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SUMMARY

Objective:Immunofluorescence diagnostic systems cost is often dominated by high-sensitivity, low-noise
CCD-based cameras which are used to acquire the fluorescence images. In this paper we investigate the use
of low-cost CMOS sensors in a point-of-care immunofluorescence diagnostic application for the detection
and discrimination of four different serotypes of the Dengue virus in a set of human samples. Methods:
A two-phase post-processing software pipeline is proposed which consists in a first image enhancement
stage for resolution increasing and segmentation, and a second diagnosis stage for the computation of the
output concentrations. Results: We present a novel variational coupled model for the joint super-resolution
and segmentation stage, and an automatic innovative image analysis for the diagnosis purpose. A specially
designed Forward Backward-based numerical algorithm is introduced and its convergence is proved under
mild conditions. We present results on a cheap prototype CMOS camera compared with the results of a
more expensive CCD device, for the detection of the Dengue virus with a low-cost OLED light source. The
combination of the CMOS sensor and the developed post-processing software allows to correctly identify the
different Dengue serotype using an automatized procedure. Conclusions: The results demonstrate that our
diagnostic imaging system enables camera cost reduction up to 99%, at an acceptable diagnostic accuracy,
with respect to the reference CCD-based camera system. The correct detection and identification of the
Dengue serotypes has been confirmed by standard diagnostic methods (RT-PCR and ELISA). Copyright ©
0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Variational image processing, image segmentation, image super-resolution, immunofluo-
rescence technique, CMOS image sensors

1. INTRODUCTION

Among several areas of applications of image sensors, a significant field is fluorescence microscopy.
Imagers can be used in different contexts: from the visualization of particular features in cell cultures
to the detection of fluorescent spots in experiments of indirect immunofluorescence, where the
detection of the fluorescent optical signal allows to determine the presence of antibodies against a
certain pathogen in the biological fluid under analysis [17, 20]. The immunofluorescence technique
is currently applied in human medical diagnostic but can be applied also to other diagnostic fields,
ranging from veterinary medicine to environmental science, from water analysis to nutritional
studies. Recently, this technique has been applied in the development of a multi-parametric
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diagnostic point-of-care system based on OLED [28, 27]. While biological and chemical sensors
based on OLED have already been presented in literature ([33, 6, 1, 32] and ref. therein), the most
of them are mono parametric and the detection of the fluorescent signal is performed with a photo
diode (organic or silicon based) which could also be directly integrated to the disposable bio-chip.
Moreover, in standard protein or DNA micro-array the fluorescence excitation is obtained scanning
a laser beam through the bio-probes matrix and collecting the signal with a photo-multiplier or
using a high sensitivity scientific CCD camera. In the diagnostic system that we will consider in
this paper a different approach has been considered. In particular, a matrix of different antigens has
been deposited (in drops of 1 µl each) on a transparent plastic substrate. After the reaction with the
biological fluid under analysis and a second reaction with a fluid containing secondary antibodies
tagged with a fluorophore, the fluorescent signal of the bounded region in the probe matrix has been
excited by the OLED, using the same parameters as described in [28, 27]. The weak fluorescence
signal emitted by the excited fluorophore was then collected by a high sensitivity scientific CCD
camera. The image was then manually segmented in order to separate the salient foreground from
the noisy background, and finally the task of detection of the intensity of the region of interest as a
measure of the presence of the antibodies against the specific disease in the biological sample was
realized by human experts.

The depicted state-of-the-art Immunofluorescent Diagnostic System presents two main
disadvantages: a high cost due to the CCD camera used and a time consuming procedure due to
the involvement of human experts.

The main contributions of this paper are summarized as follows.

• We design a low-cost diagnostic imaging system by replacing the expensive CCD cameras
with a cheaper CMOS imaging sensor, equipped with a post-processing software framework
which can guarantee the same accuracy results;

• We propose a novel variational model which integrates super-resolution and segmentation
for the first stage of the post-processing software framework with an automatic parameter
selection.

• We introduce an automatic diagnosis procedure for a quick, standard and reliable computer-
aided diagnosis imaging system.

Such an automatic diagnosis procedure can also allow an increased flexibility in the antigen spots
positioning in the matrix for creating a low-cost point-of-care device by avoiding, for example, the
use of an expensive mechanical robot that arranges with high spatial precision several antigen spots
in the matrix. For this purpose, recently, some companies, such as Or-el d.o.o. proposed to replace
the highly expensive CCD camera with cheaper CMOS cameras. It is the first time, to our best
knowledge, that a low cost and compact CMOS detector is used for fluorescence signal detection
and quantification in an OLED-based low density protein micro-array bio-chip. This solution allows
for an improved miniaturization of the integrated fluorescence reader system opening the way to
fast, cheap and accurate measure of low density multi-parametric protein or DNA micro array, ideal
to be used in hand-held portable point-of-care diagnostic systems. However, the use of a CMOS
camera is subjected to well-known issues. In general, CMOS cameras provide noisier images, and
some cameras, in order to limit the cost, strongly reduce the resolution of the image. For this reason
a post-processing phase on an image acquired by a CMOS camera is required to overcome these
problems and produce diagnostic results comparable to those produced by a CCD camera, thus
encouraging the usage of these low-cost image devices in a fluorescence microscopy context. The
proposed diagnostic imaging system, starting from the detected fluorescence signal captured by the
CMOS sensor, named fluo-image in the following, permits to produce automatic output results for
the identification of the kind of pathogen present in the biological sample and for the quantification
of the antibody concentration in the sample under analysis. We follow a pipeline strategy: in the first
stage the corrupted fluo-image undergoes to a super-resolution and segmentation procedure which
allows for the extraction of salient spots of interests, which will be analyzed in the second stage in
terms of intensity distribution and shape for the identification of the kind of pathogen present and
the quantification of its concentration in the sample.
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Figure 1. Pipeline of the diagnostic imaging system: image super-resolution and segmentation (Stage 1), and
diagnosis (Stage 2).

