
02 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Sangiorgi, D., Vignudelli, V. (2016). Environmental bisimulations for probabilistic higher-order languages.
Association for Computing Machinery [10.1145/2837614.2837651].

Published Version:

Environmental bisimulations for probabilistic higher-order languages

Published:
DOI: http://doi.org/10.1145/2837614.2837651

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/586780 since: 2017-05-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1145/2837614.2837651
https://hdl.handle.net/11585/586780

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Davide Sangiorgi and Valeria Vignudelli. 2016. Environmental bisimulations for
probabilistic higher-order languages. SIGPLAN Not. 51, 1 (January 2016), 595–607.
https://doi.org/10.1145/2914770.2837651

The final published version is available online at:
https://doi.org/10.1145/2914770.2837651

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1145/2914770.2837651

Environmental Bisimulations for
Probabilistic Higher-Order Languages

Davide Sangiorgi Valeria Vignudelli
University of Bologna & INRIA

email?

Abstract
Environmental bisimulations for probabilistic higher-order lan-
guages are studied. In contrast with applicative bisimulations, en-
vironmental bisimulations are known to be more robust and do not
require sophisticated techniques such as Howe’s in the proofs of
congruence.

As representative calculi, call-by-name and call-by-value λ-
calculus, and a (call-by-value) λ-calculus extended with references
(i.e., a store) are considered. In each case full abstraction results are
derived for probabilistic environmental similarity and bisimilarity
with respect to contextual preorder and contextual equivalence,
respectively. Some possible enhancements of the (bi)simulations,
as ‘up-to techniques’, are also presented.

Probabilities force a number of modifications to the definition of
environmental bisimulations in non-probabilistic languages. Some
of these modifications are specific to probabilities, others may
be seen as general refinements of environmental bisimulations,
applicable also to non-probabilistic languages. Several examples
are presented, to illustrate the modifications and the differences.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs—logics of programs; F.3.2 [Logics and Meaning of
Programs]: Semantics of Programming Languages—operational
semantics.

General Terms Theory

Keywords Environmental Bisimulation; Probabilistic Lambda
Calculus; Contextual Equivalence; Imperative Languages

1. Introduction
The general topic of the paper are techniques for proving be-
havioural equivalence in higher-order probabilistic languages.
Checking computer programs for equivalence is a crucial, but chal-
lenging, problem. Equivalence between two programs generally
means that the programs should behave “in the same manner” un-
der any context. Specifically, two λ-terms are context equivalent if
they have the same convergence behavior (i.e., they do or do not
terminate) in any possible context. Finding effective methods for

context equivalence proofs is particularly challenging in higher-
order languages.

Bisimulation has emerged as a very powerful operational method
for proving equivalence of programs in various kinds of languages,
due to the associated coinductive proof method. To be useful, the
behavioral relation resulting from bisimulation — bisimilarity —
should be a congruence, and should also be sound with respect to
context equivalence; ideally it should coincide with context equiv-
alence. Bisimulation has been studied in depth in deterministic λ-
calculi, e.g., [2, 12, 22, 35, 39]. In contrast, so far, it has been little
explored in probabilistic λ-calculi, mainly in the form of applica-
tive bisimilarity [7, 9] for the pure call-by-name and call-by-value
languages.

Applicative bisimulations are known however to have some sig-
nificant limitations. First, they do not scale very well to languages
richer than pure λ-calculus. For instance, they are unsound under
the presence of references, or even just generative names, or data
abstraction; see [21] for an enlightening discussion. Secondly, con-
gruence proofs of applicative bisimulations are notoriously hard.
Such proofs usually rely on Howe’s method [14], which is however
fragile outside the pure λ-calculus. Related to the problems with
congruence are also the difficulties of applicative bisimulations
with “up-to context” techniques (the usefulness of these techniques
in higher-order languages and its problems with applicative bisim-
ulations have been studied by Lassen [22]; see also [19, 36, 39]).

To relieve this burden, environmental bisimulations have been
proposed [42], refining earlier proposals in [1, 5, 16, 19, 45]. The
distinguishing feature of these bisimulations is that the pairs of
tested terms are enriched with environments, that intuitively col-
lect the observer’s knowledge about values computed during the
bisimulation game. The elements of the environment can be used
to construct terms to be supplied as inputs during the bisimulation
game. The notion has been applied to a variety of languages, includ-
ing pure λ-calculi [42, 46], extensions of λ-calculi [3, 19, 20, 45],
or languages for concurrency or distribution [32, 33, 43]. In envi-
ronmental bisimulations the proof of congruence goes by induc-
tion over contexts, as in proofs for first-order languages. For this,
the proofs in the literature rely on a ‘small-step’ reduction relation.
This allows a tight control over the syntax of the contexts, which
fails with big-step reductions because in a higher-order language
contexts may arbitrarily grow during reduction.

With probabilities, the drawbacks of applicative bisimilarity are
magnified: full abstraction with respect to contextual equivalence
may fail also in a pure λ-calculus, and Howe’s technique has to
be enriched with non-trivial ‘disentangling’ properties for sets of
real numbers, these properties themselves proved by modeling the
problem as a flow network and then applying the Max-flow Min-cut
Theorem.

In this paper, our goal is understanding environmental bisim-
ulations in probabilistic higher-order languages. As representative

calculi we consider call-by-name and call-by-value λ-calculus, and
a (call-by-value) λ-calculus extended with higher-order references.
The computation is made probabilistic by endowing these calculi
with a primitive for binary, fair, probabilistic choice. In each case
we derive full abstraction results for probabilistic environmental
similarity and bisimilarity with respect to contextual preorder and
contextual equivalence, respectively. Below, we discuss the main
differences of our proposals in comparison with ordinary (i.e., non
probabilistic) environmental (bi)simulations.

Static and dynamic environments In ordinary environmental
bisimulation the values produced during the bisimulation game
are placed into the environment, so that the observer can later play
them at will during the bisimulation game. This schema is irrespec-
tive of the evaluation strategy (call-by-name or call-by-value), and
is the distinguishing feature of environmental bisimulations over
the applicative ones. ‘Playing a term’ means copying it. However,
in the λ-calculus the copying possibilities for call-by-name and
call-by-value are quite different. In call-by-name, evaluation only
occurs in functional position and therefore the term resulting from
the evaluation may not be copied. In call-by-value, in contrast, a
term may be evaluated also in argument position, and then given as
input to a function; thus copying is possible also after evaluation.
The different copying behaviour is well visible, for instance, in
linear logic interpretations of call-by-name and call-by-value [26].

Now, the semantics of probabilistic languages is sensitive to the
copying operation; for instance the probability of success of an ex-
periment, if non-trivial, may be lowered by playing the experiment
several times. This has a strong impact on behavioural equivalences
for call-by-name and call-by-value in probabilistic λ-calculi. As an
example, using Ω for a purely divergent term,

A
def
= λx.(x⊕ Ω) and B

def
= (λx.x)⊕ (λx.Ω) (1)

are contextually equivalent in call-by-name: if evaluated alone they
always terminate; if evaluated with an argument, they return the
argument with the same probability. More generally, in call-by-
name abstraction distributes over probabilistic choice. In contrast,
distributivity fails in call-by-value, exploiting the possibility of
copying evaluated terms; e.g., the probabilities of termination for
A and B are different in the context (λx.x (xλy.y))[·].

To be able to express such behavioural differences, in our en-
vironmental bisimulations the values produced during the bisimu-
lation game are placed into the environment only in call-by-value.
We call such a value environment a dynamic environment because
it may grow during the bisimulation game. It is precisely the use of
the dynamic environment that allows us to separate the two termsA
andB above. In probabilistic call-by-name, dynamic environments
would break full abstraction for contextual equivalence. The only
environment for call-by-name is static. The static environment for
two compared objects F,G is a pair of λ-terms M,N , which are,
intuitively, the initial λ-terms from which, using evaluation and in-
teraction according to the bisimulation game, the objects F,G have
been derived. This (small) static environment is sufficient to ensure
that the congruence proof of the bisimilarity remains in the style
of ordinary environmental bisimulation (i.e., it does not require so-
phisticated techniques such as Howe’s). In short, the static environ-
ment reflects the copying possibility for terms before evaluation,
whereas the dynamic environment reflects the copying possibility
for values resulting from evaluation.

Formal sums In our probabilistic relations the objects compared
are not plain λ-terms but formal sums, that are the objects produced
by the semantics of a term. These are, intuitively, syntactic repre-
sentations of probability distributions. As a consequence, environ-
ments are not just tuples of values, but formal sums of tuples of
values. To see why related objects must be formal sums, consider

again the terms A and B in (1): our environmental bisimulation
for call-by-name equates A and B by relating A and the formal
sum resulting from the evaluation ofB. None of the components of
the formal sum, λx.x and λx.Ω, could separately be related with
A. (A form of bisimulation on formal sums, namely a probabilistic
version of logical bisimulation, is already defined in [9] for call-
by-name; its drawbacks are discussed in Section 6.)

In pure call-by-value λ-calculus, full abstraction for contextual
equivalence would also hold without formal sums (i.e., relating
plain λ-terms), for the same reason why, in the same language,
applicative bisimilarity on plain terms is fully abstract [7]. We
do not pursue this simplification of environmental bisimulations
because it would be unsound in extensions of the calculus. For
instance, consider the following terms of a probabilistic λ-calculus
with store (again, an instance of distributivity):

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)(λ.M ⊕ λ.N)

where (ν x :=0) indicates the creation of a new reference, ini-
tialised with 0, λ.L is a thunk (i.e., λz.L for z not free in L), and
where, using L1 seq L2 for the sequential evaluation of L1 fol-
lowed by L2,

M
def
= if !x = 0 then (x := 1 seq true) else Ω

N
def
= if !x = 0 then (x := 1 seq false) else Ω .

The terms M and N only differ at their first evaluation, when the
value of x is set to 1 and M produces true whereas N produces
false; thereafter x is 1 and both terms diverge. As a consequence,
H and K are contextually equivalent: at their first evaluation they
always terminate, at later evaluations they always diverge.

To place H and K in a bisimulation, H has to be related with
the formal sum obtained from the evaluation ofK; again, the single
components alone would be distinguished. Once more, this is a
copying issue, due to the possibility of copying terms but not stores.

