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Pattern Similarity Search
in Genomic Sequences

Piero Montanari, Ilaria Bartolini, Member, IEEE, Paolo Ciaccia, Marco Patella
Stefano Ceri, and Marco Masseroli

Abstract—Genomics, with the high amount of heterogeneous data that it is generating, is opening many interesting practical and
theoretical computational problems; one of them is the search for a collections of genomic regions at given distances from each other,
i.e., a pattern of genomic regions, along the whole genome. In this paper we present an optimized pattern-search algorithm able to find
efficiently, within a large set of genomic data, genomic region sequences which are similar to a given pattern. We start with a base
version of the problem, which is solved using dynamic programming enhanced with an efficient window-based technique; then, we
extend the algorithm to more complex scenarios with practical applications in revealing interesting and unknown regions of the
genome, thus, making it an important ingredient in supporting biological research. We apply our algorithm to enhancer detection, a
relevant biological problem, showing that the method is both efficient and accurate.

Index Terms—Genomic computing, pattern-based query processing, dynamic programming.

F

1 INTRODUCTION

A new technology for reading the DNA, called Next
Generation Sequencing (NGS), is changing biological

research, and will change medical practice, thanks to its
low-cost provision of millions of whole genome sequences
of a variety of species, and most important of humans.
Huge repositories of genomic sequence information are
being collected by large consortia of research laboratories
by using NGS; among them, ENCODE [10], TCGA [27], the
1000 Genomes Project [1] and the 100,000 Genomes Project [2].
These sequences can be integrated with specific experimen-
tal data produced at the various research or clinical centers,
opening new opportunities for biological discovery and for
personalized medicine.

So far, the bioinformatics community has been chal-
lenged by NGS primary analysis (production of sequences
in the form of short DNA segments, or “reads”) and sec-
ondary analysis (alignment of reads to a reference genome
and extraction of specific genomic features, such as vari-
ants/mutations and peaks of expression); but the most
important emerging problem is tertiary analysis, concerned
with multi-sample processing, annotation and filtering of
variants, and genome browser-driven exploratory analy-
sis [23]. While secondary analysis targets raw data in output
from NGS processors by using specialized methods, tertiary
analysis targets processed data in output from secondary
analysis and is responsible of sense making, e.g., discovering
how multiple genomic regions, representing heterogeneous
genomic features, interact with each other.

The GenData 2020 research project1 addresses this chal-
lenge, by enabling queries and analysis of processed ge-
nomic data. The project’s main results so far are a Genomic

This work is supported by the PRIN Project GenData 2020.
P. Montanari, I. Bartolini, P. Ciaccia, and M. Patella are with DISI -
Università di Bologna, Italy.
S. Ceri and M. Masseroli are with DEIB - Politecnico di Milano, Italy.

1. http://www.bioinformatics.deib.polimi.it/gendata/

Data Model (GDM), which encodes processed genomic data
in terms of their genomic regions and metadata, and a Geno-
Metric Query Language (GMQL) to extract genomic regions
of interest from NGS experiments and compute their prop-
erties, with high-level operations for manipulating regions
and measuring their distances [20].

1.1 The Problem and our Contributions

Several tertiary analysis problems consist of searching for
patterns of regions, i.e., co-occurrences of certain region con-
figurations along the genome; such regions are usually
heterogeneous genomic traits with particular features. The
main contribution of this paper is the design and imple-
mentation of an optimized, efficient pattern-search algorithm
which provides biologists with the ability, once they identify
an interesting genomic region pattern, to look for similar oc-
currences of such pattern in the whole genome. Towards this
end, we also developed a stand-alone desktop application,2

described in [21], that enables biologists to define patterns of
interest using the Integrated Genome Browser [22], a visu-
alization tool commonly used to observe genomic datasets.
The software application also allows executing the created
pattern-search algorithm and visualizing the matching re-
gions found along the genome for their evaluation.

The key ingredient of a pattern, borrowed from GDM, is
the notion of genomic (DNA) region, defined as a quadruple
〈chr , left , right , strand〉, in which chr represents the chro-
mosome3 where the region is located, and left and right
are respectively the left and right ends of the region along

2. The stand-alone desktop application is available for download at
http://www-db.disi.unibo.it/research/GenData/.

3. The easiest way of considering the DNA is as a string of billions
of nucleotides (DNA base molecular components represented by the
letters A,C,G,T) enclosed within chromosomes (23 in humans), which
are disconnected intervals of the string.

http://www.bioinformatics.deib.polimi.it/gendata/
http://www-db.disi.unibo.it/research/GenData/
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the DNA coordinates; the strand 4 is encoded as either +
or −, and can be missing. Each region includes all the DNA
nucleotides whose position is between left and right .5 More-
over, typically a region is associated by secondary analysis
with a feature vector, where each feature has an attribute name
and a type, and is extracted by suitable processing.

All the genomic regions produced by a specific NGS
experiment constitute an experiment sample, and can be rep-
resented as a track on a genome browser. Given that regions
can be ordered according to their genomic coordinates, each
track can be considered as an ordered sequence of regions.
Informally, a pattern is a collection of genomic regions that
are present on one or more tracks. The selection of the tracks
and of the regions forming a pattern depends on the specific
biological problem. Figure 1 shows an example of multi-
track pattern over 3 tracks, constituted by 6 regions (2 on
track 1, 3 on track 2 and 1 on track 3) intertwined within
other regions on the same tracks.

Fig. 1. An example of multi-track pattern (thick regions).

Each result of our pattern-search algorithm is a collection
of regions with properties similar to the query pattern. In
particular, we look for results in which the regions tend to
have (approximately) the same spatial configuration of the
query pattern (structural similarity) and similar values for
the region attributes (region similarity). As Figure 2 suggests,
structural similarity ignores absolute coordinate values of
the pattern regions, focusing on inter-region distances. In
addition to regular (positive) tracks, as discussed so far, we
also consider partial tracks, i.e., tracks whose regions may
be missing (but when they are present they strengthen the
pattern’s similarity), and negative tracks, i.e., tracks whose
regions must be missing. The search for patterns within
datasets is a typical problem in data sciences, but, as far as
we know, the type of pattern-matching problem we consider
here has not been faced before, as we discuss in the related
work Section 6.

Fig. 2. Example of search result on target tracks with high structural
similarity to the query pattern

Several relevant biological problems can be formulated

4. The DNA is made of two strands, rolled-up together in anti-
parallel directions, where genomic regions are located.

5. According to the University of California at Santa Cruz (UCSC)
notation, we use 1-based inter-base coordinates, i.e., the considered
genomic sequence is [left , right).

as pattern searches, among them:6

• The search for enhancers. These are particular regions
of the non-coding part of the genome (i.e., falling out-
side of the genes) which, for specific cellular tissues
and biological conditions, play the role of enhancing
or repressing gene expression, i.e., the ability of a
gene to produce proteins. Enhancers may be found
by comprehensively looking at multiple molecular
signals, where the signals must be either present or
absent, to qualify a DNA region as an enhancer.

• The search for specific topological domains (TADs). These
are revealed by loops of the genome, where loop
ends are distant in the 1D space of the aligned
genome, but are close in the 3D space due to genome
foldings. Each TAD is a region of the genome where
most enhancer-gene contacts occur. TADS are sta-
ble across different cell types and highly conserved
across species, indicating that they are an inherent
property of mammalian genomes.

The rest of the paper is organized as follows. Section 2
introduces the basic concepts, provides a formal description
of a simplified (base) version of the problem, and describes
a dynamic programming algorithm to solve it. Section 3
incrementally introduces aspects that are missing in the base
version of the problem (interval regions, multiple, partial,
and negative tracks, region attribute matching, Top-K dis-
tinct matchings) and describes how the algorithm has to be
suitably modified so as to address them. Section 4 shows
two biological applications of pattern matching, and Sec-
tion 5 describes the algorithm’s performance over synthetic
data. Finally, Section 6 presents related work in genomic
data management and pattern search, and Section 7 draws
the conclusions. The appendices contain: A description of
the original problem definition, a score-based cost model
for normalizing attribute matching, and an illustration of
the results obtained by way of our desktop application.

2 THE BASE PROBLEM

In this section we formally define the base version of the
problem we are dealing with, in which the pattern to be
searched is single-track, regions are reduced to points, and
region attributes are not present. We start by providing some
basic definitions.

Definition 2.1 (Track). A track T is a strictly increasing
sequence of N elements, T = 〈t1, . . . , tN 〉, where each ti ∈ N+

and ti < ti+1, i = 1, . . . , N − 1.

The restriction on track elements to be positive natural
numbers is only for consistency with the value of DNA
coordinates and can be removed without any consequence,
thus also considering real-valued elements.

Definition 2.2 (Matching). Given a “query” track Q =
〈q1, . . . , qM 〉 and a “target” track T = 〈t1, . . . , tN 〉, with
N ≥ M , a matching of Q in T is a strictly increasing function
f : [1,M ] → [1, N ] that assigns to each element qi of Q an

6. We have been introduced to these problems, in the context of
GenData 2020, by biologists at the European Institute for Oncology
(IEO), a center of excellence in oncology research, see [7].
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element tf(i) of T . We refer to (qi, tf(i)) as a matched pair of
elements, and to ((i, f(i))) as a matched index pair.7

Notice that, although the above definition only requires
N ≥ M , it has to be understood that in practice it will be
N � M . For instance, a typical query track has M ≤ 10,
whereas N can be in the order of 103 ÷ 106.

In order to search for patterns in the target track that are
similar to the query track, we take a cost-based approach,
which is typical for similarity search problems [29], where
lower cost implies high similarity and vice versa.

Definition 2.3 (τ -Matching Cost). Given tracks Q and T and
a real value τ , the τ -matching cost of a matching f , Cf (Q,T ; τ),
is defined as:

Cf (Q,T ; τ) =
M∑
i=1

(
tf(i) − qi − τ

)2 (1)

Let δi,j = tj − qi be the absolute offset of elements tj
and qi. The τ parameter in Equation 1 allows us to consider
shifted (δi,j−τ ) rather than absolute (δi,j) offsets, and is used
to translate Q so as to better match elements of T .