In the following we first introduce in Section 2 the methodological overview, then in Section 3 we
briefly describe some related work about both the OLED-based diagnostic system, and the image
processing methods. In Section 4 we present the proposed coupled variational model for super-
resolution and image segmentation which realizes Stage 1 of our diagnostic imaging system. In
particular, we first describe the mathematical model providing theoretical results on its resolvability
in Section 4.1, the numerical solution is derived in Section 4.2 by an iterative forward-backward
type strategy which is proved to converge under mild conditions, and finally we summarize the
algorithm in Section 4.3. In Section 5 we present the validation of the proposed diagnostic imaging
system. More precisely, we evaluate the performance of Algorithm SR-SEG for super-resolution
and segmentation in Sections 5.2 and 5.3, respectively, and in Section 5.4 we show the performance
of the overall processing chain based on the analysis of the suitable metrics proposed in Section 5.1.
Finally, in Section 6 we draw our conclusions and some possible future developments.

2. METHODS

In our experiments, we will consider a new kind of serological diagnostic for the detection and
discrimination of the four different serotypes of the Dengue virus in a set of human samples [14].
In these experiments a matrix of four spots, each corresponding to a specific Dengue serotype, has
been deposited on a transparent substrate for the reaction with human sera. It should be noted that
the four Dengue serotypes can present a problem of cross-reactivity so it is possible to have more
than one fluorescent spot in the same matrix, but the brightest spot intensity allows to determine
the specific serotype present in the patient blood. In particular, we investigate the performance of a
prototype CMOS cameras, where samples are subjected to an OLED illumination, based on a large-
pixel, low-cost CMOS sensor, comparing them to the same sample images acquired by a unique
CCD reference camera (Hamamatsu C8484-03G). Some features extracted from the data sheets of
the two considered cameras are reported in Table I.

Compared to the high-cost CCD camera (the price of the CCD camera used in our tests is about
e10 000), the prototype considered CMOS device is cheaper and around e100. We remark that
commercial CMOS camera prices range in the order of few thousands Euros. In this work we
demonstrate that a post-processing procedure enables automatic computer-aided diagnosis with a
significant decrease of costs based on robust, efficient and reliable variational methods.

In Fig. 1 we illustrate the pipeline of the overall automatic Immunoflurescent Diagnostic Imaging
System. The images acquired by the low-cost devices, such as the P-CMOS camera do not present
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Table I. Some features of the CCD and P-CMOS devices.

Hamamatsu ORCA-03G Prototype camera
Imaging device CCD CMOS
Pixels number 1344 × 1024 24 × 24
Image size 168 × 128 (binning 8) 24 × 24
Cell size (in µm ) 6.45 × 6.45 130 × 130
Effective area (in mm ) 8.67 × 6.60 3.12 × 3.12
Frame rate (full res.) 8.9 frames/s -
A/D converter 12 bit 12 bit
Full well capacity 15 000 e -
Dynamic range 2142:1 > 85dB
Exposure time 10 s to 10 s (rapid rolling mode) 100 us to 100 s
Operating ambient temp. 0◦C to +40◦C −15◦C to +85◦C
Power requirements DC 12 V, 50/60 Hz 5.0 V
Power consumption 24 VA < 30mW
Cost ∼ e10 000 ∼ e100

an accentuated degradation caused by noise. However, the super-resolution process is strongly
suggested for the success of the application of the segmentation tools.

In Stage 1, the low resolution captured fluo-image undergoes a background subtraction and a joint
super-resolution and segmentation process which enlarges the image and produces four segmented
regions R1, R2, R3, R4. This holds the potential to avoid failures in segmentation due to excessively
coarse or rough boundaries and makes the entire process automatic, robust and efficient.

The four segmented regions are processed in Stage 2 by the diagnosis module illustrated in
Fig.1, which detects both the order of intensities and the quantitative measures of the associated
concentrations s1, s2, s3, s4. More precisely, the four segmented regions are processed by computing
the intensity mean value of the pixels for each region thus identifying both the order of brightness
and the concentration associated with each spot. Consequently, the brightest spot intensity allows
to determine the specific serotype present in the patient blood. In particular, we applied the imaging
system to the serological diagnostic for the detection and discrimination of the four different
serotypes of the Dengue virus, denoted by D1, D2, D3, and D4 in Fig.1, in a set of human samples.

3. RELATED WORKS

3.1. Related work on OLED based bio-sensors

The first researches on OLED based bio-sensors have been made by two different research groups:
the Donald Bradley group from Imperial College London, [21], and the Ruth and Joseph Shinar
group from Ames Laboratory-USDOE Iowa State University, [35]. They investigated first the use
of OLEDs as integrated light source in different kinds of biological sensor based on fluorescence
detection of tagged probes. After these pionering works, other groups worldwide have followed this
approach, see [33, 32, 1], concentrating their attention on liquid or gas flow based systems, where
the samples and the fluorescent probes are dispersed, allowing the detection of a single biological
parameter. In these studies, a strong attention to the bio-sensor integration was payed and the OLED
was integrated into the biosensor together with the light detection system, normally a photodiode
(organic or silicon based) and cannot be re-used for other analysis. Moreover, the sensitivity of these
bio-sensors was rather low. More recently, authors in [28, 27] have demonstrated the feasibility of an
OLED-based biochip using a protein (or a DNA) micro-array integrated with a properly optimized
OLED source. This configuration is suitable for a multiparametric diagnostic test. In latter studies,
an OLED source, specifically optimized in term of spectral emission tuned with the fluorophore
absorption, has allowed to obtain a high bio-detection sensitivity. For all these experiments a high
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sensitivity CCD camera was used as high resolution detector. A similar idea was also followed in
[24], which have also adopted a multiplex detection of a biological probes array always using an
OLED as fluorescence excitation source. In their experiments they have used a photodiode array
to detect the light emitted by the different fluorescent spots. However this system present a limited
spatial resolution and is limited by the number of photodiodes that can be used in the detection
system. As an evolution of the studies described in [28, 27], the research presented in this paper
aims at substituting the expensive and bulk high sensitivity CCD camera with a cheaper and smaller
CMOS sensor, preserving the diagnostic sensitivity and allowing a cost reduction of the diagnostic
point-of-care reader. In our system the OLED is not anymore integrated in the biosensor, being its
lifetime sufficiently long to perform several analysis. Rather, it is fitted to the portable reader used
to read the transparent substrate, where the protein or DNA micro-array are arranged.

