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Origami: A 803 GOp/s/W
Convolutional Network Accelerator

Lukas Cavigelli, Student Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—An ever increasing number of computer vision and
image/video processing challenges are being approached using
deep convolutional neural networks, obtaining state-of-the-art re-
sults in object recognition and detection, semantic segmentation,
action recognition, optical flow and super resolution. Hardware
acceleration of these algorithms is essential to adopt these
improvements in embedded and mobile computer vision systems.
We present a new architecture, design and implementation as well
as the first reported silicon measurements of such an accelerator,
outperforming previous work in terms of power-, area- and I/O-
efficiency. The manufactured device provides up to 196 GOp/s on
3.09 mm2 of silicon in UMC 65 nm technology and can achieve
a power efficiency of 803 GOp/s/W. The massively reduced
bandwidth requirements make it the first architecture scalable
to TOp/s performance.

Index Terms—Computer Vision, Convolutional Networks,
VLSI.

I. INTRODUCTION

TODAY computer vision technologies are used with great
success in many application areas, solving real-world

problems in entertainment systems, robotics and surveil-
lance [1]. More and more researchers and engineers are
tackling action and object recognition problems with the help
of brain-inspired algorithms, featuring many stages of feature
detectors and classifiers, with lots of parameters that are
optimized using the wealth of data that has recently become
available. These “deep learning” techniques are achieving
record-breaking results on very challenging problems and
datasets, outperforming either more mature concepts trying
to model the specific problem at hand [2]–[5] or joining
forces with traditional approaches by improving intermediate
steps [6], [7]. Convolutional Networks (ConvNets) are a prime
example of this powerful, yet conceptually simple paradigm
[8], [9]. They can be applied to various data sources and
perform best when the information is spatially or temporally
well-localized, but still has to be seen in a more global context
such as in images.

As a testimony of the success of deep learning approaches,
several research programs have been launched, even by major
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global industrial players (e.g. Facebook, Google, Baidu, Mi-
crosoft, IBM), pushing towards deploying services based on
brain-inspired machine learning to their customers within a
production environment [3], [7], [10]. These companies are
mainly interested in running such algorithms on powerful
compute clusters in large data centers.

With embedded imaging devices becoming increasingly
pervasive, the importance of on- and near-sensor processing
grows rapidly to reduce overall system cost by co-integrating
energy-efficient processing with the imaging circuitry itself
and reducing the expensive data transmission by forwarding
only the desired information [1], [11], [12].

Many opportunities for challenging research and innovative
applications will pan out from the evolution of advanced
embedded video processing and future situational awareness
systems. As opposed to conventional visual monitoring sys-
tems (CCTVs, IP cameras) that send the video data to a data
center to be stored and processed, embedded smart cameras
process the image data directly on board. This can significantly
reduce the amount of data to be transmitted and the required
human intervention – the sources of the two most expensive
aspects of video surveillance [13]. Embedding convolutional
network classifiers in distributed computer vision systems,
seems a natural direction of evolution. However, deep neural
networks are commonly known for their demand of computing
power, making it challenging to bring this computational load
within the power envelope of embedded systems – in fact, most
state-of-the-art neural networks are currently not only trained,
but also evaluated on workstations with powerful GPUs to
achieve reasonable performance.

Nevertheless, there is strong demand for mobile vision
solutions ranging from object recognition to advanced human-
machine interfaces and augmented reality. The market size is
estimated to grow to many billions of dollars over the next
few years with an annual growth rate of more than 13% [14].
This has prompted many new commercial solutions to become
available recently targeting the mobile sector [15]–[17].

In this paper we present:
• The architecture of a novel convolutional network ac-

celerator, which is scalable to TOp/s performance while
remaining area- and energy-efficient and keeping I/O
throughput within the limits of economical packages and
low power budgets. This extends our work in [18].

• An implementation of this architecture with optimized
precision using fixed-point evaluations constrained for an
accelerator-sized ASIC.

• Silicon measurements of the taped-out ASIC, providing
experimental characterization of the silicon.
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• A thorough comparison to and discussion of previous
work.
Organization of the paper: Section II shortly introduces

convolutional networks and highlights the need for accelera-
tion. Previous work is investigated in Section III, discussing
available software, FPGA and ASIC implementations and
explaining the selection of our design objectives. In Section IV
we present our architecture and its properties. The implemen-
tation aspects are shown in Section V. We present our results
in Section VI and discuss and compare them in Section VII.
We conclude the paper in Section VIII.

