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Abstract

A popular strategy for determining solutions to linear least-squares problems relies on using
sparsity-promoting regularizers and is widely exploited in image processing applications such as,
e.g., image denoising, deblurring and inpainting. It is well known that, in general, non-convex
regularizers hold the potential for promoting sparsity more effectively than convex regularizers
such as, e.g., those involving the `1 norm. To avoid the intrinsic difficulties related to non-
convex optimization, the Convex Non-Convex (CNC) strategy has been proposed, which allows
the use of non-convex regularization while maintaining convexity of the total objective function.
In this paper, a new CNC variational model is proposed, based on a more general parametric
non-convex non-separable regularizer. The proposed model is applicable to a greater variety
of image processing problems than prior CNC methods. We derive the convexity conditions
and related theoretical properties of the presented CNC model, and we analyze existence and
uniqueness of its solutions. A primal-dual forward-backward splitting algorithm is proposed
for solving the related saddle-point problem. The convergence of the algorithm is demonstrated
theoretically and validated empirically. Several numerical experiments are presented which prove
the effectiveness of the proposed approach.

1 Introduction

A widely used technique for determining solutions to linear least-squares problems relies on solving
sparsity-regularized variational models which, in general, take the following form

x∗ ∈ arg min
x∈Rn

J (x), J (x) :=
1

2
‖Ax− b‖22 +λR(x), (1)

where b ∈ Rm is the vector of observed data, A ∈ Rm×n is a matrix representing the linear
observation model in some basis and λ > 0 is the classical regularization parameter which controls
the trade-off between fidelity to the observations and regularity of the solution of (1). The sparsity-
inducing regularization function R : Rn → R takes the following general form

R(x) := Φ(y) , y := G(Lx) , (2)

with L ∈ Rr×n, G : Rr → Rs a possibly nonlinear vector-valued function with gi : Rr → R, i =
1, . . . , s, representing its scalar-valued components and Φ: Rs → R a sparsity-promoting penalty
function [34, 35]. The aim of model (1)-(2) is to determine solutions x∗ which are close to the
data b according to the observation model and, at the same time, for which the transformed vector
y∗ = G(Lx∗) is sparse. We notice that the penalty Φ in (2) can be (additively) separable or
non-separable with respect to its argument y = G(Lx).
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The focus of this paper is on the choice of the sparsity-promoting regularizer R in (1). In
the literature, the most widely used sparsity-promoting penalties belong to the class of additively
separable functions, that is they have the form Φ(y1, y2, . . . , ys) =

∑s
i=1 φi(yi), with φi : R→ R.

In particular, the most natural sparsity-inducing penalty is the `0 pseudo-norm, namely

Φ(y) = ‖y‖0 = #{i : yi 6= 0}, (3)

which counts the number of non-zero elements in y. However, this choice yields (1)-(2) to be an
NP-hard and non-convex optimization problem [26], with all the associated computational and
numerical difficulties. The most popular surrogate of the `0 pseudo-norm is the `1 norm, defined
as

Φ(y) = ‖y‖1 =
s∑
i=1

|yi| . (4)

In fact, it is well known that the `1 norm is the convex regularizer which induces sparsity most
effectively [4]; however, it tends to underestimate high-amplitude components of the vector to which
it is applied, in our case y = G(Lx). Consequently, the `1 norm is in many cases a sub-optimal
choice for inducing sparsity, and non-convex penalties are known which outperform the `1 norm
in this respect, in particular yielding more accurate estimation of high-amplitude components. A
representative non-convex alternative to the `1 norm is the `p quasi-norm [21], defined as

Φ(y) =
1

p
‖y‖pp =

1

p

s∑
i=1

|yi|p , 0 < p < 1 . (5)

However, by using such non-convex regularizers, the cost function J is non-convex and can present
extraneous suboptimal local minimizers [27]. A solution to this problem is the CNC strategy,
consisting in constructing and then optimizing convex functionals containing non-convex (sparsity-
promoting) regularization terms. In particular, a quite recent alternative to (5) is represented by
the class of additively separable penalties

Φ(y) =
s∑
i=1

φ(yi; a) , (6)

with φ : R→ R a non-convex function parametrized by the scalar parameter a, which controls the
degree of non-convexity of φ. Examples of φ functions can be found in [22, 27, 34, 35]. Recently,
CNC variational models containing non-convex separable regularizers of the form (6) have been
successfully used to solve several data processing problems [9, 18,22,34,35].

In the particular case that the observation matrix A in (1) has full column rank, it has been
demonstrated [19] that it is possible to choose a in such a way that the total cost functional J in
(1) is convex even if the penalty Φ is a non-convex function of the form (6). Such penalties can
promote sparsity better than the convex `1 norm penalty. However, when the matrix A does not
have full-column rank, a CNC formulation of this kind is not possible when Φ is separable as in
(6), see [19].

For what concerns non-separable sparsity-inducing penalties in (1)-(2), pioneering work has been
conducted in [37,42]; however, such penalties were not designed to maintain cost function convexity.
More recently, families of non-convex non-separable penalty functions have been proposed in [31,33]
that do maintain convexity of the cost functional J for any matrix A, but only in the special case
where both G and L in (2) are identity operators.

In other related work, non-convex regularizers have been constructed via convexification of
particular functionals involving the `0 pseudo-norm and rank functions [7, 36]. An aim in these
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works is to reduce the number of non-optimal local minima as compared with `0 psuedo-norm
regularized problems, so these non-convex regularizers do not maintain convexity of the objective
function in the general case.

In this paper we extend the applicability of the CNC strategy: we propose a family of non-
convex penalties that maintain the convexity of the cost functional J for any matrices A and L
and quite general functions G. The proposed family of penalties generalizes earlier work [19,31,32].
More precisely, we extend the results in [31] wherein L is the identity, and the results in [32] wherein
A is the identity and L is specifically the first-order finite-difference operator. Moreover, in [31]
and [32] the authors consider only one-dimensional signals, whereas in this paper we consider the
application of CNC to image processing. We note that while [31] and [32] are special cases of
our proposal when L is the identity operator, and when both L and G are the identity operators,
respectively, the model in [19] can not be obtained as a special case of our proposal. Some popular
variational image processing models which rely on different combinations of the operators A, L G
and of the penalty function φ will be briefly outlined in Section 2.

The new CNC non-separable (CNC-NS) regularization approach proposed in this work consists
of a general strategy for constructing non-convex non-separable regularizers starting from any
convex regularizer of the form (2). More precisely, our proposal is as follows. For any convex
regularizer R of the form (2), we propose the parameterized non-convex non-separable regularizer

RB(x) := R(x)−
(
R � 1

2‖B · ‖
2
2

)
(x), (7)

where � denotes the infimal convolution operator and matrix B ∈ Rq×n is a parameter. The cost
function to be minimized, instead of J in (1), is then given by

JB(x) :=
1

2
‖Ax− b‖22 +λRB(x). (8)

The rationale of our proposal, the properties of the regularizer RB, and guidelines for choosing B
will be outlined in the next sections. The proposed regularizer exhibits two noteworthy properties:

• Under mild assumptions on A, L, and G, there always exists a parameter matrix B such that
the total cost function JB is convex and RB is non-convex. The assumptions do not require
that ATA be invertible. Hence the assumptions are milder than for non-convex separable
regularizers (6).

• The proposed regularizer RB induces sparsity more effectively than both the convex `1 norm
penalty (4) and the class of non-convex separable penalties (6).

In this paper, we propose two strategies to set the parameter matrix B, we analyze some
theoretical aspects of the CNC-NS model, and we prove the existence and the uniqueness of its
solution under mild assumptions. Regarding the numerical solution of the proposed optimization
problem, we cast the problem as a saddle-point problem for which the forward-backward splitting
algorithm can be applied. The convergence of the algorithm is demonstrated and the effectiveness
of the proposed approach is assessed by several examples.

The paper is organized as follows. In Section 2 we briefly outline some popular related vari-
ational models. In Section 3 we present in detail the proposed strategy for constructing non-
separable regularizers and in Section 4 we highlight their properties. Convexity, coerciveness and
existence/uniqueness of solution(s) to the introduced model are discussed in Section 5. In Section 6
we describe in detail the forward-backward splitting optimization algorithm used to solve the CNC
model. Numerical experiments are reported in Section 7 and conclusions are drawn in Section 8.
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2 Related Models

The general least-squares model (1) with sparsity-promoting convex regularizer R of the form
(2) encompasses a large class of specific convex models which are of great importance in many
different research areas, including numerical linear algebra [2, 43], image restoration [30], pattern
recognition [13,23], and compressed sensing [5,14]. Various choices of the operators A, L, G and of
the penalty function Φ yield a variety of popular models that have been successfully used in many
research and application fields.

In general, model (1)-(2) with A ∈ Rm×n, m < n, G and L the identity operators and Φ the `1
norm, can be used in numerical linear algebra to compute sparse solutions of undetermined linear
systems.

In the field of image processing, which is the one of interest in this paper, many important
sparsity-inducing convex regularizers can be casted in the form (2).

For instance, the function R in (2) represents the popular Total Variation (TV) regularizer
when L = [DT

h , D
T
v ]T with Dh, Dv ∈ Rn×n representing finite difference approximations of the first-

order partial derivatives along the horizontal and vertical directions, respectively, Φ is the `1 norm
penalty, and G characterizes anisotropic or isotropic TV [25]. In formulas:

R(x) = ‖G(Lx)‖1 =


2n∑
i=1

|gi(Lx)| with gi(Lx) = (Lx)i (anisotropic TV)

n∑
i=1

|gi(Lx)| with gi(Lx) =
√

(Dhx)2
i + (Dvx)2

i (isotropic TV) .