3.2. Related work on Image Super Resolution

Single Image Super Resolution (SISR) is an inverse problem which aims to estimate a High
Resolution (HR) image from a single Low Resolution (LR) image. Existing methods to solve
SISR problem can be classified in four categories. Interpolation based algorithms, ranging from the
classical nearest neighbour, bilinear and bicubic interpolation, estimate the unknown pixels in HR
grids by using an analytical representation in a specific base. Their drawbacks, as oversmoothing,
ringing and jaggies artifacts, have been partially overcame using a priori edge knowledge on
the image [25, 7]. Example-Based SISR methods learn the high frequency details lost in the
input LR image from a training database-image composed by LR and HR image pairs and their
performance heavily depends on the correlation between test images and training database [23].
Sparse representation-based algorithm are inspired by similarity of sparse representations of LR
and HR images, considering an appropriately chosen over-complete dictionary. This is usually based
on seeking for a sparse representation for each patch of the low-resolution input, whose coefficients
are then used to generate the high-resolution output, [37, 13]. Reconstruction-based algorithms
enforce the consistency between the blurred and dowsampled version of the estimated HR image
and the observed LR image (fidelity term), imposing the well- posedness of the solution by a proper
regularizer (regularization term) in a variational framework.

The super-resolution strategy that we proposed and integrated in the diagnostic imaging system
can be classified as a reconstruction-based method.

3.3. Related work on Image segmentation

Image segmentation is a relevant problem in the understanding of biological vision. There exist
many different way to define the tasks of segmentation (template matching, component labelling,
thresholding, boundary detection, quad-trees, texture segmentation) and there is no universally
accepted best segmentation procedure.

The methods range from the simplest and classical region-based segmentation methods and Otsu’s
methods [18], to the more efficacy and sophisticated variational methods, recently proposed in
literature. Among the variational segmentation models, the most popular are the Mumford-Shah
non-convex piecewise constant and smooth models [31]. A variety of methods have been developed
to generalize it. The segmentation method recently proposed by Cai, Chan and Zeng in [5] aims to
minimize a convex version of the Mumford-Shah functional by finding an optimal approximation
of the image based on a piecewise smooth function. Another very popular relaxation method of
the Mumford-Shah functional is the so-called method of active contours without edges (Chan-Vese
model) introduced in [9] which seeks for an approximation of a given image with a piecewise
constant representation.

The segmentation method we proposed relies on the variational model introduced in [5],
combining it with a super-resolution strategy.
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4. THE JOINT SUPER-RESOLUTION AND SEGMENTATION MODEL

4.1. The variational model

For our diagnostic imaging system we propose a coupled super-resolution and segmentation
approach which relies on a variational model to solve an inverse super-resolution problem and on
image thresholding to derive segmentations from the recovered piecewise smooth image. The key
idea of the method is that one can obtain a good segmentation by properly thresholding a piecewise
smooth and enlarged approximation of the given LR image g.

To the best of our knowledge this is the first variational model with this main goal to achieve.
From a mathematical point of view the functional to be minimized is a three terms convex functional
which, at the first glance, differs from the proposal in [5] only for the two regularization parameters,
which in our case, are chosen to be a space-variant function and an automatically selected parameter.
However, since the operators involved, the mathematical meaning of the terms is quite different, thus
strongly affecting the resolvability of the model, and also the numerical implementation is different.

The input in our proposal is a LR given image and the solution of the optimization problem
produces a HR piecewise smooth image. In particular, using the lexicographically stacked
representation of an image, the relationship between the original HR image u ∈ ΩH = RN2×1 and
the LR observation g ∈ ΩL = Rn2×1 obtained by an up-sampling factor s > 1, that is N2 = s2 n2,
can be mathematically modeled as:

g = DB u+ ζ = Au+ ζ (1)

where B ∈ RN2×N2

is the space invariant point spread function of the camera for the LR image,
D ∈ Rn2×N2

is the subsampling matrix, A ∈ Rn2×N2

represents the global linear operator linking
the HR image and the LR image, and ζ denotes the noise, which is assumed as an unknown additive
white Gaussian noise.

The key step in our model is solving a minimization problem of the form

u∗ ∈ arg minu∈ΩH

{
F(u;λ) =

1

2
∥Au− g∥22 + λ∥Lu∥1 + ∥E1/2Lu∥22

}
(2)

where λ > 0 is a scalar parameter, L := [L1 L2]
T , L1, L2 ∈ RN2×N2

is the 2N2 ×N2 linear
operator with L1, L2 first-order difference operators along the horizontal and vertical directions, E ∈
R2N2×N2

is a diagonal matrix E := diag(η1, . . . , ηN2 , η1, . . . , ηN2), with positive scalar elements
ηi specified below. The first regularization term ∥Lu∥1 represents the classical Total Variation (TV)
seminorm [26], that is the ℓ1-norm of the image gradient magnitude defined as follows

∥Lu∥1 :=

N2∑
i=1

∥(Lu)i∥2 =

N2∑
i=1

√
(L1u)2i + (L2u)2i , (3)

while the second regularization term reads as follows

∥E1/2Lu∥22 =

2N2∑
i=1

ηi(Lu)
2
i . (4)

The fidelity term in (2) imposes the consistency between the reconstructed HR image and the
observed LR image, the first regularization term penalizes the length of the region boundaries,
and the second one smooths the inner regions. The role of E is to preserve the boundaries of the
segmented regions while allowing to smooth the interior parts, as in the original Mumford-Shah
segmentation model [31]. For this purpose, we define the function η : R+ → [0, 1] as follows

η(s) :=
1

1 +
(
s
τ

)2 , (5)
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with a given parameter τ > 0, which acts as an edge detector operator when applied to si =
∥(Lu)i∥22. Therefore the diagonal elements of E are ηi = η(si), i = 1, . . . , N2 and represent space-
variant regularization parameters.

