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Abstract: Given the strategic role that maintenance assumes in achieving profitability and competi-
tiveness, many industries are dedicating many efforts and resources to improve their maintenance
approaches. The concept of the Smart Factory and the possibility of highly connected plants enable
the collection of massive data that allow equipment to be monitored continuously and real-time
feedback on their health status. The main issue met by industries is the lack of data corresponding to
faulty conditions, due to environmental and safety issues that failed machinery might cause, besides
the production loss and product quality issues. In this paper, a complete and easy-to-implement
procedure for streaming fault diagnosis and novelty detection, using different Machine Learning
techniques, is applied to an industrial machinery sub-system. The paper aims to offer useful guide-
lines to practitioners to choose the best solution for their systems, including a model hyperparameter
optimization technique that supports the choice of the best model. Results indicate that the methodol-
ogy is easy, fast, and accurate. Few training data guarantee a high accuracy and a high generalization
ability of the classification models, while the integration of a classifier and an anomaly detector
reduces the number of false alarms and the computational time.

Keywords: fault diagnosis; novelty detection; condition monitoring; industrial machine

1. Introduction

Fault Diagnosis (FD) has been extensively studied in recent years, especially data-
driven approaches applied to condition monitoring data. In this approach, fault diagnosis
consists of collecting sensor data from machinery and finding the relationships between
their values and specific machine’s faults. In a recent review on intelligent fault diag-
nosis [1], the authors analyzed more than four hundred articles. They showed that the
research focus has moved from traditional signal processing and Machine Learning (ML)
models, mostly adopted until 2010, to Deep Learning (DL) and Transfer Learning (TL). The
diagnosis process using traditional approaches includes data collection, feature extraction
and selection, and health state recognition [2]. The critical aspect of this approach is the
extraction and selection of representative features, which require expert knowledge and
time-consuming data processing. DL-based fault diagnosis approaches solve this issue, as
the deep network structures automatically learn high-level and non-linear representations
of input data [3]. However, both ML and DL approaches require massive, labeled data
to make the diagnosis system accurate and robust. TL offers a promising solution that
uses the knowledge acquired from a source domain, for which sufficient labeled data were
available, for improving the prediction performance of a target domain, where massive
labeled data are not available [4]. Hence, TL represents a powerful tool, especially for
complex systems or machinery working under different operating and environmental
conditions. However, it relies on the assumption that there are sufficient labeled samples
for building a good classifier in the source domain.
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From the industrial perspective, the availability of a large amount of data collected
during nominal and faulty operating conditions is a critical aspect [5]. In particular, while
it is easy to obtain data in nominal conditions, data in faulty conditions are hard to obtain
given the loss of productivity and the quality, environmental, and safety issues arising
from machinery working in faulty conditions [6]. Moreover, not all fault modes are known,
and new operating conditions can occur during machine life [7]. In some cases, a physical
model of the monitored system can be built to generate off-line datasets required by a
classifier [8]. However, plant-models require investments whose return is hard to estimate.
For this reason, especially for complex systems such as automatic machinery, no model
exists to generate additional data [9]. As a result, TL-based fault diagnosis systems are not
viable solutions in industries yet; on the other hand, traditional ML-based fault diagnosis
and DL-based fault diagnosis should be built, considering the possibility to expand their
knowledge during machine functioning. In other words, offline and batch fault diagnosis
systems should be integrated with online and streaming models to recognize known
conditions and detect unknown behaviors [10].

The task of detecting new data samples that an ML model was not previously aware
of is called novelty detection [11]. Novelty Detection (ND) is traditionally considered a
one-class classification problem, in which only one class, i.e., the nominal class, is known.
Hence, it usually requires a dataset including many data samples belonging to the same
class. Then, a decision model is learned based on labeled examples during the training
phase, while a novelty detection algorithm is applied to streaming data to find the degree
of novelty or similarity of current data samples in respect to the learned class [12]. Unlike
anomaly detection and outlier detection, novelty detection aims to find a set of points not
explained from the diagnosis model, instead of one single point differing from the nominal
or known data [13]. In addition, novelty detection is also included in multi-class systems,
where there are two or more nominal classes exist, and a condition is considered novel if it
differs from all of the known classes [14]. In other words, the problem becomes recognizing
novelties and, at the same time, classifying the known instances into two or more diverse
classes. The first relevant papers on this topic were published in early 2000. In [15], the
authors highlighted how threshold-based classifiers might be appropriate for condition
monitoring and fault diagnosis systems, as they allow us to interpret an unknown fault
when none of the classifier output exceeds the defined threshold. In [16], an unsupervised
neural network named Self-Organizing Feature Map (SOFM) is first used to detect novelties
in rotary machinery; then, a supervised and probabilistic Radial Basis Function (RBF)
classifies the detected novelties in one of the known classes. Carino et al. [17] proposed
an incremental learning-based methodology for novelty detection and fault diagnosis of
an industrial electromechanical system. It consists of an ensemble one-class classifier for
novelty detection and an evolving and unsupervised classifier for fault diagnosis. More
recently, deep learning models, such as autoencoders and Long Short-Term Memory (LSTM)
networks [18–20], are used to detect novelties and simultaneously classify known nominal
and faulty conditions. Another approach to novelty detection sees novelty as a concept,
an abstraction of cohesive and representative examples, that introduces characteristics
different from known concepts [21]. In this sense, several clustering algorithms for novelty
detection in data streams have been proposed, such as OnLine Novelty Detection and
Drift Detection Algorithm (OLINDDA) [21], Higia [22], and MINAS (MultIclass learNing
Algorithm for data Streams) [12]. The idea behind these algorithms is to learn a decision
model based on labeled data during the offline training phase; then, during the online phase,
novelty patterns are recognized as unknown sets, or micro-clusters, made of examples that
the model does not explain. Even in these cases, the offline decision model can represent
different classes.

