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FRACTIONAL TIKHONOV REGULARIZATION
WITH A NONLINEAR PENALTY TERM

SERENA MORIGI∗, LOTHAR REICHEL† , AND FIORELLA SGALLARI‡

Abstract. Tikhonov regularization is one of the most popular methods for solving linear sys-
tems of equations or linear least-squares problems with a severely ill-conditioned matrix and an
error-contaminated data vector (right-hand side). This regularization method replaces the given
problem by a penalized least-squares problem. It is well known that Tikhonov regularization in
standard form may yield approximate solutions that are too smooth, i.e., the computed approximate
solution may lack many details that the desired solution of the associated, but unavailable, error-free
problem might possess. Fractional Tikhonov regularization methods have been introduced to remedy
this shortcoming. However, the computed solution determined by fractional Tikhonov methods in
standard form may display undesirable spurious oscillations. This paper proposes that fractional
Tikhonov methods be equipped with a nonlinear penalty term, such as a TV-norm penalty term, to
reduce unwanted oscillations. Numerical examples illustrate the benefits of this approach.

1. Introduction. We are concerned with the approximate solution of linear
least-squares problems

min
x∈Rn

∥Ax− b∥2 (1.1)

with a matrix A ∈ Rm×n that has many singular values of different orders of mag-
nitude close to the origin; some singular values may vanish. Least-squares problems
with a matrix of this kind are often referred to as discrete ill-posed problems. For
notational convenience, we will assume that m ≥ n; however, the methods discussed
also can be applied when m < n. The situation when m = n is of particular interest.
Then (1.1) simplifies to a linear system of equations that may be inconsistent.

The vector b ∈ Rm in (1.1) represents available data, which are contaminated by
an error e ∈ Rm that stems from measurement inaccuracies. Thus,

b = b̂+ e, (1.2)

where b̂ is the unknown error-free vector associated with b. The unavailable linear
system with error-free right-hand side,

Ax = b̂, (1.3)

is assumed to be consistent. This allows us to apply the discrepancy principle to
determine the regularization parameter in Tikhonov regularization; see below.

Let x̂ denote the solution of (1.3) of minimal Euclidean norm. We would like to
determine an approximation of x̂ by computing a suitable approximate solution of
(1.1). Due to the error e in b and the fact that the singular values of A “cluster”
at the origin, the solution of minimal Euclidean norm of (1.1) typically is a poor
approximation of x̂.
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Tikhonov regularization is a popular approach to determine an approximation of
x̂. This method replaces the minimization problem (1.1) by a penalized least-squares
problem. Tikhonov regularization in standard form replaces (1.1) by

min
x∈Rn

{∥Ax− b∥22 + µ ∥x∥22}. (1.4)

Throughout this paper ∥·∥2 denotes the Euclidean vector norm or the spectral matrix
norm. The scalar µ ≥ 0 is referred to as a regularization parameter. The Tikhonov
minimization problem (1.4) has the unique solution

xµ = (ATA+ µI)−1AT b (1.5)

for any fixed µ > 0. Here the superscript T denotes transposition. The value of
µ > 0 determines how sensitive the Tikhonov solution xµ is to the error e in b, and
how close xµ is to the desired vector x̂. The determination of a suitable value of µ
is an important part of the solution process. In most of the computed examples in
Section 4, we determine µ by the discrepancy principle. However, the regularization
methods proposed in this paper also can be applied together with other schemes for
determining the regularization parameter, such as the L-curve criterion and general-
ized cross validation; see [10, 15, 23] for discussions on and computed examples with
many methods for determining the regularization parameter in (1.4).

The approximation xµ of x̂ obtained with Tikhonov regularization is known to
generally be too smooth, i.e., xµ typically lacks many details that x̂ may have; see,
e.g., Hansen [10, p. 180] for a discussion and references. A reason for this is that the
available data vector b is multiplied by AT in (1.5). In applications of interest to us,
the matrix AT is a low-pass filter, such as a blurring matrix, and fine details that may
be present in b are smoothed when forming AT b. These details therefore are difficult
or impossible to recover.

Two variants of Tikhonov regularization (1.4), both referred to as fractional
Tikhonov methods, have been proposed in the literature to reduce the over-smoothing
obtained with Tikhonov regularization (1.4); see [13, 16]. The method discussed in
[13] replaces the minimization problem (1.4) by the weighted least-squares problem

min
x∈Rn

{∥Ax− b∥2W + µ ∥x∥22}, (1.6)

where ∥x∥W = (xTWx)1/2 and

W = (AAT )(α−1)/2 (1.7)

for a suitable value of α > 0. We are primarily interested in 0 < α < 1; for α = 1,
the minimization problem (1.6) simplifies to (1.4). The theory developed in [8] is for
−1 < α < 1. We define W with the aid of the Moore–Penrose pseudoinverse of A
when α < 1. We note for future reference that the normal equations associated with
the minimization problem (1.6) are of the form

((ATA)(α+1)/2 + µ I)x = (ATA)(α−1)/2AT b. (1.8)