Big-step reduction, term closure, and congruence proof To
achieve full abstraction, in the probabilistic case the bisimulation
clauses have to use a big-step, rather than a small-step, reduction
relation. Precisely, we give finitary big-step approximants from
which the semantics of a term is obtained via a least-fixed point
construction (a similar semantics is [8]). The reason, intuitively,
is that while in pure λ-calculi a term converges (i.e., it terminates
its computation) in a finite number of reductions, in the proba-
bilistic calculi there may be several terminating computation paths,
in which the total number of reductions need not be finitary. An
example is given by the terms

P
def
= RR and Q

def
= λ.Ω , for R

def
= λx.(xx)⊕Q (2)

where ⊕ denotes a probabilistic choice. The terms P and Q are
contextually equal, intuitively because they both have probability
1 of becoming term Q: after some reductions, P may become Q
or may become P again, with equal probability. Only by exploring
the whole computation tree produced by P does one find out that
the infinite number of leaves in the tree make a probability 1 of
obtaining Q. None of the finite approximants of the infinite tree
gives the same information (a formal sum made of a finite subset
of the leaves would not be equivalent to Q).

When the reduction relation is small-step, as in ordinary en-
vironmental bisimulations, the related terms need not be values,
because a normalising term need not produce a value in a single
step and bisimulations must be closed under the reduction adopted.
In contrast, as our environmental bisimulations are big-steps, the
bisimulation game may be confined to values.

A more significant consequence of the adoption of big-step re-
ductions is that the induction over contexts in the proofs of con-
gruence for ordinary environmental bisimulations is replaced by an

induction on the number of small-step reductions with which a big-
step approximant is derived (possibly coupled with an induction on
the size of a context), combined with two levels of continuity ar-
guments. One level stems from the least fixed point construction
employed in the definition of the infinitary big-step semantic on
terms. The second level stems from a characterisation of bisimilar-
ity as the kernel of the similarity preorder and, in turn, as the kernel
of a finitary similarity in which (on the challenger side) the big-step
reduction relation employed is finite. The proof of the characterisa-
tion with the finitary similarity makes use of least fixed-points via a
saturation construction on formal sums where, intuitively, a formal
sum is better than another formal sum if the former conveys more
accurate probabilistic information than the latter.

Up-to techniques Our proofs and examples rely on a few en-
hancements of the bisimulation proof method (‘bisimulations up-
to’), some of which are extensions of common (bi)simulation en-
hancements, others are specific to probabilistic calculi. An example
of the latter is ‘simulation up-to lifting’, whereby it is sufficient, in
the coinductive game, that two derivative formal sums are in the
probabilistic lifting of the candidate relation, rather than in the can-
didate relation itself.

While the bisimulations act on formal sums and use infinitary
big-step reductions to values, we also explore coinductive games
played on plain λ-terms and on finitary multi-step reductions to
terms (not necessarily values) as sound proof techniques. In partic-
ular, we combine these with up-to context, so to be able to compare
terms in the middle of their evaluation when a common context can
be isolated and removed.

Structure of the paper Section 2 introduces some general defini-
tions and notations for the paper. Section 3 presents environmen-
tal bisimulations for pure call-by-name, establishes basic proper-
ties including full abstraction for bisimilarity and similarity, and
develops various up-to techniques. Section 4 considers pure call-
by-value, and Section 5 an extension with ML-like references. Sec-
tion 6 discusses additional related work, and Section 7 concludes,
also mentioning possible future work.

2. Preliminaries
We introduce general notations and terminologies for the paper. Fa-
miliarity with standard terminologies (such as free/bound variables,
and α-conversion) is assumed.

We use meta-variablesM,N,P,Q, . . . for terms, and V,W, . . .
for values. We identify α-convertible terms. We write M{N/x}
for the capture-avoiding substitution of N for x in M . A term is
closed if it contains no free variables. The set of free variables of
a term M is fv(M). A context C is an expression obtained from
a term by replacing some subterms with holes of the form [·]i.
We write C[M1, . . . ,Mn] for the term obtained by replacing each
occurrence of [·]i in C with Mi.

We use a tilde to denote a tuple; for instance M̃ is a tuple of
terms, and (M̃)i is its i-th element. Sometimes we write tuples as
{Mi}i when we want to emphasize the indexing set. All notations
are extended to tuples componentwise.

By default, the results and definitions in the paper are (implic-
itly) stated for closed terms. They can be generalized to open terms
in a standard way for bisimulations in λ-calculi [19, 42, 45], es-
sentially deriving properties between open terms M and N from
the corresponding properties between the closed terms λx̃.M and
λx̃.N , for {x̃} ⊇ fv(M) ∪ fv(N).

The pure λ-calculi will be untyped, whereas we will find types
convenient to treat the extension with store.

3. Probabilistic call-by-name λ-calculus
The terms of the probabilistic λ-calculus are generated by the
following grammar:

M,N ::= x
∣∣∣ λx.M ∣∣∣ MN

∣∣∣ M ⊕N
We write Λ•⊕ for the subset of closed terms. The values are the
terms of the form λx.M (the abstractions). In call-by-name the
evaluation contexts (which, in contrast with standard contexts, may
have only one occurrence of a single hole [·]) are:

C := CM | [·]
In probabilistic languages, the semantics of a term is usually a dis-
tribution, that is, a function that specifies the probabilities of all
possible outcomes for that term [8]. We prefer, in contrast, syntac-
tic representations of distributions, as formal sums, because they
allow us a tighter control on the manipulations of the operational
semantics, which is important in various places of our conductive
definitions and proofs. Formal sums have the form∑

i∈I pi;Mi

where 0 < pi ≤ 1, for each i,
∑

i∈I pi ≤ 1, and I is a (possibly
infinite) indexing set. In a summand pi;Mi of a formal sum, pi
is its probability value (or weight), and Mi is its term. The terms
of different summands of a formal sum need not be different. The
weight weight(

∑
i∈I pi;Mi) of a formal sum is

∑
i∈I pi. We

let F,G range over formal sums, and write F = G if F and G are
syntactically equal modulo a permutation of the summands. We use
‘+’ for binary sums, in the usual infix form, and sometimes apply
it also to formal sums, as in F +G. We write the empty formal sum
as ∅. Value formal sums, ranged over by Y,Z are formal sums in
which the term of each summand is a value.

There is an obvious mapping from formal sums to distributions,
whereby a formal sum F yields the distribution in which the proba-
bility of a term M is the sum of the weights with which M appears
in summands of F . The mapping is not injective: in general, in-
finitely many formal sums yield the same distribution (because of
possible duplicates in the terms of the summands of a formal sum).

We sometimes decompose formal sums using a lifting construc-
tion. If Fi =

∑
j∈Ji

pi,j ;Mi,j , for i ∈ I , then∑
i pi·Fi

def
=
∑

i∈I,j∈Ji
pi · pi,j ;Mi,j .

The semantics of a term M , written JMK, is a value formal
sum produced as the supremum of the value formal sums obtained
by finite computations starting from M , using a preorder ≤apx on
formal sums in which F1 ≤apx F2 if F1 is an approximant of F2

(in other words F2 conveys more information than F1); formally,
F2 = F1 + G for some G. The semantics is obtained in various
steps, whose rules are presented in Figure 1:

1. a single-step reduction relation−→ from terms to formal sums;

2. a multi-step reduction relation =⇒ from terms and formal sums
to formal sums, from which a relation Z=⇒ to value formal sums
is extracted by retaining only the summands whose term is a
value via the function val:

val(
∑

i pi;Mi)
def
=
∑
{i|Miis a value} pi;Mi ;

3. the semantics J K, mapping terms and formal sums to value
formal sums via the supremum construction.

If M =⇒
∑

i∈I pi;Mi then I is finite, and each i represents a
‘possible world’ of the probabilistic run of M , with probability pi
and outcome Mi. The subset of possible worlds in which Mi is a
value makes for an approximant ofM , and from such approximants
the semantics of M is obtained.

Since value formal sums form an ω-complete partial order with
respect to the≤apx preorder, and for every M the set of those value
formal sums Y such that M Z=⇒ Y is a countable directed set, the
semantics JMK of a term M exists and is unique.

Relations =⇒ and Z=⇒ are finitary in the sense that a derivation
proof where one of such relations appears in the conclusion only
contains a finite number of ‘small steps’ (relation −→). When
reasoning by induction, sometimes we will need to make such
number explicit, therefore writing =⇒n and Z=⇒n, respectively.

Rule MULT, in contrast with MULFS, does not need a finitary
condition on the indexing set because a formal sum obtained in a
small step from a term may have at most two summands.

3.1 Environmental bisimulation in call-by-name
In call-by-name, a probabilistic environmental relation is a set of
elements each of which is of the form (M,N) or ((M,N), Y, Z),
where M,N, Y, Z are all closed, M,N are Λ•⊕-terms and Y,Z
value formal sums. Intuitively, in the former elementsM andN are
terms that we wish to prove equal, and in the latter elements Y and
Z are value formal sums obtained from M and N via evaluations
and interactions with the environment. We use R,S to range over
probabilistic environmental relations. In a triple ((M,N), Y, Z)
the pair component (M,N) is the static environment, and Y,Z
are the tested formal sums. We write R(M,N) for the relation
{(Y,Z) | ((M,N), Y, Z) ∈ R}; we accordingly use the infix no-
tation Y R(M,N) Z, and similarly for M R N . In the remainder
of the paper, when discussing probabilistic environmental relations,
bisimulations, simulations, or similar, we abbreviate ‘probabilis-
tic environmental’ as ‘PE’, or even omit it when non-ambiguous.
Static environments (that is, pairs of Λ•⊕-terms) are ranged over by
E . If E = (M,N) then its context closure, written E?, is the set of
all pairs of the form (C[M], C[N]). We use a similar notation for
the context closure of relations on λ-terms.

Remark 3.1 (Static environment). The results in the paper would
also hold admitting arbitrary sets of pairs of Λ•⊕-terms as static
environments, rather then single pairs. We have chosen single pairs
so to bring up the minimal requirement on static environments for
our proofs to hold (notably the congruence for bisimilarity). 2

Definition 3.2 (Environmental bisimulation, call-by-name). A PE
relationR is a (PE) bisimulation if

1. M R N implies JMK R(M,N) JNK ;
2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:
(a)
∑

i pi =
∑

j qj ;
(b) for all P,Q ∈ E?,∑

i pi·JMi{P/x}K RE
∑

j qj ·JNj{Q/x}K .