In this paper, novelty detection and fault diagnosis are conducted to detect the occur-
rence of anomalous behavior that may correspond either to a known or novel condition in
an automatic packaging machine. In particular, novelty detection is performed through an
anomaly detection algorithm and a classification model. The anomaly detector is trained
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on nominal samples. Its role is to identify samples that deviate from the nominal behavior.
Then, if two subsequent anomalies are detected, they input a pre-trained probabilistic
classification model, which computes a probability class membership for each class. If the
maximum class probability is lower than a certain threshold, the detected anomalies are
considered novel, and an alarm is triggered. In other words, thanks to the classifier that
is trained on the samples corresponding to the known faults, it is possible to determine
the kind of the anomaly (one of the known faults). On the contrary, the novel behavior
is detected when the same classifier does not classify a sample accurately (the maximum
class probability is lower than the fixed threshold). Contrary to existing approaches, in
which the pre-trained classifier always makes an inference on the data to support the
novelty detection, in this paper, the inference by pre-trained models on streaming data is
only made when two consecutive anomalies are detected. Therefore, the computational
time is reduced as the inference is only made on detected anomalies. In addition, when a
novel condition is detected, the classifier for fault diagnosis has to be re-trained to include
the novel condition. In some applications, it is a desirable, automatic re-training. The
anomaly detector before the classification model can keep the data that correspond to the
nominal condition separate. Therefore, the classification model can be re-trained using
only the data already available and corresponding to the nominal condition, and the data
collected during known and novel fault conditions. This represents an advantage in case
of limited storage memory and computational power. Additionally, keeping the number of
nominal samples included in the dataset used for re-training the classification model low
may help solve the issue of unbalanced dataset, which is a typical issue of fault diagnosis
applications. Finally, the false alarm rate can be reduced, as the subsequent classifier might
classify the detected anomalies as nominal.

The main contribution of the present study is the formulation of a complete and
easy-to-implement procedure for streaming fault diagnosis and novelty detection and its
application to an industrial machinery sub-system, for which a large amount of labeled data
and a limited amount of faulty data are available. In particular, this paper uses different
ML techniques for fault diagnosis and anomaly detection and evaluates them in terms of
the ability to provide, in their whole, indications about the occurrence of novel behaviors.
Finally, the paper aims to offer useful guidelines to practitioners to choose the best solution
for their systems, including a model hyperparameter optimization technique that supports
the choice of the best model.

The remaining of the paper is organized as follows. Section 2 provides the theoretical
background of Machine Learning-based fault diagnosis, novelty detection, and feature
extraction and selection models. Moreover, the framework of the proposed solution and
the models adopted in this study are described. Section 3 describes the analyzed system
and the data collected for validating the methodology. In addition, it shows the results of
the application of the methodology to this system. Finally, Section 4 concludes the paper
with final remarks and future research.

2. Materials and Methods

Fault diagnosis is a typical pattern recognition problem that can be solved through
Machine Learning models for classification. Classification is a supervised learning task
that requires a complete dataset including both predictors and the associated target class
for each observation. In fault diagnosis, the predictors correspond to the features that are
extracted from raw signals using signal analysis techniques, and the target class indicates
the system’s conditions, such as healthy, fault, or the type of fault. The classifier’s task is to
search for rules representing the relationship between features and faults [23].

Classification is usually performed in two steps, named training and testing. First,
the whole dataset is divided into two subsets, named training set and testing set. The
training set is used to learn the relationships between the features and the classes, and then
a classifier algorithm is chosen that can apply these rules successfully to the observations
in the testing set [24]. Finally, the actual class is compared with the class predicted by
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the classifier to assess its prediction accuracy. The selection of the classification algorithm
is a critical aspect of the classification process. There are no precise rules for choosing a
specific classifier, and there is no classification algorithm that works best for every problem.
Each case requires comparing different classifiers to choose the most suitable model for
the case under analysis. In general, a good classifier should have low complexity and
high generalizability. A low complexity model can rarely fit the data in the training set
optimally, resulting in a high error in both training and testing data. This problem is also
called underfitting. A more complex model can be chosen to fit the data better and achieve
a lower training error. However, increasing the complexity means reducing the model’s
generalization ability, which is demonstrated by a higher prediction error on the test set.
This problem is also known as overfitting. Hence, a good classification model should find
the optimal trade-off between the complexity and the generalization ability, also named
the bias–variance trade-off [25]. A solution to estimate the training and testing errors and
evaluate a classifier is to apply the k-fold cross-validation. According to this technique, the
whole dataset is divided into k non-overlapping sets, and the training-test cycle is repeated
k times. One of the k sets is held for testing at each iteration, while training is performed
on the remaining k − 1 sets [26]. In this way, k different prediction accuracy values are
obtained, and the final accuracy of the model can be obtained by averaging the k values.
Classifiers have two kinds of parameters, as do all Machine Learning models, named
ordinary parameters and hyper-parameters [27]. The learning process in the training
phase corresponds to the learning of ordinary parameters. On the contrary, the hyper-
parameters are set before training and can either be set manually by the user or optimized
through automatic selection methods. Hyper-parameters optimization (HPO) has several
advantages, including reducing manual effort, improving model accuracy, and support
model selection [28].

