efficient Newton-like projection
method for its solution. In the proposed approach, problem (2) is firstly formu-
lated as a nonnegatively constrained quadratic program by splitting the variable
x into the positive and negative parts. Then, the quadratic program is solved
by a special purpose Newton-like projection method where a fair regularized
approximation to the Hessian matrix is proposed so that products of its inverse
and vectors can be computed at low computational cost. As a result, the only
operations required for the search direction computation are matrix-vector prod-
ucts involving A and AH . Since the developed method uses a fair modification
to the Hessian matrix, in the sequel, it will be referred to as Modified Newton
Projection (MNP) method. Moreover, the regularization strategy, used to im-
prove the conditioning of the Hessian matrix, penalizes negative entries in x so
that nonnegative solutions are favored. The convergence of the MNP method is
proved even if MNP slows the convergence rate of Newton-type methods. Even
if the size of the problem is doubled, the low computational cost per iteration
and less iterative steps make MNP quite efficient. It is worth mentioning that a
similar approach is described in [46]; however, the projectionL1 method of [46]
uses, as the classical Two-Metric projection methods, a suitable sub-matrix of
the Hessian for scaling the gradient.

The performance of MNP is evaluated on some image restoration problems
and is compared with that of the state-of-the-art methods. The results of the
comparative study show that MNP is competitive and in some cases is also able
to outperform the state-of-the-art methods in terms of computational complex-
ity and achieved accuracy.
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The paper is organized as follows. In section 2, the quadratic program
formulation of (2) is derived. In section 3, the MNP method is presented and
its convergence is analyzed. In this section, the computation of the search
direction is also discussed. In section 4, the numerical results are presented.
Conclusions are given in section 5.

2 The Modified Newton projection method

Before introducing our MNP method, we need to reformulate the ℓ1-regularized
least squares problem (2) as a nonnegatively constrained quadratic program
(NCQP). This strategy for dealing with the nondifferentiability of the ℓ1-norm
is quite classic in the literature and has been previously adopted by several
authors [13, 23, 22, 45, 46].

2.1 Nonnegatively constrained quadratic program formu-
lation

If we split x into its positive and negative parts, that is

x = u− v

where
u = max(x, 0), v = max(−x, 0),

then, we obtain the following nonnegatively constrained quadratic program for-
mulation of the original ℓ1-regularized least squares problem (2):

min
(u,v)

F(u,v) =
1

2
∥A(u− v)− b∥2 + λ1Hu+ λ1Hv

s.t. u ≥ 0

v ≥ 0

(3)

where 1 denotes the n-dimensional column vector of ones. In [13, 22, 44] it
is shown that problems (2) and (3) share the same solutions and that at the
solution of (3) either ui or vi or both are equal to zero.

The gradient of F(u,v) is defined by

∇(u,v)F(u,v) =

[
AHA(u− v)−AHb+ λ1
−AHA(u− v) +AHb+ λ1

]
. (4)

Henceforth, we will denote by y and g the 2n-dimensional vectors

y =

[
u
v

]
, g =

[
gu

gv

]
where gu and gv are respectively the partial derivatives of F with respect to u
and v.
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Observe that, even if by reformulating (2) as a NCQP we have doubled the
problem size, the computation of the objective function and its gradient values
indeed requires only one multiplication by A and one by AH .

2.2 Hessian approximation

The MNP method is basically a Newton-based method where the search direc-
tion computation requires the inversion of the Hessian matrix. Unfortunately,
the Hessian H of F(u,v)

H =

[
AHA −AHA
−AHA AHA

]
(5)

is a positive semidefinite matrix. The idea underlying the proposed approach
is to substitute the Hessian with a nonsingular approximation. In MNP, we
modify H by adding a small perturbation to its negative part. More precisely,
we use the following Hessian approximation:

Hτ = H+

[
0 0
0 τI

]
=

[
AHA −AHA
−AHA AHA+ τI

]
(6)

where τ is a positive parameter and I and 0 are respectively the identity and zero
matrix of size n. There are several reasons for this choice of the Hessian modifi-
cation. Firstly, an explicit formula for the inverse ofHτ can be derived, secondly
the search direction is computable at moderate cost and finally, negative part
of images are penalized. Naturally, other nonsingular Hessian modifications are
possible. Adding the positive constant τ to all elements of the diagonal H re-
sults in an Hessian modification such that the multiplication of its inverse by
a vector requires more computational cost. Moreover, our numerical experi-
ments indicate that this Hessian approximation tends to be more sensitive to
the choice of the parameter τ . On the other hand, adding a small perturbation
to the positive part of H would result in a penalization of the positive part of
images and in less accurate reconstructions.