(9)

Other popular regularizers employed to derive regularized solutions of linear inverse imaging
problems are based on the Schatten p-norm of the Hessian matrix computed at every pixel of the
image [24], where, we recall, the Shatten p-norm ‖M‖Sp of a matrix M ∈ Rz×z is defined by

‖M‖Sp :=

(
z∑
i=1

σpi (M)

) 1
p

, p > 0 , (10)

with σi(M) indicating the i-th singular value of matrix M . These kind of regularizers can be
considered as second-order extensions of the TV regularizer, in the sense that they promote sparsity
of the Hessian Schatten norms instead of the gradient norms. Their main feature is that they favor
piecewise-affine solutions - as opposed to TV which favors piecewise-constant solutions - and thus
avoid the staircase effect, a common artifact of TV-based reconstructions. Let L = [DT

hh, D
T
vv, D

T
hv]

T

with Dhh, Dvv, Dhv ∈ Rn×n representing finite difference approximations of second-order derivatives
along horizontal, vertical and mixed horizontal/vertical directions, respectively. Then the discrete
Hessian Schatten p-norm regularizer is defined by

R(x) = ‖G(Lx)‖1 =
n∑
i=1

|gi(Lx)| with gi(Lx) =

∥∥∥∥[ (Dhhx)i (Dhvx)i
(Dvhx)i (Dvvx)i

]∥∥∥∥
Sp
, (11)

where, commonly, p ∈ (0, 1] is used [24]. We recall that the Schatten p-norm reduces to the nuclear
norm when p = 1.

The nuclear norm is also used in the general context of matrix completion (MC) as a convex
approximation of the matrix rank operator. In image processing, such an approximation is used as
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a convex regularizer aimed to enforce the low-rank property of a d1× d2 image (or patches of an
image) regarded as a matrix. More precisely, the regularization term takes the form

R(x) = ‖G(x)‖1 =

d̄∑
i=1

|gi(x)| with gi(x) = σi(x) , (12)

where L in (12) is clearly the identity matrix, d̄ = min{d1, d2} and x in the right-most expression

of (12) must be regarded as a matrix.
For the above considered popular regularization functions, the external sparsity-promoting

penalty Φ - see the definition ofR(x) in (2) - is the `1 norm. However, the procedure proposed in (7)
for constructing non-convex non-separable regularizers is not limited to the `1 norm. Indeed, the
proposed procedure is applicable for any convex external penalty Φ. Alternative sparsity-inducing
convex penalties are, e.g., the Huber penalty [8], the `1-`2 group-sparsity penalty [41], and the
block- or joint-sparsity penalties [17]. For what concerns the matrix L, besides the identity or
some differential operator, it can be the analysis operator of a dictionary - eventually a redundant
dictionary, or a frame - in the context of the analysis sparsity priors. Popular examples of re-
dundant dictionaries used in sparsity-based image processing are the oversampled Discrete Fourier
Transform (DFT), the Gabor frames, the curvelet frames and the (undecimated) wavelet frames;
see [6] and the references therein.

In the considered variational model (1)-(2), the above introduced regularizers are coupled with
a quadratic fidelity term involving the measurement matrix A. Depending on A, model (1)-(2)
can be applied to various image processing applications [8, 24], such as image deblurring when A
is a blurring operator, image inpainting or compressed sensing based image reconstruction when
A is a masking operator, and image super-resolution when A is the composition of a sub-sampling
operator and a blurring operator.

3 Construction of non-convex non-separable regularizers

In this section, we propose a general strategy for constructing non-convex non-separable regularizers
starting from any regularizer R of the form (2) under the following assumptions:

A1) R(·) = Φ(G(L ·)) is convex and bounded from below by zero with R(0) = 0;

A2) Φ(G(·)) is a proper, lower semicontinuous and coercive function.

In the following, first we introduce a function SB which will then be involved in the construction
of the proposed regularizer.

Definition 1. Given a function R : Rn → R as defined in (2), namely R(x) = Φ(G(Lx)), such that
assumptions A1)–A2) are satisfied, and a matrix B ∈ Rq×n, we define the function SB : Rn → R
as

SB(x) := inf
v∈Rn

{
F (v) := R(v) + 1

2‖B(x− v)‖22
}
. (13)

In the notation of infimal convolution, we have

SB( · ) = R( · ) � 1
2‖B · ‖

2
2. (14)

Note that if CTC = BTB, then SB(x) = SC(x) for all x ∈ Rn. That is, the function SB depends
only on BTB and not B itself. Therefore, without loss of generality, we may assume B has full row
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rank. In fact, if a given matrix B does not have full row rank, then there is another matrix C with
full row rank such that CTC = BTB which yields the same function SB.

We recall the result in Lemma 2.7.1 in [11], where nullM denotes the null space of matrix M .

Proposition 1. Assume that the following mappings are given:
i) Two matrices / linear mappings L : Rn → Rr; B : Rn → Rq with

nullL ∩ nullB = {0}. (15)

ii) Two proper, lower semicontinuous and coercive mappings f1, f2 : Rn → [−∞,+∞]. Then the
mapping h : Rn → [−∞,+∞], given by

h(v) = f1(Lv) + f2(Bv), (16)

is lower semicontinuous and coercive. In particular, the mapping h attains its infimum inf h ∈
[−∞,+∞] at some point in Rn.

Proposition 2. Given two matrices L,B which satisfy assumption i) in Prop. 1, the infimal
convolution (14) is exact, denoted by �, i.e.,

SB(x) = R( · )� 1
2‖B · ‖

2
2 = min

v∈Rn

{
R(v) + 1

2‖B(x− v)‖22
}
. (17)

Proof. Let f1 := Φ(G(·)) and f2 := 1
2‖ · −c‖

2
2 where c is a constant. They satisfy the assumption

ii) in Prop. 1 due to assumption A2) on Φ(G(·)). Then F (v) in (13) can be written as F (v) =
f1(Lv) + f2(Bv), and following Prop. 1, it is lower semicontinuous and coercive. Moreover, F is
also convex, being the sum of convex functions. Thus, F (v) takes its minimum at some point(s) in
Rn, that is, the infimal convolution is exact.

Proposition 3. For any matrix B ∈ Rq×n, the function SB in (17) is a proper lower semicontin-
uous convex function.

Proof. Set f = R( · ) and g = ‖B · ‖22. Both f and g are proper, convex and lower semicontinuous;
hence f � g is convex and lower semicontinuous by Prop. 12.11 in [1]. Moreover, since the infimal
convolution is exact by Prop. 2, the function SB is proper.

In the following, we highlight some properties of the function SB in (17).

Proposition 4. For any matrix B ∈ Rq×n, the function SB defined in (17) satisfies

0 6 SB(x) 6 R(x), ∀x ∈ Rn. (18)

The proof of Proposition 4 mirrors that of Proposition 8 in [31].

Proposition 5. Let B ∈ Rq×n be an arbitrary matrix and let α := ‖B‖2. Then, the function SB
in (17) satisfies

SB(x) 6 SαI(x), ∀x ∈ Rn. (19)

The proof of Proposition 5 mirrors that of Proposition 10 in [31].
The function SB is closely related to the Moreau envelope of the function R. The Moreau

envelope [1] of R : Rn → R is given by

RM(x) = inf
v∈Rn

{
R(v) + 1

2‖x− v‖
2
2

}
=
(
R � 1

2‖ · ‖
2
2

)
(x). (20)

The exact relationship of SB to the Moreau envelope is described by the following two results.
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Lemma 1. For any invertible matrix B ∈ Rn×n, the function SB in (17) can be expressed in terms
of a Moreau envelope as

SB =
(
R( · ) ◦B−1)M ◦B. (21)

Proof. Using (13), we have

SB = R( · ) �
(

1
2‖ · ‖

2
2 ◦B

)
=
(
R( · ) �

(
1
2‖ · ‖

2
2 ◦B

))
◦B−1 ◦B

=
((
R( · ) ◦B−1

)
�
(

1
2‖ · ‖

2
2

))
◦B

=
(
R( · ) ◦B−1

)M ◦B.
Lemma 2. For any full row rank matrix B ∈ Rq×n, the function SB in (17) can be expressed in
terms of a Moreau envelope as

SB =
(
d ◦B+)M ◦B (22)

where d : Rn → R is the convex function

d(x) = min
w∈nullB

R(x− w) . (23)

Proof. Using (17), we have

SB(x) = min
v∈Rn

{
R(v) + 1

2‖B(x− v)‖22
}

= f(Bx)

where f : Rq → R is given by

f(z) = min
v∈Rn

{
R(v) + 1

2‖z −Bv‖
2
2

}
= min

u∈(nullB)⊥
min

w∈nullB

{
R(u+ w) + 1

2‖z −B(u+ w)‖22
}

= min
u∈(nullB)⊥

min
w∈nullB

{
R(u+ w) + 1

2‖z −Bu‖
2
2

}
= min

u∈(nullB)⊥

{
d(u) + 1

2‖z −Bu‖
2
2

}
where d is the convex function defined in (23). The fact that d is convex follows from Prop. 8.26
of [1] and Example 3.16 of [3], Section 3.2.5. Since (nullB)⊥ = rangeBT,

f(z) = min
u∈rangeBT

{
d(u) + 1

2‖z −Bu‖
2
2

}
= min

v∈Rq

{
d(BTv) + 1

2‖z −BB
Tv‖22

}
= min

v∈Rq

{
d(BT(BBT)−1v) + 1

2‖z −BB
T(BBT)−1v‖22

}
= min

v∈Rq

{
d(B+v) + 1

2‖z − v‖
2
2

}
=
(
d(B+ · )

)M
(z).