Fault diagnosis is usually performed in one step, as described in this section. However,
by definition, diagnostics also include a previous phase named fault detection, which aims
to assess if a fault has occurred [29]. This step is beneficial when novel behaviors need to be
detected. In these cases, fault detection is usually faced through anomaly detection models,
which aim to discover patterns in data that do not conform to expected behaviors [30].
Hence, anomaly detection is mainly devoted to recognizing the observations in a set of data
that are far away from the majority of nominal data and thus are supposed to contaminate
the available dataset [13]. On the contrary, novelty detection is a more suitable task when
a novel fault behavior must be recognized. The goal of novelty detection is to recognize
novel conditions that can evolve during machine running [11]. It is a Machine Learning
problem that aims to identify new concepts in unlabeled data [31]. Novelty detection is
often faced as a one-class classification problem, in which classification models are trained
only on the nominal class [32]. In these cases, the training procedure is the same as the
multi-class classification. In other cases, unsupervised learning-based models, such as
clustering models, are used when novelties need to be recognized in streaming data [22,33].
Clustering approaches can be based on distance measures or density measures. The idea is
that nominal samples are very close to each other in the feature space, i.e., nominal clusters
are very dense, while anomalies or novelties are far from the nominal cluster and very
sparse [34].

In this paper, novelty detection is performed through an anomaly detector and a
classifier. Hence, basic concepts of the learning paradigm briefly described at the beginning
of the present section for fault detection and fault diagnosis represent the basis for the
novelty detection approach presented in this paper.

2.1. The Methodology

The proposed methodology consists of two parts, i.e., offline training and online
condition monitoring, depicted in Figures 1 and 2, respectively. The offline training
includes the typical diagnostic process steps, i.e., data collection, feature extraction, feature
selection, model selection, and model training for fault classification [2]. This phase aims to



Appl. Sci. 2021, 11, 9580 5 of 18

find the best feature subset and the best models for fault detection and diagnosis (novelty
detection). The online condition monitoring aims to assess the current condition of the
monitored system. Hence, based on the output of the training phase (green squares in
Figure 1), it evaluates if the extracted feature vector from a signal segment of a defined
length can be classified into the nominal class, into one of the known faults, or corresponds
to a novel behavior.

The methodology was coded in Python using several libraries, e.g., Numpy, Pandas,
SciPy, and Sci-Kit learn. For models training and testing, an Intel® CoreTM i7- CPU @
2.8 GHz and 16.0 GB RAM workstation has been used.

The following subsections describe each part of the methodology.

Figure 1. Offline Training.

Figure 2. Online condition monitoring.

2.1.1. Data Collection: The Industrial Case

Data collection consists of collecting data able to reveal the health condition of a com-
ponent/system. These data can be vibrations, acoustic emissions, currents, temperatures,
and others, and the choice depends on the kind of system/component and the already
available sensors [35]. The data collected for fault diagnosis should include the nominal
and all possible fault conditions. However, data collection in fault conditions is challenging
in industrial contexts due to safety, time, and economic issues. This difficulty is particularly
evident for machine producers, who only can collect data during quality tests [36]. In these
cases, as in the present case study, faults are manually induced on the system, and signals
are collected for few minutes in each condition. For this reason, the system is assumed
to either function correctly or not. In addition, these faults do not cause the system’s
breakdown but introduce unacceptable qualitative issues on the product.

In this paper, a case of an automatic machinery of a manufacturer operating in the
pharmaceutical sector is considered. The machine under analysis is a packaging line made
of two parts connected by an automatic robot. The first section is a thermoforming machine
that realizes the products in different materials; the second section is a cartooning machine,
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which packs the product into the carton. The machine can produce up to 320 products per
minute and more than 260 cases per minute. This paper analyzes failures and malfunctions
of the sealing group, which is placed in the first section and is responsible for sealing
the two parts of the product. The group includes two tables, in which the film flows
horizontally and continuously, allowing the sealing at a low temperature. Each sealing
cycle consists of five steps: (1) the top table goes up, (2) the tables close, (3) the cover
is sealed to the base, (4) the tables open, and (5) the parts return to the initial position.
Figure 3 depicts the trend of the measured signal during a sealing cycle, which is divided
into 5 areas, corresponding to the steps of the process. Each cycle lasts 800 milliseconds,
and the sampling frequency of the sensor is 1000 Hz. Table 1 summarizes the test performed
on the system with the corresponding number of cycles included in the test. In total, four
conditions are available, i.e., nominal, fault 1, fault 2, and fault 3. The condition “restored”
is assumed to be equal to the nominal one. Hence, almost 50% of the available dataset
corresponds to the nominal condition, while the remaining part includes three different
fault conditions.

Figure 3. Signal of one cycle of the welding process in the nominal condition.

Table 1. Available dataset.