The ℓ1-norm is classically used as regularization term since among convex regularizers it induces
sparsity most effectively. This choice is motivated by the fact that in our application context the
fluo-images are characterized by strong gradient sparsity.

Once the HR image u∗ is computed by solving (2), then the final segmentation is simply given by
thresholding u∗ into different regions. The thresholds can be given by the users or can be obtained
automatically using any clustering methods. In our immunofluorescent context the threshold values
are automatically given according to sensitivity of the acquisition device, thus the super-resolution
segmentation model (2) can be classified as un-supervised, where the number of regions is not fixed
in advance. As a consequence, problem (2) does not need to be solved again when the number of
regions required is changed.

In the following proposition we first prove that problem (2) admits at least one solution, then, in
Section 4.2 we provide an efficient algorithm to determine an approximate solution.

Proposition 1
For a given parameter λ > 0, the minimization problem (2) admits at least one solution.

Proof
The first term 1

2∥Au− g∥22 in (2) is continuous and coercive and, moreover, being A obtained by
downsampling the blurring matrix B, it holds that 1 /∈ Ker(A), where 1 denotes the vector with all
entries equal to 1, and Ker(A) is the null space of A. It follows that

Ker (A) ∩ Ker (L) = {0} , (6)

where Ker (L) is the null space of the gradient operator L, namely the space of the constant vectors.
Note that the scalar factor E1/2 does not affect Ker (L). Then, by Proposition 2.1 in [10] we can
conclude that F(u;λ) is coercive and the set of minimizers of F(u;λ) is nonempty.

4.2. Applying a Forward Backward scheme for the numerical solution

The proposed model (2) is convex, but nonsmooth, thus for its numerical solution we resort to an
iterative Forward-Backward (FB) scheme. For this purpose, we rewrite model (2) as follows:

u∗ ∈ arg minu∈ΩH {F(u;λ) = H(u) +R(u)} , (7)

where H(u) = 1
2∥Au− g∥22 + ∥E1/2Lu∥22 and R(u) = λ∥Lu∥1, and we assumed E is a diagonal

matrix of positive constant values.
H(u) is smooth, convex and continuously differentiable with ℓ−Lipschitz continuous gradient:

∥∇H(u)−∇H(z)∥2 ≤ ℓ∥u− z∥2, u, z ∈ ΩH ,

and R(u) is nonsmooth and convex.
For any vector z ∈ ΩH and β > 0, we consider the following quadratic approximation of H(u) at

z in the objective functional F(u, λ) in (7):

Q(u, z) = H(z)+ < u− z,∇H(z) > +
1

2β
∥u− z∥22 +R(u) (8)

which is equivalent to

Q(u, z) = H(z) +
1

2β
∥u− (z − β∇H(z))∥22 −

β

2
∥∇H(z)||22 +R(u). (9)

A minimizer of (9) at u is iteratively determined by setting z = uk−1 in Q(u, z), and ignoring
u−independent terms, thus obtaining the Backward Step

uk = arg minu∈ΩH
Q(u, uk−1)

= arg minu∈ΩH

{
R(u) + 1

2β ∥u− vk∥22
}

= proxβR(vk),

(10)
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where vk is updated by the explicit Forward Step

vk = uk−1 − β∇H(uk−1) (11)

with
∇H(uk−1) = AT (Auk−1 − g) + LTEk−1Luk−1. (12)

and Ek−1 is the E matrix where the elements are evaluated on the solution uk−1 obtained at the
previous iteration.

Observing that the Backward Step (10) consists in a standard ℓ2−TV denoising, we can efficiently
compute it by using the dual approach in [8] or by the more efficient Alternating Directions Method
of Multipliers algorithm [4].

We now analyze convergence of the proposed FB-based minimization approach, whose main
computational steps are reported in Section 4.3.

The convergence of a generic Forward-Backward iterative scheme is proved for the problem

minu {H(u) +R(u)} (13)

under the following assumptions

A1) H(u) and R(u) are two proper, lower semicontinuous convex functions;

A2) H(u) is differentiable with ℓ−Lipschitz continuous gradient;

A3) H(u) +R(u) is coercive;

A4) β ∈
(
0, 2

ℓ

)
(see also [15], Chapter 12 and references therein).

More precisely, the above convergence result is proved in [11] when the proximity operator is
available in exact form, and in [36, 3] when it can only be computed up to a certain precision, as in
our case.

In the following proposition we provide the conditions under which the above assumptions A1)-
A4) hold, thus proving the convergence of the proposed FB-scheme (11)-(10) for the solution of the
optimization problem (2).

Proposition 2
For a fixed E, the iterative FB-scheme (11)-(10) converges to at least one solution of (2) for
β ∈

(
0, 2

ℓ

)
where ℓ = λmax(ATA+ LTEL), and λmax(·) denotes the maximum eigenvalue.

Proof
By Proposition 1 it follows that H(u) +R(u) is coercive. Moreover, using (12), we easily obtain
that

∥∇H(u)−∇H(z)∥2 = ∥(ATA+ LTEL)(u− z)∥2 ≤ ∥(ATA+ LTEL)∥2∥u− z∥2. (14)

Since the elements of the matrix E are positive, matrix (ATA+ LTEL) is positive, semi-definite
and symmetric, then ∥ · ∥2 = λmax(·), hence the Lipschitz constant of the operator H(u) is ℓ =
λmax(ATA+ LTEL).

4.3. Algorithm SR-SEG

In the following we describe in detail Algorithm SR-SEG which represents the numerical solution
of stage 1 in the diagnostic imaging system. In particular, in Algorithm SR-SEG first part (outer
loop), we report the main steps of the proposed FB-based iterative scheme used to determine an
approximate solution uk+1 of the minimization problem (2). Finally, in the last step, the boundaries
of the segmented regions are evaluated by thresholding uk+1 into K regions.

The Algorithm uses the LR image g to provide the enlarged image u0 = AT g as the initial iterate.
The outer loop terminates the iterations as soon as the relative change between two successive
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iterates satisfies
∥uk − uk−1∥2 / ∥uk−1∥2 < 10−4.