Proposition 2.1. Assume that AHA is nonsingular. Then, Hτ is nonsingular
and its inverse is

Mτ =
1

τ

[
τ(AHA)−1 + I I

I I

]
. (7)

Proof. We prove that HτMτ = MτHτ = I2n where I2n is the identity matrix
of size 2n.
We have

HτMτ =
1

τ

[
AHA −AHA
−AHA AHA+ τI

] [
τ(AHA)−1 + I I

I I

]
=

1

τ

[
τI+AHA−AHA AHA−AHA

−τI−AHA+AHA+ τI −AHA+AHA+ τI

]
=

[
I 0
0 I

]
.
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Similarly, we have MτHτ = I2n and this concludes the proof.

Proposition 2.2. The inverse Hessian approximation Mτ is a symmetric pos-
itive definite matrix.

Proof. Let z,w ∈ Rn. We have

[
zH wH

] 1
τ

[
τ(AHA)−1 + I I

I I

] [
z
w

]
= zH(AHA)−1z+

1

τ
∥z+w∥2 ≥ 0. (8)

Equality holds in (8) if and only if z = 0 and z+w = 0, i.e. if and only if z = 0
and w = 0. This concludes the proof.

Remark 2.1. The developed strategy for approximating the Hessian matrix H
is closely related to the method of Lavrentiev regularization [40, 49, 51, 6].
In fact, in Lavretiev regularization, a regularized solution of a linear ill-posed
problem with positive semidefinite linear operator K is obtained as the solution
of a slightly modified equation whose linear operator is K+ τI. Therefore, the
Hessian approximationHτ is indeed a Lavretiev-type regularized approximation
to H where only the last n variables are penalized. In this way, large values of
the last n components of the search direction are penalized.

2.3 Algorithm

Firstly, let us introduce the basic notation that enables us to formalize the
description of the MNP method. In the sequel, A(y) will indicate the set of
indices [8, 9, 54]:

A(y) =
{
i | 0 ≤ yi ≤ ε and gi > 0

}
, ε = min{ε, ∥y − [y − g]+∥}

where ε is a small positive parameter and [·]+ denotes the projection on the
positive orthant. Finally, let E and F denote the diagonal matrices [54] such
that

{E(y)}ii =
{

1, i /∈ A(y);
0, i ∈ A(y);

F(y) = I2n −E(y).

Given a feasible initial iterate y(0) ∈ R2n, the MNP method is defined by
the general iteration

y(k+1) = [y(k) − α(k)p(k)]+, p(k) = S(k)g(k) (9)

where
S(k) = E(y(k))MτE(y(k)) + F(y(k)) (10)
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and the step-length α(k) is determined by the Armijo rule along the projection
arc [8, 9]. That is, α(k) is the first number of the sequence {2−m}m∈N such that

F
(
y(k)

)
−F

(
y(k)(2−m)

)
≥

β

2−m
∑

i/∈A(k)

g
(k)
i p

(k)
i +

∑
i∈A(k)

g
(k)
i

(
y
(k)
i − yki (2

−m)
) (11)

where y(k)(2−m) = [y(k) − 2−mp(k)]+, β ∈ (0, 1
2 ). For easier notation, in the

following, E(k), F(k) and A(k) will denote respectively the diagonal matrices
E(y(k)) and F(y(k)) and the index set A(y(k)).

Remark 2.2. In the Two-Metric projection method originally proposed by Bert-
sekas [8, 9, 24], the scaling matrix is

S(k) =
(
E(k)HE(k) + F(k)

)−1

. (12)

Using this scaling, the standard Newton-like projection methods attain the su-
perlinear convergence rate of Newton-like methods. However, the inversion of
a submatrix of H, required in (12), is often impracticable in image deblurring
applications. Therefor, in practice, a conjugate gradient version of the Newton-
like projection method has to be used where the CG iterations are terminated
when the relative residual becomes smaller than a given tolerance. The resulting
approximate Newton-CG projection method may slow the convergence rate.
On the other hand, the scaling matrix (10) involves the inverse of the whole ap-
proximated Hessian matrix Hτ for which an explicit formula is given in proposi-
tion 2.1. As a result, the search direction of MNP can be computed very quickly.
However, the scaling (10) may significantly slow the convergence rate and MNP
may have worse convergence properties.