Dateset Condition Number of Cycles

D1 Nominal 1 360
D2 Fault 1 240
D3 Fault 2 200
D4 Restored 1 70
D5 Fault 3 100
D6 Restored 2 110
D7 Nominal 2 108
D8 Nominal 3 48
D9 Fault 1 93
D10 Fault 3 90

In Figure 4, the differences between the nominal condition and the three fault condi-
tions in a cycle are shown. As it is possible to see, the more significant difference occurs
during step 4. Indeed, while signals are identical in peaks 1, 2, and 4, in step 4, faulty
signals assume greater values than the nominal condition.
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Figure 4. Cycle differences between nominal and faulty conditions.

2.1.2. Feature Extraction and Selection

Feature extraction is a critical aspect of fault diagnosis [37]. Condition monitoring data
are weak, meaning that they are not directly correlated to the fault information. In addition,
signals are collected from machinery at high frequencies to gain as much informative
content as possible. Instead of using raw signals, the fault diagnosis process includes a
signal processing step to extract synthetic and relevant fault features.

Features are usually extracted in the time, frequency, or time–frequency domain from
signal segments of a certain length. In this case, the length is set to 800 ms, equal to the
cycle duration. In addition, only time-domain features are extracted, as they require low
computational time for calculation and are suitable for streaming applications. In particular,
ten typical time-domain features are extracted for each cycle, i.e., peak, peak-to-peak, mean,
absolute mean, RMS, crest factor, skewness, kurtosis, shape factor, and impulse factor [38].
The trend of the extracted features in each condition is shown in Figure 5. During the
nominal condition, an initial increasing trend can be observed for some features, e.g.,
kurtosis, which corresponds to the warm-up phase of the machine. Finally, fault 3 is very
similar to the nominal condition. Indeed, the signal collected with this sensor is not able
to capture the fault information. As the company already provided the susbsyem with
another sensor, that collects a signal able to reveal the health condition of the machinery,
further investigation using other kinds of features, e.g., extracted in the time–frequency
domains, was not performed.

In most ML methods, feature selection before fault diagnosis helps to improve the final
classification accuracy [39]. Indeed, feature extraction leads to an increase in the feature
vector dimension. However, not all the extract features can affect fault diagnosis. Therefore,
the optimal features that have intrinsic information about the faults should be retained [40].
In other words, the information retained in the feature subset must demonstrate sensitivity
to variation in events observed by a system [41].

Feature selection aims to reduce the number of variables in a dataset by selecting
the more discriminative variables and eliminating the redundant ones [42]. In contrast to
dimensionality reduction techniques, feature selection does not apply any transformation
to the original feature set. Therefore, feature selection preserves the original physical
meaning of each variable. For this reason, it is particularly suitable for fault diagnosis in
industrial contexts [43].
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Figure 5. The trend of the extracted features during the nominal condition (blue), fault 1 (orange), fault 2 (yellow), fault
3 (violet).

Different evaluation measures and search techniques are used to produce a suitable
feature subset in feature selection [44]. In this paper, the Pearson correlation analysis and
the Recursive Feature Elimination (RFE) have been applied, as they are two widespread
approaches used in the context of fault diagnosis. Pearson’s correlation analysis is a filter-
based method used for redundancy elimination. It assumes that if two variables have
a high linear relationship, they contain redundant information [45]. A fixed threshold
usually determines if features are highly correlated or not. The RFE is a supervised feature
selection method, which assigns a weight to the features based on a particular classification
model and recursively removes the features with the most negligible weight [46].

In the present paper, first, the Pearson correlation is conducted, and a threshold equal
to the absolute value of 0.9 is chosen. Then, the correlation matrix is first built using the
Pearson correlation coefficient computed among all features and expressed by Equation (1).

rXY =
Cov(X, Y)√

Var(X)Var(Y)
=

∑i(xi − x)(yi − y)√
∑j (xj − x)2 ∑k (yk − y)2

(1)

where X and Y are two random variables, Cov(X, Y) is the covariance of the two variables,
Var(X) and Var(Y) are the variance of the variable X and Y, respectively, xi and yi are two
observations of X and Y, respectively, and x and y are their mean values. The Pearson
correlation coefficient, rXY, is always included in the range [−1, 1], where −1 indicates
that the two variables are negatively correlated, 1 indicates that the variables are positively
correlated, and 0 that the variables do not correlate. After the correlation matrix construc-
tion, an iterative process for feature elimination is conducted. Hence, for each column, and
for each row, if rXY ≤ −0.9 or rXY ≥ 0.9, the column is eliminated.

The Pearson correlation analysis does not consider the effect of each feature on the
classification accuracy. For this reason, the RFE, which is a wrapper model, is also applied
to evaluate the selected features’ goodness. The model adopted within the RFE is the
Decision Tree.

2.1.3. Fault Diagnosis

Three different classification models are trained for the classification of four condi-
tions, i.e., Decision Tree (DT), Support Vector Machine (SVM), and k-Nearest Neighbor
(k-NN) [47,48].

A Decision Tree is a classifier expressed as a recursive partition of the instance space.
The decision tree consists of a root node that contains all observations. Then, observations
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are split into nodes according to a specific splitting rule until a defined termination criterion
is met. The terminal node is named leaf, in which the observations are assigned to the
class representing the most appropriate target value. Alternatively, the leaf may hold a
probability vector indicating the probability that the target attribute has a certain value.
The probability is estimated as the class frequency among training instances that belong to
the leaf for each leaf. One of the parameters affecting the complexity of the tree is its depth,
which is usually considered in the hyper-parameters optimization process to find the best
trade-off between prediction accuracy on the training set and the generalization error.