Hence, SB(x) =
(
d(B+ · )

)M
(Bx) which completes the proof.
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Note that (22) reduces to (21) when B is invertible. (Suppose B is invertible. Then nullB = {0};
hence d(x) = R(x) in (23). Additionally, B+ = B−1.)

Proposition 6. For any full row rank matrix B ∈ Rq×n, the function SB in (17) is differentiable.

The proof of Proposition 6 mirrors that of Proposition 11 in [31].
The following result gives an expression for the gradient of SB. When B is the identity operator,

we recover a classic result (Proposition 12.29 in Ref. [1]).

Lemma 3. The gradient of SB in (17) is given by

∇SB(x) = BTB
(
x− arg min

v∈Rn

{1

2
‖B(x− v)‖22 +R(v)

})
. (24)

Proof. Using Lemma 2 we write SB as
SB = g ◦B (25)

where
g =

(
d ◦B+)M (26)

where d is given by (23). Hence, by the chain rule,

∇SB = BT ◦ ∇g ◦B, (27)

i.e., ∇SB(x) = BT∇g(Bx). Next, we write g as

g = hM (28)

where
h = d ◦B+, (29)

i.e.,
h(x) = min

w∈nullB
R(B+x− w) = min

w∈nullB
R(BT(BBT)−1x− w) , (30)

where we assume B has full row-rank.
From Proposition 12.29 in Ref. [1], we have

∇g(x) = ∇hM(x) = x− proxh(x) (31)

where proxh is given by

proxh(x) = arg min
y∈Rq

{
h(y) + 1

2‖x− y‖
2
2

}
(32)

= arg min
y∈Rq

{
min

w∈nullB
R(BT(BBT)−1y − w) + 1

2‖x− y‖
2
2

}
(33)

= BBT arg min
u∈Rq

{
min

w∈nullB
R(BTu− w) + 1

2‖x−BB
Tu‖22

}
(34)

= B arg min
z∈rangeBT

{
min

w∈nullB
R(z − w) + 1

2‖x−Bz‖
2
2

}
(35)

= B arg min
z∈(nullB)⊥

{
min

w∈nullB
R(z − w) + 1

2‖x−Bz‖
2
2

}
(36)

= B arg min
v∈Rn

{
R(v) + 1

2‖x−Bv‖
2
2

}
. (37)

In the last line we used the following: if v = z − w with z ∈ (nullB)⊥ and w ∈ nullB, then
Bv = Bz −Bw = Bz.

8



Using (37) in (31), we have

∇g(x) = x−B arg min
v∈Rn

{
R(v) + 1

2‖x−Bv‖
2
2

}
. (38)

Using (38) in (27), we have

∇SB(x) = BT∇g(Bx) (39)

= BT
(
Bx−B arg min

v∈Rn

{
R(v) + 1

2‖Bx−Bv‖
2
2

})
(40)

which completes the proof.

Definition 2. Given a function R : Rn → R as defined in (2) and satisfying assumptions A1)–A2),
and a matrix B ∈ Rq×n, we define the non-separable penalty function RB : Rn → R as

RB(x) := R(x)− SB(x) = R(x)−
(
R( · )� 1

2‖B · ‖
2
2

)
(x) , (41)

where the second equality comes from the definition of SB in (17).

The following corollary follows directly from Proposition 4 and Definition 2.

Corollary 1. For any matrix B ∈ Rq×n, the penalty function RB defined in (41) satisfies

0 6 RB(x) 6 R(x) for all x ∈ Rn. (42)

As mentioned in the introduction, our proposal is to replace the original linear least squares
model (1) with the following one:

x∗ ∈ arg min
x∈Rn

JB(x), JB(x) :=
1

2
‖Ax− b‖22 +λRB(x), (43)

where RB(x) is the regularization function (41). We refer to (43) as the Convex-NonConvex Non-
Separable least-squares model, abbreviated CNC-NS-`2.

4 Characterizing the properties of the regularizer

In this section, we carry out a theoretical analysis of the proposed regularizer RB in (41), with
focus on its sparsity-promoting properties. To this aim, we consider the special case of a regularizer
R = Φ(G(Lx)) with Φ = ‖ · ‖1 and G the identity operator, that is

R(x) = ‖Lx‖1 =
r∑
i=1

|Lix| =
r∑
i=1

fi(x) , (44)

where Li is the i-th row of matrix L and fi(x) := |Lix|. According to Definition 2, the proposed
regularizer RB associated with R above reads as follows:

RB(x) = R(x)− SB(x) = ‖Lx‖1 − min
v∈Rn

{1

2
‖B(x− v)‖22 + ‖Lv‖1

}
. (45)

In Lemma 4 and Corollary 2 below, we analyze the gradient of the function SB which, we recall, is
differentiable according to Proposition 6. In the following, we use the set-valued signum function,
defined as

sign(t) :=


{1}, t > 0

[−1, 1], t = 0

{−1}, t < 0

for t ∈ R. For x ∈ Rn, the signum function is defined in a component-wise fashion.
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Lemma 4. The gradient of SB satisfies

∇SB(x) ∈ LTsign(Lv) for some v ∈ Rn. (46)

Proof. Using (24), we write
∇SB(x) = BTB(x− vopt) (47)

where
vopt ∈ arg min

v∈Rn

{
1
2‖B(x− v)‖22 + ‖Lv‖1

}
. (48)

Since any minimizer vopt of a convex function SB satisfies 0 ∈ ∂SB(vopt), we have

0 ∈ ∂
[

1
2‖B(x− · )‖22 + ‖L · ‖1

]
(vopt). (49)

That is
0 ∈ BTB(vopt − x) + LT{u : u ∈ sign(Lvopt)} (50)

or
BTB(x− vopt) ∈ LT{u : u ∈ sign(Lvopt)}. (51)

In light of (47), it follows that

∇SB(x) ∈ LT{u : u ∈ sign(Lvopt)} (52)

where vopt is defined in (48).

Corollary 2. The gradient of SB satisfies

∇SB(x) = LTu (53)

for some u ∈ Rr with |ui| 6 1 for i = 1, . . . , r.

We now aim to show that changes in x that cause fi(x) to increase also causes R in (44) to
increase. Since x is a vector, we use directional derivatives. Actually, since our functions are not
differentiable, we use directional subgradients. The directional subgradient of a convex function
f at x in direction v is denoted ∂vf(x). If f is differentiable at x in direction v, then ∂vf(x) is
single-valued. If f is differentiable at x, then ∂vf(x) = [∇f(x)]Tv. We have

∂vR(x) = [∂R(x)]Tv = [LTsign(Lx)]Tv = sign(Lx)TLv (54)

and
∂vfi(x) = sign(Lix)TLiv = sign(Lix)Liv (55)

where we can drop the transpose because Lix is scalar. In the following proposition, we show that
for any direction v in which all fi are increasing at x, the total regularizer RB is increasing too.

Proposition 7. Let x ∈ Rn and v ∈ Rn. Suppose ∂vfi(x) > 0 for i = 1, . . . , r. Then ∂vRB(x) > 0
also.

Proof. It is given that ∂vfi(x) > 0 for i = 1, . . . , r. That is,

sign(Lix)Liv > 0, i = 1, . . . , r (56)
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where the left-hand side of (56) is a set. Note that if Lix = 0, then sign(Lix) is the interval [−1, 1].
Hence, if Lix = 0, then sign(Lix)Liv > 0 (which is given) implies that Liv = 0. Hence, it follows
from (56) that

Lix = 0 =⇒ Liv = 0 (57)

Lix > 0 =⇒ Liv > 0 (58)

Lix < 0 =⇒ Liv 6 0. (59)

We now consider the function RB(x) = R(x) − SB(x). The directional derivative of RB at x in
direction v is as follows

∂vRB(x) = ∂vR(x)− ∂vSB(x). (60)

Using (53), the directional derivative of SB at x in direction v is given by

∂vSB(x) = [∇SB(x)]Tv = [LTu]Tv = uTLv (61)

for some u with |ui| 6 1. Thus,

∂vRB(x) = ∂vR(x)− ∂vSB(x) (62)

= sign(Lx)TLv − uTLv (63)

= [sign(Lx)− u]TLv (64)

=
∑
i

[sign(Lix)− ui]Liv (65)

=
∑

i, Lix 6=0

[sign(Lix)− ui]Liv. (66)

We can omit the terms for which Lix = 0 because for these terms we have Liv = 0 as noted after
(56). Note that if Lix > 0, then sign(Lix) − ui > 0 because |ui| 6 1. Similarly, if Lix < 0,
then sign(Lix) − ui 6 0. Hence, using (58) and (59), it follows that each term in the sum (66) is
non-negative. Hence, ∂vRB(x) > 0.

The result in Prop. 7 is a generalization of the result for the Generalized MC penalty in Prop.13
in [31].

In the following simple example, we provide some visual insights on the proposed regularizer
RB(x) in (41).

Example 1. By the way of illustration, to show the properties/effects of the proposed non-
separable non-convex regularizer RB(x) in (41), we consider the two bivariate models defined by

arg min
x∈R2

J (x), J (x) :=
1

2
‖Ax− b‖22 +λR(x), (67)

arg min
x∈R2

JB(x), JB(x) :=
1

2
‖Ax− b‖22 +λRB(x), (68)

with
R(x) = ‖Lx‖1, RB(x) = R(x)− SB(x) = ‖Lx‖1 −

(
‖L · ‖1 � 1

2‖B · ‖
2
2

)
(x) (69)

and

λ = 1.5, b =

[
0
0

]
, A =

[
1 2
-1 0.5

]
, L =

[
-0.5 1

2 -0.5

]
, B =

√
γ

λ
A, γ = 0.99 . (70)
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Figure 1: Example 1: plots of functions R(x), RB(x), SB(x) (first row) and of the associated
contour plots (second row); total cost function JB(x) and associated contour plot (third row).