Introduce the singular value decomposition (SVD) of A,

A = UΣV T , (1.9)
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where U = [u1,u2, . . . ,um] ∈ Rm×m and V = [v1,v2, . . . ,vn] ∈ Rn×n are orthogonal
matrices, and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The singular values are ordered according to

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0,

where the index r is the rank of A; see, e.g., [3, 9] for discussions on properties and
the computation of the SVD. We will assume that A is scaled so that

σ1 = ∥A∥2 < 1. (1.10)

Substituting the SVD of A into the right-hand side of (1.8) yields

(ATA)(α−1)/2AT b = V S̃α
1 U

T b, (1.11)

where S̃α
1 = diag[σα

1 , σ
α
2 , . . . , σ

α
r , 0, . . . , 0] ∈ Rn×m. When 0 < α < 1, the components

(UT b)j , j = 1, 2, . . . ,m, of the vector UT b are damped; they are damped more for
large values of j than for small values. The damping decreases as α decreases. The
reduced damping for α < 1, compared with α = 1, is the main reason for the reduced
smoothing obtained when solving (1.6) instead of (1.4). The seminorm ∥ · ∥W in (1.6)
allows the parameter α to be chosen to improve the quality of the solution

xµ,α = ((ATA)(α+1)/2 + µI)−1(ATA)(α−1)/2AT b (1.12)

of (1.6). A detailed discussion of the smoothing properties of the method (1.6) in
terms of filter factors is provided in [13].

In numerous computed examples reported in [13], the inequality

∥xµα,α − x̂∥2 < ∥xµ − x̂∥2 (1.13)

holds when α is a positive constant smaller than unity and the regularization param-
eters µ in (1.4) and µ = µα in (1.6) are determined by the discrepancy principle.
However, computed examples reported in [8] show that for many problems the solu-
tions xµα,α of (1.6) for some 0 < α < 1 are more oscillatory than the corresponding
solutions xµ of (1.4). It is therefore not clear whether the former solutions are more
useful in applications than the latter, even when the inequality (1.13) holds. The
analysis in [8] shows that when the singular values of A decrease to zero quickly with
increasing index, or when the error e is dominated by low-frequency noise, the solution
xµα,α of (1.6) generally is a more useful approximation of x̂ than the corresponding
solution xµ of (1.4). This is confirmed by computed examples reported in [8].

It is the purpose of the present paper to seek to increase the set of linear dis-
crete ill-posed problems (1.1) for which it is advantageous to use fractional Tikhonov
regularization by modifying the penalty function ∥x∥22 in (1.6). We propose that the
ℓ2-norm be replaced by a suitable nonlinear function to reduce spurious oscillations in
the computed solution. For instance, we consider the use of TV-norm regularization

min
x∈Rn

{∥Ax− b∥2W + µ ∥x∥TV}. (1.14)

When x ∈ Rn represents a signal in one space-dimensions, we have

∥x∥TV =
n∑

i=1

|(Dx)i|,
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where the operator D is a finite difference approximation of the first-order derivative
and (Dx)i denotes the ith component of the vector Dx. The TV-norm is defined
analogously for signals in higher space-dimensions; see Section 4. Penalty functions
of the form

∥Dx∥qq =

n∑
i=1

|(Dx)i|q, x = [x1, x2, . . . , xn]
T , (1.15)

for some 0 < q < 2 also will be considered. An automatic strategy for the choice of the
parameter q for image restoration problems is provided in [18]. Computed examples
in [6, 17, 18] show ℓq-quasi-norm (q < 1) regularization to yield more accurate image
restorations than ℓ1-norm regularization. This is due to the fact that the ℓq-quasi-
norm gives sparser restorations and better preserves edges than the ℓ1-norm.

This paper is organized as follows. Section 2 reviews properties of the solution
xµ,α of (1.6) as functions of α ≥ 0 and µ > 0. Some new results for the situation
when the term µ ∥x∥22 in (1.6) is replaced by µ ∥Lx∥22 for some special matrices L are
shown. These minimization problems are simpler to analyze than the problem (1.14).
Nevertheless, results for the simpler problems shed some light on the problem (1.14).
Section 3 discusses how the computations for fractional Tikhonov regularization can
be carried out, both for small and large-scale problems. A few computed examples
that illustrate the advantages of choosing α > 0 in (1.14) are presented in Section 4,
and concluding remarks can be found in Section 5.

We conclude this section with some comments on the available literature on frac-
tional Tikhonov regularization methods. These methods were probably first described
by Louis [19] and have subsequently been analyzed by Mathé and Tautenhahn [20].
Properties of fractional Tikhonov regularization also are discussed in [13]. Com-
puted examples in [13] show that approximations of the desired vector x̂ determined
by fractional Tikhonov regularization (1.6) compare well with approximations of x̂
computed by standard Tikhonov regularization (1.4) in the sense that the inequality
(1.13) holds for many problems and values of 0 < α < 1. A recent review of the litera-
ture with new theoretical results and further computed examples are presented in [8].
Fractional Lavrentiev regularization for linear discrete ill-posed problems (1.1) with
a square positive semidefinite matrix A is discussed in [12, 21]. Iterated fractional
Tikhonov regularization has recently been described by Bianchi et al. [2].