The Support Vector Machine (SVM) is, in its initial version, a two-class linear classifier,
in which the learning process consists of designing a hyperplane that maximizes the margin
given by the distance between the hyperplane and its closest observations, i.e., the support
vectors, in the features’ space while maintaining the correct class division. When the dataset
is not linearly separable, the system can incorrectly classify some observations and pay the
price, called penalty error (C), in the objective function. In addition, non-linearly separable
original space might be transformed into a linearly separable space through the use of
a kernel. Different kernel functions are used in SVMs, such as linear, polynomial, and
Gaussian Radial Basis Function (RBF). The selection of the appropriate kernel function is
crucial, as the kernel defines the feature space in which the training set observations will be
classified. For this reason, the kernel and the penalty error are the primary hyperparameters
to optimize.

k-Nearest Neighbor algorithm is an instance-based learning algorithm in which new
observations are classified by comparing them with the most similar in the training set.
The assumption is that input data of the same class should be closer in the features space.
Therefore, for a new input data, the algorithm computes the distance between the data itself
and all the observations of the training set: the new observation will be assigned to the
class of its k nearest neighbors. Alternatively, the method can make discrete predictions by
reporting the relative frequency of the classes in the neighborhood of the prediction point.
The number of neighbors, k, is a critical issue as it highly affects classification accuracy.
Large values of k reduce the effect of outliers but reduce the boundaries evidence between
two classes; on the other hand, small values of k increase the probability of overfitting the
data. Hence, the optimal value k needs to be determined.

For the training of each model, the k cross-validation with k = 10 is used to prevent
overfitting, while the Grid Search (GS) [49,50] is used for hyperparameters optimization.
Table 2 shows the set of hyperparameters used for each model and the values range.
In particular, the polynomial kernel function considered in the SVM is a third-degree
function, and the γ value used in the Radial Basis Function (RBF) kernel function is equal
to γ = 1

2σ2 = 1(
n f eatures∗∑j (xj−x)2

) =, where σ2 is the sigma square value, n f eatures is the

number of features, and ∑j (xj − x)2 is the variance of input variable X.
In order to evaluate the performance of each classifier, several parameters can be

defined. Here, precision and recall are considered. Precision measures how many samples
classified in the positive class are positive, and it is computed through Equation (2). Finally,
the Recall, also named Sensitivity or Probability of Detection, measures how well the
classifier recognizes the positive samples, and is defined in Equation (3).

Precision =
TP

FP + TP
(2)

Recall =
TP

FN + TP
(3)

where:

• TP (True Positive) is the number of observations correctly classified as positive;
• FP (False Positive) is the number of negative observations classified as positive;
• FN (False Negative) is the number of positive observations classified as negative.
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Table 2. Hyperparameter range values.

Model Hyperparameter Range

Decision Tree Maximum depth {1 – 15, 20}

Support Vector Machine C
Kernel

{1, 5, 50, 100, 500, 1000}
{linear, rbf, polynomial}

k-NN K {1 – 15, 20}

2.1.4. Anomaly Detection

Three different anomaly detection algorithms are trained to determine the most
suitable model for detecting anomalous behaviors. Hence, models are only trained on the
nominal class, and then they are tested and evaluated using two different metrics.

First, a variant of the traditional k-means clustering method is applied. K-means is
a distance-based algorithm that requires only the number of clusters, k, to be set a priori.
For novelty detection, k-means is trained only on a small subset of the available nominal
dataset (k = 1). In this application, the training set size is set equal to 100 cycles. Then, to
make it suitable for streaming applications, a sliding window method is used. Hence, for
each new data sample, the previous x data samples and the current sample are input to the
algorithm. The sliding window method ensures a faster application, as it is able to keep
only the last x values in memory, instead of the whole dataset. In this application, a sliding
window including ten points is considered. In addition, the algorithm makes the inference
only on one point at iteration as the x values have all been already assigned, except the last
one, that is, the current one. Finally, as the classic k-means is expensive for large datasets,
the mini-batch k-means (MBKm) proposed in [51] is used for streaming novelty detection.

The second trained model is the One-Class Support Vector Machine (OCSVM). Unlike
traditional SVM, the training phase of the OCSVM consists of finding the boundary,
i.e., the margin, that accommodates most of the training points. Test data samples are
then considered outliers if they fall beyond the identified boundary [52]. Even in this
case, to make the algorithm work in streaming, a sliding window is considered during
model application.

Finally, the last trained model for anomaly detection is an ensemble of autoen-
coders. Among classification-based models, Deep Learning, and in particular autoen-
coders, showed better performance than conventional methods in various real-world
applications [53]. The autoencoder is a neural network composed of two parts. The en-
coder part transforms the large-dimensional input data into a small set of features, while the
decoder part reconstructs the data from the extracted features, generating a reconstruction
error. In this application, the ensemble of autoencoders, named kitNET [54], is used. In this
architecture, a feature mapper level maps the input features into k sub-instances, one for
each autoencoder in the next level. The ensemble of autoencoders constitutes the anomaly
detector, which aims to detect the anomalies based on a threshold on the reconstruction
error, which is expressed in terms of Root Mean Square Error (RMSE). The training phase
takes place in the ensemble layer, in which the autoencoders learn the nominal behavior of
the input sub-instances and reconstruct the input minimizing RMSE. Then, the minimum
RMSEs are sent to the output layer, which is responsible for the anomaly score assignment
during the execution phase. The higher the error, the higher the anomaly score of the
test samples. In this application, the threshold on the reconstruction error is set equal to
0.5, while the number of autoencoders is set to 10. For the training phase, 500 nominal
observations are used.