We write≈ for (PE) bisimilarity, the union of all PE bisimulations.

While ≈ is a PE relation, we are ultimately interested in com-
paring λ-terms (M ≈ N if M RN for some bisimulationR).

Example 3.3. We have

M
def
= (λ.λ.Ω)⊕ (λ.Ω) ≈ λ.(λ.Ω⊕ Ω)

def
= N .

This is proved noting that JMK = 1
2
;λ.λ.Ω + 1

2
;λ.Ω and JNK =

1;N , using the bisimulation R in which M RN , JMK R(M,N)

JNK, 1
2
;λ.Ω R(M,N)

1
2
;λ.Ω, and ∅ R(M,N) ∅. TermsM,N could

not be equated by a bisimulation that acted only on terms (ignoring
formal sums), as neither λ.λ.Ω nor λ.Ω can be equated to N . 2

Definition 3.4 (Simulation). In Definition 3.2, and in the remain-
der of the paper for other definitions of probabilistic bisimulation,
the corresponding simulation is obtained by replacing the equality
’=’ on the weights with ‘≤’; thus in Definition 3.2, clause (2.a)
becomes

∑
i pi ≤

∑
j qj .

The union of all simulations, similarity, is written ..

Theorem 3.5. 1. ≈ and . are the largest bisimulation and simu-
lation, respectively.

2. . is a preorder, and ≈ an equivalence.
3. ≈ = . ∩ .−1

The bisimilarity, or similarity, game uses the semantics of terms,
which is a least-fixed point on top of big-step approximants. When
proving properties about bisimilarity and similarity, therefore, we
need to reason about such approximants. For this, we introduce
a finite-step simulation in which the challenge reductions of the
simulation game employs the big-step approximants (the relation
Z=⇒ of Figure 1). We cannot have characterisations of bisimilar-
ity in terms of a finite-step bi-similarity because in general the
weights of the approximants of two bisimilar terms are different,
as shown in Example 3.6. Hence to reason about bisimilarity we
go through its characterisation via similarity (Theorem 3.5), and
then the characterisation of similarity via the finite-step similarity
(Corollary 3.10).

Example 3.6. Let P and Q be the terms discussed in (2) in the
Introduction. A bisimulation relating P and Q is

{(P,Q), ((P,Q),
∑

n≥1
1

2n ;Q, 1;Q), ((P,Q), ∅, ∅)} .
We could not prove the equality using finite-step approximants for
bisimulation, since those for P are of the form

∑
1≤n≤m

1
2n ;Q,

for some m, and thus have a smaller total weight than the formal
sum 1;Q immediately produced by Q. 2

Definition 3.7. A PE relation R is a finite-step simulation if

1. M RN and M Z=⇒ Y imply Y R(M,N) JNK ;
2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:
(a)
∑

i pi ≤
∑

j qj ;
(b) for all P,Q ∈ E?, if

∑
i pi;Mi{P/x} Z=⇒ Y then

Y RE
∑

j qj ·JNj{Q/x}K .

We write .fin for finite-step similarity. In finite-step sim-
ulations, the challenges are expressed by finitary reductions. More-
over, any.fin result on Λ•⊕-terms can be established using a finite-
step simulation with finite formal sums on the challenger side,
though this constraint is not required in the definition.

Remark 3.8. Clause (2b) of Definition 3.7 cannot be written thus:
for all P,Q ∈ E?, if Mi{P/x} Z=⇒ Yi for every i
then

∑
i pi·Yi RE

∑
j qj ·JNj{Q/x}K

because, as the index set I can be infinite, the challenge in the
bisimulation game might not be finitary. By contrast, reduction Z=⇒
on formal sums (from Figure 1) is finitary. This allows proofs by
induction on the number of single-steps in a reduction. 2

We denote by Pairs(R) the set of pairs of terms in a PE rela-
tion R . We use two saturation constructions to turn a simulation
into a finite-step simulation and conversely. Given a PE relationR,
its saturation by approximants is

Pairs(R) ∪ {(E , Y, Z) | there is Y ′ with
Y ′ RE Z and Y ≤apx Y

′ }
and its saturation by suprema is

⋃
nR

n, where

R0 def
= R

Rn+1 def
= Rn∪ {(E , Y, Z) | there are {Yi}i with

Yi Rn
E Z, Yi ≤apx Yi+1, and Y = sup{Yi}i}.

Lemma 3.9. 1. The saturation by approximants of a simulation is
a finite-step simulation.

2. The saturation by suprema of a finite-step simulation is a simu-
lation.

single-step reduction relation from terms to formal sums

BETA
(λx.M)N −→ 1;M{N/x}

SUM
M1 ⊕M2 −→ 1

2
;M1 + 1

2
;M2

EVAL
M −→

∑
i pi;Mi C is an evaluation context
C[M] −→

∑
i pi;C[Mi]

. .
multi-step reduction relation from terms to formal sums

MUL0
M =⇒ 1;M

MULT
M −→

∑
i pi;Mi Mi =⇒ Fi

M =⇒
∑

i pi;Fi

. .
multi-step reduction relation from formal sums to formal sums:

MULFS
Mi =⇒ Fi∑

i∈I pi;Mi +G =⇒
∑

i∈I pi;Fi +G
I finite

. .
multi-steps reduction relation terms and formal sums to value formal sums

MULVT
M =⇒ F val(F) = Y

M Z=⇒ Y
MULVFS

F =⇒ F ′ val(F ′) = Y

F Z=⇒ Y
. .
the semantic mapping, from terms and formal sums to value formal sums

JMK def
= sup {Y |M Z=⇒ Y } JF K def

= sup {Y |F Z=⇒ Y }

Figure 1. Operational semantics for call-by-name

Proof. The proof of (1) follows from the definition of JMK as the
supremum of the set {Y |M Z=⇒ Y }. For (2), the crux is proving
by induction on n that if

∑
i pi;λx.Mi Rn

E
∑

j qj ;λx.Nj then:

1.
∑

i pi ≤
∑

j qj ;
2.
∑

i pi;Mi{P/x} Z=⇒ Y implies Y Rn
E
∑

j qj ·JNj{Q/x}K,
for all P,Q ∈ E?.

2

Corollary 3.10. The similarity and finite-step similarity preorders,
. and .fin, coincide.

The following example highlights the differences between sim-
ulations and finite-step simulations, by proving the equality in Ex-
ample 3.6 using finite-step simulations.

Example 3.11. Terms P and Q of Example 3.6 can be proved
equivalent by exhibiting the following finite-step simulations,
where Y0

def
= ∅ and Ym

def
=
∑

1≤n≤m
1

2n ;Q for m ≥ 1:

R def
= {(P,Q), ((P,Q), Ym, 1;Q), ((P,Q), ∅, ∅)}

S def
= {(Q,P), ((Q,P), 1;Q,

∑
n≥1

1
2n ;Q), ((Q,P), ∅, ∅)}.

2

To derive the substitutivity properties of the similarity, and
hence of the bisimilarity, we also need an up-to technique for the
finite-step similarity. Specifically, we need an up-to lifting tech-
nique whereby, in the simulation game, two derivative formal sums
can be decomposed into ‘smaller’ formal sums and it is then suf-
ficient that these are pairwise related. We write lift(S) for the
probabilistic lifting of a relation S on formal sums:

lift(S)
def
= {(F,G) | there are I , pi, Fi, Gi, for i ∈ I , with
Fi S Gi and F =

∑
i pi·Fi and G =

∑
i pi·Gi}

Definition 3.12. A PE relation R is a finite-step simulation up-to
lifting if

1. M RN and M Z=⇒ Y imply Y lift(R(M,N)) JNK ;
2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:
(a)
∑

i pi ≤
∑

j qj ;
(b) for all P,Q ∈ E?, if

∑
i pi;Mi{P/x} Z=⇒ Y then

Y lift(RE)
∑

j qj ·JNj{Q/x}K.

Lemma 3.13. If R is a finite-step simulation up-to lifting then
R ⊆ .fin.

Example 3.14. Let P def
= λ.Ω, Q def

= λ.λ.Ω, and

M
def
= (P ⊕ P)⊕ (Q⊕Q) , N

def
= (P ⊕Q)⊕ (P ⊕Q) .

The following finite-step simulation up-to lifting showsM .fin N :

R def
= {(M,N), ((M,N), 1;P, 1;P), ((M,N), 1;Q, 1;Q),

((M,N), ∅, 1;P), ((M,N), ∅, 1;Q)} .
The ‘up-to lifting’ allows us to have a relation with only Dirac
formal sums (i.e., a single summand with probability 1). 2

Lemma 3.15. IfM .fin N thenC[M] .fin C[N], for any context
C.

Proof. Given a a finite-step simulation R saturated by approxima-
tions, we prove that the PE relation

{(C[M], C[N]) | M RN}
∪{((C[M], C[N]), 1;λx.C′[M], 1;λx.C′[N]) | M RN}
∪{((C[M], C[N]), Y, Z) | Y R (M,N)Z}
∪{((M,N), ∅, Z) | for some M,N,Z}

is a finite-step simulation up-to lifting. 2

Corollary 3.16. On Λ•⊕-terms, ≈ is a congruence, and . a pre-
congruence.

3.2 Contextual equivalence

We set M ⇓ def
= weight(JMK) (the probability of termination).

Definition 3.17. M and N are in the contextual preorder, written
M ≤ctx N , (resp. in contextual equivalence, written M =ctx N),
if C[M] ⇓ ≤ C[N] ⇓ (resp. C[M] ⇓ = C[N] ⇓), for every
context C.

Lemma 3.18 (Completeness). On Λ•⊕-terms, ≤ctx ⊆ ..

Proof. We prove that the following is a simulation:
(≤ctx) ∪ {((M,N), JC[M]K, JC[N]K) | M ≤ctx N}. 2

Corollary 3.19 (Full abstraction). On Λ•⊕-terms:

1. relations ≤ctx and . coincide.
2. relations =ctx and ≈ coincide.