II. CONVOLUTIONAL NETWORKS

Most convolutional networks (ConvNets) are built from the
same basic building blocks: convolution layers, activation lay-
ers and pooling layers. One sequence of convolution, activation
and pooling is considered a stage, and modern, deep networks
often consist of multiple stages. The convolutional network
itself is used as a feature extractor, transforming raw data
into a higher-dimensional, more meaningful representation.
ConvNets particularly preserve locality through their limited
filter size, which makes them very suitable for visual data (e.g.,
in a street scene the pixels in the top left corner contain little
information on what is going on in the bottom right corner of
an image, but if there are pixels showing the sky all around
some segment of the image, this segment is certainly not a
car). The feature extraction is then followed by a classifier,
such as a normal neural network or a support vector machine.

A stage of a ConvNet can be captured mathematically as

y(`) = conv(x(`),k(`)) + b(`), (1)

x(`+1) = pool(act(y(`))), (2)

where ` = 1 . . . 3 indexes the stages and where we start with
x(1) being the input image. The key operation on which we
focus is the convolution, which expands to

y(`)
o (j, i) = b(`)o +

∑
c∈C(`)

in

∑
(b,a)∈S(`)

k(`)
o,c(b, a)x(`)

c (j − b, i− a),

(3)

where o indexes the output channels C(`)
out and c indexes the

input channels C(`)
in . The pixel is identified by the tuple (j, i)

and Sk denotes the support of the filters. The above notation
assumes a stride of 1 × 1 on the output image and a full
connection table (i.e. there is a filter connecting all input
channels with all output channels), which is commonly the
case for most convolutional layers in the majority of ConvNets.
In recently published networks [3], [19], [20], the pooling
operation determines the maximum in a small neighborhood
for each channel, often on 2 × 2 areas and with a stride of
2× 2. x = poolmax,2×2(v):

xo(j, i) = max(vo(2j, 2i), vo(2j, 2i+ 1),

vo(2j + 1, 2i), vo(2j + 1, 2i+ 1)) (4)

The activation function is applied point-wise for every pixel
and every channel. A currently popular choice is the rectified
linear unit (ReLU) [2]–[5], which designates the function

x 7→ max(0, x). The activation function introduces non-
linearity into neural networks, giving them the potential to be
more powerful than linear methods. Typical filter sizes have
decreased recently from 7× 7 or 9× 9 to 3× 3 and 5× 5 [2],
[4], [20]–[22].

v = actReLU(y), vo(j, i) = max(yo(j, i), 0) (5)

The feature extractor with the convolutional layers is usually
followed by a classification step with fully-connected neural
network layers interspersed with activation functions, reducing
the dimensionality from several hundred or even thousands
down to the number of classes. In case of scene labeling, these
fully-connected layers are just applied per-pixel with the inputs
being the values of all the channels at any given pixel [23].

A. Measuring Computational Complexity

Research is done on various platforms and computing de-
vices are evolving rapidly, making time measurements mean-
ingless. Furthermore, due to the rapid progress in building
new ConvNets, no single network can be established as a
benchmark. The deep learning community has thus started
to measure the complexity of deep learning networks in a
way that is more independent of the underlying computing
platform, counting the additions and multiplications of the
synapses of these networks. For a convolutional layer with
nin input feature maps of size hin × win, a filter kernel size
of hk×wk, and nout output feature maps, this number amounts
to

2noutninhkwk(hin − hk + 1)(win − wk + 1), (6)

where nout is the number of output channels |Cout|, nin is
the number of |Cin|, hin × win is the size of the image and
hk × wk is the size of the filter in spatial domain. The factor
of two is due to multiplications and additions being counted
as separate operations, which is common in neural network
literature [24]–[27].

However, this way of measuring complexity still does not
allow to perfectly determine how a network performs on
different platforms. Accelerators might need to be initialized
or have to suspend computation to load new filter values,
often performing better for some artificially large or small
problems. For this reason we distinguish between the through-
put obtained with a real network (actual throughput or just
throughput), measurements obtained with a synthetic bench-
mark optimized to squeeze out the largest possible value (peak
throughput), and the maximum throughput of the computation
units without caring for bandwidth limits often stated in the
device specifications of non-specialized processors (theoretical
throughput).

Software and hardware implementations alike often come
with a throughput dependent on the actual size of the convo-
lutional layer. While we make sure our chip can run a large
range of ConvNets efficiently, we use the one presented in [27]
as a reference for performance evaluation. It has three stages
and we assume input images of size 240× 320. The resulting
sizes and complexities of the individual layers are summarized
in Table I. All filters in this network are of size 7 × 7. The
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TABLE I
PARAMETERS OF THE THREE STAGES OF OUR REFERENCE SCENE

LABELING CONVOLUTIONAL NETWORK.

Stage 1 Stage 2 Stage 3 Classif.