In order to evaluate how well the trained models recognize anomalies, two metrics
have been used, i.e., the probability of detection, or recall, and the false positive rate (FPR)
The first metric is computed through Equation (3).

The second metric evaluates how well the model recognizes the nominal observations
and is defined by Equation (4). In other words, a high value of this metric implies a high
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number of false alarms, i.e., points belonging to the nominal class, recognized as anomalies
by the model [55].

FPR =
FP

FP + TN
(4)

where TN (True Negative) is the number of observations correctly classified as negative.

2.1.5. Online Condition Monitoring

The output of the offline training consists of (1) the best feature subset, which contains
the minimum information for class separation; (2) the best classification model, which can
accurately classify the known conditions in a short time; and (3) the best anomaly detection
model, which can distinguish the nominal condition from all other conditions. These
outputs will be used in the online phase to assess the current condition of the monitored
machinery and establish if a novel behavior occurred.

In the online phase, data are collected continuously in streaming, while the online
inference is made by the fault detection and diagnosis models at each cycle. Hence, the
selected feature subset is extracted every 800 ms, and the so-obtained feature vector is
input to the anomaly detection model, which determines if it belongs to the nominal class
or not. In the first case, the algorithm ends and goes to the next cycle. Otherwise, a counter
is incremented by one, and the algorithm goes to the next cycle. When the value of the
anomaly counter is equal to 2, the trained classification model is applied to determine the
belonging class of the past two points. Then, if the maximum Class Probability Estimation
(CPE) is higher than a certain threshold, the fault has been diagnosed, and the machine can
be stopped. Otherwise, the detected anomaly does not correspond to any of the known
conditions. In this case, an alarm is triggered, and a check by the machine user may be
required to determine whether the novel behavior is a fault condition or not.

3. Results

In this section, the main results of the present study are provided. First, datasets
corresponding to all available machinery conditions are considered in the training phase in
order to select the best feature subset, the best classification model, and the best anomaly
detection model in the hypothesis to know all the machinery behaviors. In this scenario,
the online monitoring phase has the only objective of identifying points corresponding to a
condition change as anomalies and classifying them in the correct fault class. Note that one
dataset for each condition (e.g., dataset D1 for the nominal condition) is considered for the
training, except for fault 2, for which the only available dataset is used for both training
and online testing. In a second scenario, fault 2 has been removed from the training dataset
to evaluate the novelty detection ability of the methodology. The datasets used in both
scenarios for the training and the online testing are summarized in Table 3.

Table 3. Testing Scenarios.

Scenario Training Datasets Online Testing Datasets

1 D1 + D2 + D3 + D5 D1 + D7 + D8 + D2 + D9 + D4 + D6 + D3 + D5 + D10
2 D1 + D2 D1 + D7 + D8 + D2 + D9 + D4 + D6 + D3

The feature subset represents the first output of the methodology described in previous
sections. The ten statistical features extracted in the time domain (see Section 2.1.2) are
used to build the Pearson correlation matrices of both scenarios, shown in Figure 6a,c,
respectively. It can be seen that, in both cases, some of the extracted features have a
high correlation, such as the mean and the mean of the absolute values, which have a
correlation coefficient equal to −0.98 (Figure 6a). In this case, the mean absolute on the
column is eliminated, while the mean on the raw is kept. This process is repeated until
the whole matrix is analyzed. In the end, for scenario 1, only four features, i.e., peak,
peak to peak, the mean, and the skewness, are selected, whose correlation coefficients are
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shown in Figure 6b. For scenario 2, the peak, peak to peak, and the skewness are selected
(Figure 6d). As the described method is affected by the features’ order in the correlation
matrix, the Pearson correlation analysis is repeated after randomly changing the features’
order. In this case, instead of the mean value, the shape factor has been selected. However,
the mean correlation index, computed as the arithmetic mean of the absolute values of
the Pearson coefficients in the correlation matrix, is similar in both matrix configurations.
To further evaluate the goodness of the selected features, the RFE algorithm is applied,
which assigns a score equal to 1 to both feature subsets selected through the Pearson
correlation analysis. This score confirms that the selected features have a low correlation
and positively contribute to the classification accuracy.

Figure 6. Pearson correlation matrix of the whole set of features (a) and Pearson correlation matrix of the selected features
(b) in scenario 1. Pearson correlation matrix of the whole set of features (c) and Pearson correlation matrix of the selected
features (d) in scenario 2.