The model (2) solved by (11)-(10) is strongly dependent on the choice of the λ parameter, which
must be estimated correctly in order to obtain accurate solutions to the problem.

We propose to adopt an automatic estimation for λ which introduces an iterative Outer
continuation loop which, starting from a reasonable value for λ0, decreases its value properly, and
uses it to solve at each iteration an iterative Inner FB loop.

This strategy, often successfully used under the name of continuation [19, 16], does not increase
much the computing time of FB-scheme since each outer iteration uses as starting point the previous
iterate (warm starting), and the stopping criterion in the inner loop (repeat loop) depends on the
value of λi, namely γ · λi, with γ ≤ 1.

In the inner loop, the FB-scheme (11)-(10) is solved, Ek is a diagonal matrix with elements
obtained by applying the function η(·) in (5) to the gradient magnitude of the approximated vector
uk, and it is initialized as a zero vector. Then a correction to the solution is applied by implementing
a FISTA acceleration technique [2]. At each iteration step k, this improves the estimate yielded
by FB-scheme performing a specific linear combination with the unmodified previous iterate
using coefficient αk. This preserves the computational simplicity of our scheme, but significantly
improves its convergence speed.

In the rest of this section we provide details on the reduction rule for λ we adopted for each outer
iteration. It is common to make use of the empirical reduction rule λi+1 = r · λi, where r ∈ (0, 1)
is the reduction factor, which is usually chosen as r = 0.5. As has been pointed out in [30], this
does not appear to be the optimum choice. Hence, in our work, we use an iterative updating of the
parameter λi as

λi+1 = λi ·
F
(
ui;λi

)
F (ui−1;λi−1)

(15)

which is supported by the following results which guarantee the descent property of the functional
F(u;λ).

Proposition 3
Let λi−1 and λi be the two values of the λ parameter satisfying λi−1 > λi and uλi−1

, uλi

, are the
corresponding minimizers of (2). Then, the functional F(u;λ) satisfies

F(uλi−1

;λi−1) > F(uλi

;λi). (16)

Proof
From the definition of F(u;λ), and the characterization of uλi

, it follows that:

F(uλi−1

;λi−1) =
1

2
∥Auλi−1

− g∥22 + λi−1∥Luλi−1

∥1 + ∥Eλi−1

Luλi−1

∥22

>
1

2
∥Auλi−1

− g∥22 + λi∥Luλi−1

∥1 + ∥Eλi−1

Luλi−1

∥22

≥ 1

2
∥Auλi

− g∥22 + λi∥Luλi∥1 + ∥Eλi

Luλi∥22 = F(uλi

;λi).

5. METRICS AND RESULTS

In Section 5.1 we introduce the performance metrics used to evaluate the overall system, in
Section 5.2 and 5.3 we compare Algorithm SR-SEG proposed in Section 4 for image super-
resolution and segmentation, respectively. Finally, the statistical analysis in Section 5.4 will allow
us to evaluate how the proposed post-processing pipeline affects the performance of the automatic
Immunofluorescent Diagnostic System.



10 D. LAZZARO, S. MORIGI, P. MELPIGNANO, E. LOLI PICCOLOMINI, L. BENINI

Algorithm SR-SEG

Inputs: g ∈ ΩL, K , τ > 0, β satisfying conditions in Prop. 2
Output: û with K segmented regions.

u0 = AT g;
Outer continuation loop
for i = 0, 1, 2, . . . until convergence do:

k = 0

tk = 1

Inner Forward-Backward loop
repeat

Forward Step
vk+1 = uk − β(AT (Auk − g) + LTEkLuk)

Backward Step
ũk+1 = proxβR(vk+1)

Correction of the solution

tk+1 = (1 +

√
1 + 4(tk)2)/2, αk =

tk − 1

tk+1

uk+1 = ũk+1 + αk(ũ
k+1 − ũk)

until
|F

(
uk+1;λi

)
−F

(
uk;λi

)
|

|F
(
uk+1;λi

)
|

< γ · λi

Update the parameter λ as in (15)
Update E as in (5)
Warm Starting: u0 = uk+1

end for

û = Threshold(uk+1,K)

5.1. Performance metrics

Before analyzing the numerical results, in this section we present some metrics that, given the nature
of our problem, are aimed to provide diagnostically meaningful quality metric for the comparisons
detailed in Section 5.4.

M1 (Sort Matching). From the diagnostic point of view, we are interested both in the identification
of the brightest spot in the image, which denotes the specific serotype present in the serum under
analysis, and in the detection of other significant bright areas among the other spots, which identify
the presence of cross-reactivity. Therefore, we order the four segmented spots on a given sampled
image, following a decreasing concentration (intensity) order, and we compare the order obtained
by the CMOS acquisition with respect to that obtained by the CCD acquisition of the same
sample, considering the image captured by the CCD image sensor the ground-truth for the test. Let
si, i = 1, 2, 3, 4, be the calculated concentration in the i-th region, we count the positive matches,
thus obtaining a matching score between 0 (no match) and 4 (full match). This score is a qualitative
index that measures the correct ranking (order) of intensities among regions. We refer to this metric
as M1 in the experimental Section 5.4.

M2 (Similarity Test). The similarity between the four concentrations si detected by CCD and
CMOS cameras, can be measured as the relative proportions among the corresponding intensities of
the four spots in a given sampled image. Let s̄ = 1

4

∑4
i=1 si, be the mean value of the intensities over

all the four detected spots in the sample image. Defining, for each spot, the variation in percentage
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from the mean value s̄, as

pi =
(si − s̄) · 100

s̄
, i = 1, 2, 3, 4,

then the displacement between corresponding concentrations detected in CCD acquisition and those
obtained by CMOS acquisitions is measured by

M2 =
1

4

4∑
i=1

|pi,CCD − pi,CMOS |. (17)

Smaller values for M2 identify better similarity between the two acquisitions.
M3 (Goodness-of-linear-fit). To encourage the use of inexpensive CMOS sensors, with respect to
CCD devices, we are interested in investigating if a map between the intensity values on the image
captured by the CCD and those significantly lower captured by CMOS exists. For this purpose we
construct the best linear fitting polynomials using regression analysis, then we determine how well
the model fits the data by computing the goodness-of-fit R-squared (R2) statistic, also known as
coefficient of determination. In particular, we compute the metric M3 as follows:

M3 = 1−R2 =

∑4
i=1(si,CCD − ŝi)

2∑4
i=1(si,CCD − s̄CCD)2

where ŝi is the value predicted by the model in the i-th region. In general, the lower the M3 values,
the better the linear model fits the data.