As it will be demonstrated in Section 5, the definition of matrix B in (70) with γ ∈ [0, 1] yields
the total cost functional JB in (68) to be convex in spite of the regularizer RB in (69) being
non-convex. In the first and second row of Fig. 1 we show the functions R(x), RB(x), SB(x) and
their associated contour plots, respectively, whereas the total cost functional JB together with
its contour plot are reported in the third row. The solid red and blue lines in the contour plots
represent the hyperplanes H1 and H2, respectively, with Hi = {x ∈ R2 : Lix = 0}, i ∈ {1, 2} and
Li the i-th row of matrix L.

It can be noticed from Fig. 1 that the function SB is convex (see Proposition 3) such that our
regularizer RB, obtained by subtracting SB from R, is non-convex. In particular, the shape of
the regularizer RB (and of its contour lines) suggests that RB holds the potential for promoting
sparsity of the vector Lx = (L1x, L2x)T more effectively than the regularizer R. Finally, the plots
in the last row of Fig. 1 confirm that the total cost functional JB is convex.

5 Convexity Conditions

In this section, we investigate if and how the matrix B of parameters of the proposed regularizer
RB in (41) can be set such that the total objective function JB in (43) is convex and then discuss
existence and uniqueness of its minimizer(s), that is of the solution(s) of the proposed CNC-NS-`2
variational model in (43). In the following, M < 0 (� 0) indicates that the matrix M is positive
semidefinite (positive definite) and In denotes the identity matrix of order n. First, we rewrite JB
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in (43) in the following equivalent form

JB(x) = 1
2‖Ax− b‖

2
2 + λ

(
R(x)− SB(x)

)
= 1

2‖Ax− b‖
2
2 + λ

(
R(x)− min

v∈Rn

{
R(v) + 1

2‖B(x− v)‖22
})

= 1
2‖Ax− b‖

2
2 + λ

(
R(x)− min

v∈Rn

{
R(v) + 1

2‖Bx‖
2
2 + 1

2‖Bv‖
2
2 − vTBTBx

})
= 1

2‖Ax− b‖
2
2 − λ

2‖Bx‖
2
2 + λ

(
R(x)− min

v∈Rn

{
R(v) + 1

2‖Bv‖
2
2 − vTBTBx

})

=

Q(x)︷ ︸︸ ︷
1
2 x

T
( Q︷ ︸︸ ︷
ATA− λBTB

)
x− bTAx+ 1

2 ‖b‖
2
2 (71)

+ λ
(
R(x) + max

v∈Rn

{
−R(v)− 1

2‖Bv‖
2
2 + vTBTBx︸ ︷︷ ︸

g(x,v)

}
︸ ︷︷ ︸

G(x)︸ ︷︷ ︸
G(x)

)
(72)

The following Lemma 5 and Definition 3 are useful for the analysis of convexity and coerciveness
of our cost functional JB carried out in Proposition 8 .

Lemma 5. In case the (symmetric) matrix Q ∈ Rn×n defined in (71) is positive semidefinite, such
that nullQ 6= {0}, we have

nullQ ⊇ nullA ∩ nullB = nullA . (73)

Definition 3. Let Z : Rn → R be a (not necessarily smooth) function. Then, Z is said to be
δ-strongly convex if and only if there exists a real constant δ > 0, called the modulus of strong
convexity of Z, such that the function Z(x)− δ

2 ‖x‖
2
2 is convex [1].

Proposition 8. Let R : Rn → R be a function having the form in (2) and satisfying assumptions
A1)–A2), and let RB : Rn → R be the function defined in (41). Then, the functional JB : Rn → R
in (43) is proper, lower semicontinuous, and bounded from below by zero. Moreover, a sufficient
condition for JB to be convex (strictly convex) is that the matrix of parameters B ∈ Rq×n satisfies

Q = ATA− λBTB < 0 (� 0) . (74)

In particular, we have:

• Q � 0 =⇒ JB(x) is eQ–strongly convex =⇒ admits a unique minimizer,

•
{
Q < 0
nullA ∩ nullL = {0} =⇒ JB(x) is coercive =⇒ admits minimizer(s),

where eQ > 0 denotes the minimum eigenvalue of the real, symmetric, positive definite matrix Q.

Proof. The functional JB in (43) is the sum of a nonnegative convex quadratic fidelity term - which
is clearly proper and everywhere continuous - and the regularization term RB defined in (41), which
is bounded from below by zero according to Corollary 1 and proper lower semicontinuous. Hence,
JB is proper lower semicontinuous and bounded from below by zero. To derive conditions for
convexity and coerciveness of JB, first we analyze separately the terms Q(x) and G(x) defined in
(71) and (72), respectively.
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Analysis of Q(x). After recalling the definition of the quadratic function Q(x) in (71), it is
clear how the matrix Q ∈ Rn×n in (74) represents the (constant) Hessian matrix of Q(x). It follows
that Q(x) is convex (strictly convex) if and only if Q < 0 (Q � 0). In particular, we notice that
Q is a real symmetric matrix, hence it admits the eigenvalue decomposition

Q = VQEQV
T
Q, EQ, VQ ∈ Rn×n, EQ = diag(eQ,1, eQ,2, . . . , eQ,n) , V T

QVQ = VQV
T
Q = In . (75)

According to Definition 3, Q(x) is δ-strongly convex - with δ > 0 - if and only if the quadratic
function Q̃(x) := Q(x)− (δ/2)‖x‖22 is convex, that is if and only if its Hessian matrix Q̃ = Q− δ In
is positive semidefinite. Using (75), we can write:

Q̃ = Q− δ In < 0 ⇐⇒ VQEQV
T
Q − δ In < 0 ⇐⇒ VQ (EQ − δ In)V T

Q < 0

⇐⇒ EQ − δ In < 0 ⇐⇒ diag(eQ,1 − δ, . . . , eQ,n − δ) < 0 ⇐⇒ 0 < δ 6 min
i
eQ,i . (76)

It follows from (76) that, when the matrix Q in (74) is positive definite (Q � 0) and, hence,
mini eQ,i > 0, then the function Q(x) in (71) is δ-strongly convex with δ = mini eQ,i. Instead, when
the matrix Q is only positive semidefinite (Q < 0), then the function Q(x) in (71) is only convex
and nothing can be said about its coerciveness or even about its lower boundedness.

Analysis of G(x). First, we notice that, for any given v, the function g(x, v) in (72) is affine
- hence, convex - in x. It follows that the function G(x) in (72) is convex in x as it is the pointwise
maximum of a set of convex functions (Proposition 8.14 in [1]). This implies that the function G(x)
in (72) is convex, as R(x) is convex by assumption. Moreover, G(x) is bounded from below by zero
as we can write

G(x) = R(x) + max
v∈Rn

g(x, v) > R(x) + g(x, v = 0) = R(x)−R(0) = R(x) > 0 ∀x ∈ Rn, (77)

where the last equality and inequality in (77) come from assumption A1) on the regularizer R(x).

Analysis of JB(x). Recalling that, according to (72), we can write JB(x) = Q(x) + λG(x),
in light of previous analysis we have that, when the matrix Q in (74) is positive definite (Q � 0),
then our total cost functional JB(x) is δ-strongly convex with δ = mini eQ,i > 0, hence it admits
a unique minimizer. Instead, when the matrix Q is only positive semidefinite (Q < 0, such that
nullQ 6= {0}), then JB(x) is only convex as it is the sum of two functions which are both only
convex. Hence, the existence of minimizers of JB(x) in this case is not guaranteed unless JB(x) is
coercive. To investigate coerciveness of JB(x), we partition its domain Rn as follows:

Rn = P1 ∪ P2, P1 = Rn \ nullA, P2 = nullA , (78)

and we analyze coerciveness of the restrictions of JB(x) to the disjoint sub-domains P1 and P2.
Before considering the two cases separately, it is useful to derive the two following lower bounds
for JB(x):

JB(x) > 1
2‖Ax− b‖

2
2 ∀x ∈ Rn, (79)

JB(x) > Q(x) + λR(x) = 1
2 x

TQx− bTAx+ 1
2 ‖b‖

2
2 + λR(x) ∀x ∈ Rn , (80)

where (79) comes from (42)–(43) and (80) follows from (71)–(72) and (77). We also recall that,
given an unbounded set S ⊆ Rn and two functions f1, f2 : S → R such that f1(x) > f2(x)∀x ∈ S,
coerciveness of f2(x) (over S) implies coerciveness of f1(x) (over S).

Case x ∈ P1. The restriction of the quadratic function 1
2‖Ax − b‖

2
2 to P1 defined in (78) is

clearly strongly convex, hence coercive. It thus follows from inequality (79) that JB(x) restricted
to P1 is coercive.
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Case x ∈ P2. According to statement (73) of Lemma 5, x ∈ P2 = nullA implies x ∈ nullQ.
Hence, when restricted to P2 inequality (80) reduces to

JB(x) > 1
2 ‖b‖

2
2 + λR(x) = 1

2 ‖b‖
2
2 + λΦ(G(Lx)) ∀x ∈ P2 = nullA , (81)

where the second equality in (81) comes from definition of the regularizer R(x) in (2). In case that
(P2 = nullA) ∩ nullL = {0}, then the right-hand side function in (81) is coercive over P2 due to
assumption A2) on the regularizer R(x). It follows from inequality (81) that JB(x) is also coercive
over P2. This concludes the proof after recalling that a proper, l.s.c., convex and coercive function
admits minimizer(s).