2.4 Convergence analysis

As proved in [8, 24], the convergence of Newton-like projection methods only
requires the scaling matrices S(k) to be positive definite matrices with uniformly
bounded eigenvalues. In particular, the global convergence property of these
methods can be proved under the general following assumptions [8].

A1 The gradient ∇(u,v)F is Lipschitz continuous on each bounded set of R2n.

A2 There exist positive scalars c1 and c2 such that

c1∥y∥2 ≤ yHS(k)y ≤ c2∥y∥2, ∀y ∈ R2n, k = 0, 1, . . .

The key convergence result is provided in Proposition 2 of [7] which is restated
here for the shake of completeness.
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Proposition 2.3. [7, Proposition 2] Let {y(k)} be a sequence generated by
iteration (9) where S(k) is a positive definite symmetric matrix which is diagonal
with respect to A(k) and αk is computed by the Armijo rule along the projection
arc. Under assumptions A1 and A2 above, every limit point of a sequence {y(k)}
is a critical point with respect to problem (3).

Since the objective F of (3) is twice continuously differentiable, it satisfies
assumption A1.

The inverse Hessian approximation Mτ is a symmetric positive definite ma-
trix (proposition 2.2) and hence, the scaling matrix S(k) defined by (10) is
a positive definite symmetric matrix which is diagonal with respect to A(k).
Therefore, the global convergence of the MNP method is guaranteed if S(k)

verifies assumption A2.

Proposition 2.4. Given a positive parameter τ > 0, there exist two positive
scalars cτ1 and cτ2 such that

cτ1∥y∥2 ≤ yHS(k)y ≤ cτ2∥y∥2, ∀y ∈ R2n, k = 0, 1, . . .

Proof. Since Mτ is positive definite, then

στ
1∥y∥2 ≤ yHMτy ≤ στ

2n∥y∥2, ∀y ∈ R2n. (13)

where στ
1 and στ

2n are the largest and smallest eigenvalue of Mτ , respectively.
We have

yHS(k)y = yH
(
E(k)MτE

(k) + F(k)
)
y =

(
E(k)y

)H
Mτ

(
E(k)y

)
+ yHF(k)y.

From (13) it follows that

στ
1∥E(k)y∥2 + yHF(k)y ≤

(
E(k)y

)H
M

(
E(k)y

)
+ yHF(k)y

≤ στ
2n∥E(k)y∥2 + yHF(k)y.

Moreover we have

yHF(k)y =
∑

i∈A(k)

y2i , ∥E(k)y∥2 =
∑

i/∈A(k)

y2i .

Hence, we obtain

στ
1

∑
i/∈A(k)

y2i +
∑

i∈A(k)

y2i ≤ yHS(k)y ≤ στ
2n

∑
i/∈A(k)

y2i +
∑

i∈A(k)

y2i

and
min{στ

1 , 1}∥y∥2 ≤ yHS(k)y ≤ max{στ
2n, 1}∥y∥2.

The thesis immediately follows by setting

cτ1 = min{στ
1 , 1} cτ2 = max{στ

2n, 1}.

Propositions 2.3 and 2.4 ensure the global convergence of the MNP method.
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2.5 Implementation of the search direction computation

The computation of the search direction p(k) requires the multiplication of a

vector by Mτ . Let

[
z
w

]
∈ R2n be a given vector, then it immediately follows

that

Mτ

[
z
w

]
=

1

τ

[
τ(AHA)−1z+ z+w

z+w

]
=

[
(AHA)−1z+ (z+w)/τ

(z+w)/τ

]
. (14)

In many image restoration applications, the blurring matrix A is severely ill-
conditioned and computing (AHA)−1z requires a regularization strategy. There-
fore, in our implementation, a Tikhonov-like technique is employed in the search
direction computation by approximating the matrix-vector product (14) with

Mτ

[
z
w

]
≈

[
(AHA+ γI)−1z+ (z+w)/τ

(z+w)/τ

]
(15)

where γ is a positive parameter. The inversion of AHA+ γI can be efficiently
performed in the Fourier space with computational complexity of two Fast
Fourier Transforms as follows. In fact, assuming periodic boundary conditions,
A can be factorized as

A = U∗DU

where U is the two dimensional unitary Discrete Fourier Transform (DFT)
matrix and D is the diagonal matrix containing the eigenvalues of A. Thus

(AHA+ γI)−1 = U∗(|D|2 + γI)−1U.