The fault classification model represents the second output of the methodology. Sev-
eral considerations lead to choosing a model rather than another. First, the best model
should have the highest precision and recall. In addition, as the selected model will be
applied to streaming data and provide real-time results, the execution time, i.e., testing
time, is also critical. Finally, the model should potentially deal with an infinite amount of
data. Hence, it has to be scalable and trained on a large data set quickly. Table 4 summarizes
the results in terms of precision, recall, and velocity and scalability, obtained from the
application of the grid search algorithm. In addition, the selected hyperparameters for
each model are also present in the table. In scenario 1, the model with the best precision
and recall is the k-NN that, with k = 3, achieves the 95.1% of precision and the 93.7% of
recall. However, k-NN has low scalability, as it computes the distance between a point and
all other points at each iteration, making the process time-consuming for large datasets.
Similar performances are also provided by the SVM, which has high scalability. In addition,



Appl. Sci. 2021, 11, 9580 13 of 18

its execution time is equal to 0.02 s. However, the basic SVM does not provide the class
estimation probability. As one of the main goals of the present study is to provide an
industrial solution that is easy to implement, and as both precision and recall of DT are
slightly worse than those of the SVM, the DT has been chosen for the online fault diagnosis.
In scenario 2, all models have the 100% of precision and recall.

The last output of the training phase is the model selection for real-time anomaly
detection. The three models introduced in Section 2.1.4 are evaluated in terms of the
metrics defined by Equations (3) and (4). In addition, they are also compared in terms
of execution time as they have to process streaming data and provide real-time feedback.
The application of mini-batch k-means, one-class SVM, and kitNET led to the results
summarized in Tables 5–7, respectively. In addition, the parameters set by the user for each
model are also present.

Table 4. Fault diagnosis performance of scenario 1 (S1) and scenario 2 (S2).

Scenario 1 Scenario 2

Model Hyperparameters
(Hyp.)

Optimal
Hyp. Precision Recall Optimal

Hyp. Precision Recall Velocity and
Scalability

DT Maximum depth 9 92.3% 92.5% 5 100% 100% High

SVM C
Kernel

1000
RBF 95.0% 93.6% 1

Linear 100% 100% High

k-NN K 3 95.1% 93.7% 1 100% 100% Low

Table 5. Parameters and results of the mini batch k-means of scenario 1 (S1) and scenario 2 (S2).

Scenario 1 Scenario 2

Parameter Value Execution
Time (sec) Recall FPR Execution

Time (sec) Recall FPR

K 2
6.7 0.3% 37.21% 1.98 0.41% 10.38%Initialization time 100 cycles

Amplitude of the sliding window 10

Table 6. Parameters and results of OC-SVM of scenario 1 (S1) and scenario 2 (S2).

9 Scenario 1 Scenario 2

Parameter Value Execution
Time (sec) Recall FPR Execution

Time (sec) Recall FPR

Initialization time 100 cycles
1.2 100% 61.42% 0.13 97.2% -%Amplitude of the sliding window 10

Table 7. Parameters and results of kitNET of scenario 1 (S1) and scenario 2 (S2).

9 Scenario 1 Scenario 2

Parameter Value Execution
Time (sec) Recall FPR Value Execution

Time (sec) Recall FPR

Initialization time (feature mapping) 100 cycles

0.13 100% 6.54%

100 cycles

0.04 100% 0%
Initialization time (anomaly detection) 400 cycles 400 cycles

Number of autoencoders 10 10
Threshold 0.5 0.5

In both scenarios, kitNET is the best model from all perspectives. It is fast, has the
highest recall and the lowest false positive rate. On the contrary, the mini batch k-means
has low values of recall, and the value of the false positive rate is lower than the FPR of
the OCSVM in the first scenario. In the second scenario, the FPR of OCSVM cannot be
computed, as both false positives and true negatives are equal to zero. As a result, the
kitNET has been chosen for the online monitoring.
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After the training phase, the online condition monitoring has been tested. The pseudo-
code of that phase is shown in Table 8. For the scenario 1, the data flow has been generated
by sequence the observations corresponding to the nominal condition (D1 + D7 + D8),
fault 1 (D2 + D9), restored condition (D4 + D6), fault 2 (D3), and fault 3 (D5 + D10).
In scenario 2, the online testing has been carried out on datasets D1, D7, D8, D2, D9, D4,
D6, and D3. The first 300 cycles are used for the initialization. Hence, the anomaly detector
is only activated after 300 cycles. Then, at each iteration k, i.e., every 800 ms, the following
steps are carried out.

Table 8. Pseudo-code of the online condition monitoring.

Initialize:

Input: Optimal feature subset, cycle duration (d), trained DT, trained kitNET, Anomaly threshold
(Tha) classification threshold (Thc)
While i < d
Do nothing
k = 1
Compute optimal features
Apply kitNET and assign the anomaly score

If anomaly score < (Tha)
Increment k by 1

End
Else

Increment a by 1
End

If a ≥ 2
Apply DT and compute the CPE for each known class c

If max
c

CPE > (Thc)

If max
c

CPE for c = nominal

Increment k by 1
End
Else

Fault corresponding to class c occurred
Stop the machinery

Break
Else

A possible novel behavior has been detected
Generate an alarm

Break
End
End

First, the selected features are extracted. Then, the feature vector is input to kitNET,
which computes the anomaly score. If the reconstruction error is lower than the fixed
anomaly threshold (Tha), the feature vector is considered nominal, and the algorithm goes
to the next iteration. If the reconstruction error is greater than or equal to Tha for two
consecutive feature vectors (stored in the counter a), the feature vectors are input to the
Decision Tree, which assigns the class probability membership to the labeled observations.
If the maximum probability is greater than the fixed classification threshold (Thc), the pre-
dicted class is considered accurate. Hence, if the predicted class is nominal, the algorithm
goes to the next iteration. Otherwise, a warning message indicating the occurred fault is
generated, and the machinery is stopped. If the maximum probability is lower than Thc,
a possible novel behavior occurred, and a human check may be required to establish the
anomaly’s cause. Note that the choice of the minimum number of detected anomalies
that have to occur before the classifier activation is made with the goal of finding a good
trade-off between the false alarm rate and the latency of the classifier. A single anomaly
would generate a greater probability of error. On the other hand, if the classifier is activated
after more than two anomalies, the fault or the novel behavior would be recognized after
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three cycles. In this case, it would mean that at least 12.8 products would be discarded for
quality issues.