Klann and Ramlau [16] proposed an approach different from (1.6) to reduce the
over-smoothing of standard Tikhonov regularization. They compute

xµ,γ = (ATA+ µI)−γ(ATA)(γ−1)AT b

for some γ > 1/2 and also refer to their scheme as a fractional Tikhonov method.
The vector xµ,γ simplifies to (1.5) when γ = 1. For γ ̸= 1, xµ,γ is not the solution of
a minimization problem of the form (1.6). The fractional Tikhonov method by Klann
and Ramlau [16] therefore does not naturally fit into the framework of the present
paper. Its properties are also investigated in [8].

2. Some properties of fractional Tikhonov regularization. Assume that
a fairly accurate bound, δ, for the error in b is known, i.e.,

∥e∥2 ≤ δ. (2.1)

The discrepancy principle applied to the solution of (1.6) prescribes that for a fixed
α ≥ 0, the regularization parameter µ = µα be chosen so that the solution (1.12)
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satisfies

∥Axµ,α − b∥2 = ηδ. (2.2)

Here η > 1 is a fixed parameter that is independent of δ. Gerth et al. [8] show in a
Hilbert space setting that this approach to determine µ = µα defines an order optimal
regularization method; in particular limδ↘0 xµα,α = x̂.

Computed examples reported in [8] show that the choice of η may affect the
performance of the standard and fractional Tikhonov regularization methods (1.4)
and (1.6), respectively, and that standard Tikhonov regularization typically performs
the best when η = 1. We therefore set η = 1 in the remainder of this paper unless
explicitly stated otherwise.

The value of µ such that the solution xµ,α of (1.6) satisfies (2.2) for a fixed
0 < α ≤ 1 depends on δ. It is shown in [13, Proposition 3.1] that dµ/dδ > 0, i.e., an
error e in b of large norm requires µ = µα to be larger than an error of small norm. It
follows from the expression (1.12) that ∥xµ,α∥2 decreases as µ > 0 increases for fixed
α. We therefore can expect ∥xµ,α∥2 to be smaller than ∥x̂∥2. In particular, when δ is
large, ∥xµ,α∥2 might be much smaller than ∥x̂∥2. We will, under special conditions,
show that dµα/dα ≥ 0. It follows that decreasing α from one reduces µ = µα and,
therefore, increases ∥xµ,α∥2. We remark that the solution µ = µα of (2.2) for fixed α
can be determined by a zero-finder; see [8, 13] for details.

The minimization problem (1.14) or the minimization problem with the TV-
norm penalty term replaced by (1.15) can be solved by iteratively reweighted norm
methods; see, e.g., [14, 17, 24]. These methods compute the desired solution by
solving a sequence of weighted least-squares problems. Each one of these problems
can be written as (1.4) with the penalty function ∥x∥22 replaced by a function of the
form ∥Lx∥22 with a matrix L ∈ Rp×n. We therefore are interested in investigating the
behavior of the solution xµ,α of minimization problems of the form

min
x∈Rn

{∥Ax− g∥2W + µ ∥Lx∥22}. (2.3)

Let N (M) denote the null space of the matrix M . We will assume that

N (A) ∩N (L) = {0}. (2.4)

Then the minimization problem (2.3) has a unique solution xµ,α for any µ > 0 and
0 < α < 1.

We first study the behavior of µ → xµ,α for fixed 0 < α ≤ 1. The matrix L is
not required to be of full rank. We assume for notational simplicity that m ≥ n ≥ p,
but this restriction can be removed; see below. It is convenient to use the generalized
singular value decomposition (GSVD) of the matrix pair {W 1/2A,L}. It is given by

W 1/2A = W1S1X
T , L = W2S2X

T , (2.5)

where the matrices W1 ∈ Rm×m and W2 ∈ Rp×p are orthogonal,

S1 = diag[s
(1)
1 , s

(1)
2 , . . . , s(1)n ] ∈ Rm×n, S2 = diag[s

(2)
1 , s

(2)
2 , . . . , s(2)p ] ∈ Rp×n,

and X ∈ Rn×n is nonsingular. The nontrivial entries of S1 and S2 satisfy

0 ≤ s
(1)
1 ≤ s

(1)
2 ≤ . . . s(1)n ≤ 1, 1 ≥ s

(2)
1 ≥ s

(2)
2 ≥ . . . ≥ s(2)p ≥ 0
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with (
s
(1)
i

)2

+
(
s
(2)
i

)2

= 1, 1 ≤ i ≤ p,

and s
(1)
p+1 = . . . = s

(1)
n = 1; see, e.g., [1, 3, 9] for details.