The products involvingU andU∗ can be performed by using the FFT algorithm
at the cost of O(n log2 n) operations while the inversion of the diagonal matrix
(|D|2 + γI) has the cost O(n).

3 Numerical results

In this section, we present the numerical results of several image restoration test
problems. The numerical experiments aim at illustrating the performance of
MNP compared with several state-of-the-art methods as SALSA [1], SPARSA
[56], FISTA [4], NESTA [5], CGIST [26] and the Split Bregman method [25,
57]. In our comparative study, we also consider first and second-order methods
solving, as MNP, the quadratic program (3) such as the nonmonotonic version
of GPSR using the BarzilaiBorwein technique for the step-length selection [22],
the original Two-Metric Projection (TMP) method of Gafni and Bertsekas [24,
8, 45] employing the scaling (12) and a modified Newton projection method
obtained by regularizing the full diagonal of the Hessian matrix (5). This last
method, which will be indicated as MNP2, requires the inversion of the Hessian
approximation:

Hτ =

[
AHA+ τI −AHA
−AHA AHA+ τI

]
.
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It can be prove (the proof is similar to that of proposition 2.1) that the inverse
of Hτ is defined as

Mτ =
1

τ

[
AHA+ τI AHA

AHA AHA+ τI

] [
(2AHA+ τI)−1 0

0 (2AHA+ τI)−1

]
.

(16)
Formula (16) indicates that, in MNP2, the computation of the search direction
requires more computational effort than in MNP.

Finally, MNP has also been compared with the OWLQN method of Andrew
and Gao [3] which is probably one of the most effective method proposed for
general large-scale ℓ1-regularized learning.

3.1 Overall assessment of the considered methods

The Matlab source code of the considered methods, when made publicly avail-
able by the authors, has been used in the numerical experiments. The OWLQN
method is coded, by the authors, in C; a Matlab version, following the instruc-
tion provided in [3], has been implemented.

In TMP, the linear system for the search direction computation has been
solved by the Conjugate Gradient method. The relative residual tolerance has
been fixed at 0.01 and a maximum number of 100 iterations has been allowed.
We remark that lower values for the CG relative tolerance produce restorations
of worse quality since the Hessian matrix is ill-conditioned.

The numerical experiments have been executed on a Sun Fire V40z server
consisting of four 2.4GHz AMD Opteron 850 processors with 16GB RAM using
Matlab 7.10 (Release R2010a).

For all the considered methods, the initial iterate x(0) has been chosen to
be the zero image whose pixel values are all equal to zero. The regularization
parameter λ of (2) has been heuristically chosen.

MNP depends on the τ and γ parameters. After a wide experimentation,
we heuristically found that good values for these parameters are

τ = 50λ, γ = λ. (17)

These values have been used in all the presented numerical experiments. It is
worth remarking that the values (17) for τ and γ are not optimal for each exper-
iments and that the numerical results could be further improved. However, with
this parameter setting, the MNP algorithm only depends on the regularization
parameter λ. We also observe that the SALSA method depends on a penalty
parameter µ [1] and that the Split Bregman method depends on a “splitting”
regularization coefficient ν [25, 57]. In all the presented experiments, the values
of these parameters have been handtuned for the best mean squared error re-
duction. The default parameters of the other methods, suggested by the authors
have been chosen.

The termination criterion of all the considered methods is based on the
relative change in the objective function at the last step. In particular, the

10



Figure 1: Experiment 1: deblurring of the satellite image. Left: original image;
right: observed image (NL = 5 · 10−3).

methods iteration is terminated when

|ϕ(x(k+1))− ϕ(x(k))| ≤ tolϕ ϕ(x(k+1)) (18)

where tolϕ is a small positive parameter. The selection of a fair stopping cri-
terium in image deblurring application is a critical issue. In our numerical
experiments, this criterium, also used in [56, 5] appears to provide sufficiently
accurate solutions while avoiding excessive computational cost. Moreover, the
use of a stopping criterion based on the norm of the projected gradient or the
duality gap can be problematic since it can confuse lack of progress for optimal-
ity.