In the next subsection, we discuss some simple strategies for choosing the matrix of parameters
B among all those satisfying the convexity condition in (74).

5.1 Setting the parameter matrix B

The convexity condition in (74) sets a constraint on BTB, hence on the matrix of parameters B.
However, infinitely many BTB matrices – and hence B matrices – satisfy this constraint; therefore,
some guidelines must be given. In the following, we illustrate two simple strategies for choosing B.

The first and simplest strategy consists in setting B =
√
γ/λA, that is

BTB = (γ/λ)ATA , γ∈ [0, 1] . (82)

It is immediate to verify that this choice of B fulfills condition (74) for convexity of our cost
functional JB. Moreover, it is intuitive that the scalar parameter γ controls the degree of non-
convexity of the regularization term RB in JB, namely the greater γ the more non-convex RB. If
γ = 0, then B = 0 and our penaltyRB reduces to the convex regularizerR in (2) under assumptions
A1) and A2). If γ = 1, then (74) is satisfied with equality and our regularizer RB is ‘maximally’
non-convex under the constraint that JB is convex.

We also propose the following second, more sophisticated strategy for constructing a matrix
BTB ∈ Rn×n satisfying the convexity condition in (74). Since the matrix ATA ∈ Rn×n is symmetric
and positive semidefinite, it admits the eigenvalue decomposition

ATA = V EV T, E, V ∈ Rn×n, E = diag(e1, e2, . . . , en) , V TV = V V T = In , (83)

with ei, i = 1, . . . , n, indicating the real non-negative eigenvalues of ATA. We set

BTB =
1

λ
V ΓEV T, Γ := diag(γ1, γ2, . . . , γn) , γi∈ [0, 1] ∀ i ∈ {1, 2, . . . , n} , (84)

such that, replacing (84) into convexity condition (74), we have

Q = V (E − ΓE)V T < 0 (� 0) ⇐⇒ E (In − Γ) < 0 (� 0) , (85)

which is clearly satisfied given the definition of matrix Γ in (84). We notice that, when one chooses
γ1 = γ2 = · · · = γn = γ ∈ [0, 1], then (84) reduces to (82), that is strategy (82) is included in the
more general strategy (84). A suitable choice of the γi will be discussed in the experimental section
for the case of image restoration.

In the following proposition we adapt the results in Proposition 8 to the special case of a matrix
BTB chosen according to the strategy illustrated in (83)–(84).

Proposition 9. Let the matrix BTB ∈ Rn×n be set as in (83)–(84). Then, we have
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•
{

nullA = {0}
γi 6= 1 ∀ i ∈ {1, . . . , n} =⇒ JB(x) is eQ–strongly convex =⇒ admits a unique minimizer,

•
{

nullA 6= {0} ∨ ∃ i ∈ {1, . . . , n}: γi = 1
nullA ∩ nullL = {0} =⇒ JB(x) is coercive =⇒ admits minimizer(s),

where
eQ = min

i=1,...,n
{ei(1− γi)} . (86)

Proof. The proof of this proposition comes in a straightforward manner from the results in Propo-
sition 8 once the two conditions Q � 0 and Q < 0 are made explicit for the considered case of a
matrix BTB chosen as in (83)–(84). Starting from (85) and using (83)–(84), we directly obtain the
eigenvalue decomposition of the real symmetric matrix Q in (74):

Q = V diag
(
e1(1− γ1)︸ ︷︷ ︸

eQ,1

, e2(1− γ2)︸ ︷︷ ︸
eQ,2

, . . . , en(1− γn)︸ ︷︷ ︸
eQ,n

)
V T , (87)

where eQ,i, i = 1, . . . , n, represent the eigenvalues of Q and, hence, e Q in (86) represents the
smallest eigenvalue of Q. The matrix Q is positive definite (Q � 0) if and only if all its eigenvalues
are positive that is - see (87) - if and only if ei > 0 and γi 6= 1 for any i ∈ {1, . . . , n}. Since ei,
i = 1, . . . , n, denote the eigenvalues of matrix ATA, the condition ei > 0 ∀ i∈{1, . . . , n} is equivalent
to nullATA = nullA = {0}. The matrix Q is only positive semidefinite (Q < 0) if and only if at
least one of its eigenvalues is null that is - see (87) - if and only if there exists i∈{1, . . . .n} such that
ei = 0 or γi = 1. The condition ∃ i∈{1, . . . , n}: ei = 0 is equivalent to nullATA = nullA 6= {0}.

6 Optimization Algorithm

Even though the proposed class of non-separable regularization functions RB in (41) does not have
a simple explicit formula, a global minimizer of the sparse-regularized cost function JB in (43) can
be readily calculated using proximal algorithms.

To minimize the cost function JB in (43) using proximal algorithms, we rewrite it as a saddle-
point problem:

(x∗, v∗) = arg min
x∈Rn

max
v∈Rn

F(x, v) (88)

where

F(x, v) =
1

2
‖Ax− b‖22 + λR(x)− λR(v)− λ

2
‖B(x− v)‖22. (89)

The solution of the saddle-point problem can be calculated using a general form of the forward-
backward (FB) algorithm (Theorem 25.8 in Ref. [1]). This form of the FB algorithm is formulated
to solve monotone inclusion problems, of which the saddle-point problem (89) is a special case.
The FB algorithm involves operators A, AT, B, and BT, and the proximity operator of R.

Proposition 10. Let A ∈ Rm×n, b ∈ Rm, λ > 0, and let RB : Rn → R be the regularization
function in (41), with the matrix BTB ∈ Rn×n set as in (83)–(84). Then the saddle-point (x∗, v∗)
of the function F in (89) can be obtained as the limit point of the sequence of iterates

{
xk, vk

}∞
k=1

generated by the following forward-backward iterative algorithm:

set ρ = max
k

{
1− 2γk + 2γ2

k

1− γk
ek

}
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set µ ∈ ] 0 , 2/ρ [

for k = 0, 1, 2, . . .

wk = xk − µ
[
AT(Axk − b) + λBTB (vk − xk)

]
uk = vk − µλBTB(vk − xk)

xk+1 = arg min
x∈Rn

{
R(x) +

1

2µλ
‖x− wk‖22

}
vk+1 = arg min

v∈Rn

{
R(v) +

1

2µλ
‖v − uk‖22

}
end

where ek and γk are defined in (83)–(84), and k is the iteration counter.

Proof. The point (x∗, v∗) is a saddle-point of F in (89) if 0 ∈ ∂F(x∗, v∗) where ∂F is the subdif-
ferential of F . From (89), we have

∂xF(x, v) = AT(Ax− b)− λBTB(x− v) + λ∂R(x),

∂vF(x, v) = λBTB(x− v)− λ∂R(v).

Hence, 0 ∈ ∂F(x, v) if 0 ∈ P(x, v) +Q(x, v) where

P(x, v) =

[
ATA− λBTB λBTB

− λBTB λBTB

]
︸ ︷︷ ︸

P

[
x
v

]
−
[
ATb

0

]
,

Q(x, v) =

[
λ∂R(x)
λ∂R(v)

]
.

The operators P and Q are maximally monotone, since they represent the subdifferentials of proper
convex l.s.c. functions. Hence, the pair (x, v) such that 0 ∈ P(x, v) + Q(x, v) is a zero of a sum
of maximally monotone operators. Since P is single-valued and β-cocoercive with β > 0, the pair
(x, v) can be calculated via the forward-backward algorithm (Theorem 25.8 in [1]). In the current
notation, the forward-backward algorithm is[

wk
uk

]
=

[
xk
vk

]
− µP(xk, vk)[

xk+1

vk+1

]
= (I + µQ)−1(wk, uk) .

The constant µ should be chosen so that 0 < µ < 2β where P is β-cocoercive (Definition 4.4 in [1]),
i.e., βP is firmly non-expansive. We now address the value β. By Corollary 4.3(v) in [1], this
condition is equivalent to

1
2P + 1

2P
T − βPTP︸ ︷︷ ︸
M

< 0 , (90)

with matrix P ∈ R2n×2n defined above. Recalling (83)-(84), we can rewrite the previously defined
matrix P as follows:

P =

[
V EV T− V ΓEV T V ΓEV T

−V ΓEV T V ΓEV T

]
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=

[
V 0
0 V

]
︸ ︷︷ ︸

Ṽ

[
E − ΓE ΓE
−ΓE ΓE

] [
V T 0
0 V T

]
︸ ︷︷ ︸

Ṽ T

(91)

where the matrix Ṽ ∈ R2n×2n is clearly orthogonal as V is orthogonal. Substituting (91) for P in
(90), we have:

M = Ṽ

[
E − ΓE 0

0 ΓE

]
Ṽ T

− βṼ
[
E − ΓE −ΓE

ΓE ΓE

]
Ṽ TṼ

[
E − ΓE ΓE
−ΓE ΓE

]
Ṽ T

= Ṽ M̃ Ṽ T < 0 ⇐⇒ M̃ < 0 , (92)

where

M̃ =

[
E − ΓE 0

0 ΓE

]
− β

[
E − ΓE −ΓE

ΓE ΓE

] [
E − ΓE ΓE
−ΓE ΓE

]
=

[
E − ΓE 0

0 ΓE

]
− β

[
(E − ΓE)2 + Γ2E2 (E − 2 ΓE) ΓE

(E − 2 ΓE) ΓE 2 Γ2E2

]
=

[
E − ΓE 0

0 ΓE

]
− β

[
E2 − 2 ΓE2 + 2 Γ2E2 ΓE2 − 2 Γ2E2

ΓE2 − 2 Γ2E2 2 Γ2E2

]
=

[
M̃1,1 M̃1,2

M̃2,1 M̃2,2

]
, (93)

and where

M̃1,1 = E
(
In − Γ− βE

(
In − 2 Γ + 2 Γ2

))
, (94)