Let w = [w1, w2, . . . , wn]
T ∈ Rn. We will use the notation

(w)i:j = [wi, wi+1, . . . , wj ]
T ∈ Rj−i+1

for subvectors. We remark that the GSVD of the matrix pair {W 1/2A,L} is only used
in our analysis; it is not required by the numerical methods used for the computed
examples of this paper.

Proposition 2.1. Assume that (2.4) holds and let xµ denote the solution of
(2.3). Let m ≥ n ≥ p. Then ∥xµ∥2 decreases as µ > 0 increases. When n = p and

s
(2)
p > 0, we have limµ→∞ ∥xµ∥2 = 0. More generally, with n ≥ p and s

(2)
k > s

(2)
k+1 =

. . . = s
(2)
p = 0, it holds

lim
µ→∞

∥xµ∥2 =

∥∥∥∥X−T

[
0

(UT
1 W 1/2b)k+1:n

]∥∥∥∥
2

. (2.6)

Proof. The requirement (2.4) secures that the minimization problem (2.3) has a
unique solution xµ for any µ > 0. The normal equations associated with (2.3) are
given by

(ATWA+ µLTL)x = ATWb. (2.7)

Substituting (2.5) into (2.7) yields

(ST
1 S1 + µST

2 S2)z = ST
1 U

T
1 W 1/2b, (2.8)

whose solution zµ determines the solution xµ = X−Tzµ of (2.3). It follows from (2.8)
that

∥zµ∥22 = bTW 1/2U1S1(S
T
1 S1 + µST

2 S2)
−2ST

1 U
T
1 W 1/2b (2.9)

and, hence,

d

dµ
∥zµ∥22 = −2bTW 1/2U1S1(S

T
1 S1 + µST

2 S2)
−3ST

2 S2S
T
1 U

T
1 W 1/2b.

Thus, d
dµ∥zµ∥2 ≤ 0. The fact that d

dµ∥xµ∥2 ≤ 0 follows similarly from the expression

∥xµ∥22 = bTW 1/2U1S1(S
T
1 S1 + µST

2 S2)
−1X−1X−T (ST

1 S1 + µST
2 S2)

−1ST
1 U

T
1 W 1/2b.

Assume for the moment that p = n and s
(2)
n > 0. Then (2.9) shows that ∥zµ∥ → 0,

and therefore ∥xµ∥ → 0, as µ → ∞. More generally, let n ≥ p and assume that

s
(2)
k > s

(2)
k+1 = . . . = s

(2)
p = 0. Then it follows from (2.8) that

lim
µ→∞

zµ =

[
0

(UT
1 W 1/2b)k+1:n

]
.
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This shows (2.6).
The GSVD also can be defined for the matrix pair {W 1/2A,L} when A has more

columns than rows or L has more rows than A; see, e.g., [1, 3, 9]. Results analogous
to Proposition 2.1 can be shown also for these situations.

We will next discuss how ∥xµ,α∥ depends on α for certain regularization matrices.
This kind of regularization matrices have been investigated and applied in [22].

Proposition 2.2. Assume that (2.4) holds and let xµ,α denote the solution of
(2.3). Let A be scaled so that (1.10) holds and assume that the regularization matrix
L satisfies LTL = V DV T , where V is defined by the SVD of A (1.9) and D is a
diagonal matrix. Then, for fixed µ > 0,

∂

∂α
∥xµ,α∥2 ≤ 0.

Proof. The requirement (2.4) and the fact that µ > 0 secures that the solution
xµ,α exists and is unique; see the proof of Proposition 2.1. The normal equations
(2.7) can be written as(
diag[σα+1

1 , . . . , σα+1
r , 0, . . . , 0] + µV TLTLV

)
y = diag[σα

1 , . . . , σ
α
r , 0, . . . , 0](U

T b)1:n,

where y = [y1, y2, . . . , yn]
T = V Tx. Let

D = diag[d1, d2, . . . , dn] = V TLTLV.

Due to the semidefiniteness of D and (2.4), we have di ≥ 0 for 1 ≤ i ≤ r and di > 0
for r < i ≤ n. Introduce the vector

b̃ = [̃b1, b̃2, . . . , b̃n]
T = (UT b)1:n.

Then

yi =


σα
i b̃i

σα+1
i + µdi

, 1 ≤ i ≤ r,

0, r < i ≤ n.

It follows that

∂

∂α
∥y∥22 = 2

r∑
i=1

σ2α
i ln(σi)̃b

2
iµdi

(σα+1
i + µdi)3

≤ 0

since 0 < σi < 1 for all i. This shows the proposition.
Corollary 2.3. Assume that the conditions of Proposition 2.2 hold. Let xµ,α

solve (2.3) for some 0 < α ≤ 1 and µ > 0. Then dµα/dα ≥ 0.
Proof. The result follows by combining the signs of ∂∥xµ,α∥2/∂α and ∂∥xµ,α∥2/∂µ

shown in Propositions 2.1 and 2.2.