3.3 Up-to techniques
We have pointed out (Example 3.3 and 3.6) that our simulations
(and bisimulations) have to be based on formal sums and cannot
employ finitary reductions, as in ordinary environmental bisimula-
tions, in order to faithfully represent contextual equivalence. How-
ever each of these features is sound and can therefore be used in
proof techniques. In this section we show examples of such tech-
niques. These techniques are very limited and we leave for future
work the development of more conclusive techniques.

Finitary reductions — the possibility of stopping the evalua-
tion of a term after a few β-reductions — are interesting in en-
hancements with up-to context (the ability of isolating and remov-
ing common contexts in derivative terms) because sometimes such
common contexts appear in the middle of a reduction. For ap-
plicability, up-to context is usually combined with further up-to
techniques that allow us to bring up the common contexts. In the
first up-to technique, where the coinduction game still uses formal
sums, we combine up-to context with up-to lifting, so to be able to
decompose related formal sums into pieces with different common
contexts. In the technique, the context closure of the up-to context
is only applied onto λ-terms. The closure could probably be made
more powerful by applying it also on formal sums, at the price of a
more complex proof, but its usefulness is unclear.

In clause (2b) below, and in the remainder of the paper, we use
the function dirac that takes a set of pairs of λ-term (M,N) and
returns the pairs of their (Dirac) formal sums (1;M, 1;N).

Definition 3.20. A PE relation R is a finite-step simulation up-to
lifting and context if:

1. M RN and M Z=⇒ Y imply Y lift(R (M,N)) JNK ;
2.
∑

i pi;λx.Mi RE
∑

j qj ;λx.Nj implies:
(a)
∑

i pi ≤
∑

j qj ;
(b) for all P,Q ∈ E?, if

∑
i pi;Mi{P/x} Z=⇒ Y then

Y lift(dirac(E?) ∪ RE)
∑

j qj ·JNj{Q/x}K .

Lemma 3.21. If R is a finite-step simulation up-to lifting and
context then R ⊆ .fin.

Proof. Let R be a finite-step simulation up-to lifting and context.
We prove that

R′ def= Pairs(R)
∪ {((M,N), Y, Z) | Y ′R (M,N)Z and Y ≤apx Y

′, for some Y ′}
∪ {((M,N), 1;λx.C[M], 1;λx.C[N]) | M R N}
∪ {((M,N), ∅, Z) | M,N ∈ Λ, Z ∈ FS}
is a finite-step simulation up-to lifting, from which the result fol-
lows byR ⊆ R′. 2

Example 3.22. The up-to lifting and context technique allows us
to prove that terms A,B defined in (1) in the Introduction are
bisimilar, using the PE relation

{(A,B), ((A,B), JAK, JBK)} .

Indeed, JAK = 1;A and JBK = 1
2
;λx.x+ 1

2
;λx.Ω and, for any pair

of arguments of the form C[A], C[B] used to test the formal sums,
we obtain the pair 1

2
;C[A], 1

2
;C[B], which is in dirac((A,B)?).

2

In the second up-to technique, reductions are still finitary but
now the game is entirely played on terms, without appeal to formal

sums. We present the technique in combination with forms of up-to
context, up-to lift, up-to distribution, and up-to reduction.

A term relation is a relation T(M,N) on values of Λ•⊕ and the
index (M,N) is a pair of Λ•⊕-terms. The index corresponds, in-
tuitively, to a static environment of an environmental bisimulation.
We use the notation T ?−

(M,N) for T(M,N) ∪ {(M,N)}?.

A term M deterministically reduces to G (notation: d
=⇒) if

M =⇒ G and only the last reduction in the sequence may be de-
rived using rule SUM. We write M �M ′ if M and M ′ determin-
istically reduce to the same formal sum, but M ′ takes fewer steps.
That is, there are G,m,m′ with m ≥ m′ and with M d

=⇒m G,
and M ′ d

=⇒m′ G.
Thus, in Definition 3.23, �? T ?−

(M,N) is the set

{(P,Q) | P �
? P ′ for P ′ with P ′(T(M,N) ∪ {(M,N)}?)Q} .

We then write F =dis F
′ if F and F ′ represent the same prob-

abilistic distribution. In the up-to technique below, � gives us the
‘up-to reduction’, and =dis the ’up-to distribution’. We use up-to
distribution to manipulate formal sums, which are purely syntactic
objects. Finally, liftd is the lifting on sets of pairs of terms seen
as their Dirac formal sums (i.e., liftd = lift(dirac)), and
=⇒=dis is the composition of the two relations, i.e., M d

=⇒=dis

F if there is F ′ with M d
=⇒ F ′ and F ′ =dis F

′′.

Definition 3.23. A term relation T(M,N) is a bisimulation up-to
context closure, distribution, reduction, and lifting if

1. JMK =dis dirac(T(M,N)) =dis JNK ;
2. if λx.M ′ T(M,N) λx.N

′ then for all P (M,N)? Q,

M ′{P/x} d
=⇒=dis liftd(�? T ?−

(M,N)) =dis
d⇐= N ′{Q/x} .

Lemma 3.24. If T(M,N) is a bisimulation up-to context closure,
distribution, reduction, and lifting then (M,N) ∈ ≈.

Example 3.25. The first clause of the the up-to technique in
Definition 3.23 is not sound if T(M,N) is substituted by T ?−

(M,N):

in this case, for any pair of values V,W , relation T(V,W)
def
= ∅

would satisfy the definition, since JV K = 1;V , JW K = 1;W and
1;V dirac((V,W)?)1;W . 2

3.4 Fixed-point combinator example
In the reductions of this example, we write a trivial formal sum
1;M as M , so to have reductions between λ-terms. We exploit the
up-to technique of Definition 3.23 to prove the equivalence between
two fixed-point combinators. One of the combinators is Υ:

Υ
def
= λy.y(Dy(Dy))

whereD def
= λy.λx.y(xx) .

For any term L we have

ΥL −→ L(DL(DL))
and then DL(DL)−→−→ L(DL(DL)) .

(3)

The other combinator at any cycle can probabilistically decide
whether to behave differently (i.e., as Turing’s fixed-point combi-
nator) or to turn for good into into the previous Υ combinator:

Θ
def
= ∆∆

where ∆
def
= λx.λy.((y(Dy(Dy)))⊕ (y(xxy))) .

Thus the computation of ΘL will unveil, for a while, some L’s
while computing as Turing’s combinator, and then will continue
unveiling L’s by computing as Υ. Indeed, for

Θ1
def
= λy.((y(Dy(Dy)))⊕ (y(∆∆y))) ,

we have

ΘL −→ Θ1L−→ (L(DL(DL)))⊕ (L(∆∆L))

−→ 1
2
;L(DL(DL)) + 1

2
;L(∆∆L) .

(4)

We can establish Υ ≈ Θ using the term relation

T(Υ,Θ)
def
= {(Υ,Θ1)} .

The interesting case is the bisimulation clause for (Υ,Θ1). Take
any M {(Υ,Θ)}? N . By (3), we have ΥM −→M(DM(DM)),
whereas by (4), ΘN

d
=⇒ 1

2
;N(DN(DN)) + 1

2
;N(∆∆N). Now

we could conclude, up-to context closure, distribution, reduction,
and lifting if we can show that the pairs

(M(DM(DM)), N(DN(DN)))
and (M(DM(DM)), N(ΘN))

are in �? T ?−
(M,N) This holds because: the first pair is in {(Υ,Θ)}?;

for the second pair, by (3) we deduce DM(DM)�ΥM , and then
we have M(DM(DM)) �? M(ΥM) {(Υ,Θ)}? N(ΘN).

The example also shows the usefulness of static environments
(whose terms need not be values) for context closures in ‘up-to
context’ techniques.

4. Probabilistic call-by-value λ-calculus
In call-by-value, the static environments are not anymore sufficient.
As in ordinary environmental bisimulations, we need a dynamic
environment to record the values produced during the bisimulation
game. In ordinary environmental bisimulations such environments
are tuples of values. In the probabilistic case formal sums come into
the picture. Environment formal sums are terms of the form∑

i pi; Ṽi

(i.e., sums of weighted tuples) in which all tuples Ṽi have the same
length and, as for ordinary formal sums, 0 < pi ≤ 1 for each i
and

∑
i pi ≤ 1. We call the length of the tuples Ṽi’s the length of

the environment formal sum. The tuples Ṽi represent the dynamic
environment: the knowledge that an observer has accumulated dur-
ing the bisimulation game. There may be several such elements Ṽi,
reflecting the possible worlds produced by the probabilistic evalua-
tion. During the bisimulation game, the environment formal sum is
updated. Viewing the environment formal sum as a matrix, in which
Ṽi represents the i-row and the elements (Ṽ1)r, (Ṽ2)r, . . . (the r-
th element of each row) represent the r-th column. A column is a
set of values that the various possible worlds have produced at the
same step of the bisimulation game. (This explains why the tuples
Ṽi’s of the sum have the same length.)

More precisely, in the bisimulation game at each possible world
i a term Mi (constructed from the Ṽi’s using a context closure dis-
cussed below) is evaluated. The evaluation ofMi yields, probabilis-
tically, a multiset of value (as a formal sum). This multiset is empty
when all evaluations from Mi diverge; in this case the whole row
i disappears, meaning that in the i-th possible world the observer
never receives an answer. When the multiset is non-empty, the row
i is split into as many possible worlds as the values in the multiset.
For instance if the evaluation of Mi produces V with probability 1

2

and V ′ with probability 1
3

then the row pi;Vi is split into the two
rows 1

2
· pi;Vi, V and 1

3
· pi;Vi, V

′.
This splitting operation is captured in the following multipli-

cation of an environment formal sum
∑

i∈I pi; Ṽi and a tuple of
formal sums Fi =

∑
j∈Ji

pi,j ;Vi,j :∑
i∈I pi; Ṽi · Fi

def
=
∑

i∈I,j∈Ji
pi · pi,j ; Ṽi, Vi,j .