Since, for any given matching f , each value of τ will
yield a different cost, it would be quite natural to consider
that the cost of matching f is the minimum τ -matching
cost over all possible τ values. However, as detailed in
Appendix A, this approach would make more complex the
search for a minimum-cost matching, since it would amount
to solve a variance-minimization problem, which is a specific
quadratic assignment problem [5].

For the above reason, for any given matching f , we
restrict ourselves to consider a specific τ value, a major
advantage being that this choice leads to a tractable (i.e.,
polynomial) matching problem.

Definition 2.4 (Root-element Matching Cost). Given tracks
Q = 〈q1, . . . , qM 〉 and T = 〈t1, . . . , tN 〉, N ≥ M , and a
matching f of Q in T , let τ r = tf(1) − q1. The root-element
matching cost Crf (Q,T ) is defined as:

Crf (Q,T ) =
M∑
i=1

(
δi,f(i) − τ r

)2
=

M∑
i=1

(
δi,f(i) − δ1,f(1)

)2
(2)

Since τ r yields a zero-cost for the first matched pair
of elements of Q and T , these can be well termed as root
(reference) elements of their corresponding track. The base
problem we are going to solve is consequently defined as:

Definition 2.5 (Root-element Best-Matching Problem
(R-BMP)). Given tracksQ and T , the root-element best-matching
problem is to determine the matching f∗ with minimum root-
element matching cost, i.e., Crf∗(Q,T ) ≤ Crf (Q,T ) ∀f .

Notice that, since δi,f(i)− δ1,f(1) = (tf(i)− qi)− (tf(1)−
q1), it can be asserted that R-BMP focuses on minimizing the
squared differences of offsets w.r.t. root-elements offsets.

7. The use of double parentheses is to avoid any confusion among
matched elements and the corresponding matched positions in the two
sequences.

Example 1. Let Q = 〈8, 20, 22, 36〉 and T =
〈10, 15, 17, 27, 35, 39, 45, 50, 62, 70〉. One of the possible match-
ings of Q in T is f = {((1, 2)), ((2, 3)), ((3, 4)), ((4, 7))} that
assigns elements (15, 17, 27, 45) to corresponding elements of Q.

Since it is τ r = 15 − 8 = 7, the root-element matching cost
of f is 108:

Cr
f (Q,T ) = (15− 8− 7)2 + (17− 20− 7)2 + (27− 22− 7)2

+ (45− 36− 7)2 = 108.

2.1 Basic Dynamic Programming Algorithm
From a computational point of view, R-BMP is amenable to
an efficient resolution. Indeed, the contribution of a matched
pair (qi, tf(i)) to the overall cost is decoupled from that of
the other pairs, since τ r only depends on the root-elements
and not on the whole matched elements. This observation
is the key to develop a dynamic programming algorithm,
called DP-RBMP, that, as it will be clarified in the following,
can also be gracefully extended to cover all the aspects of
the pattern-search problem.

Dynamic programming is a general solution technique
that can be applied when the optimal solution to the
problem at hand can be efficiently obtained from solutions
to simpler subproblems, a typical example being that of
finding a shortest path in a graph. In our context, we can
exploit the following fact:

Lemma 2.6. A matching f of Q in T is optimal, i.e., has
minimum root-element matching cost, if and only if each of
the (partial) matchings (f(1), f(2), . . . , f(`)), ` = 1, . . . ,M ,
has minimum cost among all the (partial) matchings f ′ =
(f ′(1), f ′(2), . . . , f ′(`)) such that f ′(1) = f(1) and f ′(`) =
f(`), i.e.:∑̀

i=1

(δi,f(i) − δ1,f(1))2 ≤
∑̀
i=1

(δi,f ′(i) − δ1,f ′(1))2

Proof. The intuition about the proof is that, for given “start”
(f(1)) and “end” (f(`)) positions in T , any partial matching
f ′ which also matches q1 to tf(1) (f ′(1) = f(1)) and q` to
tf(`) (f ′(`) = f(`)), yet has a partial cost higher than that of
f (
∑`
i=1(δi,f(i)−δ1,f(1))2 <

∑`
i=1(δi,f ′(i)−δ1,f ′(1))2) cannot

be completed to yield a matching with minimum cost.
Only if. Assume that for some value of ` (` < M ) there
exists a partial matching f ′ such that f ′(1) = f(1), f ′(`) =
f(`), and

∑`
i=1(δi,f(i)−δ1,f(1))2 >

∑`
i=1(δi,f ′(i)−δ1,f ′(1))2.

Since f = (f(1), f(2), . . . , f(`), f(` + 1), . . . , f(M))
is assumed to be a matching, so it is f ′ =
(f ′(1), f ′(2), . . . , f ′(`), f(` + 1), . . . , f(M)). This follows
from f ′(`) = f(`), which guarantees that the sequence of
matched positions in T is strictly increasing in f ′ as well.
From the assumption f ′(1) = f(1), we have that, for all
i > `, (δi,f(i) − δ1,f(1))

2 = (δi,f(i) − δ1,f ′(1))
2. It follows

that Crf ′(Q,T ) < Crf (Q,T ), i.e., f is not optimal. When
` =M , the result follows from the very definition of optimal
matching.
If. This follows from the definition of optimal matching.

Based on the above lemma, the DP-RBMP algorithm
starts by partitioning the problem into (N −M + 1) sub-
problems, one for each possible value of f(1), thus of τ r .8

8. It has to be f(1) ≤ N −M + 1 in order to respect the constraint
f(i) < f(i+ 1), i = 1, . . . ,M − 1.
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Given f(1), we apply the dynamic programming technique
by constructing an M × N matrix Zf(1). The value of cell
(i, j) of this matrix, also called the cell cost and denoted
Zf(1)(i, j), is computed so as to be the minimum cost that is
possible to obtain by matching the first i − 1 elements of Q
in the first j − 1 elements of T and qi with tj . For each cell
(i, j) we also maintain a list, MLf(1)(i, j), of the indices of
the matched elements of T yielding the cell cost Zf(1)(i, j).

Because of the constraint f(i) < f(i+1), i = 1, . . . ,M −
1, several cells of matrix Zf(1) will remain unfilled, and their
cell cost is conventionally assumed to be equal to∞. For the
other cells computation of values is performed as follows:

1) For i = 1, the only cell to be filled is (1, f(1)), i.e.,
the cell corresponding to the root-element tf(1). For
such cell it is, by definition, Zf(1)(1, f(1)) = 0 and
MLf(1)(1, f(1)) = (f(1)).

2) For i = 2, . . . ,M , the cells (i, j) to be filled are only
those for which it is (f(1) + i− 1) ≤ j ≤ (N −M + i),
since the others violate the constraint f(i − 1) < f(i).
In order to ensure that Zf(1)(i, j) equals the minimum
cost of matching the first i − 1 elements of Q in the
first j − 1 elements of T and qi with tj , the following
recurrence is used:

Zf(1)(i, j) = min
h:h<j

{
Zf(1)(i− 1, h)

}
+ (δi,j − τ r)2 (3)

Letting h′ denote the value of index h for which
the minimum is attained in the above equation, the
matched index list for cell (i, j) is consequently com-
puted as MLf(1)(i, j) =MLf(1)(i− 1, h′)+ (j), where
‘+’ denotes list append.

Theorem 2.7. When cells of each matrix Zf(1), 1 ≤ f(1) ≤
(N −M + 1), are filled according to Equation 3, it is:

Crf∗(Q,T ) = min
f(1)

min
j

{
Zf(1)(M, j)

}
(4)

Proof. The cell cost Zf(1)(M, j) is the minimum matching
cost obtainable for a given f(1) and assuming that qM
is matched with tj . This easily follows from Equation 3
by inductive arguments that resemble those in the proof
of Lemma 2.6. Thus, taking the minimum over j yields
the minimum cost for a given f(1), after that the result
immediately follows.

A naı̈ve implementation of the DP-RBMP algorithm
would require O(MN3) time in the worst case, since the
number of matrices is N −M + 1, each with O(MN) cells
to fill, and computing each cell cost requires O(N) time
according to Equation 3. Reminding that h′ is the value
of index h which yields the minimum in Equation 3, the
complexity can be lowered to O(MN2) by exploiting the
observation that h′ can indeed be easily determined in O(1)
time. For this it is sufficient to keep track of the minimum
cell cost when filling the cells in a row.9 In particular, the
index h′ for a cell (i, j), now denoted h′(i, j) for clarity, is
obtained by comparing the minimum cell cost for i− 1 and
h < j − 1, thus the one in column h′(i, j − 1), and the cell
cost of cell (i− 1, j − 1):

9. Notice that here we are just exploiting the well-known identity
min{a1, . . . , an−1, an} = min{min{a1, . . . , an−1}, an}.

h
′
(i, j) =

{
h′(i, j − 1) if Zf(1)(i− 1, h′(i, j − 1)) < Zf(1)(i− 1, j − 1)

j − 1 otherwise

Algorithm 1 The DP-RBMP algorithm
1: for f(1)← 1, N −M + 1 do
2: for i← 2,M do
3: h′(i, f(1) + i− 2)← f(1) + i− 2
4: for j ← (f(1) + i− 1), (N −M + i) do
5: if Zf(1)(i−1, h′(i, j−1)) < Zf(1)(i−1, j−1)
6: then h′(i, j)← h′(i, j − 1)
7: else h′(i, j)← j − 1

8: Zf(1)(i, j)← Zf(1)(i−1, h′(i, j))+(δi,j−τ r)2
9: MLf(1)(i, j)←MLf(1)(i− 1, h′(i, j)) + (j)

10: Crf (Q,T )← minj{Zf(1)(M, j)}
11: Crf∗(Q,T )← minf(1){Crf (Q,T )}

The actual behavior of the DP-RBMP algorithm (as well
as that of its variants and extensions we introduce in the fol-
lowing) also depends on the possibility of early abandoning
the analysis of a matrix. In fact, if at a certain stage of the
execution a matching f with cost Crf (Q,T ) has been found,
a matrix Zj , with j 6= f(1), needs to be analyzed as long as
it can lead to a matching that costs less than Crf (Q,T ). Thus,
one can stop filling the cells of Zj as soon as the minimum
cell cost in a row i is ≥ Crf (Q,T ). For the sake of brevity,
this optimization is not written down in Algorithm 1.