3. Computation with fractional Tikhonov regularization. We first discuss
the solution of minimization problems (1.14) of small to medium size. The solution
of large-scale problems is considered below. For small to medium-sized problems, we
apply the SVD of A to transform the minimization problem (1.14) to an equivalent
problem in which the seminorm ∥·∥W of the fidelity term is replaced by the Euclidean
norm. This allows us to apply already available methods for solving (1.14).
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Proposition 3.1. Let the matrix A have the singular value decomposition (1.9).
Introduce

M = V S̃
(α+1)/2
2 V T , g = V S̃

(α−1)/2
1 UT b,

where, for γ ∈ R, we define

S̃γ
2 = diag[σγ

1 , σ
γ
2 , . . . , σ

γ
r , 0, . . . , 0] ∈ Rn×n

and the matrix S̃γ
1 is defined similarly as S̃α

1 in (1.11). Let the parameter α ≥ 0 be
the same as in (1.6). Then

∥Ax− b∥W = ∥Mx− g∥2, x ∈ Rn. (3.1)

Proof. We have

∥Ax− b∥2W = xTATWAx− 2xTATWb+ bTWb

and observe that

ATWA = M2, ATWb = Mg, bTWb = gTg.

This shows (3.1).
Thus, instead of solving (1.14), we may solve

min
x∈Rn

{∥Mx− g∥22 + µ ∥x∥TV}. (3.2)

A variety of methods and software are available for solving this minimization problem.
In the computed examples described in Section 4, we use the method described by
Wen and Chan [25]. When, instead, the penalty term in (1.6) is replaced by the
term (1.15) for some 0 < q < 2, we apply the method described in [17] to solve the
equivalent ℓ2-ℓq problem

min
x∈Rn

{∥Mx− g∥22 + µ ∥Dx∥qq}. (3.3)

The method in [17] also can be applied to solve (3.2). This method determines a
sequence of approximate solutions in nested subspaces using the iteratively reweighted
norm method described in [24], and replaces the penalty terms in (3.2) and (3.3) by
weighted Euclidean norms, in which a diagonal weighting matrix is updated until a
solution of (3.2) or (3.3) has been determined. The subspaces are generalized Krylov
subspaces made up of the span of the residual vectors of the normal equations for
each weighting matrix; see [17] for details.

We remark that the minimization problem (3.3) also can be solved by other
methods, such as ADMM and proximal methods. Since the focus of the present
paper is to study the advantage of combining the fractional Tikhonov method with a
non-linear regularization term, a careful comparison of solution methods for (3.3) is
outside the scope of this investigation. Comparisons of generalized Krylov subspace
methods with the IRN method by Rodŕıguez and Wohlberg [24] are presented in
[14, 17].

The transformation (3.1) followed by the solution of (3.2) is feasible when the
matrix A is small enough to compute its SVD (1.9), or when A is large and has a
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structure that makes it possible to determine its SVD for a reasonable cost. The
latter situation arises, for instance, when A is the Kronecker product of two small
to moderately-sized matrices. Discrete ill-posed problems with a matrix A with this
structure arise in a variety of applications, including image restoration; see [4, 5] and
references therein.

We turn to the situation when A is large and does not have a structure that
can be exploited to compute its SVD in reasonable time. Then we first reduce the
original problem (1.1) by a Krylov subspace method to obtain a problem of small to
medium size to which the transformation (3.1) can be applied. For instance, applica-
tion of ℓ steps of Golub–Kahan bidiagonalization to A with initial vector b gives the
decompositions

AVℓ = Uℓ+1C̄ℓ, ATUℓ = VℓC
T
ℓ , Uℓ+1e1 = b/∥b∥2, (3.4)

where the matrices Uℓ+1 ∈ Rm×(ℓ+1) and Vℓ ∈ Rn×ℓ have orthonormal columns, and
the lower bidiagonal matrix C̄ℓ ∈ R(ℓ+1)×ℓ has positive diagonal and subdiagonal
entries. Moreover, Uℓ ∈ Rm×ℓ is made up of the ℓ first columns of Uℓ+1, Cℓ ∈ Rℓ×ℓ

consists of the first ℓ rows of C̄ℓ, and e1 = [1, 0, . . . , 0]T denotes the first axis vector.
The columns of Vℓ span the Krylov subspace

Kℓ(A
TA, AT b) = span{AT b, (ATA)AT b, . . . , (ATA)ℓ−1AT b};

see, e.g., [3, 9] for details. The number of bidiagonalization steps, ℓ, generally can be
chosen fairly small. We assume ℓ to be small enough so that no breakdown occurs.
The occurrence of breakdown is rare and simplifies the computations.

It follows from (3.4) that

min
x∈Kℓ(ATA,AT b)

∥Ax− b∥2 = min
y∈Rℓ

∥C̄ℓy − e1∥b∥2 ∥2. (3.5)

Thus, application of ℓ steps of Golub–Kahan bidiagonalization reduces a large mini-
mization problem (1.1) to the small minimization problem in the right-hand of (3.5).
Instead of solving the minimization problem (1.14) with a large matrix A, we solve
the reduced problem

min
y∈Rℓ

{∥C̄ℓy − e1∥b∥2 ∥2W + µ ∥Vℓy∥TV}.