Y�1 Y�2 Y�3 Y�4

p1; V1,1 V1,2 V1,3 V1,4

p2; V2,1 V2,2 V2,3 V2,4

p3; V3,1 V3,2 V3,3 V3,4

Y =
∑ Ṽ1

Ṽ2

Ṽ3

p1; V1,1 V1,2 ·JI ⊕ ΩK
p2; V2,1 V2,2 ·JI ⊕ λ.ΩK

∑ p1
2

; V1,1 V1,2 I
p2
2

; V2,1 V2,2 I
p2
2

; V2,1 V2,2 λ.Ω

=
∑

Figure 2. Formal sums as matrices

The view of environment formal sums as matrices is illustrated in
Figure 2, for an environment formal sum Y

def
=
∑

1≤i≤3 pi; Ṽi of
length 4. The figure also illustrates the extraction of the column r
of the formal sum, written Y�r , that yields the tuple of values along
the same column, and the multiplication of an environment formal
sum with formal sums resulting from the semantics of terms, one
per row.

We use Y,Z to range over environment formal sums, and write
|Y| for the length of Y. We sometimes treat a formal sum as a
special case of environment formal sum in which all tuples have
length one.

The dynamic environment of two formal sums
∑

i∈I pi; Ṽi and∑
j∈J qj ; W̃j is the pair of tuples (of tuples) ({Ṽi}i∈I , {W̃j}j∈J).

In environmental bisimulations, the input for two higher-order
functions is constructed as the context closure of their environ-
ments. In call-by-value, the environments have both a static and
a dynamic component and the inputs are constructed accordingly.
Given a static environment (M,N) and a dynamic environment
({Ṽi}i, {W̃j}j), their context closure, written

({M, Ṽi}i, {N, W̃j}j)?̂

is the set of all pairs of tuples ({Ti}i, {Uj}j) for which there is a
context C such that for every i we have Ti = C[M, Ṽi], and for
every j we have Uj = C[N, W̃j]. Thus every Ti is obtained from
the same context C by filling its holes with the first element M of
the static environment and the dynamic environment Ṽi. Similarly
for Uj , using N , the tuple W̃j and the same context C. Moreover,
as we are in call-by-value, C should be a value context, that is,
either an abstraction or a hole [·]r for some r > 1. A value context
guarantees that each term Ti, Uj is a value.

The operational semantics of call-by-value is defined as in call-
by-name, provided that the rule for β-reduction and the evaluation
contexts are redefined thus:

BETAV
(λx.M)V −→ 1 ·M{V/x}

Evaluation contexts C = [·]
∣∣∣ CM ∣∣∣ V C

In call-by-value, a probabilistic environmental relation (that we
still abbreviate as PE relation) is like for call-by-name, except that
formal sums are replaced by environment formal sums. That is,
each element of the relation is either of the form (M,N) (a pair of
Λ•⊕-terms) or Y RE Z (two environment formal sums, collecting
the dynamic environment, with a static environment).
If E = (M,N) is a static environment, then E1 and E2 denote the
projections, i.e., the terms M and N , respectively.

In a PE relation, related environment formal sums are compati-
ble, meaning that they have the same length. In the remainder, com-
patibility of environment formal sums is tacitly assumed.

Definition 4.1 (Environmental bisimulation, call-by-value). A PE
relation is a (PE) bisimulation if

1. M R N implies JMK R(M,N) JNK ;
2.
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:
(a)
∑

i pi =
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then for
all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑

i pi; Ṽi · JMi{Ti/x}K RE
∑

j qj ; W̃j · JNj{Uj/x}K ;

(c)
∑

i pi; Ṽi · JE1K RE
∑

j qj ; W̃j · JE2K .

(PE) bisimilarity,≈ is the union of all PE bisimulations, and the
corresponding similarity is ..

The structure of the above definition is similar to that of or-
dinary environmental bisimulations. There are three main differ-
ences: first, the appearance of formal sums and of probability mea-
sures (notably in clause (2a)); second, the use of an (infinitary)
big-step semantics, rather than a small-step, which shows up in the
function J K in clauses (1) and (2b); thirdly the appearance of a
static environment, that is used in the context closure and in clauses
(1) and (2c). In clause (2b), the related environment formal sums,
viewed as matrices, grow by the addition of a new column resulting,
on left-hand side, from the multiplication of each row pi; Ṽi with
the formal sum JMi{Ti/x}K, and similarly on the right-hand side.
Thus the compatibility between related environment formal sums
is maintained. Clause (2c) allows to re-evaluate the static environ-
ment at any time. This clause and other features are necessary in
order to achieve full abstraction in the imperative case (see Section
5.1) but they could be removed in pure call-by-value, following [7].

Theorem 4.2. 1. ≈ is an equivalence relation;
2. . is a preorder;
3. ≈ = . ∩ .−1.

Example 4.3. Terms M and N in Example 3.3 are equivalent
in call-by-name, but not in call-by-value. A bisimulation relating
these terms should contain the formal sums JMK = 1

2
;λ.λ.Ω +

1
2
;λ.Ω and JNK = 1;N , with static environment E = (M,N) and

thus the triple (E , 1
2
;λ.λ.Ω, λ.Ω, 1

2
;N,λ.Ω) would be in the rela-

tion as well. However, the values in the first column of the dynamic
environment can be tested again, by clause (2b) of bisimulation,
leading to the triple

(E , 1
2
;λ.λ.Ω, λ.Ω, λ.Ω, 1

4
;N,λ.Ω, λ.Ω) ,

which does not satisfy the clause on the weights of related formal
sums. 2

The main results for environmental bisimilarity and similarity in
call-by-value (congruence and full abstraction with respect to con-
textual preorder and equivalence) are as for call-by-name, and the
structure of the proofs is similar. The details are however different
due to the presence of dynamic environments. As for call-by-name,
so in call-by-value to reason about bisimilarity and similarity we
need a finite-step simulation, with challenges produced by the fini-
tary big-step approximants. To make sure that the challenges are
finite-step, we define extended environment formal sums, i.e., terms∑

i pi; Ṽi;Mi

in which the environment formal sum
∑

i pi; Ṽi is extended with
an additional column of arbitrary Λ•⊕-term (non necessarily val-
ues). Intuitively, an element Ṽi;Mi indicates that the λ-term Mi

has to be run with an observer whose knowledge is Ṽi. Extended
environment formal sums are ranged over by F,G and val(F) is
defined analogously to formal sums:

val(
∑

i pi; Ṽi;Mi)
def
=
∑
{i|Miis a value} pi; Ṽi,Mi .

Extended environment formal sums allow us to define the multi-
step reduction relation from extended environment formal sums to
environment formal sums: for F =

∑
i∈I pi; Ṽi;Mi +G, where I

is a finite set, we set

Mi Z=⇒ Yi for every i

F Z=⇒
∑

i∈I pi; Ṽi · Yi + val(G)

This intuitively corresponds to the multi-step reduction relation
from formal sums to value formal sums. In clause (1) below we
see formal sums as special cases of environment formal sums.

Definition 4.4. A PE relation is a finite-step simulation if

1. M RN and M Z=⇒ Y imply Y R(M,N) JNK ;
2.
∑

i pi; Ṽi RE
∑

j qj ; W̃j implies:
(a)
∑

i pi ≤
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then
for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑

i pi; Ṽi;Mi{Ti/x} Z=⇒ Y and
Y RE

∑
j qj ; W̃j · JNj{Ui/x}K .

We write .fin for the union of all finite-step simulations. Anal-
ogously to call-by-name, we use a saturation by approximants and
a saturation by suprema to move from a simulation to a finite-step
simulation and conversely, and exploit this to prove that similarity
and finite-step similarity coincide.

Lemma 4.5. Relations . and .fin coincide.

As in call-by-name, we derive congruence for bisimilarity and
similarity by first proving the property for finite-step similarity.
We also exploit a combination of two up-to techniques for finite-
step simulation, namely up-to lifting and up-to environment. Up-
to lifting is defined analogously to call-by-name, using the lifting
operation on environment formal sums. Up-to environment intu-
itively allows us to exchange columns of environment formal sums
(when these are viewed as matrices as in Figure 2), and to add new
columns. Adding columns is safe because it means enlarging the
dynamic environment, thus allowing more tests.

Having these up-to techniques, we derive the result by showing
that the contextual closure (which, differently from call-by-name, is
now applied both to terms and to the environments of formal sums)
of a finite-step simulation saturated by approximants is a finite-step
simulation up-to lifting and environment.

Lemma 4.6. If M .fin N then for every context C we have that
C[M] .fin C[N].

The definitions of the contextual preorder and equivalence,≤ctx

and =ctx, are as for call-by-name.

Theorem 4.7 (Full abstraction). On Λ•⊕-terms:

1. relations ≤ctx and . coincide;
2. relations =ctx and ≈ coincide.

We have checked that, in pure call-by-value, environmental
bisimulations would be fully abstract also if defined on terms, and
with plain tuples of values as dynamic environment (rather than
environment formal sums). Indeed also applicative bisimilarity on
terms is fully abstract on the same languages [7]. The proof of full
abstraction would need ‘disentangling’ argument for sets of real

numbers in the case of soundness, and separation results from [48]
in the case of completeness.

5. Probabilistic imperative λ-calculus
In this section we add imperative features, namely higher-order
references (locations), to the call-by-value calculus, along the lines
of the languages in [19, 42]. The syntax of terms and values is:

M ::= x variables
| c constants
| λx.M functions
| M1M2 applications
| l locations
| (ν x :=M1)M2 new location
| !M dereferencing
| M1 := M2 assignments
| op(M1...Mn) primitive operations
| if M1 then M2 else M3 if-then-else
| #i(M) projection
| (M1...Mn) tuples
| M1 ⊕M2 probabilistic choice

V ::= c | λx.M | l | (V1...Vn)

We use s, t to range over stores, i.e., mappings from locations to
closed values and l, k over locations. Then s[l → V] is the update
of s (possibly an extension of s if l is not in the domain of s).
The locations that occur in a term M are Loc(M). We assume that
the set of primitive operations contains the equality function on
constants, and write ? for the unit value (i.e., the nullary tuple).

The language is typed — a simply-typed system with recursive
types — to make sure that the values in the summands of a formal
sum have the same structure (e.g., they are all abstractions). We
allow recursive types to maintain the peculiar possibility of prob-
abilistic languages of having infinite but meaningful computation
trees. For readability and lack of space we omit the expected typ-
ing rules and, whenever possible, we omit any mention of the types.
For instance, in any store update s[l→ V] it is intended that V has
the type appropriate for l; in this case we say that the type of V is
consistent with that of l. In examples, M1 seq M2 denotes term
(λ.M2)M1, i.e., the execution of M1 and M2 in sequence.