Note that the algorithm was not stopped in the online condition monitoring if a known
fault was recognized in order to test the methodology. However, in real applications, if a
fault is detected, the machinery should be stopped as soon as possible.

In the first scenario, the algorithm correctly classified observations belonging to the
nominal class, fault 1, and fault 2. On the contrary, the change from the restored condition
and fault 3 was not detected. Hence, observations belonging to fault 3 were wrongly
considered nominal. Moreover, in eighteen cases, the kitNET detected two anomalies in
a row. However, the DT classified them as nominal with a class probability membership
value equal to 1. Therefore, no alarm was generated. Note that, as models were trained
with four classes in this scenario, the classification threshold was set equal to 0.5.

In the second scenario, observations belonging to the nominal condition and fault 1
were correctly classified. When fault 2 occurred, the kitNET detected two anomalies in
a row. Hence, the DT was applied, which assigned a class probability value of 0.87 and
0.13 for the fault 1 and nominal class, respectively. As models were trained with only two
classes in this scenario, the classification threshold was set equal to 0.9. Hence, when fault
2 occurred, an alarm indicating that a possible novel behavior occurred was generated.

4. Discussion and Conclusions

The results presented in the previous section led us to draw several considerations.
First, the computational time for both training and online condition monitoring is

low. In particular, in the online monitoring, the inference by the classification models is
only made when anomalies are detected. Indeed, a streaming labelling of nominal data
might not be necessary as, in many industrial situations, nominal data are much easier to
collect. Therefore, the lack of nominal data labelling allows reducing the computational
time of online monitoring, which is less than 7 s in the first scenario and less than 3 s
in the second scenario. In addition, when a novel behavior is detected, the classification
model can be re-trained only adding the samples corresponding to the fault conditions
to the already available dataset. In this way, it is not necessary to keep in memory all
nominal samples, which represents an advantage for edge applications, in which the
storage memory is limited.

Second, the high values of precision and recall obtained on the test set demonstrate the
high generalization ability of the selected model for fault diagnosis. Indeed, the datasets
used for the training and the online monitoring were different in most cases. For each
condition, except for fault 2, datasets were collected on different days. For instance, D1
and D7 were both collected in the nominal condition. However, only D1 was used in the
training phase.

Third, results demonstrate that the classification accuracy is not affected by transients.
Indeed, most datasets contain the warm-up phase of the machinery. However, thanks to
the feature selection steps and, in particular, to the RFE technique that uses a classification
model to identify the best feature subset, the increasing trend of some extracted features
that can be seen at the beginning of each dataset (see Figure 5) does not influence the
classification accuracy. Avoiding the pre-processing step on the available datasets is an
essential aspect in real applications, where many transients could be present.

Finally, an evident positive aspect is the minimization of false alarms. First, using
kitNET for anomaly detection, the false positive rate is equal to 0%. Second, the use of a
classifier after the anomaly detection has a double function. On the one hand, it allows
classifying the observations in one of the known fault classes. Hence, it makes possible the
diagnosis of the detected anomaly. On the other hand, it allows classifying the detected
anomalies in the nominal class if the anomaly detector made an error.

Another important consideration is related to the feature selection phase. In particular,
two different feature subsets are selected in the two scenarios, i.e., peak, peak-to-peak,
mean, and skewness in the first scenario, and peak, peak-to-peak, and skewness in the
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second scenario. Hence, in the hypothesis that fault 2 is unknown, i.e., the training is based
only on datasets corresponding to the nominal condition, and fault 1, only three features
would be selected. Nevertheless, the anomaly corresponding to the occurrence of fault 2 is
detected. On the contrary, the extracted features are not able to recognize fault 3. However,
as suggested by the company’s technical office, fault 3 can only be seen by monitoring
another kind of parameter with another type of sensor.

The last consideration is related to the anomaly threshold Tha and the classification
threshold Thc, which the user in the present paper manually sets. The anomaly threshold
can be considered an inherent parameter of kitNET and, as such, could be tuned through
several optimization techniques. A more critical parameter is the classification threshold,
as it affects the ability to detect novelties. In general, it should be higher when models are
trained with few classes. However, a limitation of the proposed methodology lies in the
absence of a generalizable way to set this parameter.

We can conclude that the methodology is easy, fast, and accurate. It can detect anoma-
lies corresponding to known faults and to novel behavior during the online monitoring
of the sealing sub-system of a packaging machine. Few training data guarantee a high
accuracy and a high generalization ability of the classification models. The integration of a
classifier and an anomaly detector effectively reduces the false alarms and the computa-
tional time. Future developments of the current research will be dedicated to application of
DL for anomaly detection to raw signals in order to eliminate its dependency on extracted
features and increase the classification accuracy [56].
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