The transformation (3.1) can be applied to the small matrix C̄ℓ.
We remark that reduction methods different from Golub–Kahan bidiagonalization

can be applied to reduce a large-scale problem to a small or moderately sized problem,
such as methods based on the Arnoldi process. A recent overview of reduction and
regularization methods for linear discrete ill-posed problems is presented by Gazzola
et al. [7].

4. Computed examples. This section presents numerical results that illustrate
the performance of the proposed fractional Tikhonov regularization methods (3.2) and
(3.3) with a TV-norm or ℓq-norm regularizer. We refer to the method (3.2) as Frac-
TV and to the method (3.3) as Frac-ℓq in the figures and tables. For all examples, we
set q = 0.6 in (3.3). These fractional Tikhonov methods are compared to standard
Tikhonov regularization (1.4) (denoted by ℓ2-Tik), the method

min
x∈Rn

{∥Ax− b∥22 + µ ∥x∥TV},
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which we refer to as ℓ2-TV, as well as to the method (1.6), which is denoted by Frac-
Tik. These methods are applied to the restoration of signals in one space-dimension
and images in two space-dimensions. The available signals are contaminated by white
Gaussian noise and Gaussian blur. The quality of the restorations computed with the
various methods is for signals in one space-dimension measured by the relative error
norm

e(x∗, x̂) :=
∥x∗ − x̂∥2

∥x̂∥2
,

where x∗ denotes the computed approximation of the desired signal x̂. For image
restoration problems, we compute the Signal-to-Noise Ratio (SNR), which is defined
as

SNR(x∗, x̂) := 10 log10
∥x̂− E(x̂)∥22
∥x∗ − x̂∥22

, (4.1)

where E(x̂) denotes the mean gray level of x̂. We tabulate the Improved Signal-to-
Noise Ratio (ISNR),

ISNR(x∗, x̂, b) := SNR(x∗, x̂)− SNR(b, x̂),

where the vector b represents the available blur- and noise-contaminated image. The
ISNR-value provides a quantitative measure of the improvement in the quality of the
restored image; a large ISNR-value indicates that the computed restoration x∗ is an
accurate approximation of the desired blur- and noise-free signal x̂ relative to b.

The relative noise contamination is measured by the noise level

ε :=
δ

∥x̂∥
,

where δ bounds the error e in b; see (1.2) and (2.1). In all examples the inequality (2.1)
is sharp. All computations were carried out in MATLAB with about 15 significant
decimal digits.

Example 4.1. This example illustrates the performance of the restoration methods
when applied to several signals in one space-dimension. Each signal has n = 200
equidistant samples. We consider a piece-wise constant signal, referred to as signal,
a signal with sharp jumps, denoted bumps, and a smooth signal, referred to as shaw.
The latter signal is generated with the function shaw from [11]. The signals signal
and bumps are corrupted by Gaussian blur and white Gaussian noise. The blur is
generated by the function

G(t) =
1√
2πσ2

exp

(
− t2

2σ2

)
. (4.2)

The parameter σ, referred to as sigma below, is the standard deviation of the Gaus-
sian distribution. Larger sigma-values give more blur. Equidistant sampling of G
determines a symmetric Toeplitz matrix T ∈ R200×200. We set the smallest elements
to zero, i.e., we approximate T by a symmetric banded Toeplitz matrix with band-
width band. This defines the blurring matrix A used in this example. Our blurring
matrix is an analogue for one space-dimension of the blurring matrix determined by
the function blur from [11] that approximates blur in two space-dimensions.

10
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Fig. 4.1. Example 4.1. All figures show the desired blur- and noise-free signal x̂ (in black).
The given contaminated signal b is shown in figure (a). Contamination is by Gaussian blur with
parameters sigma=3 and band=11, and white Gaussian noise of noise level 0.02. The remaining
figures display restorations computed by Frac-Tik (b), Frac-TV (c), and Frac-ℓq (d).

Our first illustrations show restorations of contaminations of the piece-wise con-
stant signal signal. The blurring matrix A is defined as described above with param-
eters sigma=3, and band=11. White Gaussian noise corresponding to the noise level
0.02 is added to the blurred signal; cf. (1.2). This defines the contaminated signal
that we would like to restore.