A maximum number of 500 iterations has been allowed for each method.
The quality of the restorations provided by the compared methods has been

measured by using the Peak Signal-to-Noise Ratio (PSNR) values.
All pixels of the original images described in the following experiments have

been first scaled into the range between 0 and 1.

3.2 Experiment 1: the satellite image

In the first experiment, the famous 256×256 satellite image has been considered.
The satellite image is a good test image for ℓ1-based image restoration because
it has many pixels with value equal to zero. The observed image of figure 1 has
been generated by convolving the original image, also shown in figure 1, with a
Gaussian PSF with variance equal to 2, obtained with the code psfGauss from
[32], and then by adding Gaussian noise with noise level equal to 5 · 10−3. (The
noise level NL is defined as NL := ∥η∥

/
∥Axoriginal∥ where xoriginal is the original

image.) In figure 1 and following, the satellite image intensities are displayed
in negative gray-scale. For this test problem, the µ and ν parameters of the
SALSA and Split Bregman methods have been set to µ = 5λ and ν = 0.025λ,
respectively.

Table 1 reports the PSNR values, the objective values, the CPU times in
seconds, the number of performed iterations and the percentage of negative pixel

11



Method tolϕ PSNR Obj Time It Neg %

MNP
10−3 2.92e+01 3.54e+01 0.42 10 0.16
10−5 2.94e+01 3.53e+01 0.80 17 0.00

SALSA
10−3 2.83e+01 3.51e+01 0.09 6 42.03
10−5 2.92e+01 3.52e+01 0.63 35 39.19

GPSR
10−3 2.80e+01 3.54e+01 0.34 16 0.00
10−5 2.89e+01 3.53e+01 0.78 37 0.00

Bregman
10−3 2.85e+01 4.09e+01 0.87 48 44.60
10−5 2.83e+01 3.90e+01 3.46 200 44.72

CGIST
10−3 2.72e+01 3.56e+01 0.43 15 0.00
10−5 2.91e+01 3.53e+01 3.44 114 0.00

SPARSA
10−3 2.70e+01 3.57e+01 0.24 10 0.00
10−5 2.93e+01 3.53e+01 0.85 47 0.00

FISTA
10−3 2.77e+01 3.54e+01 0.37 16 0.00
10−5 2.92e+01 3.53e+01 1.67 75 0.00

NESTA
10−3 2.70e+01 3.70e+01 4.21 70 44.74
10−5 2.79e+01 3.77e+01 38.94 933 44.67

MNP2
10−3 2.69e+01 3.57e+01 0.80 20 0.02
10−5 2.88e+01 3.53e+01 8.41 150 0.00

TMP
10−3 2.83e+01 3.54e+01 2.61 7 0.00
10−5 2.88e+01 3.53e+01 17.83 75 0.00

OWLQN
10−3 2.78e+01 3.54e+01 0.39 10 0.00
10−5 2.85e+01 3.53e+01 3.60 65 0.00

Table 1: Experiment 1: numerical results.

values in the restored images. All the results are averaged over ten runs of each
method. The numerical results given in table 1 have been obtained by using the
stopping tolerance values tolϕ = 10−3 and tolϕ = 10−5. Smaller values of tolϕ
do not improve the visual quality of the restored images even if they produce
more accurate solutions to the optimization problem (2). The information in
table 1 is summarized in figure 2 where the PSNR values versus time are plotted
for all the considered methods. The results in table 1 and figure 2 show that
MNP is able to provide good quality restorations at low computational effort.
They also indicate that the inversion of the modified Hessian adopted in MNP2
requires more computational effort.

In figure 3, the performance of MNP is compared to the performance of
the first-order and second order methods (NESTA has been omitted from these
comparisons because of its high computational time, see table 1). Since PSNR
is inversely proportionally to the Mean Squared Error (MSE), figure 3 illus-
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Figure 2: Experiment 1: PSNR values versus time (in seconds) obtained at
tolϕ = 10−3 (left) and tolϕ = 10−5 (right).