Example 2. Let Q = 〈8, 20, 22, 36〉 and T = 〈10, 15, 17, 27,
35, 39, 45, 50, 62, 70〉 as in Example 1. Let us consider Z2

(shown in Figure 3), one of the (N − M + 1) = 7 matrices
generated by DP-RBMP, for which it is τ r = 15− 8 = 7. To see
how cells are filled consider, for example, cell (3, 7). In this case
Equation 3 yields:

Z2(3, 7) = min
h:h<7

{Z2(2, h)}+ (δ3,7 − τ r)2

= 0 + ((45− 22)− 7)2 = 256

Since the minimum cell cost in the 2nd row, when j < 7, is found
in cell (2, 4), it is h′ = 4, thusML2(3, 7) =ML2(2, 4)+(7) =
(2, 4, 7).

The best matching f for Z2 is obtained in cell (4, 7),
that is, f = (((1, 2)), ((2, 4)), ((3, 5)), ((4, 7))) that assigns
(15, 27, 35, 45) to (8, 20, 22, 36). The cost of the matching f
is Crf (Q,T ) = 40. If one had already found, in a previously
generated matrix, a matching with cost, say, 32, matrix Z2 would
have been filled only up to row 3, since in that row the minimum
cell cost is 36, thus higher than 32.

2.2 Windowed DP Algorithm
The complexity of the DP-RBMP algorithm can be substan-
tially improved whenM � N by exploiting the observation
that T and Q are strictly increasing sequences, which makes
it possible to obtain the best match for each element of Q
in T through a binary search. The resulting algorithm is de-
noted WDP-RBMP, where the ‘W’ stands for “windowed”.

Given the target track root-element tf(1) that character-
izes the matrix Zf(1), for each row i = 1, . . . ,M , let cm(i)
be the index of the “closest match” of qi in T :
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Z2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0
(2)

2 (20)
100
(2, 3)

0
(2, 4)

64
(2, 5)

144
(2, 6)

324
(2, 7)

529
(2, 8)

3 (22)
104

(2, 3, 4)
36

(2, 4, 5)
100

(2, 4, 6)
256

(2, 4, 7)
441

(2, 4, 8)
1296

(2, 4, 9)

4 (36)
168

(2, 3, 4, 5)
52

(2, 4, 5, 6)
40

(2, 4, 5, 7)
85

(2, 4, 5, 8)
520

(2, 4, 5, 9)
877

(2, 4, 5, 10)

Fig. 3. DP-RBMP algorithm: the matrix Z2 of Example 2. In each cell we show the cell cost and the list of the indices of matched elements of T .

Definition 2.8 (Closest Match). Given tracks Q and T , and a
value of τ r = tf(1) − q1, let cost(i, j) = (δi,j − τ r)2 denote
the cost of matching qi and tj . The closest match of qi in T is the
element of T with index cm(i) for which cost(i, j) is minimized,
i.e., cost(i, cm(i)) < cost(i, j),∀j 6= cm(i).10 By definition,
it is cm(1) = f(1). Since both T and Q are strictly increasing
sequences, it is cm(i) ≤ cm(i+ 1), i = 1, . . . ,M − 1.

It is evident that, in absence of “conflicts” among
the closest matches, i.e., when cm(i) < cm(i + 1), i =
1, . . . ,M − 1, the matching fcm = (cm(1), . . . , cm(M))
based on closest matches would be the best one for the
given root element tf(1). However, this breaks down in case
of conflicts (cm(i) = cm(i + 1)), since fcm would not be a
matching anymore.

The intuition behind the WDP-RBMP algorithm is that
the optimal matching has to be “close” to fcm, thus for each
row i of Zf(1) only a window of cells of limited size around
cm(i) has to be considered. The window has to be large
enough in order to allow resolution of conflicts and, at the
same time, to guarantee that the optimal matching can still
be found. This is made precise by the following definition.

Definition 2.9 (DP-window). Given the Zf(1) matrix, the DP-
window of Zf(1) is defined as W = {Wi : i = 1, . . . ,M}, where
Wi = {(i, j) : j ∈ [Li, Hi]}. The extremes Li and Hi of the i-th
row Wi are iteratively computed as follows:

L1 = H1 = cm(1) = f(1)
LM = max{cm(M), f(1) +M − 1}
Li = max{min{cm(i), Li+1 − 1}, f(1) + i− 1}

(i = 2, . . . ,M − 1)
Hi = max{cm(i), Hi−1 + 1} (i = 2, . . . ,M)

Consider how the Hi’s are defined. For H2 we either
consider the closest match of q2, if this is higher than
cm(1) = f(1), or minimally extend the window to the right,
H2 = H1+1 = f(1)+1. This gives us the possibility to solve
conflicts, such as f(1) = f(2), which are not admitted in a
matching. The same is done for all others Hi’s. For comput-
ing the lower extremes Li’s, first observe that the matching
constraint f(i) < f(i + 1) implies f(i) ≥ f(1) + i − 1, for
i = 2, . . . ,M ; otherwise, we proceed in a similar way as
for Hi’s, yet going backwards and starting from LM . The
following observation is now obvious:

Observation 2.10. For i = 1, . . . ,M − 1, it is Li < Li+1 and
Hi < Hi+1. If any row of W is restricted, this property is lost.

Figure 4 (a) shows a possible DP-window for the case
M = 7, while Figure 4 (b) shows the worst-case scenario in

10. We omit here the very particular case when the closest match is
tied among two adjacent elements in T , which would unnecessarily
lengthen the description.

which all the M − 1 closest matches other than f(1) are in
conflict.

X

 X

 X

X

X

X

X

(a)

X

X

X

X

X

X

X

(b)

Fig. 4. Examples of DP-windows: closest matches are denoted with a
X. (a) A possible DP-window for the case M = 7. (b) The worst-case
scenario, when all theM−1 closest matches cm(i), i > 1 are in conflict.

Example 3. Let Q and T , as in Example 2. The DP-window
of matrix Z2, for which it is τ r = 15 − 8 = 7, is shown in
Figure 5. It is cm(2) = 4, since the closest match for q2 + τ r =
20 + 7 is t4 = 27. The same (conflicting) value is obtained for
cm(3), whereas q4 + τ r = 36+ 7 = 43 yields cm(4) = 7, since
t7 = 45 is the closest element in T . Based on Definition 2.9 it
is W2 = [3, 4], W3 = [4, 5], and W4 = [7, 7]. So, besides cell
(1, 2), WDP-RBMP only needs to fill 5 cells in the Z2 matrix, as
compared to the 18 cells filled by DP-RBMP (compare Figure 5
to Figure 3).

Having illustrated how the DP-window is defined, we
now turn to prove its correctness (the DP-window is “large
enough”) and optimality (the DP-window has smallest size).
The following observation, which follows from T and Q
being both strictly increasing sequences, formalizes the in-
tuition that moving away from the closest match leads to a
cost increase:

Observation 2.11. For i = 2, . . . ,M the following both hold:

cost(i, j − 1) > cost(i, j) j ≤ cm(i)

cost(i, j + 1) > cost(i, j) j ≥ cm(i)

Theorem 2.12. Given the Zf(1) matrix, the DP-window W in
Definition 2.9 has the minimum size that guarantees to find the
best possible matching f∗.

Proof. Let us consider a matching fout that is not completely
contained in the DP-windowW . Clearly, for each i > 1, only
one of the following cases can occur:

1) fout(i) < Li;
2) fout(i) ∈ [Li, Hi];
3) fout(i) > Hi.

where for at least one i case 1 or 3 occurs (otherwise fout
would be completely contained in W ).

Let us now consider a matching fin contained in W and
defined as follows:
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Z2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0
(2)

2 (20)
100
(2, 3)

0
(2,4)

3 (22)
104

(2,3,4)
36

(2, 4, 5)

4 (36)
40

(2,4,5,7)

Fig. 5. WDP-RBMP algorithm: the matrix Z2 of Example 2. Closest matches, cm(i), are in boldface.

1) fin(i) = Li when fout(i) < Li;
2) fin(i) = fout(i) when fout(i) ∈ [Li, Hi];
3) fin(i) = Hi when fout(i) > Hi.

From Observation 2.10 we know that fin is indeed a match-
ing (no conflicts arise). When all the closest matches belong
to the window (see e.g., Figure 4 (b)) then Crfout

(Q,T ) >
Crfin(Q,T ) follows from Observation 2.11, since the costs of
cases 1 and 3 of fout are higher than those of fin. Notice that,
when cm(i) < Li (see e.g., Figure 4 (a)), case 1 (fout(i) < Li)
cannot occur, since fout is assumed to be a valid matching.
Thus, if case 3 occurs Observation 2.10 still applies. Since
these arguments can be applied to any matching fout that is
not completely contained in W , it follows that the size of W
is sufficient for determining the best possible matching f∗.

In the above construction, Observation 2.10 is critical for
guaranteeing the absence of conflicts in fin. From the same
observation it therefore follows that the size of W is the
minimal one that ensures to find f∗.

The complexity of the WDP-RBMP algorithm (for which
only differences w.r.t. DP-RBMP are summarized in Al-
gorithm 2) is O(MN(logN + M)), since for each of the
(N − M + 1) matrices we have to execute M − 1 binary
searches and then fill, in the worst case, M − 1 cells on
each row of the DP-window (the cost of filling each cell is
still O(1) as in the DP-RBMP algorithm). Notice that, when
M = o(N), the complexity drops down to O(N logN),
which makes it possible to apply WDP-RBMP also to (very)
large problem instances.