Figure 4.1 displays the exact, the contaminated, and restored signals signal. The
Frac-ℓq method is seen to deliver the most accurate restoration. Relative errors of
the restorations of the figure are shown in the second line of results of Table 4.1. The
entries XeY of the tables stand for X ·10Y. The value α = 0.1 is used for the fractional
methods; see (1.6) and (1.7). The table also displays results for other methods,
blurs, and noise levels ε, and for another α-value. The smallest relative errors are
depicted in boldface. The Frac-TV method is seen to be competitive with all methods
except for Frac-ℓq. We remark that the ℓ2-TV method is known to generally perform
well when restoring piece-wise constant signals. Table 4.1 shows both the Frac-TV
and Frac-ℓq methods to give more accurate restorations than the ℓ2-TV method.
The Frac-TV method is implemented with an algorithm based on a variant of the
proximal primal-dual method described in [25], which applies the discrepancy principle
to choose the regularization parameter. Finally, the Frac-ℓq and ℓ2-ℓq methods are
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Fig. 4.2. Example 4.1. All figures show the desired blur- and noise-free signal x̂ (in black).
The given contaminated signal b is shown in figure (a). Contamination is by Gaussian blur with
parameters sigma=1 and band=5, and white Gaussian noise of noise level 0.1. The remaining figures
display restorations computed by Frac-Tik (b), Frac-TV (c), and Frac-ℓq (d).

implemented following the approach suggested in [17]. Differently from the ℓ2-TV and
Frac-TV methods, the Frac-ℓq and ℓ2-ℓq methods require the solution of a sequence
of minimization problems (3.3) for different µ-values to determine a value such that
the computed solution satisfies the discrepancy principle.

Figure 4.2 is analogous to Figure 4.1. It differs from the latter only in that the
signal signal to be restored as been contaminated by more white Gaussian noise
and less blur. Similarly as in Figure 4.1, the fractional methods Frac-TV and Frac-ℓq
deliver the most accurate restorations.

Table 4.2 displays the relative error in restorations of a contaminated version of the
signal signal by the fractional methods Frac-Tik, Frac-TV, and Frac-ℓq for different
α-values; see (1.6) and (1.7). For all α-values, Frac-TV gives better restorations than
Frac-Tik, and the most accurate approximations of x̂ are delivered by Frac-ℓq. All α-
values in the interval [0.01, 0.3] give improvements in the restorations, when compared
with restorations determined by ℓ2-Tik. This fact and the table illustrate that the
choice of the α-value in (1.6) and (1.7) is not critical.

Results for the signal shaw are displayed in Figure 4.3 as well as by Table 4.3. The
Frac-ℓq method gives superior restorations. Since the signal shaw is smooth, methods
that use the TV-norm, i.e., ℓ2-TV and Frac-TV, do not perform very well.
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Gaussian blur with parameters sigma=1 and band=5 (α = 0.1)

ε ℓ2-Tik Frac-Tik ℓ2-TV Frac-TV ℓ2-ℓq Frac-ℓq

0.01 4.1931e-02 4.2179e-02 4.9024e-02 4.3679e-02 1.8071e-02 1.6618e-02

0.02 5.8877e-02 6.6635e-02 6.3192e-02 2.5697e-02 2.6278e-02 2.3555e-02

0.10 1.4787e-01 1.6069e-01 1.2932e-01 9.8602e-02 9.7290e-02 9.3078e-02

Gaussian blur with parameters sigma=2 and band=5 (α = 0.1)

ε ℓ2-Tik Frac-Tik ℓ2-TV Frac-TV ℓ2-ℓq Frac-ℓq

0.01 7.3733e-02 7.5839e-02 8.0086e-02 2.8287e-02 1.2721e-02 1.2524e-02

0.02 9.5036e-02 1.0035e-01 9.7589e-02 5.0231e-02 4.6128e-02 4.4535e-02

0.10 1.7461e-01 1.9253e-01 1.5257e-01 1.1815e-01 1.2521e-01 1.2492e-01

Gaussian blur with parameters sigma=3 and band=11 (α = 0.01)

ε ℓ2-Tik Frac-Tik ℓ2-TV Frac-TV ℓ2-ℓq Frac-ℓq

0.01 1.5396e-01 1.5361e-01 1.5829e-01 1.5747e-01 9.5329e-02 7.7923e-02

0.02 1.6990e-01 1.6993e-01 1.7359e-01 1.7266e-01 1.0761e-01 1.0105e-01

0.10 2.2669e-01 2.2683e-01 2.5229e-01 2.5064e-01 1.7761e-01 1.0116e-01
Table 4.1

Example 4.1. Relative errors in the restoration of blur- and noise-contaminated signals signal.
Results for different Gaussian blurs, defined by the parameters sigma and band, for three noise levels
are shown.

α Frac-Tik Frac-TV Frac-ℓq

0.01 2.4102e-01 2.0830e-01 1.5898e-01

0.05 2.4472e-01 2.0637e-01 1.5315e-01

0.10 2.5082e-01 2.0331e-01 1.4845e-01

0.20 2.7090e-01 1.6231e-01 1.3469e-01

0.30 3.1165e-01 1.5968e-01 1.4265e-01
Table 4.2

Example 4.1. Relative errors in the restored of corrupted version of the signal signal. Contam-
ination is by Gaussian blur with parameters sigma=1 and band=5 and by additive zero-mean white
Gaussian noise with noise level ε = 0.2. The restorations are determined with fractional methods
for different α-values.