M̃1,2 = M̃2,1 = −β ΓE2 (In − 2 Γ) , (95)

M̃2,2 = ΓE (In − 2β ΓE) . (96)

According to [40], there exists a permutation matrix Π ∈ R2n×2n such that we can use the similarity
transformation:

Π M̃ ΠT = M̃ ′1 ⊕ M̃ ′2 ⊕ · · · ⊕ M̃ ′n = M̃ ′, (97)

with [
M̃ ′k
]
i,j

= M̃k
i,j , k ∈ {1, . . . , n}, i, j ∈ {1, 2} . (98)

Thus, the original 2 × 2 block matrix M̃ in (93)–(96) with diagonal blocks M̃i,j of order n has

been transformed into the block-diagonal matrix M̃ ′ with n full blocks M̃ ′k of order 2. Hence, the

eigenvalues of M̃ coincide with those of all the 2× 2 blocks M̃ ′k.
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The generic 2× 2 block M̃ ′k takes the following form:

M̃ ′k =

[
ek
(
1− γk − β ek

(
1− 2 γk + 2 γ2

k

))
−β γk e2

k (1− 2 γk)
−β γk e2

k (1− 2 γk) γk ek (1− 2β γk ek)

]
, k = 1, . . . , n . (99)

Hence, M̃ in (93)–(96) is positive semidefinite if and only if all the blocks M̃ ′k in (99) are positive

semidefinite. According to Sylvester’s criterion, M̃ ′k is positive semi-definite if and only if all its
principal minors are non-negative, that is if and only if:

ek
(
1− γk − β ek

(
1− 2 γk + 2 γ2

k

))
> 0

γk ek (1− 2β γk ek) > 0
γk e

2
k

(
1− γk − β ek

(
1− 2 γk + 2 γ2

k

))
(1− 2β γk ek)

−β2 γ2
k e

4
k (1− 2 γk)

2 > 0.

(100)

First, we notice that if ek = 0 then M̃ ′k is a matrix of all zeros, hence it is positive semidefinite.
We thus consider blocks for which ek > 0. In case γk = 0, then the second and third inequalities in
(100) are satisfied for any β and the first inequality reduces to

β 6
1

ek
∀ k ∈ {0, 1, . . . , n} ⇐⇒ β 6

1

maxk ek
. (101)

We finally consider blocks for which ek, γk > 0. The inequalities in (100) reduce to
1− γk − β ek

(
1− 2 γk + 2 γ2

k

)
> 0

1− 2β γk ek > 0(
1− γk − β ek

(
1− 2 γk + 2 γ2

k

))
(1− 2β γk ek)

−β2 γk e
2
k (1− 2 γk)

2 > 0

(102)

that is 

β 6
1− γk

1− 2γk + 2γ2
k

1

ek

β 6
1

2γk

1

ek
β2e2

kγk

[
2
(
1− 2 γk + 2 γ2

k

)
− (1− 2 γk)

2
]

−β ek
[
1− 2 γk + 2 γ2

k + 2 γk (1− γk)
]

+ 1− γk > 0

(103)

that is 
β 6

1− γk
1− 2γk + 2γ2

k

1

ek

β 6
1

2γk

1

ek
0 6 β2e2

kγk − β ek + 1− γk.

(104)

Simple algebraic manipulations allow to prove that the first inequality is more stringent than the
second one and that the third inequality is always satisfied. Since (104) must hold for any k, we
have:

β 6
1− γk

1− 2γk + 2γ2
k

1

ek
∀ k ∈ {0, 1, . . . , n} ⇐⇒ β 6

1

max
k

{
1− 2γk + 2γ2

k

1− γk
ek

} . (105)

This concludes the proof, after noticing that (105) contains (101) as a special case.
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We note that the FB algorithm requires that P be β-cocoercive with β > 0; hence, the choice
γk = 1 for some k is precluded. Note also that if one chooses γk = 0 for all k and R is the `1
norm, then the algorithm in Proposition 10 reduces to the classic iterative shrinkage/thresholding
algorithm (ISTA) [12,16]. The Douglas-Rachford algorithm (Theorem 25.6 in [1]) may also be used
to find the saddle-point of F in (89).

Finally, we observe that, based on definitions (88)–(89), at each iteration the proposed algorithm
in Prop. 10 performs a step of minimization in the primal variable x of the function

F (x)(x; v) :=
1

2
‖Kx− b‖22 + λTV(x)− λ

2
‖Bx‖22 + λxTBTBv (106)

and a step of maximization in the dual variable v of the function

F (v)(v;x) := − λTV(v)− λ

2
‖Bv‖22 + λxTBTBv . (107)

Hence the algorithm in Prop. 10 can be defined as belonging to the wide class of Primal-Dual
Forward-Backward (PDFB) algorithms, with the only exception being the updating of the dual
variable which is computed in terms of xk instead of xk+1.

7 Numerical Examples

In this section, we evaluate the performance of the CNC-NS-`2 convex variational model in (43)
which is defined in terms of the proposed non-convex non-separable regularizer RB defined in
(41). More broadly, we investigate the advantages of using convex models defined using non-convex
non-separable regularizers instead of either non-convex separable regularizers or convex separable
regularizers, for restoring images characterized by some sparsity properties.

The presented numerical experiments involve different image processing problems, namely image
denoising, deblurring and inpainting, with different regularizers. In particular, we consider gradient-
based regularizers for the first three examples, while regularizers based on the nuclear norm and
the Hessian Schatten norm will be investigated in Example 4 and Example 5, respectively.

We conduct experiments on the four gray-scale test images geometric (256×256 pixels), QRcode
(320× 320 pixels), rectangles (200× 200 pixels) and roof (200× 200 pixels), shown in Figure 2.
The first three test images are characterized by constant regions and sharp edges – that is, they
belong to the class of piecewise constant images – so as to highlight the sparsity-inducing properties
of the CNC-NS-`2 model in the case of sparse gradient magnitudes. The fourth image considered,
shown in Figure 2(d), belongs instead to the class of piecewise affine images and will be used in
Example 5 to test the proposed CNC-NS-`2 model in case of images characterized by sparse Hessian
magnitudes.

In the first three examples, we consider the proposed CNC-NS-`2 model (43) where R is the
isotropic TV defined in (9), and we compare it with the popular convex Rudin-Osher-Fatemi (ROF)
model [30], based on the minimization of the isotropic TV-`2 functional defined in (1).

In the third example, which deals with image denoising, since the matrix A in the quadratic
fidelity term is reduced to the identity matrix, we can extend the comparison to a separable TV-
based CNC denoising competitor, namely the one proposed in [20, 22], referred to as CNC-S-`2.
Moreover, by appropriately setting the convexity parameter, the CNC-S-`2 model works in a non-
convex regime. This makes our comparison with non-convex methods, namely the CNC-S-`2 model
with suitable convexity parameter, and the TVp model with 0 < p < 1, more challenging. In the
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(a) (b) (c) (d)

Figure 2: Test images geometric (a), qrcode (b), rectangles (c) and roof (d).

last two examples, we investigate regularizers based on the convex nuclear and Hessian Schatten
norms defined in (11)-(12).

The proposed CNC-NS-`2 method requires the prescription of a matrix B satisfying the con-
vexity condition (74), i.e., BTB 4 (1/λ)ATA. Many such matrices B exist. A simple option is to
set B to be proportional to A as in (82). In the case of image denoising where A = I, this choice
leads to B being a scalar multiple of identity. However, we found experimentally that using the
more sophisticated strategy in (84), with Γ a suitably designed two-dimensional dc-notch filter,
gave better results [28]. More precisely, let us first recall that only BTB influences the regularizer,
not B itself. Correspondingly, in the algorithm of Prop. 10, the matrix B arises only in the form
BTB. Hence, it is sufficient to prescribe the matrix (operator) BTB; it is not necessary to prescribe
B itself. In the following experiments, we set Γ to be a two-dimensional dc-notch filter defined
by Γ = I − H where H is a two-dimensional low-pass filter with a dc-gain of unity and H 4 I.
In our experiments, we set γ = 0.98 and H = HT

0H0 where H0 is the most basic two-dimensional
low-pass filter: the moving-average filter with square support. Hence, H is a row-column separable
two-dimensional filter given by convolution with a triangle sequence.

Regarding the optimization algorithms, the proposed CNC-NS-`2 model is numerically solved by
the primal-dual forward-backward algorithm illustrated in Prop. 10. In particular, the computation
of both vk+1 and xk+1 in the algorithm is carried out by an ADMM-based iterative algorithm.
For the minimization of the CNC-S-`2 model in Example 2, we use the ADMM-based procedure
proposed in [22] with parameters βt = βz = 50, and τc = 0.99 such that for all the experiments the
convexity condition is satisfied. For the TV-`2 model, we use a similar ADMM-based algorithm
(see [10]) using the same parameters βt = βz = 50.

In all the experiments and for all the algorithms, we use the observed corrupted image as the
initial iterate, i.e. x0 = b, and we terminated the iterations as soon as two successive iterates satisfy

δ
(x)
k :=

‖xk − xk−1‖2
‖xk−1‖2

< 10−5 . (108)

The quality of the obtained restorations is evaluated by the Signal-to-Noise Ratio (SNR), defined
as

SNR(x∗, x̄) := 10 log10

(
‖x̄− E[x̄]‖22 / ‖x∗ − x̄‖22

)
,

where x∗ ∈Rn is the computed estimate of the uncorrupted image x̄ ∈Rn and E[x̄] denotes the
mean value of x̄. A high SNR value indicates that x∗ is an accurate approximation of x̄. In all
the experiments and for all the algorithms, we hand-tuned the regularization parameter λ so as to
obtain the highest possible SNR value.