5.2. Results on image super resolution

In this section we evaluate the super-resolution performance of Algorithm SR-SEG, which
implements a SISR method, on 2D synthetic and real images, and we provide a comparison with the
most relevant state-of-the-art super-resolution methods, and with the classical Bicubic method [18].
In particular, we chose four representative SISR approaches, namely the methods TIP-ASDS-IR
[13], ELAD-TIP14 [34], LANR-NLM [23], and NCSR [12]. The codes we used have been provided
by the authors, and the parameters in the codes were chosen by trial and error to give the best results
of each method. All the numerical computations are performed using MATLAB R2016b on an Intel
i7-3770 CPU with 16 GB RAM.

The high resolution (HR) test images are shown in Fig. 2, and include both photographic images,
namely Butterfly, Cameraman and Satellite (256 × 256), and geometric images such as Geometric
(380 × 380), Synthetic, Shape1, Shape2 (256 × 256), as well as a real image Fluo-image (64 × 64).

The low resolution (LR) images have been synthetically generated by their corresponding HR
versions by applying a Gaussian blur operator, with bandwidth 7 and standard deviation 1.6, and
finally downsampled by a factor s = 3.

We evaluated the super resolution results based on the Peak-Signal-to Noise Ratio (PSNR) and
on Structural SIMilarity index (SSIM). In particular, PSNR is defined by

PSNR(u, û) := 20 log10
max(û)√
MSE

dB,

where u is an available approximation of the original HR image û and MSE = 1
N2

∑N2

i=1(ui − ûi)
2

represents the mean squared error. This measure provides a quantitative measure of the quality of u.
A large PSNR-value indicates that u is an accurate approximation of û; however, the PSNR-values
are not always in agreement with visual perception.

SSIM index, designed to improve on traditional methods such as PSNR and MSE, measures the
similarity of image u using û as the reference image, and it is defined as

SSIM(u, û) =
(2µuµû + c1)(2σuû + c2)

(µ2
u + µ2

û + c1)(σ2
u + σ2

û + c2)
(18)
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Butterfly Cameraman Satellite Geometric

Synthetic Shape1 Shape2 Fluo-image

Figure 2. Test Images

Table II. Super-resolution results: PSNR (first row), SSIM (second row).

Image Bicubic [13] [34] [12] [23] OUR E = 0 OUR

Butterfly 21.36 26.97 26.72 27.75 26.01 26.75 26.89
0.7632 0.9028 0.8977 0.9111 0.8681 0.9078 0.9097

Cameraman 22.90 24.98 24.90 25.27 24.70 24.73 24.76
0.7381 0.8251 0.8179 0.8259 0.8110 0.8162 0.8168

Satellite 23.02 25.50 25.42 26.03 25.20 26.20 26.25
0.8347 0.9116 0.8879 0.9187 0.8819 0.9317 0.9322

Geometric 19.13 23.06 24.95 23.85 23.90 29.53 31.23
0.7874 0.8760 0.8946 0.8696 0.8641 0.9703 0.9786

Synthetic 25.90 30.27 30.48 31.15 29.30 32.53 45.67
0.9395 0.9791 0.9713 0.9799 0.9595 0.9887 0.9995

Shape 1 28.30 31.19 31.49 32.36 30.4 34.11 43.05
0.9375 0.9706 0.9676 0.9512 0.9537 0.9852 0.9967

Shape 2 27.22 32.31 32.13 31.81 31.91 34.11 43.05
0.9182 0.9681 0.9679 0.9748 0.9583 0.9852 0.9967

Fluo-image 24.01 29.08 29.26 28.48 28.6 29.58 29.74
0.7656 0.9242 0.9186 0.9270 0.8857 0.9286 0.9299

where µu, σ
2
u, µû, σ

2
û, σuû are the local means, standard deviations, and cross-covariance for u and

û, respectively, and c1 = (k1L)
2, c2 = (k2L)

2 are two regularization constants, with L = 1 and
k1 = 0.01, k2 = 0.03.

In Table II we report for each test image the PSNR values (first row) and the SSIM index (second
row), for every super-resolution method considered in the performance comparison. The last two
columns report the performance results of the proposed super-resolution approach, (first part of
Algorithm SR-SEG) named OUR, both setting ηi = 0, i = 1, . . . , N2 in E (marked as E = 0 in
Table), and updating the diagonal elements of E at each iteration by means of (5). We set the
parameter β = 1.5, which satisfies the bound β ∈ (0, 2

ℓ ) following the condition proved in Prop. 2.
The best PSNR/SSIM results are marked in boldface. The updating of the ηi allows for significant
accuracy improvement with respect to the basic setting of all the diagonal elements zeros in E. In
Table III we report the results of the comparisons in terms of execution times in seconds. From Table
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Table III. Super-resolution results: execution times in seconds.

Image Bicubic [13] [34] [12] [23] OUR E = 0 OUR

Butterfly 0.028 135.14 8.47 179.11 31.8 5.27 11.01
Cameraman 0.028 118.18 8.67 168.18 31.4 3.52 16.10
Satellite 0.028 14.96 8.50 164.80 31.4 19.49 19.86
Geometric 0.036 219.32 15.80 283.11 49.1 6.08 6.10
Synthetic 0.028 108.20 8.67 154.29 31.5 3.36 3.37
Shape 1 0.028 109.38 9.14 156.21 31.9 3.97 3.33
Shape 2 0.028 115.98 8.39 162.13 31.8 3.43 3.44
Fluo-image 0.020 10.51 1.10 12.45 1.57 4.32 4.30

(a) Original HR Detail (b) Bi-cubic (c) [13] (d) [34]

(e) [12] (f) [23] (g) OUR E = 0 (h) OUR

Figure 3. Super-resolution of Shape2 image: zoomed details of the resulting HR image.