Reduction is defined on terms with a store, i.e., configurations
of the form 〈s;M〉; hence such configurations appear also in for-
mal sums. The small-step reduction and the evaluation contexts are
defined in Figure 3, where we assume that the semantics of primi-
tive operations is already given by the function Prim. The rules for
the semantic mapping, J K, and the multistep reductions relations,
=⇒ and Z=⇒, remain those of Figure 1, with the addition of a store.
In all semantic rules, any configuration 〈s;M〉; is well-formed, in
that M is closed and all the locations in M and s are in the domain
of s. As in the previous calculi, it is easy to check that the semantics
of a terms exists and is unique.

Notations and terminology for (environment) formal sums are
adapted to the extended syntax in the expected manner. We only
recall the multiplication of an environment formal sum Y

def
=∑

i pi; si; Ṽi and formal sums Yi
def
=
∑

j∈Ji
pi,j ; si,j ;Vi,j :∑

i pi; Ṽi · JYiK
def
=
∑

i,j∈Ji
pi · pi,j ; si,j ; Ṽi, Vi,j .

The context closure of an environment, ({M, Ṽi}i, {N, W̃j}j)?̂,
is defined as in the previous section, but now contexts may not con-

tain locations. This constraint, standard in environmental bisim-
ulations for imperative languages, ensures well-formedness of the
terms and is not really a limitation because locations may occur in
terms of the environments and may thus end up in the terms of the
context closure.

5.1 Environmental bisimilarity for the probabilistic
imperative λ-calculus

The notion of environmental relation is modified to accommodate
stores, which are needed to run terms. The elements of an en-
vironmental relation are now well-formed pairs of configurations
(〈s;M〉, 〈t;N〉) or well-formed triples

(E ,
∑

i pi; si; Ṽi,
∑

j qj ; tj ; W̃j) .

Well-formedness on triples ensures that the store si of the possible
world i defines all locations that appear in Ṽi, si, and E1, and
similarly for tj ,Wj and E2. Further, the triples must be compatible:
the related environment formal sums should have the same length,
and should respect the types, that is, corresponding columns of the
environment formal sums should contain terms that have the same
type.

Definition 5.1 (Environmental bisimulation, imperative). A PE
relation is a (PE) bisimulation if

1. 〈s;M〉R 〈t;N〉 implies J〈s;M〉K lift(R(M,N)) J〈t;N〉K ;
2.
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:
(a)
∑

i pi =
∑

j qj ;

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then for
all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑

i pi; Ṽi · J〈si;Mi{Ti/x}〉K lift(RE)∑
j qj ; W̃j · J〈tj ;Nj{Uj/x}〉K ;

(c) for all r, if (Ṽi)r = li and (W̃j)r = kj then
•
∑

i pi; si; Ṽi, si(li) lift(RE)
∑

j qj ; tj ; W̃j , tj(kj) ,

• for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑
i pi; si[li → Ti]; Ṽi RE

∑
j qj ; tj [kj → Uj]; W̃j ;

(d) for any pair l, k of fresh locations, and all ({Ti}i, {Uj}j) ∈
({E1, Ṽi}i, {E2, W̃j}j)?̂ we have∑

i pi; si[l→ Ti]; Ṽi, l RE
∑

j qj ; tj [k → Uj]; W̃j , k ;

(e) for all r, if (Ṽi)r = ci and (W̃j)r = cj then all constants
in the two columns are the same (i.e., there is ca with
ci = cj = ca for all i, j);

(f) for all r,
if (Ṽi)r = (Vi,1, ..., Vi,n) and (W̃j)r = (Wj,1, ...,Wj,n)

then
∑

i pi; si; Ṽi, Vi,1, ..., Vi,n lift(RE)∑
j qj ; tj ; W̃j ,Wj,1, ...,Wj,n ;

(g)
∑

i pi; Ṽi · J〈si; E1〉K lift(RE)
∑

j qj ; W̃j · J〈tj ; E2〉K .

As usual, ≈ denotes the largest bisimulation, and . the corre-
sponding largest simulation.

With respect to the definition for pure call-by-value, the defini-
tion above has the additional ingredient of the store, and of clauses
(2c) and (2d) to deal with the case in which the values are loca-
tions: (2c) gives an observer the possibility of reading and writing
the store, and (2d) the possibility of extending the store. Clause (2f)
adds all elements of a tuple to the dynamic environment. These as-
pects are similar to those in ordinary environmental bisimulations
for imperative languages [21, 42].

Two further aspects, however, are new. First, by clause (2e),
related environment formal sums should be first-order consistent,

BETA
〈s; (λx.M)V 〉 −→ 1; 〈s;M〉{V/x}

SUM
〈s;M1 ⊕M2〉 −→ 1

2
; 〈s;M1〉+ 1

2
; 〈s;M2〉

ASSIGN 〈s; l := V 〉 −→ 1; 〈s[l→ V]; ?〉 DEREF
s(l) = V

〈s; !l〉 −→ 1; 〈s;V 〉 NEW
l not in the domain of s

〈s; (ν x :=V)M〉 −→ 1; 〈s[l→ V];M{l/x}〉

IFTRUE 〈s; if true then M1 else M2〉 −→ 1; 〈s;M1〉
IFFALSE 〈s; if false then M1 else M2〉 −→ 1; 〈s;M2〉

PROJ
〈s; #i(Ṽ)〉 −→ 1; 〈s; (Ṽ)i〉

PRIMOP
Prim(op, c̃) = c′

〈s; op(c̃)〉 −→ 1; 〈s; c′〉 EVAL
M −→

∑
i pi;Mi C is an evaluation context
C[M] −→

∑
i pi;C[Mi]

Evaluation contexts C := [·] | CM | V C | op(c̃, C, M̃) | (Ṽ , C, M̃) | #iC

| (ν x :=C)M2 | if C then M1 else M2 | !C | C := M | l := C

Figure 3. Single-step reduction relation for imperative probabilistic λ-calculus

meaning that corresponding columns of constants should contain
exactly one constant. This constraint is a consequence of the equal-
ity test on constants in the language. To ensure that first-order con-
sistency is maintained in the bisimulation game, most of the clauses
use a lifting construction. Thus, when the evaluation of first-order
terms may probabilistically yield different constants, lifting allows
us to separate the final possible worlds according to the specific
constants obtained. This constraint is further discussed in Exam-
ple 5.5. A second new aspect is that, since the effect of the evalua-
tion of the terms in the static environment may change depending
on the current store, clause (2g) allows us to derive a congruence
result for arbitrary terms (not necessarily values), as illustrated in
the example below.

Example 5.2. Let M def
= l := 1 and N def

= if !l := 0 then l :=
1 else Ω. Without clause (2g), 〈l = 0;M〉 and 〈l = 0;N〉
are bisimilar, but they are not contextually equivalent: if C def

=
[·] seq [·], then 〈l = 0;C[M]〉 terminates whereas 〈l = 0;C[N]〉
does not. This aspect is determined by the store, probabilities do not
really matter. Ordinary environmental bisimulations do not have a
static environment, and cannot therefore test repeated runs of given
terms that are not values; as a consequence M and N are equated,
and bisimulation is not fully substitutive on arbitrary terms (see [42,
section 5.2]). 2

The following examples are meant to further illustrate and mo-
tivate the form and the clauses of our bisimulation. The examples
only use boolean and integer locations, and we accordingly assume
that all locations in the language are of these types. Higher-order
locations would not affect the essence of the examples and would
complicate the description of the required bisimulations due to the
possibility of extending the store (clause (2d)). (The full abstrac-
tion results will not rely on the existence of locations of specific
types.) Moreover, since the terms compared always have the same
locations, we assume that fresh locations for the extensions of the
store (clause (2d)) are the same on both sides.

Example 5.3 shows that in imperative call-by-value, in contrast
with pure call-by-value, to achieve full abstraction it is necessary
to define bisimulation on formal sums rather than on terms.

Example 5.3. We have explained in Section 1 why the terms

H
def
= (ν x :=0)(λ.(M ⊕N)) K

def
= (ν x :=0)(λ.M ⊕ λ.N)

where M
def
= if !x = 0 then x := 1 seq true else Ω

N
def
= if !x = 0 then x := 1 seq false else Ω

are contextually equivalent, but would be separated by a bisimula-
tion that acted on terms. With our bisimulation, we can prove H

and K equal using a relation that contains (H,K) and all triples
((H,K),Y,Z) in which the environment formal sums Y,Z are
first-order consistent, have the same total weight and, seeing them
as matrices, for every column r of the dynamic environments that
is not made of constants one of the following properties holds:

a. there is l such that all terms in Y�r are λ.(M ⊕ N){l/x},
whereas all terms in Z�r are either λ.M{l/x} or λ.N{l/x};
moreover l does not occur elsewhere in terms of the dynamic
environment and its value in the store is 1.

b. there is l such that all terms in Y�r are λ.(M ⊕ N){l/x}
whereas Z�r contains both λ.M{l/x} and λ.N{l/x}, with
equal probability (the sum of the weights of the rows with the
former term is the same as the sum with the latter term); more-
over l does not occur elsewhere in the dynamic environment
and its value in the store is 0.

c. there is l such that all terms in Y�r and Z�r are l; moreover l
is set to the same value in all the stores.

In the bisimulation game, the bisimulation clauses (1) and (2g)
of Definition 5.1 are handled appealing to item (b). The most
interesting case is the bisimulation clause (2b) applied to a column
r of functions that satisfy the item (b). The result of the evaluation
of such functions (with ? as argument) is that l is set to 1 and then
true and false are returned, with the same probability. Using
the lifting construction we can now split the possible worlds in
which true has been produced and those in which false has been
produced, yielding two pairs of environment formal sums both of
which are in the bisimulation (note that the lifting splits the original
column r so that the corresponding column in the two final pairs
satisfies item (a) above). 2

In the paper we sometimes view environment formal sums as
matrices (Figure 2). This however is only for representation con-
venience: our environments are tuples of rows (each row represent-
ing a possible world originated by the probabilistic evaluation of
terms), rather than tuples of columns, that is, tuples of formal sums.
The next example shows that if the environments were tuples of
formal sums, where formal sums are added to the environment fol-
lowing the evaluation of terms during the bisimulation game, then
bisimilarity would not be complete. Intuitively this happens be-
cause the histories of different possible worlds would not be any-
more separated and could interfere.