Algorithm 2 The WDP-RBMP algorithm
1: for f(1)← 1, N −M + 1 do
2: Compute cm(i), i = 2, . . . ,M as in Definition 2.8
3: Compute Li, Hi, i = 1, . . . ,M as in Definition 2.9

Execute Algorithm 1 replacing line 4. with
4: for j ← Li, Hi do

3 EXTENDING THE BASE MODEL

In this section we introduce all the aspects that extend the
base model: first, the genomic regions are intervals; second,
the pattern can be defined on multiple tracks; third, partial
and negative matchings can occur; finally, regions have
attributes. All these extensions are required by genomics,
and used in our biological applications (see Section 5).

3.1 Interval Regions
So far, we considered the elements ti and qj as points,
but in genomic applications they are intervals; of course,
an interval can be reduced to its centroid and therefore be

seen as a point. More precisely, if every genomic region
is an interval [left , right) on the genome, its centroid is
ti = (ri.right − 1 + ri.left)/2.

It is also possible to examine asymmetric approaches,
where we consider regions as dimensional, but still we
compute suitable ti and qj . Among the various solutions, we
consider the one in which elements ti are regions’ left com-
ponents, but the definition of τ r considers root-elements’
right components, i.e., τ r = rf(1).right − qr1.right , where
qri is the i-th region of the query pattern. The rationale
behind this choice is that it allows us to align root-regions
according to their right components and to base structural
similarity only on the empty space (distance) between the
root-regions and the other regions. Notice that, for i > 1, it
is (refer also to Figure 6):

cost(i, f(i)) = (tf(i) − qi − τr)2

= (rf(i).left − qri.left − (rf(1).right − qr1.right))
2

= (rf(i).left − rf(1).right − (qri.left − qr1.right))
2

= (b− a)2

whereas the matched root elements (q1, tf(1)) are still as-
sumed to yield no additional cost.

Fig. 6. The asymmetric approach for interval regions.

Both the centroid-based and the asymmetric approaches
do not require any change to WDP-RBMP algorithm, as they
ignore the regions’ lengths in the computation of matching
cost. If these are deemed to be relevant for the specific
problem at hand, length can be modeled as a region attribute
(see Section 3.5). In the following we use the centroid-based
approach.

3.2 Multi-Track Patterns

A query pattern can be defined on NT different tracks, i.e.,
Q = (Q1, . . . , QNT ), where Qx =

〈
qx1 , . . . , q

x
Mx

〉
. In this

case, each pattern track Qx is searched in a different target
track T x =

〈
tx1 , . . . , t

x
Nx

〉
with Nx ≥ Mx. In the following

we re-define some basic concepts to adapt them to the multi-
track scenario.

Definition 3.1 (Multi-track matching). Given two ordered
collections of NT tracks, Q = (Q1, . . . , QNT ) and T =
(T 1, . . . , TNT ), we define a multi-track matching of Q in T
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as F = (f1, . . . , fNT ) where fx is a matching of Qx in T x,
x = 1, . . . , NT .

As in the single-track case, we denote as δxi,j = txj − qxi
the absolute offset between elements txj and qxi of tracks Qx

and T x, respectively.

Definition 3.2 (Multi-track Root-element Matching Cost).
Given two ordered collections of NT tracks, Q and T , and a
multi-track matching F of Q in T , let τ ry = tyfy(1) − qy1 ,
y = 1, . . . , NT . The multi-track root-element matching cost
CrF (Q, T ) is defined as:

CrF (Q, T ) = min
y

min
τr
y

{
NT∑
x=1

Mx∑
i=1

(δxi,fx(i) − τ ry )2
}

(5)

Given a multi-track matching F , the above definition
basically uses as root-elements the couple (qy1 , t

y
fy(1)) that

introduces the minimal cost for F . This allows us to give
the same importance to all the tracks, thus without pre-
defining a rank between them. The multi-track R-BMP is
consequently defined as the problem of finding the multi-
track matching F ∗ with minimum multi-track root-element
matching cost, i.e., CrF∗(Q, T ) ≤ CrF (Q, T ) ∀F .

The DP-RBMP algorithm can be easily adapted to the
multi-track case as follows. Instead of having a single
matrix, the algorithm has now NT matrices Zxfy(1), x =

1, . . . , NT . Assume the root-element tyfy(1) is chosen from
T y , y = 1, . . . , NT . For each of theNy−My+1 possible val-
ues of the root-element, we fill matrix Zyfy(1) as in the single-
track case. On the other hand, for each other matrix Zxfy(1),
x 6= y, we need to also fill the 1st row, since there is no root-
element defined for T x. For the same reason, in each row i
the range of cells to be filled is now j = i, . . . , Nx−Mx+1.
No other changes are needed to the logic of the algorithm.

The complexity of the DP-RBMP algorithm in the multi-
track case is O

(∑
y Ny

∑
xMxNx

)
, where

∑
y Ny accounts

for the number of possible root elements and
∑
xMxNx is

the total size of the NT matrices. Since the dominant term
is maxy{Ny}maxx{MxNx}, when all tracks have the same
size N and the number of tracks, NT , is fixed, the complex-
ity can be written as O(MN2), where M def

= maxx{Mx}.
Also the windowed DP algorithm WDP-RBMP can be

adapted in a similar manner, with the additional exten-
sion that, given the root-element tyfy(1), filling Zxfy(1) with
x 6= y requires the closest match cmx(i) to be computed
also for the first row of the matrix. Combining the above
complexity analysis with the one developed for WDP-
RBMP in the single-track case, it is immediate to con-
clude that the complexity of the multi-track WDP-RBMP is
O
(∑

y Ny
∑
xMx(logNx +Mx)

)
.

Example 4. Let Q = (Q1, Q2) where Q1 is as Q in Example 2
and Q2 = 〈8, 24〉. Let T = (T 1, T 2) where T 1 is as T in
Example 2 and T 2 = 〈1, 3, 12, 22, 31, 60, 78, 80, 92〉. As in the
previous example, we consider as matched root-elements on Q1

and T 1 the pair (8, 15), thus τ r = 7. Figure 7 shows the matrix
Z2
2 generated by the DP-RBMP algorithm (clearly, matrix Z1

2

corresponds to matrix Z2 in Figure 5). It can be seen that for
Z2
3 we also fill cells in the first row, since the root-element is not

chosen from T 2.

For this choice of root-elements the best multi-track matching
is F = (f1, f2), where:

• f1 equals f in Example 2, i.e., f1 =
(((1, 2)), ((2, 4)), ((3, 5)), ((4, 7)));

• f2 for Z2
2 is obtained in cell (2, 5), with f2 =

(((1, 3)), ((2, 5))) that assigns (12, 31) to (8, 24).

The cost of F for the considered root-elements (8, 15) is 40 +
9 = 49, but to determine the multi-track root-element matching
cost CrF (Q, T ) it is necessary to compute also the cost of F when
τ r depends on the matched root-elements (8, 12) on the second
track T 2 (this is done by the DP-RBMP algorithm afterwards,
when it will choose the root-elements on T 2).

3.3 Negative Matchings
In this section we consider negative matching tracks, i.e.,
target tracks in which there must be no regions in the area of
a result. Notice that negative tracks are meaningful only in
presence of non-negative (i.e., positive) tracks. Given an in-
stance of (multi-track) R-BMP, the negative matching tracks
are used to limit the space of the solutions. Any negative
matching track B = 〈b1, . . . , bN 〉 has an associated “buffer”
value β that states how distant any matched element in the
positive track(s) must be from any bi.

Definition 3.3 (Valid Area). Given a negative matching track
B = 〈b1, . . . , bN 〉 and its associated buffer value β, a valid area
VA is an interval on the genome such that, for any value v ∈ VA,
it is:

v ≥ bj + β, if bj ≤ v j = 1, . . . , N ;
v ≤ bj − β, if bj ≥ v j = 1, . . . , N.

Further, VA is maximal, i.e., it is not included in any other
interval with the same properties.

Valid areas are those intervals in the genome which can
contain results (as found in the positive tracks). From an
algorithmic viewpoint, the matrix columns of each element
of a target track not belonging to any valid area can therefore
be dropped before starting the search process.

Notice that, in the presence of multiple negative match-
ing tracks, valid areas are defined as the intersection of the
valid areas of each single negative matching track.

3.4 Partial Matchings
Let us now turn to consider partial matchings, i.e., matching
functions that admit missing elements.

Definition 3.4 (Partial Matching). A partial matching of
a track QP = 〈qp1, . . . , qpMP 〉 in another track TP =
〈tp1, . . . , tpNP 〉 is a strictly increasing function fp : [1,MP ]→
[1,NP ] ∪ {⊥} that assigns to each element of QP either an
element of TP or ⊥ (null element).

Notice that, in the above definition, “strictly increasing
function” precisely means: if both fp(i) 6=⊥ and fp(`) 6=⊥,
then i < ` ⇒ fp(i) < fp(`). The rationale behind partial
matchings is that, in some cases, requiring to match all
pattern elements might lead to a poor solution. In such
cases, it might be preferable to “skip” one or more pattern
elements, matching only the remaining ones. For instance,
given QP = 〈10, 19, 20〉 and TP = 〈10, 20, 100〉, the only
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Z2
2 1(1) 2(3) 3(12) 4(22) 5(31) 6(60) 7(78) 8(80) 9(92)

1 (8)
196
(1)

144
(2)

9
(3)

49
(4)

256
(5)

2025
(6)

3969
(7)

4225
(8)

2 (24)
980
(1, 2)

505
(2, 3)

90
(3, 4)

9
(3, 5)

850
(3, 6)

2218
(3, 7)

2410
(3, 8)

3730
(3, 9)

Fig. 7. The matrix Z2
2 of Example 4 (matrix Z1

2 equals matrix Z2 in Figure 5).

“complete” matching would force to include the match pair
(20, 100). On the other hand, allowing element 19 of QP to
remain unmatched, one would obtain the partial matching
that assigns 〈10,⊥, 20〉 to QP .