II we can observe that the super-resolution results obtained by our model, specially in the case of
synthetic images, outperform the results achieved by the other methods, both in terms of PSNR and
SSIM,while maintaining very good computational efficiency.

Figure 3 shows a detail of the HR images obtained by enhancing the LR image Shape2 by the
compared methods. The proposed method (OUR) achieves qualitative results which are visually
more pleasing compared to the others, and reproduces sharper edges. In case of photographic
images, the NCSR method (fourth column in Table II and III) leads to state-of-the-art performance,
at the cost of a demanding computational time. The results obtained by the proposed method (OUR)
in this scenario are quantitatively slightly lower but obtained in much less time, and in these cases,
the use of η does not measure significant improvements. However, the computational time represents
a strategic requirement in the overall evaluation of the Immunofluorescent Diagnostic System and
the NCSR method is on average the slowest among the selected super-resolution approaches.

In Fig.4(a) we show a LR CMOS image of dimension 14 × 14, and in Fig. 4 (b)-(e) the HR
images obtained by applying the super-resolution method OUR with upscaling factors s = 2, 3, 4, 6,
respectively. The segmentation results obtained without and with the preliminary application of a
(s×) super-resolution procedure to the LR image, are illustrated in Fig.4 (f)-(l). As expected, the
super-resolution facilitates the segmentation procedure and allows for detecting finer segmented
boundaries.
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(a) LR (b) ×2 (c) ×3 (d) ×4 (e) ×6

(f) LR (g) ×2 (h) ×3 (i) ×4 (l) ×6

Figure 4. Results of Algorithm SR-SEG on a CMOS image: super-resolution, first row, segmentation, second
row.

(a) [34]+RG (b) [34]+O (c) [34]+CV (d) SR-SEG

Figure 5. Segmentation results of the sample image 4478: (first row) CCD image and its segmentation by
human expert; (second row) CMOS image and super-resolution + segmentation results. From left to right:

(a) M2 = 15.54, (b) M2 = 12.53, (c) M2 = 14.76, (d) M2 = 4.44.

5.3. Results on image segmentation

In this section we evaluate the performance of the overall Algorithm SR-SEG when applied to real
fluo-images acquired by the CMOS device. In order to define a quality measure of the segmentation
results we consider as the best reference for the state-of-the-art Immunofluorescent Diagnostic
procedure the images acquired using the high resolution CCD camera and then manually segmented
by a human expert.

By the way of illustration, we report the results of two original input samples 4478 and
703, acquired by CCD camera and shown in Fig.5 and Fig.6 (first row, left), respectively; the
corresponding manually obtained segmentation results are reported in Fig.5 and Fig.6 (first row,
right), where the four boundaries of the regions segmented by the expert on the original background
are red-colored.
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(a) [34]+RG (b) [34]+O (c) [34]+CV (d) SR-SEG

Figure 6. Segmentation results of the sample image 703: (first row) CCD image and its segmentation by
human expert; (second row) CMOS image and super-resolution + segmentation results. From left to right:

(a) M2 = 34.68, (b) M2 = 37.69, (c) M2 = 35.81, (d) M2 = 26.27.

From the diagnostic point of view, the two images analyzed here represent the antibodies IgG
recognition of two real patients. The sample 4478 is from a patient affected by a secondary Dengue
infection. In this case the patient has been infected by two or more Dengue serotypes and has
developed a strong antibody reaction against different serotypes. It is evident from the image the
very high spot intensities, as normal in secondary infections. The sample 703 is from a patient
affected by a primary Dengue infection against serotype 2. The brightest spot correctly correspond
to the right serotype while an important cross-reactivity can been observed with serotype 1.
In Fig. 5 and Fig.6 (second rows, (a)-(c)), we illustrate the segmentation results obtained by first
applying algorithm [34] with s = 3 upscaling factor to enlarge the CMOS acquisitions, and then
using other segmentation methods such as region growing (RG), Otzu (O) and Chan Vese (CV).
In Fig.5 and Fig.6 (second rows, (d)) the results obtained by Algorithm SR-SEG are displayed for
comparison.

From a qualitatively visual comparison, all the methods detect the four spots and all the segmented
boundaries are acceptable even though they present significant visual differences with the human
results on CCD illustrated in Fig.5 and 6 (first row, right). However, the methods RG, O, CV fail to
detect some inner parts of the regions, while the SR-SEG method is automatically tuned to consider
as boundary a given gradient threshold suitably calibrated with the expert’s sensitivity.

The threshold value represents a given grey-level above which the boundaries surrounding the
spots in the image are considered salient in a given context. This parameter plays a fundamental
role in selecting which pixels do not have to be considered as boundaries of segmented regions
in the image. The thresholds can be set by the user or can be obtained automatically using any
clustering method, such as the K-means algorithm. However, in our experience, once the camera is
known, the grey-level intensities in the acquired fluo-images representing significant spots can be
easily identified by an expert and then used to fix the threshold for the entire experimental session.

In addition to the visual inspection, for a quantitative evaluation of the performance of the
competing methods, we provide in the captions of Fig.5 and Fig.6 (second rows) the values of the
similarity metric M2 defined in (17), which confirm the higher quality of the proposed Algorithm
SR-SEG.

The RG method is realized by the MATLAB function regiongrowing.m. Starting from a seed
point (pixel) chosen by the user, this function accepts the neighbour pixel only if the difference
between the pixel’s intensity value and the mean of the already accepted region is lower than a
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Figure 7. Distributions over the data set of the variations from the mean values pi,CCD and pi,CMOS used
in M2 metric (17).

threshold value, fixed by the user. The weakness of RG methods is the manual choice of the seed
pixels and the reduced capability to detect only connected regions [22, 38].