trates, in a semi-logarithmic scale, the MSE behavior and the decreasing of
the objective function versus time. For the sake of readability, all the methods
are not represented in the same picture. The convergence rates of the consid-
ered second-order methods (MNP, MNP2, TMP and OWLQN) have also been
compared. For these methods, figure 4 shows, in a semi-logarithmic scale, the
behavior of the gradient norm values versus time; from the graphs it is evident
that MNP, MNP2 and TMP decrease the gradient norm slower than OWLQN.
As expected, the scaling of the gradient direction employed by MNP and MNP2
reduces the local convergence rate; moreover, in TMP, the use of an iterative
solver for the search direction computation leads to slower convergence rate.
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Figure 3: Experiment 1: comparison between the considered methods. Top line:
relative error histories versus time; bottom line: objective function decrease
versus time (in seconds).
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Figure 4: Experiment 1: comparison between MNP and the second-order meth-
ods (MNP2, TMP, OWLQN): gradient norm reduction versus time (in seconds).

MNP (tol = 10−3) SALSA Bregman

CGIST MNP2 OWLQN

Figure 5: Experiment 1: restorations provided by some of the considered meth-
ods with tolϕ = 10−5. For MNP, the restoration at tolϕ = 10−3 is depicted.

Figure 5 compares the image obtained by MNP at tolϕ = 10−3 with those
provided by SALSA, Split Bregman, CGIST, MNP2 and OWLQN at tolϕ =
10−5. (For these methods, the images obtained at tolϕ = 10−3 are not shown
since their visual quality is clearly poor.) In the Bregman image, for a better
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visualization, the pixels with negative values image has been set to zero. The
images restored by SPARSA and FISTA are not shown because they are prac-
tically indistinguishable from those obtained by SALSA and MNP. The visual
quality of the GPSR, NESTA and TMP images is inferior and therefore these
images are not displayed (see also their PSNR values in table 1). Observe that
the MNP image is visually comparable to the SALSA image while the CGIST
image has an inferior visual quality even if its PSNR value is comparable to
that of SALSA. Moreover, the MNP2 and OWLQN images are not comparable,
in terms of visual quality, to the MNP image; in particular, the MNP2 image
seems to be too smooth.

The restored images obtained by SALSA, NESTA and the Split Bregman
methods have pixels with negative entries. They are displayed in figure 6 where
the black pixels correspond to nonnegative pixels values of the reconstructions.

SALSA Bregman NESTA

Figure 6: Experiment 1: pixels with negative entries. The black pixels corre-
spond to pixels with nonnegative values. The white pixels correspond to pixels
with negative values.

Regularization PSNR neg %

ℓ1 2.94e+01 0
ℓ2 2.75e+01 44
TV 2.96e+01 45

Table 2: Experiment 1: comparison between ℓ1-norm, ℓ2-norm and TV regular-
izers.

Finally, in order to assess the performance of the image restoration criterium
(2), we have compared the ℓ1-norm regularizer with the ℓ2-norm and the Total
Variation (TV) regularizers, which are widely-used in image restoration. The
Lagged Diffusivity Fixed Point method [55] has been considered for the solution
of the TV-regularized least squares problem. The ℓ2-regularized least squares
problem has been solved by inverting, in the Fourier space, the linear system
of its first order conditions. The MNP method is used for the solution of (2).
Table 2 reports the PSNR values and the percentage of negative pixels; figure 7
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ℓ1-norm TV ℓ2-norm

Figure 7: Experiment 1: comparison between ℓ1-norm, ℓ2-norm and TV regu-
larizers.

displays the restored images. The superiority of the ℓ1-norm regularized image
is evident both in terms of PSNR values and visual quality improvement. In
fact, edges are preserved by the restoration model (2) without any staircasing
or blurring effects which are respectively evident in the TV-regularized and
ℓ2-norm regularized images.

3.3 Experiment 2: the Flintstones image

In the second experiment, the 512 × 512 Flintstones image (figure 8) has been
used. This image is a good test image since has a nice mixture of detail and
flat regions. The original Flintstones image has been degraded by two blur-
ring operators, shown in figure 8, and by adding varying amounts of Gaussian
noise. In this experiment, MNP has been compared to SALSA, Split Breg-

Flintstones image h1: 9× 9 uniform blur h2: h2ij = 1/(1 + i2 + j2).

Figure 8: Experiment 2: original Flintstones image and blur operators.

man, FISTA, MNP2 and OWLQN. The reasons why we limit our comparative
study to these methods are the following. From experiment 1, it is evident
that SALSA and FISTA are able to achieve good quality results in little time.
Moreover, Split Bregman and OWLQN have been considered because they are
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well-known methods for general ℓ1 minimization not only proposed for image
restoration applications. Finally, MNP2 has been considered because closely-
related to MNP.