Definition 3.5 (Multi-track partial matching). Given two
collections of NP tracks, QP = (QP1, . . . ,QPNP ) and T P =
(TP1, . . . ,TPNP ), we define a multi-track partial matching of
QP in T P as FP = (fp1, . . . , fpNP ) where each fpx is a partial
matching of QPx in TPx, x = 1, . . . ,NP .

Given an instance of multi-track R-BMP, it is reasonable
to require that at least one track does not allow partial
matchings. The tracks that admit partial matching are called
partial matching tracks and each of them is associated with
a (possibly different) value c(⊥), that is the cost to be paid
for not matching an element of that track. The following
definition considers, for simplicity, the case where all pattern
tracks but one are partial ones.

Definition 3.6 (Partial Root-element Matching Cost). Given
tracks Q = 〈q1, . . . , qM 〉 and T = 〈t1, . . . , tN 〉, N ≥ M ,
let f be a matching of Q in T , and τ r = tf(1) − q1. Given
two collections of NP partial matching tracks QP = (QPx)
and T P = (TPx), x = 1, . . . ,NP , with corresponding costs
cx(⊥) for null elements, and a multi-track partial matching
FP = (fp1, . . . , fpNP ) of QP in T P , the partial root-element
matching cost Crf,FP (Q,T ) is defined as:

Crf,FP (Q,T ) =
M∑
i=1

cost(i, f(i)) +
NP∑
x=1

MPx∑
i=1

cost(i, fpx(i))

(6)
where MPx is the number of elements in QPx, cost(i, f(i)) =
(δi,f(i) − τ r)2 as usual, and

cost(i, fpx(i)) =

{
(δxi,fpx(i) − τ r)2 if fpx(i) 6=⊥
cx(⊥) if fpx(i) =⊥

Notice that the value of τ r used in the above equation
depends on the positive (i.e., non-partial) pattern track. By
definition, the elements of partial matching tracks are never
used as root-elements, since they can be null. In a similar
manner, it is possible to define the matching cost when
multiple positive tracks appear in the pattern query, along
the lines of Definition 3.2.

In order to apply the DP-RBMP algorithm to the partial
matching case, a matrix ZPxf(1) for each partial matching
track TPx is needed. The cost of cell (i, j) of matrix ZPxf(1)
must now consider also the null (⊥) case, thus the dynamic
programming equation is modified as follows:

ZPxf(1)(i, j) = min{ZPxf(1)(i− 1, h′) + (δi,j − τ r)2,
ZPxf(1)(i− 1, j) + cx(⊥)}

(7)

where, as in the non-partial case, it is h′ =
argminh: h<j{ZPxf(1)(i− 1, h)}.

Notice that, since it might well be the case that the
first element, qpx1 , of a partial matching track QPx has a
null match, matrix ZPxf(1) needs to be extended with an
additional “0” column, corresponding to the ⊥ case.

Example 5. Let Q and T as in Example 2. Let QP = (QP1),
where QP1 = 〈5, 25〉 and c1(⊥) = 500. Let T P = (TP1),
where TP1 = 〈1, 4, 12, 21, 35, 42, 60, 71, 80〉. Let us consider
Z2 as in Figure 5 and ZP1

2 as in Figure 8, i.e., we choose as
matched root-elements (8, 15), with τ r = 7.

The cell cost of, say, cell (2, 2) of ZP1
2, is given by:

ZP1
2(2, 2) = min

{
ZP1

2(1, h
′) + ((4− 25)− 7)2,ZP1

2(1, 2) + 500
}

= min
{
ZP1

2(1, 2) + 784, 64 + 500
}
= 564

and ML1
2(2, 2) = ML1

2(1, 2) + (⊥) = (2,⊥).
For this choice of root-elements the best matching is:

• f for Z2 is as in Example 2, i.e., f =
(((1, 2)), ((2, 4)), ((3, 5)), ((4, 7)));

• fp1 for ZP1
2 in cell (2, 5): fp1 = (((1, 3)), ((2, 5))) that

assigns (12, 35) to (5, 25).

whose cost is Crf,FP (Q,T ) = 40 + 9 = 49.

The WDP-RBMP algorithm can be similarly adapted to
work with partial matching tracks: First, when filling matrix
ZPxf(1), it is also necessary to include the additional column
“0”; second, after having defined the DP-window, also all
the cells “below” window cells need to be considered (since
they account for null matches), i.e., if cell (i, j) belongs to
the DP-window, then all cells (i′, j) with i′ > i that are
not in the DP-window are also to be filled. Figure 9 shows
the matrix ZP1

2 of Example 5 filled using the windowed DP
algorithm (again, matrix Z2 is as in Figure 5).

3.5 Region Attributes
In this section we consider how to deal with the last feature
that is missing in the base model, namely region attributes.
As said, each genomic region is associated with a set of
region attributes A = {a1, . . . , aL}, which are particular to
the specific experiment performed on the genome. When
searching for similar patterns, region attributes are used
to determine the region distance of each couple of matched
regions, where the importance of each attribute ai in deter-
mining such distance is given by a weightwi. Notice that the
region length, introduced in Section 3.1, can be considered
as another region attribute.

Definition 3.7 (Region Distance). Given a couple of matched
regions (qr, r), with region attributes A = {a1, . . . , aL} and
corresponding weights W = {w1, . . . , wL}, the region distance
between qr and r is defined as:

dreg(qr, r) =
L∑
l=1

wl(r.al − qr.al)2 (8)
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ZP1
2 0(⊥) 1(1) 2(4) 3(12) 4(21) 5(35) 6(42) 7(60) 8(71) 9(80)

1 (5)
500
(⊥)

121
(1)

64
(2)

0
(3)

81
(4)

529
(5)

900
(6)

2304
(7)

3481
(8)

4624
(9)

2 (25)
1000
(⊥,⊥)

621
(1,⊥)

564
(2,⊥)

464
(2, 3)

121
(3, 4)

9
(3, 5)

100
(3, 6)

784
(3, 7)

1521
(3, 8)

2304
(3, 9)

Fig. 8. The matrix ZP1
2 of Example 5 (matrix Z2 is as in Figure 3).

ZP1
2 0(⊥) 1(1) 2(4) 3(12) 4(21) 5(35) 6(42) 7(60) 8(71) 9(80)

1 (5)
500
(⊥)

0
(3)

2 (25)
1000
(⊥,⊥)

500
(3,⊥)

9
(3, 5)

Fig. 9. The matrix ZP1
2 of Example 5 filled using WDP-RBMP (matrix Z2 is as in Figure 5, closest matches are in boldface).

We are ready to define the overall cost of a matching:

Definition 3.8 (Root-element Overall Cost). Given two
collections of regions QR = 〈qr1, . . . , qrM 〉 and TR =
〈tr1, . . . , trN 〉, N ≥ M , tracks Q and T respectively ex-
tracted from QR and TR, and a matching f of Q in T , let
τ r = tf(1) − q1. The root-element overall cost Crf (QR,TR)
is defined as follows, where Crf (Q,T ) is as in Equation 2:

Crf (QR,TR) = Crf (Q,T ) +
M∑
i=1

dreg(qri, trf(i)) (9)

The overall R-BMP is consequently defined as the prob-
lem of finding the matching f∗ with minimum root-element
overall cost, Crf∗(QR,TR) ≤ Crf (QR,TR) ∀f . Clearly, sim-
ilar definitions can be given for all the variants of the prob-
lem (interval regions, multiple, partial, and negative tracks).
Notice that, for an unmatched element qi, only the structural
cost is defined, i.e., it is assumed that dreg(qri,⊥) = 0.

The DP-RBMP algorithm can be used to solve the overall
R-BMP, whereas the introduction of the region distance
makes the WDP-RBMP algorithm inapplicable. This is due
to the fact that the region distance is not monotone and,
therefore, it is not possible to limit the search only to a
neighborhood of the closest matches of qi elements.

3.6 Top-K Queries
The Top-K version of R-BMP aims to discover the K match-
ings F = {f1, . . . , fK} with the smallest overall cost. We
further require that resulting patterns have no regions in
common, so as to increase the diversity of the result. This is
obtained by comparing results produced by all the matrices
and keeping the best K disjoint results; note that each
matrix can produce at most one result, as all the matchings
associated with a matrix share the same root element.

4 BIOLOGICAL EXAMPLES

We applied the developed pattern-search to the two relevant
biological problems described in the introduction.

4.1 Finding Enhancer Regions
This problem involves the search for DNA regions outside
of the genes, at a certain distance from a gene’s transcrip-
tion start site (TSS),11 and associated with the presence or

11. The genome location indicating where gene transcription (i.e.,
activity) starts.

absence of specific regions, where given molecular modifi-
cations occur or certain proteins bind to the DNA, which can
be found through NGS ChIP-seq experiments. In particular,
biologists generally believe that an active putative enhancer
(APE) region should be not closer than 20K bases to the
closest TSS, and have presence of overlapping H3K4me1
and H3K27ac regions, and absence of H3K4me3 regions.12

Furthermore, an APE could optionally include overlapping
regions of DHS, CTCF, P300, and/or Pol2 [17], [26].13

Thus, based on our problem formulation, the search for
APE regions can be expressed as a multi-track, interval
region matching problem where H3K4me1 and H3K27ac
constitute two positive matching tracks, TSS and H3K4me3
constitute two negative matching tracks, and DHS, CTCF,
P300, and Pol2 constitute four partial matching tracks, re-
spectively. To ensure that the distance between a TSS region
and a result is not less than 20K bases, we set to 20K the
βTSS parameter. On the other hand, for H3K4me3 a lower
value of βH3K4me3 = 1K is set, so that results are sufficiently
distant from H3K4me3 regions.

We obtained human genome experimental data as fol-
lows. For TSS regions, we used public data from SwitchGear
Genomics,14 which are provided by the UCSC annotation
database.15 For all other genomic data types, we considered
ChIP-seq experiments on specimens of the K562 cell line
(Chronic Myeloid Leukemia), which are publicly available
in the ENCODE project repository;16 thus, we extracted all
H3K4me1, H3K27ac, H3K4me3, DHS, CTCF, P300 and Pol2
samples of ChIP-seq regions of the K562 cell line, we merged
sample replicates, and created a single dataset with a single
sample (track) for each considered type of genomic data,
all samples with the same region attributes. The number of
regions in each sample are listed in Table 1 (a).