The signal bumps, a corrupted version, as well as restorations are displayed by
Figure 4.4. Table 4.4 displays quantitative results for two noise levels. The signal
bumps is “rough” and Frac-TV and Frac-ℓq give more accurate restorations than the
other methods in our comparison. 2

Example 4.2. This example is concerned with image restoration. We compare the
proposed fractional Tikhonov regularization method Frac-TV to the ℓ2-TV method
for the restoration of images corrupted by white Gaussian noise and Gaussian blur.
The fractional parameter for Frac-TV is α = 0.02. Both the Frac-TV and ℓ2-TV
restoration methods determine the regularization parameter µ by the discrepancy
principle in each iteration step. The iterations are terminated when the relative
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Fig. 4.3. Example 4.1. All figures show the desired blur- and noise-free signal shaw (in black).
The given contaminated signal b is shown in figure (a). Contamination is by Gaussian blur with
parameters sigma=1 and band=5, and white Gaussian noise of noise level 0.05. The remaining
figures display restorations computed by Frac-Tik (b), Frac-TV (c), and Frac-ℓq (d).

ε ℓ2-Tik Frac-Tik ℓ2-TV Frac-TV ℓ2-ℓq Frac-ℓq

0.01 1.5415e-01 1.5349e-01 2.3594e-01 2.3509e-01 1.4528e-01 1.4352e-01

0.05 1.9258e-01 1.9283e-01 6.8813e-01 6.7791e-01 1.8618e-01 1.6801e-01
Table 4.3

Example 4.1. Relative errors in restorations of contaminated shaw signals. Noise contamination
is given by additive zero-mean white Gaussian noise with noise level ε. The fractional parameter is
α = 0.01.

difference between successive iterates x(k) is small enough, i.e., as soon as

∥x(k) − x(k−1)∥2 / ∥x(k−1)∥2 < 2 · 10−3.

The restoration methods are applied to the test image checkerboard shown in
Figure 4.5(a), which is corrupted by Gaussian blur and additive white Gaussian noise.
The blur is defined by a Gaussian function in two space-dimension, analogous to (4.2).
We measure the performance of the Frac-TV and ℓ2-TV methods in terms of the
ISNR-values of the restored images for several noise levels ε. Results are displayed
in Table 4.5. The quality of the corrupted image of Figure 4.5(a) is measured by
the Signal-to-Noise ratio (4.1). We denote this quantity by SNR0 in Table 4.5. The
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Fig. 4.4. Example 4.1. All figures show the desired blur- and noise-free signal bumps (in black).
The given contaminated signal b is shown in figure (a). Contamination is by Gaussian blur with
parameters sigma=3 and band=11, and white Gaussian noise of noise level 0.01. The remaining
figures display restorations computed by Frac-Tik (b), Frac-TV (c), and Frac-ℓq (d).

ε ℓ2-Tik Frac-Tik ℓ2-TV Frac-TV ℓ2-ℓq Frac-ℓq

0.01 4.0679e-01 4.0012e-01 2.1345e-01 1.9524e-01 1.3333e-01 1.1915e-01

0.05 6.8008e-01 6.7703e-01 6.9673e-01 6.9721e-01 6.9310e-01 6.4459e-01
Table 4.4

Example 4.1. Relative errors in restorations of contaminated bumps signals. Contamination
is by Gaussian blur with parameters sigma=3 and band=5, and additive zero-mean white Gaussian
noise with noise level ε. The fractional parameter is α = 0.01.

table shows Frac-TV to determine a restoration of higher quality than ℓ2-TV. We use
TV-norm regularization because this kind of regularization is known to perform well
for “blocky” images. The restorations of the contaminated image of Figure 4.5(a)
determined by ℓ2-TV and Fract-TV are depicted by Figure 4.5(b) and Figure 4.5(c),
respectively. 2

5. Conclusions. Fractional regularization methods have recently received con-
siderable attention. This paper describes how the use of a fractional fidelity term can
be combined with a TV-norm or ℓq-quasi-norm regularization term with 0 < q < 1.
Computed examples illustrate that the fractional regularization methods so defined
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Fig. 4.5. Example 4.2. Restoration of the checkerboard image: corrupted image contaminated
by Gaussian blur with parameters sigma=1.1 and band=3, and by white Gaussian noise of noise
level 0.2, SNR = 3.5703 (a), restoration computed by ℓ2-TV, ISNR = 4.26 (b), and restoration
computed by Frac-TV, ISNR = 6.23 (c).

ε SNR0 ℓ2-TV Frac-TV

0.1 3.67 5.36 9.19

0.2 3.42 4.26 6.23

0.3 3.19 3.71 4.96
Table 4.5

Example 4.2. ISNR values for restorations of contaminated checkerboard image. Contami-
nation is by Gaussian blur with parameters sigma=1.1 and band=3, and additive zero-mean white
Gaussian noise with noise level ε.

may determine restorations of signals in one or two space-dimensions of higher quality
than restorations obtained when the size of the regularization term is measured by
the Euclidean vector norm.
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