Example 1. In this example, we test the performance of the proposed non-convex non-separable
regularizer – or, better, of the overall CNC-NS-`2 proposed model in (43) – when applied to the
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inverse problem of restoring images corrupted by blur and additive white Gaussian noise (AWGN).
The degradation model we aim to ‘invert’ as accurately as possible reads as

b = Kx̄ + ε , (109)

where x̄, ε, b ∈ Rn represent vectorized forms of the unknown uncorrupted image, unknown noise
realization and observed corrupted image, respectively, and where K ∈ Rn×n is a known linear
blurring operator. The matrix K is typically so ill-conditioned (if not numerically singular) that
recovering ū given b and K by means of a naive (not regularized) least-squares procedure leads to
meaningless results. Some sort of regularization is required. We consider here the restoration of
the three test images geometric, QRcode and rectangles depicted in Fig. 2. These images belong
to the class of piecewise constant images, which are characterized by sparse derivatives. One of the
most popular and effective convex regularizers capable of promoting sparsity of image derivatives
is the TV regularizer, the two common forms being defined in (9). Due to its well-known superior
performance, we consider here the isotropic TV regularizer, which induces sparsity of the image
gradient magnitudes. We thus assume the isotropic TV-`2 model as the baseline convex model
and we seek to evaluate the relative performance of the proposed associated CNC-NS-`2 model as
defined in (43), which, we note, is also convex in spite of its non-convex regularizer. For the sake
of clarity, we recall that the two compared models obtain the restored images as the minimizers of
the following two functionals:

J (x) =
1

2
‖Kx− b‖22 + λ TV(x) [ TV−`2 ] (110)

JB(x) =
1

2
‖Kx− b‖22 + λ

(
TV(x)−

(
TV � 1

2‖B · ‖
2
2

)
(x)
)

[ CNC−NS−`2 ] (111)

The experimental setting is as follows. The original test images are first synthetically corrupted
by space-invariant Gaussian blur under the assumption of periodic boundary conditions. The blur
matrix K ∈ Rn×n in (109)–(111) is thus block-circulant with circulant blocks and is constructed
starting from the Gaussian convolution kernel, or point-spread function, generated by the Matlab
command fspecial(’gaussian’,band,sigma). The parameters band and sigma determine the band-
width and the values of each circulant block in K, respectively. In particular, band represents the
side length (in pixels) of the square support of the kernel, whereas sigma is the standard deviation
of the circular, zero-mean, bivariate Gaussian probability density function representing the Gaus-
sian point-spread function in the continuous setting. The blurred image Kx̄ ∈ Rn is then corrupted
by AWGN with standard deviation σ = 40 to obtain the image b ∈ Rn. Given K and b, as accurate
as possible estimates x∗ of the original uncorrupted image x̄ are computed for the two models in
(110)–(111) by hand-tuning the regularization parameter λ.

Quantitative and qualitative (visual) measures of the accuracy of the obtained results have
been produced. In Table 1 we report quantitative accuracy results measured by the SNR values
associated with the achieved restorations for different blurring corruptions characterized by the
parameters band and sigma. The best SNR results are marked in boldface. Figure 3 shows both
the corrupted images and the restored images computed by the two compared methods in the case
of blur with (band,sigma) = (5,1.5) - see the associated SNR values in the last column of Table 1.

From the SNR values in Table 1 and the visual inspection of the restored images in Fig. 3,
the improvement in accuracy provided by the proposed non-convex non-separable regularizer, with
respect to the convex separable TV regularizer, is evident. It is worth remarking that such im-
provement is obtained without renouncing any of the well-known advantages of (strongly) convex
optimization, namely the existence of a unique (global) minimizer and of numerical algorithms
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(band,sigma)

image model (3,1.5) (5,1.5)

geometric
TV-`2 19.09 18.12

CNC-NS-`2 20.31 19.30

QRcode
TV-`2 14.94 12.88

CNC-NS-`2 17.39 14.26

rectangles
TV-`2 21.57 20.08

CNC-NS-`2 26.17 22.92

Table 1: Example 1: SNR values obtained by deblurring the piecewise-constant test images
geometric, QRcode and rectangles corrupted by space-invariant Gaussian blur with parame-
ters (band,sigma) and AWGN with standard deviation σ = 40.

with proved convergence towards such minimizer. In this first example, we provide some empiri-
cal evidence for the numerical convergence of the proposed PDFB algorithm outlined in Prop. 10
towards the global minimizer of the CNC-NS-`2 objective function. In particular, we consider the
QRcode deblurring test with blur parameters (band, sigma) = (5, 1.5) and in Fig. 4 we report the
obtained convergence graphs for some relevant quantities. In particular, in the first row of Fig. 4

we show the graphs of the quantities δ
(x)
k and δ

(v)
k [see definition (108)] which indicate the good

convergence behavior of both the sequences {xk} and {vk} of primal and dual iterates. In regards to
the function values, in the second row of Fig. 4 we report the graphs of the quantities F (x)(xk; vk)
and F (v)(vk;xk) defined in (106)-(107) which not only demonstrate the good convergence behavior
of the sequences of primal and dual function values but also strongly indicate monotonicity of such
sequences. Finally, the plots of the SNR value for each primal iterate xk, shown in the third row
of Fig. 4, suggest that few iterations (in the order of tens) of the PDFB algorithm are sufficient
to achieve high quality results; see the two values SNR(x60) = 14.24 and SNR(x750) = 14.26 high-
lighted in the graphs. In Fig. 4(left column) we plot the values of these quantities for the first
800 iterations of the PDFB algorithm, whereas in Fig. 4(right column) we show only the first 80
iterations for detail.

Example 2. Another popular and successful application of sparsity-promoting regularization
is image inpainting, where it is desired to reconstruct image pixels that are lost - i.e., not sensed
correctly - or corrupted due, e.g., to scratches, texts or logos superposed on the image. The
associated degradation model is

b = Mx̄ + ε , (112)

where x̄ ∈ Rn and ε, b ∈ Rm represent vectorized forms of the unknown uncorrupted image,
unknown noise realization, and observed corrupted image, respectively, and where M ∈ Rm×n with
m < n is a known selection (i.e., masking) operator which in practice selects the uncorrupted pixels.
The matrix M is a binary wide matrix (hence, it does not have full column rank) obtained from the
n × n identity matrix by eliminating n −m different rows. The matrix MTM ∈ Rn×n is a binary
diagonal matrix with 1s in the positions on the main diagonal corresponding to the indexes of the
rows of the identity matrix contained in M . The matrix MTM is thus singular, in particular it has
rank equal to m.

In this example, we focus on inpainting of the piecewise constant test image QRcode - see
Fig. 2(b) - synthetically corrupted by AWGN with standard deviations σ ∈ {10, 20, 40} and with
two different types of inpainting masks, namely scratch and random - see the first column of
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Figure 3: Example 1: restoration results obtained by the TV-`2 (second column) and the associated
CNC-NS-`2 (third column) models applied to the piecewise constant test images geometric, QRcode
and rectangles corrupted by Gaussian blur with parameters (band,sigma) = (5, 1.5) and by
AWGN with standard deviation σ = 40 (first column). The SNR values associated to the depicted
restored images are reported in the last column of Table 1.

Fig. 5. We thus apply the convex isotropic TV-`2 and the associated CNC-NS-`2 models, which
rely, respectively, on the minimization of the two functionals in (110) and (111) with the blurring
matrix K replaced by the selection matrix M .

Some inpainting results with inpainting masks scratch, random 20%, and random 60% – see
the red pixels in the leftmost column - are illustrated in Fig. 5. Table 2 reports the quantitative
accuracy results measured by the SNR values associated with the best inpainted images obtained
by the TV-`2 and CNC-NS-`2 approaches on the QRcode image with inpainting masks scratch,
random 20% and random 60% and AWGN of standard deviations σ ∈ {10, 20, 40}. The best SNR
results are indicated in boldface. As in Example 1, we observe the improved performance yielded
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Figure 4: Example 1: empirical convergence graphs.

by the proposed model, especially at higher noise levels.
Example 3. In this example, we test the performance of the proposed CNC-NS-`2 model

for denoising the three piecewise constant test images considered in Example 1, which call for
regularizers that force the sparsity of image gradient magnitudes. Hence the degradation model
and the functionals to be minimized are the same as in (109) and (110)-(111), with the blur matrix
K replaced by the identity matrix.
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σ

image model 10 20 40

scratch
TV-`2 15.92 15.35 13.73

CNC-NS-`2 16.03 15.67 14.40

random 20%
TV-`2 21.33 19.57 16.11

CNC-NS-`2 21.88 21.07 18.67

random 60%
TV-`2 12.50 12.01 10.74

CNC-NS-`2 12.61 12.41 11.61

Table 2: Example 2: SNR values obtained by inpainting the piecewise-constant test image QRcode

with inpainting masks scratch, random 20% and random 60% (see first column of Fig.5) and
corrupted by zero-mean AWGN with standard deviation σ.

Furthermore, in this example we can also extend the comparison to CNC models with non-convex
but separable regularizers. To the best of our knowledge, the only TV-based CNC variational
model for image denoising proposed so far is the one presented in [20, 22], from now on referred
to as CNC-S-`2, which was demonstrated to outperform the classical TV-`2 denoising model in
inducing sparsity of the gradient magnitudes in the denoised images. Moreover, the challenging
comparison comes with purely non-convex models, namely, the TVp in (5) with 0 < p < 1 and
the non-convex model based on separable regularizers of the form (6), which is achieved by using
values of the convexity parameter a that violate the convexity limit in the CNC-S-`2 model. For
both non-convex models, we hand-tuned their non-convexity parameters p and a so as to achieve
the best SNR values for each test.