We applied our desktop application17 to the considered
dataset, using the pattern described above. From a user
point of view, it is convenient to provide normalized results,

12. H3K4me1, H3K27ac, and H3K4me3 are three types of molecular
modifications occurring in the genome, whose location can be identified
through specific NGS ChIP-seq experiments.

13. DHS are regions of the genome where DNA is accessible for the
binding of proteins; CTCF, P300, and/or Pol2 are proteins that bind
to the DNA in specific regions, which can again be identified through
particular NGS ChIP-seq experiments.

14. http://switchgeargenomics.com/
15. https://genome.ucsc.edu/cgi-bin/hgTables?org=Human&db=

hg19&hgta group=allTracks&hgta track=switchDbTss
16. http://genome.ucsc.edu/ENCODE/
17. http://www-db.disi.unibo.it/research/GenData/

http://switchgeargenomics.com/
https://genome.ucsc.edu/cgi-bin/hgTables?org=Human&db=hg19&hgta_group=allTracks&hgta_track=switchDbTss
https://genome.ucsc.edu/cgi-bin/hgTables?org=Human&db=hg19&hgta_group=allTracks&hgta_track=switchDbTss
http://genome.ucsc.edu/ENCODE/
http://www-db.disi.unibo.it/research/GenData/
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thus switching from a cost-based matching model to a score-
based one, in which scores vary in the [0, 1] range, with
1 denoting a perfect match; specific details are given in
Appendix B. The K-th score returned by the algorithm is
reported in Table 1 (b) for different values of K.

TABLE 1
(a) Considered samples and number of the genomic regions included;

(b) Scores of the K-th results in the [0, 1] range and execution times for
WDP-RBMP and the baseline algorithm (BAAPE).

(a)
sample regions

TSS 131,780
H3K4me1 116,503
H3K27ac 45,796
H3K4me3 142,738

DHS 360,648
CTCF 318,982
P300 69,370
Pol2 177,900

(b)
K K-th WDP-RBMP BAAPE

score (ms) (ms)
10 0.8479 1,838 1,782
50 0.7991 2,046 1,808
100 0.7489 2,130 1,810
250 0.6833 2,428 2,592
500 0.6829 3,001 2,621

1,000 0.6330 5,001 4,351

4.1.1 Evaluation of Biological Results
Using the visualization provided by the developed software
application (for an example, see Appendix C), the Top-100
matchings found were visually inspected by an expert, who
evaluated all of them correct. An automatic evaluation of
all obtained results is difficult: there is neither consolidated
knowledge of enhancers, nor a consensus on the compu-
tational method specifically designed for their discovery.
Therefore, we used for comparison a different set of data,
about chromatin18 state segmentation, generated by the Broad
Institute for a few cell lines, included K562, and made
publicly available also in the ENCODE repository.19 These
data, denoted as ENCODE HMM, describe a set of chro-
matin states of the genome using a Hidden Markov Model
(HMM); in particular, each 200 base pair (i.e., nucleotide)
interval is assigned to its most likely state under the model;
one of such states is associated with enhancers (either strong
or weak).20

We found a very good matching between the regions
denoted as enhancers by ENCODE HMM and the regions
determined by our method; we evaluated the precision of
our Top-K results, i.e., how many of them overlapped with
DNA regions identified as enhancers in the ENCODE HMM
dataset. Additionally, we quantified how many of the over-
all regions that we discovered overlapped a region of any
type in the ENCODE HMM dataset. Results are reported
in Table 2. Out of all 1,651 regions found by our method,
1,411 (85.46%) resulted correct according to the ENCODE
HMM dataset, as they overlapped a DNA region identified
as either strong or weak enhancer. Note that the quality of
our results is only dependent on the adopted cost function
and not on the specific algorithm used to solve R-BMP.

Table 1 (b) also reports the time required by the proposed
dynamic programming approach WDP-RBMP, compared
against the following baseline algorithm BAAPE, which

18. Chromatin is a complex of molecules consisting of DNA, proteins,
and RNA.

19. http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=
wgEncodeBroadHmm

20. Detailed information about the method and model parameters
can be found in [12].

TABLE 2
Number (#) and percentage (%) of results overlapping a DNA region of

any of the types in the ENCODE HMM dataset (EH).

EH region type # %
strong enhancer 669 40.52%

weak / poised enhancer 742 44.94%
active promoter 0 0.00%
weak promoter 0 0.00%

inactive / poised promoter 13 0.79%
insulator 49 2.97%

transcriptional transition 28 1.70%
transcriptional elongation 8 0.48%

weak transcribed 27 1.63%
polycomb repressed 39 2.36%

heterochromatin, low signal 59 3.57%
repetitive / copy number variation 8 0.48%

non overlapping 9 0.54%
total 1,651 100.00%

is able to correctly solve R-BMP when each pattern track
contains a single region (without region attributes):

1) Create an ordered list where to store the locations of all
regions in all considered tracks.

2) Compute a “no match” area around each region of
negative tracks (in the considered example, 20K and
1K bases, for TSS and H3K4me3, respectively).

3) Obtain the windows where to search for matchings as
the complement of the “no match” areas.

4) Find all possible best matchings (i.e., matchings com-
posed of regions at minimum distance among them).

5) Order the best matchings according to the distance
among their regions.

6) Return the Top-K (or all) matchings found.
Execution times of WDP-RBMP are only slightly (less

than 10% on average) higher than those of BAAPE. On the
other hand, BAAPE only works in the case of single region
tracks and does not take into account region attributes.

4.2 Searching Enhancer Pairs in Topological Domains

Although the DNA is represented as linear, indeed it makes
loops which, in the 3D space, bring close DNA areas that are
far apart along the DNA linear representation. Loops are
associated with TADs [9] that are functional organizations
of the genome; they are relatively constant in different cell
types and conserved across species. They represent impor-
tant regions to be further studied, e.g., for their relationships
to tumors [13]. We next describe the search for enhancer-
dense TADs in Myeloid Leukemia; specifically, we search
for the presence of patterns of two APEs within a TAD, as
an indication that the TAD is a hotspot for gene regulation.
Abnormally regulated genes in Myeloid Leukemia can be
next searched within these TADs.

In this case, several multi-region tracks appear in the
pattern, taking full advantage of the WDP-RBMP algorithm.
In particular, the pattern used for searching APE pairs in
DNA 3D loops is illustrated in Figure 10, a task that can
be expressed as a multi-track, interval region matching
problem, where the TAD track refers to a DNA loop and
the two (red) boxes enclose two APEs, whose tracks are
as described in Section 4.1. Note in Figure 10 the presence

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
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of one positive track with a single region (TAD) and two
negative tracks (TSS and H2K3me3), two positive tracks
(H3K4me1 and H3K27ac), and four partial matching tracks
(CTCF, DHS, P300 and Pol2) with two regions each.

Fig. 10. Pattern used to search for APE pairs in TADs, including three
positive matching tracks (black labels), two negative matching tracks
(red labels), and four partial matching tracks (blue labels); red boxes
indicate two APEs, which must be at least 20 Kb far from the closest
TSS.

Although TADs were recently discovered [9], experimen-
tal data describing them are increasingly publicly available;
we used 5,975 TAD regions for the K562 cell line obtained
in [24] and available through the GEO database.21 All other
data used in our experiment were described in Section 4.1.
A total of 1,081 pattern matchings were found, with a total
execution time of 15.713 seconds.

4.2.1 Evaluation of Biological Results
Result evaluation was performed using the method dis-
cussed in Section 4.1.1. First, the Top-100 matchings were
visually inspected by an expert, who evaluated them correct
with respect to the searched pattern. Then, all the matchings
were compared with the enhancer regions (of any type)
in the ENCODE HMM data considered in Section 4.1.1.
We evaluated the precision of our Top-K results, i.e., how
many APE regions overlapped with DNA regions identified
as enhancers in the ENCODE HMM dataset. Results are
reported in Table 3.

TABLE 3
Precision of Top-K results obtained with our method versus DNA

regions identified as enhancers in the ENCODE HMM dataset (EH).
Double, Single, Not denote the number (#) and percentage (%) of
matchings in which both, only one, or none of the matching APE

regions overlap with enhancer regions in EH.

Top-K # % # % # %
results Double Double Single Single Not Not

10 9 90.00% 1 10.00% 0 0.00%
50 38 76.00% 10 20.00% 2 4.00%
100 76 76.00% 21 21.00% 3 3.00%
250 187 74.80% 58 23.20% 5 2.00%
500 375 75.00% 114 22.80% 11 2.20%

(all) 1,081 742 68.64% 290 26.83% 49 4.53%

On average, 97% of the Top-100 matchings included
at least one of the pair of APE regions that overlapped
with an enhancer region in the ENCODE HMM dataset;
furthermore, in 76% of the matchings, both APE regions
were found overlapping with enhancer regions of ENCODE

21. ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63525/
suppl/GSE63525 K562 Arrowhead domainlist.txt.gz

HMM data. These results prove that, even in a complex
pattern-matching real case, our method effectively finds
correct results with high precision.

TABLE 4
Execution times for WDP-RBMP and BATAD algorithms.

K WDP-RBMP BATAD BATAD

(ms) (ms) overhead
10 2,176 8,430 287%
50 2,319 9,012 289%
100 4,264 10,854 155%
250 5,867 11,234 91%
500 7,297 14,093 93%

1,000 14,090 18,020 28%

Table 4 shows execution times of the WDP-RBMP algo-
rithm and contrasts them with those obtained from an ad-
hoc algorithm, BATAD, that works as follows:

1) Use the TAD track to filter out all those regions in the
other tracks that do not fall into a TAD region.

2) Use the BAAPE algorithm to find all APEs.
3) For each “left” APE, find the best “right” APE (see

Figure 10).
Ranking on APE pairs is based on the root element matching
cost, where the root element is the one identified by BAAPE

in the “left” APE. Table 4 shows that WDP-RBMP runs faster
than BATAD, whose overhead ranges between 287% with a
highly selective query and 28% with a non-selective query.