We have fixed the values µ = 2.5λ and ν = λ for the SALSA and Split
Bregman parameter. The numerical results are summarized in table 3 where
the level of the added noise (first column), the PSNR values, the objective
values and the CPU times in seconds are reported for each blurring operator.
The reported numerical values are the average over 10 run of each experiment
and have been obtained using the tolerance values tolϕ = 10−3 since smaller
values of tolϕ do not improve the visual quality of the restored images. Figure
9 depicts the MNP restorations from the degraded images with highest noise
level (NL=0.01). They asses the ability of the image restoration model (2) to
remove blur and noise from the degraded images.

Figure 9: Experiment 2: Top line: degraded image (NL=0.01). Bottom line:
MNP restorations. Left column: blur h1; right column: blur h2.

3.4 Experiment 3

This last experiment is based on four famous test images with different features:
the 256 × 256 Text image, the 358 × 358 Moon image, the 364 × 364 Concord
image and the 490×490 Spine image (see figure 10). These images are example
images from the Matlab distribution. They have been corrupted by the blurring
operators depicted in figure 8 and then Gaussian noise has been added with the
same noise level values used in experiment 2. For each noise level, 10 Gaussian
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Blur h1 Blur h2
NL Method PSNR Obj Time PSNR Obj Time

0.001

MNP 3.40e+01 1.39e+03 1.67 2.49e+01 4.21e+02 1.08
SALSA 3.25e+01 1.39e+03 0.76 2.49e+01 4.19e+02 0.51
BREGMAN 3.72e+01 1.40e+03 0.20 2.73e+01 4.21e+02 0.24
FISTA 2.65e+01 1.39e+03 1.47 2.14e+01 4.22e+02 1.78
MNP2 2.45e+01 1.40e+03 3.42 2.25e+01 4.21e+02 7.41
OWLQN 2.83e+01 1.39e+03 1.42 2.18e+01 4.22e+02 1.61

0.0025

MNP 3.16e+01 2.08e+03 0.96 2.42e+01 6.99e+02 1.36
SALSA 2.91e+01 2.06e+03 0.39 2.41e+01 6.98e+02 0.51
BREGMAN 3.16e+01 2.10e+03 0.18 2.45e+01 7.03e+02 0.24
FISTA 2.57e+01 2.08e+03 1.22 2.10e+01 7.02e+02 1.54
MNP2 2.34e+01 2.09e+03 3.31 2.06e+01 7.05e+02 3.04
OWLQN 2.56e+01 2.08e+03 0.98 2.11e+01 7.03e+02 1.09

0.005

MNP 2.94e+01 2.42e+03 0.77 2.38e+01 9.78e+02 0.92
SALSA 2.83e+01 2.40e+03 0.40 2.35e+01 9.76e+02 0.51
BREGMAN 2.87e+01 2.46e+03 0.27 2.31e+01 9.85e+02 0.32
FISTA 2.56e+01 2.42e+03 1.32 2.07e+01 9.82e+02 1.34
MNP2 2.31e+01 2.44e+03 3.67 2.00e+01 9.86e+02 2.75
OWLQN 2.55e+01 2.42e+03 0.97 2.11e+01 9.82e+02 1.11

0.0075

MNP 2.84e+01 2.48e+03 0.65 2.33e+01 1.12e+03 1.18
SALSA 2.84e+01 2.48e+03 0.59 2.31e+01 1.12e+03 0.51
BREGMAN 2.72e+01 2.53e+03 0.32 2.23e+01 1.13e+03 0.40
FISTA 2.50e+01 2.49e+03 0.96 2.07e+01 1.12e+03 1.34
MNP2 2.30e+01 2.51e+03 3.02 1.99e+01 1.13e+03 2.73
OWLQN 2.54e+01 2.49e+03 0.84 2.10e+01 1.12e+03 1.10

0.01

MNP 2.83e+01 2.60e+03 0.47 2.28e+01 1.26e+03 1.36
SALSA 2.73e+01 2.55e+03 0.60 2.27e+01 1.25e+03 0.52
BREGMAN 2.64e+01 2.60e+03 0.40 2.15e+01 1.27e+03 0.41
FISTA 2.49e+01 2.56e+03 0.96 2.05e+01 1.26e+03 1.26
MNP2 2.29e+01 2.58e+03 3.07 1.97e+01 1.27e+03 2.77
OWLQN 2.54e+01 2.56e+03 0.84 2.10e+01 1.26e+03 1.11

Table 3: Experiment 2: numerical results.

noise vectors have been obtained with different noise realizations. This amounts
to 100 experiments for each image and to 400 experiments in total.