In Table 3 we report the SNR values achieved by the five compared methods for various noise
levels, i.e., for various values of the standard deviation σ of the synthetic AWGN degradation. The
best SNR results are indicated in boldface. The results in Table 3 indicate that the proposed non-
convex non-separable regularizer can promote sparsity of the gradient magnitudes more effectively
than both the standard convex separable TV regularizer and the non-convex separable regularizer
used in the CNC-S-`2 model in convex regime [20,22]. For what concerns the CNC-S-`2 model, we
observe that when used in its non-convex regime it is always better than the convex counterpart.
However, our proposal outperforms both the non-convex CNC-S-`2 model and the non-convex TVp−
`2 model on most of the tests. Overall, the results shown in Table 3 highlight the potential of the
purely non-convex models but, at the same time, indicate, by the variability of their performance,
their intrinsic weakness related to the existence of local minimizers. Instead, the proposed CNC
approach yields high-quality solutions which can be robustly computed as they represent global
minimizers of convex functionals.

Example 4. As discussed in Section 2, estimating a low-rank approximation of an unknown
matrix from few of its entries is known as Matrix Completion (MC). In image processing, the
MC procedure can be used for the inpainting problem as a valuable alternative to the method
considered - and tested - in Example 2 or, more in general, to variational methods based on
regularizers promoting sparsity of local differential quantities. In particular, MC is suitable for
inpainting images x ∈ Rd1×d2 satisfying a low-rank assumption: rank(x)� d̄ = min{d1, d2}.

The low-rank prior is typically implemented via convex relaxation, i.e., the rank of the image
is substituted by its nuclear norm - the Shatten p-norm defined in (10) with p = 1 - and the
regularizer in (12) can be used. We recall that the nuclear norm is proven to be the tightest convex
surrogate of the rank operator [15], and the analogy between using the nuclear norm for low-rank
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Figure 5: Example 2: inpainting results obtained by the TV-`2 (second column) and the associated
CNC-NS-`2 (third column) models applied to the test image QRcode corrupted by zero-mean AWGN
with standard deviation σ = 20.

matrix recovery and using the `1-norm for sparse signal recovery has been well established [29].
With all this said, in this example we consider the image inpainting problem - such that the

image degradation model we aim to invert is the same as in (112) - solved by using both the convex
least-squares variational model with the nuclear norm-based regularizer defined in (12), referred
to as S1 − `2 model, and the associated CNC-NS-`2 model. The two compared models rely on
minimizing the following cost functionals:

J (x) =
1

2
‖Mx− b‖22 + λ S1(x) [ S1 − `2 ] , (113)

JB(x) =
1

2
‖Mx− b‖22 + λ

(
S1(x)−

(
S1 � 1

2‖B · ‖
2
2

)
(x)
)

[ CNC−NS−`2 ] , (114)

with M the selection matrix associated with the inpainting mask.
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σ

image model 10 20 40 60 80

TV-`2 30.15 25.76 20.87 18.13 16.26

CNC-S-`2 (convex) 30.89 26.57 21.98 19.10 17.01

geometric CNC-S-`2 (non-convex) 30.99 26.73 22.04 19.15 17.08

TVp-`2 (p < 1) 30.82 25.98 21.10 18.28 16.16

CNC-NS-`2 30.87 26.47 22.68 20.16 18.31

TV-`2 30.79 24.95 19.27 15.41 13.81

CNC-S-`2 (convex) 40.08 34.53 23.90 18.81 15.39

QRcode CNC-S-`2 (non-convex) 42.03 36.03 25.05 20.53 17.01

TVp-`2 (p < 1) 45.13 37.13 30.38 21.77 16.18

CNC-NS-`2 44.06 36.69 29.58 23.31 17.64

TV-`2 34.97 29.32 23.77 20.62 18.44

CNC-S-`2 (convex) 45.30 36.26 28.05 23.26 20.10

rectangles CNC-S-`2 (non-convex) 48.30 39.31 31.72 24.41 20.75

TVp-`2 (p < 1) 49.65 40.84 29.00 21.38 18.76

CNC-NS-`2 51.00 42.61 33.53 27.58 23.16

Table 3: Example 3: SNR values obtained by denoising the test images geometric, QRcode and
rectangles corrupted by zero-mean AWGN with different values of the standard deviation σ.

Figure 6: Example 4: Matrix completion for reconstructing the QRcode test image corrupted by
the inpainting mask random 60% and by AWGN of standard deviation σ = 30 (left); absolute error
images associated with the reconstruction results obtained by the S1 − `2 model (center) - SNR =
8.96 - and by the CNC-NS-`2 model (right) - SNR = 9.91.

We applied the accelerated proximal gradient singular value thresholding algorithm APGL to
solving the S1 − `2 problem using the MATLAB implementation provided by the authors [39] and
available at [38]. For the solution of the CNC-NS-`2 model, we used the algorithm illustrated in
Prop. 10 where the two minimization problems (proximity operators) for xk+1 and vk+1 are solved
using the APGL algorithm where A is the identity matrix.

In Fig. 6 we show some inpainting results for the QRcode test image, which satisfies the low-
rank assumption and is thus prone to be successfully inpainted by the two models in (113)-(114).
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Figure 7: Example 5: restoration results obtained by the S1H-`2 model (center), SNR = 37.14,
and the associated CNC-NS-`2 model (right), SNR = 45.97, applied to the piecewise affine test
image roof corrupted by space-invariant Gaussian blur with parameters (band,sigma) = (9,2) and
by AWGN with standard deviation σ = 20 (left).

The image has been synthetically corrupted by the inpainting mask random 60% and by AWGN
of standard deviation σ = 30 - see Fig. 6(left). In Fig. 6(center) and Fig. 6(right) we report the
inpainting absolute error images - defined as the map of the absolute values of the pixel-by-pixel
differences between the true image and the inpainted one - associated with the results obtained by
the S1 − `2 and CNC-NS-`2 models, respectively. From a visual inspection the two results look
similar, but the difference in the associated SNR values highlights the more accurate reconstruction
obtained by using the proposed CNC-NS-`2 model.

Example 5. In this example we consider again the image deblurring problem, such that the
considered image degradation model is the same as in (109). The difference with respect to Example
1 is that now the penalty function R is the discrete Hessian Schatten-norm regularizer proposed
in [24], defined in (11)-(10) with the particular value p = 1, i.e., the nuclear norm of the Hessian.
To evaluate the proposed sparse regularization technique, we compare the convex restoration model
in [24] with p = 1, referred to as S1H-`2, with the CNC-NS-`2 model defined using the corresponding
non-convex penalty RB. the two models minimize the following functionals

J (x) =
1

2
‖Kx− b‖22 + λ S1H(x) [ S1H − `2 ] (115)

JB(x) =
1

2
‖Kx− b‖22 + λ

(
S1H(x)−

(
S1H � 1

2‖B · ‖
2
2

)
(x)
)

[ CNC−NS−`2 ] (116)

We remark that the regularizer R is known to provide better restorations that avoid staircases
artifacts produced by TV regularizers for this class of images. Since such a regularizer is well
known to sparsify the Hessian magnitudes, we consider the synthetic piecewise linear test image
roof, shown in Fig. 2, corrupted by Gaussian blur of parameters band = 9, sigma = 2, and by
AWGN of standard deviation σ = 20. Figure 7 shows the corrupted image (left) and the restored
images obtained by the two models with the associated SNR values (center and right). Figure 8
shows a horizontal 1D scan line (row 100, columns 170–195) of these four images, which more
clearly illustrates the improvement in the quality of restoration achieved by the CNC-NS-`2 model.

8 Conclusion

We proposed a novel strategy for sparsity-inducing regularization of linear least-squares problems.
This strategy relies on constructing non-convex non-separable regularizers starting from a quite
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Figure 8: Example 5: horizontal 1D section (row 100, columns 170-195) of images in Fig. 2 and
Fig. 7.

wide class of convex regularizers such that the total cost function remains convex but sparsity
is promoted more effectively. With respect to previous works on Convex Non-Convex variational
models, the proposed approach has a wider spectrum of applicability due to milder constraints
on the operators involved in the model. The proposed regularizers depend on a matrix of free
parameters which allows to impose the convexity of the cost functional. Two simple strategies
for setting this matrix have been proposed; more sophisticated strategies will be matter of future
studies together with a deeper investigation on whether and how these strategies depend on the
particular image processing application. We presented a primal-dual forward-backward splitting
algorithm to solve the saddle-point problem arising from the numerical solution of the proposed
variational model. The convergence of the algorithm has been proved. A session of numerical
experiments related to image deblurring, denoising and inpainting have been carried out and the
reported results strongly indicate that non-separability of the non-convex regularizer holds the
potential for achieving higher quality results while remaining in a convex, safe, regime.
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low complexity priors. Information and Inference: A Journal of the IMA, 4(3):230–287, 2015.

[42] D. P. Wipf, B. D. Rao, and S. Nagarajan. Latent variable Bayesian models for promoting
sparsity. IEEE Trans. Inform. Theory, 57(9):6236–6255, September 2011.

[43] Y.-B. Zhao and D. Li. Reweighted `1-minimization for sparse solutions to underdetermined
linear systems. SIAM Journal on Optimization, 22(3):1065–1088, 2012.

33


	Copertina_postprint_IRIS_UNIBO
	paper_1911_2018