5 PERFORMANCE TESTING ON SYNTHETIC DATA

Now we evaluate the efficiency of the WDP-RBMP algo-
rithm using synthetic datasets. We generate the position of
regions by simulating a Poisson process with parameter λ
representing the average distance between two adjacent re-
gions. In particular, we varied the distance between regions
in the input track(s), while the average distance between
pattern regions (generated and controlled by parameter
λp) remained constant. Table 5 summarizes the parameters
involved in the synthetic data generation, as well as their
ranges and default values. All implementations are in Java
8 programming language and run on a HP Pavilion dv7 PC
with an i7 processor equipped with 8 GB of main memory.

TABLE 5
Parameters for synthetic data generation (default values are in bold).

parameter symbol range
number of pattern regions M 5, 10, 20, 30

avg. dist. between pattern regions 1/λp 103

number of input regions N 103, 104, 105, 106

avg. dist. between input regions 1/λ 102, 103, 104

5.1 Windowed and Early Abandoning Optimizations
The first set of experiments aims at evaluating the per-
formance improvement obtained by means of the “Early
Abandoning” and the “Window” optimizations described
in Sections 2.1 and 5.1, respectively. In details, we compared
four different algorithms: the basic DP-RBMP algorithm

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63525/suppl/GSE63525_K562_Arrowhead_domainlist.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63525/suppl/GSE63525_K562_Arrowhead_domainlist.txt.gz
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with no optimization (labeled “none” in the figures), DP-
RBMP with the early abandoning optimization (“EA”), the
WDP-RBMP window-based algorithm (“WIN”), and WDP-
RBMP with early abandoning (“WIN EA”).

We started by assessing the efficiency of the proposed
BMP solutions with respect to the base version of the prob-
lem (i.e., the single-track case), in terms of running times
and number of filled cells of the matrix, by varying input
data size, pattern size, and input data distribution.

Figure 11 shows (in log-log scale) the cost in term of
running times (a) and number of filled cells (b) when
varying the number of regions N in the target data track.
Clearly, both cost measures increase with the input size for
all algorithms. Due to its quadratic complexity, DP-RBMP,
whether or not combined with early abandoning, is feasible
for limited problem sizes only. The improvement of both
versions of WDP-RBMP over DP-RBMP is more than three
orders of magnitude. The early abandoning optimization
(WIN EA) is particularly effective with larger problem sizes
(N = 106), where it saves about 70% of computation time.
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Fig. 11. Running times (a) and number of filled cells (b) by varying N .

Figure 12 shows the same cost measures, but now vary-
ing the pattern size M . As expected from the complexity
analysis, in this case all algorithms grow almost linearly
with M (note that here only the vertical axis is in log scale).
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Fig. 12. Running times (a) and number of filled cells (b) by varying M .

Finally, Figure 13 shows that the performance of all
algorithms is only mildly affected by the parameter λ that
controls the spacing between adjacent regions.

Since we experimentally proved that none and EA solu-
tions are feasible only for small data sets, in the following
we focus our analysis on WIN EA algorithm only.

5.2 The Case of Multi-Tracks
Next we tested the multi-track scenario on the WIN EA al-
gorithm. We performed three different experiments, whose
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Fig. 13. Running times (a) and number of filled cells (b) by varying λ.

results are shown in Table 6; results were all obtained for
100,000 regions for each input data track.

In the first experiment, 20 pattern regions are distributed
on 1, 2, 4, and 5 tracks, respectively, in order to evaluate the
effect of increasing the number of tracks on performance.
Execution times show a sublinear growth rate with the num-
ber of pattern tracks. To understand why this is the case,
remember that, as argumented in Section 3.2, the complex-
ity of WDP-RBMP is O

(∑
y Ny

∑
xMx(logNx +Mx)

)
,

which simplifies to O
(
NT ·N(logN

∑
xMx +

∑
xM

2
x)
)

when each data track T x has Nx = N regions. Although
this linearly depends on NT , the quadratic term

∑
xM

2
x is

indeed decreasing with the number of tracks, since
∑
xMx

is constant in this experiment.

In the second experiment, 20 pattern regions are dis-
tributed on 4 tracks, but varying the number of regions
on each track from one extreme (equi-distribution) to the
other extremes (1 region on all tracks except one). The cost
increase for skewed distributions is due to the fact that,
again, the

∑
xMx term remains constant, while

∑
xM

2
x

grows with the skew of the distribution. Finally, since tracks
are not ranked, the cost remains constant independently on
which track has the highest Mx value (compare results for
[1,1,1,17] and [17,1,1,1] distributions).

In the third experiment, each pattern track has 10
regions and we compare costs for 1, 2, and 4 tracks.
Here the super-linear cost trend is clearly due to the term
NT ·N

∑
xM

2
x .

TABLE 6
Execution times for different multi-track pattern region distributions.

pattern region distribution time (sec.)
[20] 7.677

[10,10] 12.152
[5,5,5,5] 16.224

[4,4,4,4,4] 22.056
[5,5,5,5] 16.224
[1,1,1,17] 29.218
[17,1,1,1] 30.312

[10] 2.777
[10,10] 12.152

[10,10,10,10] 60.270
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5.3 Partial and Negative Tracks
We proceeded to investigate the performance of our algo-
rithms in presence of partial and negative tracks.

Figure 14 shows the WIN EA algorithm working with
and without partial tracks. In particular, the plot named
“non-partial” refers to the case where the input pattern
consists of two tracks, while for the “partial” graph the
second track accepts partial matchings. Clearly, allowing
partial matches increases costs, because a larger number of
matrix cells has to be filled for the partial matching track.
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Fig. 14. Partial matching: Running times by varying M (a) and N (b).

As it can be observed from plots, the presence of partial
tracks quickly increases execution times when varying the
dimension of pattern (Figure 14 (a)). On the other hand, the
input size has little impact with respect to the non-partial
case (Figure 14 (b)).

Figure 15 shows running times (a) and number of
pruned cells (b) when varying the size of negative tracks.
For this experiment, the pattern query is composed by
M = 2 regions, for which a complete matching has to be
searched on a target track with N = 104 data regions with
average distance 1/λ = 104, and one negative track with
buffer value β = 100. In order to obtain comparable coor-
dinate values, the number of regions in the negative track
N− and their average distance 1/λ− obey the relationship
N−/λ− = 108. For simplicity we only show results for the
“none” algorithm in which neither WIN nor EA are used.
As expected, increasing the size of the negative track leads
to a reduced number of cells to be filled by the algorithm,
and the execution time decreases accordingly following a
negative linear trend.
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Fig. 15. Negative tracks: Running times (a) and number of pruned cells
(b) by varying the size of the negative track.

6 RELATED WORK

The literature on pattern search is huge and cannot be
surveyed here, because the very term “pattern” represents a

variety of different things [3]; we focus our comparison on
works that more closely address a problem similar to ours.

Latecki et al. [18], [19] consider the problem of “partial
elastic matching” of time series, in which a sequence of real
number A = (a1, . . . , aM ) has to be matched to another
sequence B = (b1, . . . , bN ), N ≥ M . The matching f , as in
the base version of our problem, is a strictly increasing and
total function. The authors prove that, when no “shift” is
considered (i.e., τ = 0), a dynamic programming approach
can determine the optimal matching under the Euclidean
distance. However, when turning to consider the general
case (τ ≥ 0), they still claim that dynamic programming can
be applied, which is definitely wrong. Besides this aspect,
Latecki et al. consider neither multiple nor partial tracks,
and elements to be matched do not have any attribute.

The work by Wongsuphasawat et al. [28] considers the
case of multiple tracks, in which each track correspond to a
specific category of events in an applicative domain. Again,
dynamic programming is applied to derive an optimal
multi-track matching for the case τ = 0 only. It has also
to be remarked that [28] is focused on the usability aspect of
the problem (i.e., helping users in specifying their queries),
rather than on efficiency issues.

The works dealing with Complex Event Processing
(CEP) (see e.g., [8]) actually consider problems quite differ-
ent from ours, in that patterns are Directed Acyclic Graphs
(DAGs), each node being an event with an associated label
(from a finite alphabet) that denotes the event type.

Similar patterns are also defined in stock trading, but the
search for such patterns is comparatively much easier, as
these patterns are fixed and stock market observations are
limited to short time intervals. An approach for searching
interesting stocks which imitate the behavior of a given stock
is presented in [4], recognized by using timed automata, but
the complexity of that problem is in the number of stocks
(equivalent to our tracks) while considered time intervals
are comparatively much shorter than the whole genome.

This work is part of the GenData 2020 project22 that, as
stated in the introduction, focuses on tertiary data analysis.
The expressive power and flexibility of GenData 2020’s data
model (GDM) and query language (GMQL) are demon-
strated in [20], where we show four very different genomic
use cases; in [6] we demonstrate that our cloud-based im-
plementation scales over large datasets.

7 CONCLUSIONS

We presented an efficient method, and its several variants,
to find patterns in genomic region sequences; it has practical
applications in revealing interesting and unknown regions
of the genome, and therefore it is an important ingredient in
supporting biological research. Our algorithms are already
integrated in a tool that enables expressing patterns from
within the Integrated Genome Browser, so as to facilitate
the interaction of biologists. In our future work, we plan to
use the method for biological research, in strong connection
with biologists of the GenData 2020 project, by using exper-
imental data produced at IEO or by connecting to public
data sources.