Example 5.4. Let

A
def
= (ν y :=0)(L⊕M) B

def
= (ν y :=0)(L⊕N)

L
def
= λ.!y M

def
= λ.(y := 1 seq 2) N

def
= λ.2 .

Terms A and B create a new location and allow the reading
capability on it in the subtermL. The writing capability, in contrast,
exists only in the subterm M of A. A behaviour from A that could
not be mimicked withB is the run ofM , where 1 is assigned to the
location x, followed by a run of L, where x is read and 1 is emitted
(with B, any value produced by L would be 0). This behaviour,
however, is impossible, because L and M are in a probabilistic
choice and are therefore obtained in two distinct possible worlds, in
one of which x can only be read, in the other x can only be written.
Moreover, the writing capability alone is irrelevant, because the
location is private; hence it can be omitted from M , resulting in
the term N that appears in B. Indeed, A and B are contextually
equivalent.

However, the ‘wrong’ behaviour above for A could be repro-
duced in the bisimulation if the environments were tuples of formal
sums (that is, all possible worlds have the same environment, made
of formal sums). The formal sum obtained by the evaluation of A,
with summand terms L andM , would be stored in the environment
and could then be executed several times, with possible interleav-
ing of evaluations of L and M . (The example could be made more
complex so to obtain a ‘wrong’ behaviour from the execution of
two different formal sums in the environment, rather than by mul-
tiple execution of the same formal sum)

With our bisimulation, we can proveA,B equal using a relation
composed by (A,B) and by all triples ((A,B),Y,Z) where Y =
1; s;V1, ..., Vn and Z = 1; t;W1, ...,Wn are first-order consistent,
and where for each column r that does not contain constants one of
the following holds:

(a) there is l such that Vr = L{l/y} = Wr; moreover l does
not occur elsewhere in the dynamic environment or within a
location of the stores, and is set to 0 in both stores;

(b) there is l such that Vr = M{l/y} and Wr = N ; and, again,
l does not occur elsewhere in the dynamic environment or
within a location of the stores; moreover in the store s we have
s(l) ∈ {0, 1} whereas in t we have t(l) = 0

(c) Vr = Wr = l for some l assigned to the same value in both
stores.a

The proof that this relation is a bisimulation crucially exploits the
lifting construction. For instance, using (a) and (b) one shows that
the semantics of A and B are in the lifting of the relation, and sim-
ilarly one proceeds when handling clause (2g) of the bisimulation;
the lifting also intervenes when the bisimulation clause (2b) is ap-
plied to terms for which item (a) above holds. 2

The main purpose of the lifting construct in Definition 5.1 of en-
vironmental bisimulation is to maintain the first-order consistency
of related environment formal sums. One may wonder whether
something simpler would suffice, namely avoiding the lifting con-
struct altogether and simply requiring that, whenever two first-order
terms are evaluated, the probability of obtaining a given constant is
the same on both sides (and thus even avoiding the addition of such
values onto the dynamic environments). The example below shows
that this would be unsound.

Example 5.5. We compare the termsA def
= (ν x:=0)〈M,N1〉 and

B
def
= (ν x :=0)〈M,N2〉 where

M
def
= λ. if !x = 0 then

((x := 1 seq true)⊕ (x := 2 seq false)) else Ω

N1
def
= λ. if !x = 2 then x := 3 seq n else Ω

N2
def
= λ. if (!x = 1∨!x = 2) then x := 3 seq (n⊕ Ω) else Ω

and n is any integer. The terms A and B produce the values
〈M,N1〉{l/x} and 〈M,N2〉{l/x} and l is a location that is ac-

cessible only to such values. The definitions of M{l/x} and
Ni{l/x} (for i = 1, 2) use conditionals on the content of l in
such a way that the only meaningful manipulations with the values
〈M{l/x}, Ni{l/x}〉 is to evaluate M{l/x} first, and then, possibly,
to evaluate Ni{l/x}. Any other order of evaluation would produce
a divergence.

We explain why, intuitively, bisimilarity would equate A and
B if, on constants, bisimulation simply checked the probabilities
of obtaining each constant (rather than employing the lifting con-
struction). The evaluation of (the body of) M{l/x} produces true
or false, with the same probability 1

2
and with l respectively set

to 1 and 2. Then the only meaningful observation is the evaluation
of the values Ni{l/x}. This means evaluating the formal sums

F1
def
= 1

2
; 〈l = 1;N1{l/x}?〉+ 1

2
; 〈l = 2;N1{l/x}?〉

and F2
def
= 1

2
; 〈l = 1;N2{l/x}?〉+ 1

2
; 〈l = 2;N2{l/x}?〉 .

The evaluation of F1 terminates only when l = 2, yielding the
value formal sum Y1

def
= 1

2
; 〈l = 3;n〉. The evaluation of F2, in

contrast, may terminate under both stores, yielding the value formal
sum Y2

def
= 1

4
; 〈l = 3;n〉+ 1

4
; 〈l = 3;n〉. Both in Y1 and in Y2 the

outcome n has the overall probability 1
2

.
The terms A and B however are not contextually equivalent,

because distinguished by a context C that evaluates M{l/x} and
then proceeds with the evaluation Ni{l/x} only when the outcome
from M{l/x} was true. Now, C[A] never terminates, whereas
C[B] terminates and produces n with probability 1

4
.

Our environmental bisimulation distinguishes A from B be-
cause we separately analyze the possible worlds in which the eval-
uation of M{l/x} has produced true and the possible worlds in
which the evaluation has produced false, somehow mimicking the
effect of the context C above. 2

Yet another possibility for avoiding the lifting construct of the
Definition 5.1 of bisimulation might have been to drop the require-
ment of first-order consistency, thus allowing environment formal
sums in which a first-order column may contain different constants.
Thus constants would be added to the dynamic environment as
any other type of value, and one would simply check that, at any
time, the weights for the occurrences of a given constant in related
columns are the same; formally, replacing clause (2e) with:

(2e′) for every column r and every constant c,∑
{i | (Ṽi)r=c} pi =

∑
{j | (W̃j)r=c} qj .

This possibility is unsound too, which can be shown using a minor
variant of the previous example.

The basic properties and definitions for environmental bisimula-
tions in pure call-by-value remain valid, with the due adjustments.
In some cases, however, some subtleties arise. We only report the
definition of finite-step simulation and the full abstraction result. In
the finite-step simulation, clauses (2b) and (2g) are modified so to
make sure that only a finite number of reductions are performed on
the challenger side.

Definition 5.6. A PE relation is a finite-step simulation if it sat-
isfies the same clauses (2a), (2c), (2d), (2e) and (2f) of (the simu-
lation version of) Definition 5.1; and, in place of clauses (1), (2b)
and (2g) we have:

1. 〈s;M〉R 〈t;N〉 and 〈s;M〉 Z=⇒ Y imply
Y lift(R(M,N)) J〈t;N〉K ;

2.
∑

i pi; si; Ṽi RE
∑

j qj ; tj ; W̃j implies:

(b) for all r, if (Ṽi)r = λx.Mi and (W̃j)r = λx.Nj then
for all ({Ti}i, {Uj}j) ∈ ({E1, Ṽi}i, {E2, W̃j}j)?̂

if
∑

i pi; si; Ṽi;Mi{Ti/x} Z=⇒ Y then
Y lift(RE)

∑
j qj ; W̃j · J〈tj ;Nj{Uj/x}〉K ;

(g) if
∑

i pi; si; Ṽi; E1 Z=⇒ Y then
Y lift(RE)

∑
j qj ; W̃j · J〈tj ; E2〉K .

Definition 5.7. M and N are in the contextual preorder, written
M ≤ctx N , (resp. contextually equivalent, written M ≤ctx N), if,
for any store s and context C such that 〈s;C[M]〉 and 〈s;C[N]〉
are well-formed, 〈s;C[M]〉⇓ ≤ 〈s;C[N]〉⇓ (resp. 〈s;C[M]〉⇓ =
〈s;C[N]〉⇓).

Theorem 5.8 (Full abstraction). Let {l̃} be the set of locations that
appear in M or N . We have, for any Ṽ whose type is consistent
with that of l̃:

• M ≤ctx N if and only if 〈l̃ = Ṽ ; (l̃,M)〉 . 〈l̃ = Ṽ ; (l̃, N)〉 ;
• M =ctx N if and only if 〈l̃ = Ṽ ; (l̃,M)〉 ≈ 〈l̃ = Ṽ ; (l̃, N)〉 .

6. Additional related works
Most relevant related work has been discussed in the introduction.
We add some more technical remarks here. The semantics of pure
probabilistic λ-calculus is presented in [8] as a mapping onto distri-
butions. It is straightforward to check that the formal sums resulting
from our semantics yield the same distributions.

The probabilistic λ-calculus, i.e., a λ-calculus with endowed
with binary, fair, probabilistic choice, was first presented in [8].
In [9] and [7] probabilistic applicative bisimulations for pure call-
by-name and call-by-value λ-calculi are shown to be congruence,
using Howe’s method coupled with a disentangling technique.
Completeness however only holds in call-by-value, while it fails
in call-by-name. In call-by-name, completeness is obtained using
coupled logical bisimulation, a probabilistic version of the logi-
cal bisimilarity for deterministic languages [41]. Drawbacks of all
forms of logical bisimilarity are a non-monotone functional and a
confinement to pure λ-calculi. Further, up-to techniques may be
difficult in logical bisimilarity. For instance, Example 3.22 cannot
be proved with the techniques in [9]: the equality fails for applica-
tive bisimilarity, and the up-to context technique provided for log-
ical bisimilarity is not powerful enough (the paper shows a similar
example, akin to our Example 3.3, where however the functions
employed immediately throw away their input, and this is essential
for the proof).

A further difference between applicative bisimulations and en-
vironmental bisimulations shows up when one considers the corre-
sponding simulations. Even in cases where applicative bisimilarity
is fully abstract for contextual equivalence, the corresponding sim-
ulation may not be fully abstract for the contextual preorder. Pure
call-by-value is such an example [7?]. In contrast, in all calculi
in the paper, full abstraction for environmental bisimilarity carries
over to the corresponding simulation, with a similar proof.