Also in this experiment, MNP has been compared to SALSA, Split Bregman,
FISTA, MNP2 and OWLQN. The numerical results have been obtained by using
the tolerance value tolϕ = 10−3. The µ and ν parameters of the SALSA and Split
Bregman methods have been set to the same values of the previous experiment.

Let PSNRmethod denote the PSNR value given by a method among those
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considered (MNP, SALSA, Split Bregman, FISTA, MNP2 and OWLQN) and let
Timemethod denote the corresponding CPU time, in seconds. The performance
of the methods has been compared in terms of percentage of experiments pro-
ducing a reconstructed image such that

PSNRmethod ≥ C1 · PSNRmax, C1 = 1, 0.9, 0.8

and
Timemethod ≤ C2 ·Timemin, C2 = 1, 3, 5

where, for each experiment, PSNRmax is the maximum PSNR value and Timemin
is the minimum time. For each image and for the total 400 experiments, the
corresponding percentage values are reported in tables 4 and 5. Figure 10 depicts
the MNP restorations from the images degraded by the h1 blurring operator and
Gaussian noise with NL=0.005.

Figure 10: Experiment 3: MNP restorations for h1 blurring operator and
NL=0.005. From left to right and from top to bottom: Text, Moon, Concord
and Spine images.

4 Conclusions

This paper describes a new approach to the solution of ℓ1-regularized least
squares problems whose matrix is supposed to be overdetermined and full-rank.
This approach solves the nonnegatively constrained quadratic programming re-
formulation of the original least squares problem by a modified Newton pro-
jection method where the Hessian matrix is approximated so that it can be
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Image C1 MNP SALSA BREG. FISTA MNP2 OWQLN

1 70 10 20 0 0 0
Text 0.9 82 89 35 43 0 6

0.8 99 100 75 90 31 83

1 50 0 10 0 20 20
Moon 0.9 80 70 20 70 80 80

0.8 99 90 50 100 100 100

1 20 60 10 0 0 10
Concord 0.9 100 100 20 50 48 60

0.8 100 100 60 90 90 90

1 0 21 20 0 29 30
Spine 0.9 0 60 51 90 89 100

0.8 53 80 60 100 100 100

1 35.00 22.75 15.00 0.00 12.25 15.00
Total 0.9 65.50 79.75 31.50 63.25 54.25 61.50

0.8 87.75 92.50 61.25 95.00 80.25 93.25

Table 4: Experiment 3: percentage of experiments such that PSNRmethod ≥
C1 · PSNRmax.

Image C2 MNP SALSA BREG. FISTA MNP2 OWQLN

1 3 80 20 0 0 0
Text 0.9 34 96 48 1 0 10

5 47 100 100 54 0 55

1 0 82 10 2 0 9
Moon 3 45 90 59 48 40 90

5 86 100 60 90 40 90

1 0 15 86 0 0 0
Concord 3 26 100 100 0 0 19

5 38 100 100 30 6 32

1 0 9 32 10 0 52
Spine 0.9 30 70 80 70 70 70

5 60 70 97 70 70 70

1 0.75 46.50 37.50 2.50 0.00 15.75
Total 0.9 34.75 89.00 70.25 28.75 27.50 48.25

5 58.00 92.50 89.25 61.00 31.00 63.50

Table 5: Experiment 3: percentage of experiments such that Timemethod ≤
C2 · Timemin.
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efficiently inverted in the Fourier space. The developed MNP method favors
nonnegative solutions of the ℓ1-regularized least squares problem without ex-
plicitly imposing any constraints in the optimization problem. Thus, MNP can
also be applied to image restoration problems whose solution may have negative
components as in compressed sensing when x represents the coefficient vector
of the image under some basis. A comparative study with some state-of-the-art
methods has been performed in order to evaluate the potential of the described
approach. The numerical results show that MNP is competitive with the con-
sidered methods in terms of PSNR values while SALSA is often the fastest
method.
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