The Otsu’s method, provided by the MATLAB command graythresh.m in the Image Processing
toolbox, is a classical segmentation method (see [18]), which is based on finding the threshold
that minimizes the weighted within-class variance or, equivalently, maximizing the between-class
variance. It operates directly on the histogram of the image, so it is fast (once the histogram is
computed), however it assumes homogeneous intensity and it does not make use of any spatial
coherence which, in our Immunofluorescent Diagnostic System, is well known.

The CV method, introduced in [9], segments the input image by approximating it with a piecewise
constant function and controlling the regularity of the boundaries. In our experiments we used the
CV algorithm available in Image Processing Toolbox of MATLAB.

A key aspect analyzed to select the segmentation method within an image processing procedure
is the robustness to the model parameters selection and the degree of human interaction, since the
goal is to finalize an automatic diagnostic system. Regarding the regularization parameter choice,
we have proposed an automatic estimate of λ in Section 4 which tunes the right parameter for the
CMOS image sensor device.

RG method has the unavoidable limit of requiring both a thresholding value and manual
interactions to locate the four seed points.

Otsu’s method is quite automatic, but it can fail if the input image has not been enhanced in
a proper way. Finally, the two variational methods CV and the proposed Algorithm SR-SEG are
efficient and reliable and the involved free parameters can be easily and properly tuned in advance
for each specific camera. From our experiments we noticed that, SR-SEG seems to be most robust
for all the considered test images, it’s fully automatic and integrates both super-resolution and
segmentation procedures in a fast, reliable iterative process.

5.4. Statistics for the metrics considered

We analyzed the performance of the overall diagnostic imaging system by exhibiting the statistics
described in Section 5.1. The data set is composed by 16 fluo-images related to the detection of the
Dengue virus serotypes acquired altogether by the CMOS and CCD cameras.
The Sort Matching M1 obtained is 100%. Since it represents the percentage of fluo-images that
reach the full sort matching (M1 = 4) with respect to the diagnosis obtained by means of CCD
acquisitions, this result confirms that our proposal represents a reliable alternative to the expensive
state-of-the-art CCD based systems.
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Figure 8. Demo software applied to the sample image 4500.

The result of the Similarity Test M2 metric calculated by the average value of the whole data set
with respect to the diagnostic methods is 17.06. This low value represents a very good reproduction
of the human performance on CCD images. For a better insight of the distribution of the values
obtained on the entire data set, in Fig.7 we report the bar plots of the values of pi,CCD (on the
top) and pi,CMOS (on the bottom) used in the computation of the M2 metric defined in (17). The
four detected spots for each fluo-image are identified by different colors. The comparison between
corresponding colored bars for each fluo-image in the two plots allows us to appreciate the good
similarity also between corresponding spot intensities.

The Goodness-of-linear-fit M3 metric is 0.074. The final goal would be to have a function which
maps the results produced by the specific P-CMOS device, into the CCD results. Even with a
modest-size data set (16 images) the procedure proposed as post-treatment seems to produce results
perfectly mappable by a linear map in those obtained by the CCD camera.

We can conclude that our Immunofluorescent Diagnostic System is accurate and reliable since it
respects the right order of intensities wrt the CCD cameras, and reaches a very low value in terms
of M2 and M3 metrics. The very good agreement between the relative spot intensity obtained with
these two very different image sensors (CMOS and CCD) strongly motivates the replacement of
the expensive CCD camera by the cheap P-CMOS, supported by the proposed Algorithm SR-SEG.
According to the costs reported in Table I, this allows for a cost reduction up to 99%. All the sera
in the considered data set have been analysed and tested with standard diagnostic methods: ELISA
(two different commercial kits) and RT-PCR, confirming the diagnostic results obtained with our
method. Moreover, considering that the proposed analysis time is about 30 minutes, including the
sample preparation time and the running time for Algorithm SR-SEG (< 30secs), compared with
around two hours of ELISA and RT-PCR tests, and that the system is cheap, portable and can provide
high precision results (high sensitivity and specificity), we can state that this diagnostic solution is
very promising for these field applications.

This proposal have been implemented in a demo software realized to perform the automatic
serotype Dengue recognition. An image of the demo panel is presented in Fig. 8. The restoration is
applied only for images particularly noisy, which is not in general the case for CMOS fluo-images.
The threshold used in Algorithm SR-SEG is automatically detected by K-means strategy. However,
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once the camera used to acquire the fluorescent images is selected, a threshold scale parameter can
be set to modify the threshold according to the expert’s sensitivity.

6. CONCLUSIONS

In this work we presented an imaging procedure for an automatic computer-aided diagnosis in a
fluorescence microscopy context. The introduction of this post-processing process is motivated
by the goal of encourage the employment of more inexpensive CMOS cameras with respect
to the high-sensitivity but more expensive CCD-based devices. The CMOS sensors used in this
immunofluorescent application present problems due to their low spatial resolution. We proposed
a novel variational model for spatially enlarging and segmenting the LR fluo-images. Numerical
examples show that the proposed super-resolution approach is particularly effective and well suited
for images characterized by sparse-gradient distributions and it is very competitive with respect
to the state-of-the-art super-resolution methods. This model has been integrated in the two-phase
pipeline procedure, where in the second stage the salient regions of interest in the fluo-image
are analyzed by the diagnosis stage, in terms of quantitative detected concentration for a final
classification. According to the introduced metrics and the performed experiments, the proposed
immunofluorescent diagnostic system provided very good performance, in terms of accuracy,
robustness and number of parameters to be set. The results obtained applying this image enhancing
pipeline to the images acquired using a cheap, low resolution P-CMOS camera are then perfectly
in line with the desired system sensitivity, considering the CCD images as the reference ones.
Moreover, in addition to the reported tests, different experiments performed using the proposed
analysis have confirmed the excellent ability of this system to correctly identify the right Dengue
serotype, in particular for patients in convalescent phase [29].

A more accurate determination of the limit of detection of this new sensing scheme is envisaged
in the next few months together with the possibility to define an antibody density calibration curve
using calibrated blood samples. Finally, this diagnostic will be extended to IgM antibody since it is
well known that this type of analysis provide the most precise Dengue serotype recognition.
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