An alternative bisimulation for enriched calculi is normal form
(or open) bisimulation [15, 23, 40, 44]. This is is complete (with re-
spect to contextual equivalence) only in certain extensions of the λ-
calculus (e.g., call-by-value with both state and callcc), and would
be incomplete in other languages (such as λ-calculus without state
or/and callcc, and languages with constants or types).

Another approach to contextual equivalence in higher-order lan-
guages is via logical relations (see, e.g., [28, Chapter 8] and [34]).
This technique has been applied to probabilistic typed higher-order
languages by Bizjak and Birkedal [4]. They use both step-indexing
and biortogonality; this introduces some universal quantification
(e.g., on evaluation contexts) which makes it difficult to prove ex-
amples such as 5.3. An attempt at combining bisimulations and log-
ical relations in the non-probabilistic case is [?].

In denotational semantics, fully abstract models for probabilis-
tic PCF have been studied in [?] using domain theory and adding
statistical termination testers, and in [?] using probabilistic coher-
ence spaces. [?] provides a fully abstract game semantics for prob-
abilistic Algol, using a quotienting step.

7. Conclusions
We have investigated environmental bisimulations in sequential
higher-order languages, considering pure λ-calculi, both call-by-
name and call-by-value, and an extension with references.

While we have tried to respect the general schema of environ-
mental bisimulations, our definitions and results present noticeable
technical differences. Some differences, such as the appeal to for-
mal sums, are specific to probabilities. Other differences, however,
may be seen as insights into environmental bisimulations that were
suggested by the study of probabilities. An example is the distinc-
tion between a static and a dynamic environment, which reflects the
copying facilities of the language on the terms of the environment.
This distinction yields sharper congruence results, which shows
up well in the imperative λ-calculus: with ordinary environmental
bisimulations, bisimilarity is fully substitutive only for values —
for general terms substitutivity holds only for evaluation contexts
(see Example 5.2). The example in Section 3.4 shows that static en-
vironments can also be useful in context closures of ‘up-to context’
techniques.

To understand environmental bisimulations for call-by-value
calculi, we have found important the study of the imperative exten-
sion. Only in the richer language do various aspects of our defini-
tions find a justification: the use of formal sums (Example 5.3); dy-
namic environments as formal sums of tuples of values, as opposite
to, e.g., tuples of formal sums (Example 5.4); the lifting construct
to handle first-order values (Example 5.5). The pure call-by-value
calculus has allowed us to present the concepts in a simpler setting,
as a stepping stone towards the imperative extension, but seems a
rather peculiar language, one in which a number of variations of
the definitions collapse.

The dynamic environments are used only for the call-by-value
calculi. In general, the form of the bisimulation clauses depends on
the features of the calculus. It would be interesting to investigate
abstract formulation of bisimulation, of which the concrete defini-
tions presented in this paper would be instances. Possible bases for
such a framework could be coalgebras [38] or bigraphs [27].

Enhancements of the bisimulation proof method, as up-to tech-
niques, are useful for environmental bisimulations [42]. In the pa-
per we have explored some basic enhancements, mainly in call-by-
name, including new forms of up-to specific to probabilities such
as ‘up-to lifting’. The study of powerful enhancements goes beyond
the scopes of the paper. It could be pursued in a number of direc-
tions, for instance investigating other forms of up-to and strength-
ening the ‘up-to context’ enhancements in the paper.

Another interesting direction for future work is the addition of
concurrency. A major consequence of this could be the move to
semantics that combine probabilities with non-determinism.

Acknowledgments
We have benefited from discussions with Raphaëlle Crubillé and
Ugo Dal Lago, and we thank the anonymous referees. The work
has been partially supported by the MIUR-PRIN project ‘CINA’,
and the ANR project 12IS02001 ‘PACE’.

References
[1] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic

protocols. In C. Hankin, editor, Proc. ESOP’98, volume 1381 of
Lecture Notes in Computer Science, pages 12–26. Springer, 1998.

[2] S. Abramsky. The Lazy λ-Calculus. In D. Turner, editor, Research
Topics in Functional Programming, pages 65–117. Addison Wesley,
1990.

[3] D. Biernacki and S. Lenglet. Environmental bisimulations for
delimited-control operators. In APLAS, volume 8301 of Lecture Notes
in Computer Science, pages 333–348. Springer, 2013.

[4] A. Bizjak and L. Birkedal. Step-indexed logical relations for probabil-
ity. In FoSSaCS 2015, pages 279–294, 2015.

[5] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi
without matching. In Proc. 13th LICS Conf. IEEE Computer Society
Press, 1998.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking.
IEEE Trans. on Pattern Analysis and Machine Intelligence,, 25(5):
564–577, 2003.

[7] R. Crubillé and U. Dal Lago. On probabilistic applicative bisimulation
and call-by-value λ-calculi. In ESOP 2014, pages 209–228, 2014.

[8] U. Dal Lago and M. Zorzi. Probabilistic operational semantics for
the lambda calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450,
2012.

[9] U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equiva-
lences for higher-order probabilistic functional programs. In POPL
’14, pages 297–308, 2014.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[11] N. D. Goodman. The principles and practice of probabilistic program-
ming. In POPL, pages 399–402, 2013.

[12] A. D. Gordon. Bisimilarity as a theory of functional programming.
Electr. Notes Theor. Comput. Sci., 1:232–252, 1995.

[13] A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T. Graepel, A. V.
Nori, S. K. Rajamani, and C. V. Russo. A model-learner pattern for
bayesian reasoning. In POPL, pages 403–416, 2013.

[14] D. J. Howe. Proving congruence of bisimulation in functional pro-
gramming languages. Inf. Comput., 124(2):103–112, 1996.

[15] R. Jagadeesan, C. Pitcher, and J. Riely. Open bisimulation for aspects.
T. Aspect-Oriented Software Development, 5:72–132, 2009.

[16] A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local
names. In LICS’99, pages 56–66, 1999.

[17] P. Johann, A. Simpson, and J. Voigtländer. A generic operational
metatheory for algebraic effects. In LICS 2010, pages 209–218, 2010.

[18] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evalua-
tions. In LICS, pages 186–195, 1989.

[19] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proc. POPL’06, pages 141–152,
2006.

[20] V. Koutavas and M. Wand. Bisimulations for untyped imperative
objects. In ESOP’06, pages 146–161, 2006.

[21] V. Koutavas, P. B. Levy, and E. Sumii. From applicative to environ-
mental bisimulation. Electr. Notes Theor. Comput. Sci., 276:215–235,
2011. .

[22] S. B. Lassen. Relational Reasoning about Functions and Nondeter-
minism. PhD thesis, University of Aarhus, 1998.

[23] S. B. Lassen and P. B. Levy. Typed normal form bisimulation. In
CSL 2007, volume 4646 of Lecture Notes in Computer Science, pages
283–297. Springer, 2007.

[24] S. Lenglet, A. Schmitt, and J.-B. Stefani. Howe’s method for calculi
with passivation. In CONCUR, pages 448–462, 2009.

[25] C. D. Manning and H. Schütze. Foundations of statistical natural
language processing, volume 999. MIT Press, 1999.

[26] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name,
call-by-value, call-by-need and the linear lambda calculus. Theor.
Comput. Sci., 228(1-2):175–210, 1999.

[27] R. Milner. Pure bigraphs: Structure and dynamics. Inf. Comput., 204
(1):60–122, 2006.

[28] J. C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[29] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1), 2008.

[30] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[31] A. Pfeffer. IBAL: A probabilistic rational programming language. In
IJCAI, pages 733–740. Morgan Kaufmann, 2001.

[32] A. Piérard and E. Sumii. Sound bisimulations for higher-order dis-
tributed process calculus. In FOSSACS 2011, pages 123–137, 2011.

[33] A. Piérard and E. Sumii. A higher-order distributed calculus with
name creation. In LICS 2012, pages 531–540, 2012.

[34] A. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Ad-
vanced Topics in Types and Programming Languages, chapter 7, pages
245–289. MIT Press, 2005.

[35] A. M. Pitts. Howe’s method for higher-order languages. In D. San-
giorgi and J. Rutten, editors, Advanced Topics in Bisimulation and
Coinduction, pages 197–232. Cambridge University Press, 2011.

[36] D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof
method. In D. Sangiorgi and J. Rutten, editors, Advanced Topics in
Bisimulation and Coinduction. Cambridge University Press, 2012.

[37] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[38] J. Rutten and B. Jacobs. (co)algebras and (co)induction. In D. San-
giorgi and J. Rutten, editors, Advanced Topics in Bisimulation and
Coinduction. Cambridge University Press, 2012.

[39] D. Sands. From SOS rules to proof principles: An operational metathe-
ory for functional languages. In POPL, pages 428–441, 1997.

[40] D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. Inf.
and Comp., 111(1):120–153, 1994.

[41] D. Sangiorgi, N. Kobayashi, and E. Sumii. Logical bisimulations and
functional languages. In FSEN, volume 4767 of LNCS, pages 364–
379, 2007.

[42] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimula-
tions for higher-order languages. ACM Trans. Program. Lang. Syst.,
33(1):5, 2011.

[43] N. Sato and E. Sumii. The higher-order, call-by-value applied pi-
calculus. In APLAS 2009, pages 311–326, 2009.

[44] K. Støvring and S. B. Lassen. A complete, co-inductive syntactic
theory of sequential control and state. In Proc. POPL’07, pages 161–
172, 2007. To appear.

[45] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theor.
Comput. Sci., 375(1-3):169–192, 2007. A preliminary version in Proc.
POPL’04, 2004.

[46] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. J. ACM, 54(5), 2007. A preliminary version in Proc.
POPL’05, 2005.

[47] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence
in the new millennium, pages 1–35, 2002.

[48] F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain
theory, testing and simulation for labelled markov processes. Theor.
Comput. Sci., 333(1-2):171–197, 2005.

	Copertina_postprint_IRIS_UNIBO
	SIGPLAN-SIGACT2016
	Introduction
	Preliminaries
	Probabilistic call-by-name -calculus
	Environmental bisimulation in call-by-name
	Contextual equivalence
	Up-to techniques
	Fixed-point combinator example

	Probabilistic call-by-value -calculus
	Probabilistic imperative -calculus
	Environmental bisimilarity for the probabilistic imperative -calculus

	Additional related works
	Conclusions