22. http://www.bioinformatics.deib.polimi.it/gendata/

http://www.bioinformatics.deib.polimi.it/gendata/
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APPENDIX A
THE BEST-MATCHING PROBLEM

In Section 2 we have considered that, for any given match-
ing f , the τ parameter is given a fixed value, τ r = tf(1)−q1,
which amounts to perfectly align the first matched elements
of tracks Q and T . Without this limitation, one could con-
sider that the matching cost of f , Cf (Q,T ), is the minimum
τ -matching cost of f over all τ values:

Cf (Q,T ) = min
τ
Cf (Q,T ; τ) (10)

It is simple to show that the minimum is obtained for
τ =

∑M
i=1 δi,f(i)/M , i.e., the matching cost equals M times

the variance of absolute offsets δi,f(i) of matched elements:

Cf (Q,T ) =
M∑
i=1

δi,f(i) −
M∑
i=1

δi,f(i)

M


2

(11)

This easily follows by observing that the derivative of
Cf (Q,T ; τ) w.r.t. τ is:

∂Cf (Q,T ; τ)

∂τ
= 2Mτ − 2

M∑
i=1

δi,f(i).

From this observation it follows that solving the best-
matching problem (BMP), i.e., minimizing Cf (Q,T ) over
the set of all possible matchings, amounts to finding a
minimum-variance matching. BMP is therefore a specific case
of quadratic assignment problem, which is known to be
NP-hard [5]. Although this does not immediately lead to
conclude that BMP is NP-hard as well, we strongly suspect
this is the case. This is also supported by the observation
that variance-minimization problems are reputed difficult
to solve [25], although no specific lower bound on their
complexity is proved.23

Example 6. LetQ = 〈1, 7, 10〉 and T = 〈3, 5, 9, 11, 13, 14, 18,
21〉. One of the possible matchings of Q in T is f = {((1, 1)),
((2, 3)), ((3, 8))} that assigns elements (3, 9, 21) to corresponding
elements of Q. Assuming τ = 7, the τ -matching cost of f is 66,
since:

Cf (Q,T ; 7) = (3− 1− 7)2 + (9− 7− 7)2 + (21− 10− 7)2 = 66

The matching cost of f is obtained for τ = ((3− 1)+ (9− 7)+
(21− 10))/3 = 5:

Cf (Q,T ) = (3− 1− 5)2 + (9− 7− 5)2 + (21− 10− 5)2 = 54

The solution to the BMP is f∗ = {((1, 2)), ((2, 4)), ((3, 7))} that
matches Q to elements (5, 11, 14) of T , which yields τ = 4. The
matching cost of f∗ is:

Cf∗(Q,T ) = (5− 1− 4)2 + (11− 7− 4)2 + (14− 10− 4)2 = 0

APPENDIX B
NORMALIZATION OF SIMILARITY SCORES

In Section 3.5 we showed how our base problem can be
extended so that the overall cost of a matching can include
differences between attributes of matched regions. In order

23. A remarkable exception we are aware of is [15], which proves that
finding a minimum-variance path in a cyclic graph is NP-hard.

to provide normalized results, which are more easily under-
standable by users, it may be convenient to switch from
a cost-based matching model to a score-based one. More
precisely, we consider the score of a set of regions in the
target track(s) with respect to the query pattern as a value
in the [0, 1] range, with 1 denoting a perfect match.

For obtaining the value of structural score for a given
matching f , one could just apply a (properly normalized)
monotonic decreasing transformation to Crf (Q,T ), e.g.,
1− Crf (Q,T )/CMAX , with CMAX a normalization factor.
However, in order to mitigate the effect that single cost
(score) components might have on the overall cost (resp.
score) of a matching, we found it more appropriate to also
introduce a non-linear transformation to be applied to the
single components, cost(i, f(i)), of the matching f . In par-
ticular, we adopt the following sigmoid (logistic) function:

sigm(cost(i, j)) = 1− 1

1 + e−sl(cost(i,j)−mp)
(12)

where sl and mp are two parameters that define the slope of
the function and the mid-point (i.e., the point at which the
function equals 1/2), respectively. Since for low values of
sl the value of sigm(0) (perfect match) can be much lower
than 1, we measure the structural score of qi and tj as:

sstr (qi, tj) =
sigm(cost(i, j))

sigm(0)
(13)

Figure 16 shows how the structural score depends on the
matching cost, when sl = 0.02 and mp = 250.

Fig. 16. Structural score vs. matching cost.

Notice that this non-linear transformation might pro-
duce an optimal matching which is different from the one
that minimizes the cost, because of the reduced influence
that single poorly-matched regions now have on the result.

Similarly, the region score takes into account differences
between attributes of matched regions:

sreg(qr, r) = 1−
∑L
l=1 wl(r.al − qr.al)2∑L

l=1 wl

Note that sreg(qr, r) ∈ [0, 1] because of the normalization
factor

∑L
l=1 wl.

Finally, the root-element matching score srf (QR,TR) is
defined as:

srf (QR,TR) =
1

M

M∑
i=1

sstr (qi, tf(i)) · sreg(qri, trf(i)) (14)

The score R-BMP (SIM-R-BMP) is consequently defined
as the problem of finding the matching f∗ with maximum
root-element matching score, srf∗(QR,TR) ≥ srf (QR,TR)
∀f . Clearly, similar definitions can be given for all the vari-
ants of the problem (interval regions, multiple, partial, and
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negative tracks). Notice that, for an unmatched element qi,
only the structural score is defined with a value obtained by
plugging cost(i,⊥) = c(⊥) into Equation 12. For instance,
with c(⊥) = 500, sl = 0.02, and mp = 250, we obtain from
Equation 13 sstr (qi,⊥) ≈ 0.0067. In the experiment on real
biological data described in Sections 4.1 and 4.2, c(⊥) was
set so as to obtain sstr (qi,⊥) = 0.7 for unmatched regions
of all the four partial matching tracks.

Finally, the DP-RBMP algorithm can be used to solve the
SIM-R-BMP by maximizing cell score rather than minimiz-
ing cell costs, while the same considerations expressed in
Section 3.5 prevent the use of the WDP-RBMP algorithm.

Example 7. Let us use the same tracks of Example 2: Q =
〈8, 20, 22, 36〉 and T = 〈10, 15, 17, 27, 35, 39, 45, 50, 62, 70〉.
Figure 17 shows two matrices: the first, Z2, contains the cell
costs, as computed in Example 2; the second one, denoted SZ 2,
contains the cell scores, assuming all region scores equal 1. The
parameters used for the sigmoid function are sl = 0.01 and
mp = 100. The first matrix in Figure 18 shows fictitious region
scores, sreg(qri, trj), and the matrix below shows how cell scores
change when also these values are considered (compare this to
matrix SZ 2 in Figure 17).

The best matching f , when f(1) = 2, is obtained in cell (4, 6),
with overall score srf (QR,TR) = 0.75.

APPENDIX C
VISUALIZATION OF RESULTS

The proposed DP algorithm for solving R-BMP has been de-
veloped as a stand-alone desktop application,24 that enables
biologists to define patterns of interest using the Integrated
Genome Browser [22]. The software application also allows
executing the created pattern-search algorithm and visualiz-
ing the matching regions found along the genome for their
evaluation. As an example, Figure 19, shows the two best
results found for the problem described in Section 4.1: Top-
1 on chromosome 12 and Top-2 on chromosome 11. Both
best matches include a region in each of the two positive
matching tracks (H3K4me1 and H3K27ac), as required, and
a region in only some of the partial matching tracks (DHS
and Pol2 in Top-1, and DHS in Top-2), (negative tracks are
not shown).

24. Available for download at http://www-db.disi.unibo.it/
research/GenData/.

http://www-db.disi.unibo.it/research/GenData/
http://www-db.disi.unibo.it/research/GenData/
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Z2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0
(2)

2 (20)
100
(2, 3)

0
(2, 4)

64
(2, 5)

144
(2, 6)

324
(2, 7)

529
(2, 8)

3 (22)
104

(2, 3, 4)
36

(2, 4, 5)
100

(2, 4, 6)
256

(2, 4, 7)
441

(2, 4, 8)
1296

(2, 4, 9)

4 (36)
168

(2, 3, 4, 5)
52

(2, 4, 5, 6)
40

(2, 4, 5, 7)
85

(2, 4, 5, 8)
520

(2, 4, 5, 9)
877

(2, 4, 5, 10)

SZ 2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0.25
(2)

2 (20)
0.42
(2, 3)

1
(2, 4)

0.45
(2, 5)

0.39
(2, 6)

0.28
(2, 7)

0.26
(2, 8)

3 (22)
0.59

(2, 3, 4)
0.73

(2, 4, 5)
0.67

(2, 4, 6)
0.56

(2, 4, 7)
0.51

(2, 4, 8)
0.5

(2, 4, 9)

4 (36)
0.70

(2, 3, 4, 5)
0.94

(2, 4, 5, 6)
0.95

(2, 4, 5, 7)
0.91

(2, 4, 5, 8)
0.73

(2, 4, 5, 9)
0.73

(2, 4, 5, 10)

Fig. 17. The matrix Z2 from Example 2 and the corresponding score matrix SZ 2.

1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8) 0.92
2 (20) 0.53 0.81 0.62 0.92 0.23 0.62
3 (22) 0.45 0.67 0.34 0.87 0.92 1
4 (36) 0.87 0.80 0.57 0.31 0.98 0.72

SZ 2 1(10) 2(15) 3(17) 4(27) 5(35) 6(39) 7(45) 8(50) 9(62) 10(70)

1 (8)
0.23
(2)

2 (20)
0.32
(2, 3)

0.43
(2, 4)

0.36
(2, 5)

0.35
(2, 6)

0.24
(2, 7)

0.23
(2, 8)

3 (22)
0.40

(2, 3, 4)
0.58

(2, 4, 5)
0.49

(2, 4, 6)
0.49

(2, 4, 7)
0.44

(2, 4, 8)
0.43

(2, 4, 9)

4 (36)
0.50

(2, 3, 4, 5)
0.75

(2, 4, 5, 6)
0.71

(2, 4, 5, 7)
0.64

(2, 4, 5, 8)
0.59

(2, 4, 5, 9)
0.58

(2, 4, 5, 10)

Fig. 18. The matrix of region scores (top) and the SZ 2 matrix of cell scores (bottom) considering also region scores (compare to matrix SZ 2 in
Figure 17).

Fig. 19. Screenshot of the implemented software application showing the first (Top-1) and second (Top-2) best matching results.
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