Input size 240×320 117×157 55×75 49×69
# Input ch. 3 16 64 256
# Output ch. 16 64 256 8
# Operations 346 MOp 1682 MOp 5428 MOp 115 MOp
# Filter val. 2.4k 50k 803k 17k

total number of operations required is 7.57 GOp/frame. To
give an idea of the complexity of additional ConvNets, we
have listed some of them in Table II. If we take an existing
system like the NeuFlow SoC [25] which is able to operate at
490 GOp/s/W, we can see that very high quality, dense optical
flow on 384 × 512 video can be computed with 25 frame/s
at a power of just around 3.5 W if we could scale up the
architecture. We can also see that an optimized implementation
on a high-end GPU can run at around 27 frame/s.

B. Computational Effort

Because convolutional networks can be evaluated signifi-
cantly faster than traditional approaches of comparable ac-
curacy (e.g. graphical models), they are approaching an area
where real-time applications become feasible on workstations
with one or, more often, several GPUs. However, most ap-
plication areas require a complete solution to fit within the
power envelope of an embedded system or even a mobile
device. Taking the aforementioned scene labeling ConvNet
as an example, its usage in a real-time setting at 25 frame/s
amounts to 189 GOp/s, which is out of the scope of even the
most recent commercially available mobile processors [27].

For a subject area changing as rapidly as deep learning, the
long-term usability is an important objective when thinking
about hardware acceleration of the building blocks of such
systems. While the structure of the networks is changing
from application to application and from year to year, and
better activation and pooling operations are continuously being
published, there is a commonality between all these ConvNets:
the convolutional layer. It has been around since the early
90s and has not changed since [3], [4], [8]. Fortunately, this
key element is also the computation-intensive part for well-
optimized software implementations (approx. 89% of the total
computation time on the CPU, or 79% on the GPU) as shown
in Figure 1. The time for activation and pooling is negligible as
well as the computation time for the pixel-wise classification
with fully-connected layers.

III. PREVIOUS WORK

Convolutional Networks have been achieving amazing re-
sults lately, even outperforming humans in image recognition
on large and complex datasets such as Imagenet. The top
performers have achieved a top-5 error rate (actual class in top
5 proposals predicted by the network) of only 3.57% (ResNet
[22], ILSVRC 2015), 6.67% (GoogLeNet [3]) and 7.32%
(VGG Oxfordnet [21]) at the ILSVRC 2014 competition [28].

CPU

GPU

Conv Conv

Act. Pooling

Conv

ConvConvConv

Act. Pooling

0% 20% 40% 60% 80% 100%

Act.
pixel
class.

Fig. 1. Computation time spent in different stages of our reference scene
labeling convolutional network [27].

TABLE II
NUMBER OF OPERATIONS REQUIRED TO EVALUATE WELL-KNOWN

CONVOLUTIONAL NETWORKS.

name type challenge/dataset # GOp

[27] SS 320×240 scene labeling stanford backgr., 74.8% 7.57
[27] SS full-HD scene labeling stanford backgr., 74.8% 259.5
[27] MS 320×240 scene labeling stanford backgr., 80.6% 16.1
OverFeat accurate image recog. imagenet/ILSVRC 2013 10.7
GoogLeNet image recog. imagenet/ILSVRC 2014 3.6
VGG Oxfordnet A image recog. imagenet/ILSVRC 2014 15.2
ResNet-34 image recog. imagenet/ILSVRC 2015 7.2
ResNet-152 image recog. imagenet/ILSVRC 2015 22.6
FlowNetS(-ft) optical flow synthetic & KITTI, Sintel 68.9

The best performance of a single human so far is 5.1%
on this dataset and has been exceeded since the last large
image recognition competition [22]. Also in other subjects
such as face recognition [7], ConvNets are exceeding human
performance.

In the remainder of this section, we will focus on existing
implementations to evaluate such ConvNets. We compare soft-
ware implementations running on desktop workstations with
CPUs and GPUs, but also DSP-based works to existing FPGA
and ASIC implementations. In Section III-D we discuss why
many such accelerators are not suitable to evaluate networks
of this size and conclude the investigation into previous work
by discussing the limitation of existing hardware architectures
in Section III-E.

A. Software Implementations (CPU, GPU, DSP)

Acceleration of convolutional neural networks has been
discussed in many papers. There are very fast and user-friendly
frameworks publicly available such as Torch [29], Caffe [30],
Nvidia’s cuDNN [31] and Nervana Systems’ neon [32], and
GPU-accelerated training and evaluation are the commonly
way of working with ConvNets.

These and other optimized implementations can be used to
obtain a performance and power efficiency baseline on desktop
workstations and CUDA-compatible embedded processors,
such as the Tegra K1. On a GTX780 desktop GPU, the
performance can reach up to 3059 GOp/s for some special
problems and about 1800 GOp/s on meaningful ConvNets. On
the Tegra K1 up to 96 GOp/s can be achieved, with 76 GOp/s
being achieved with an actual ConvNet. On both platforms an
energy-efficiency of about 7 GOp/s/W considering the power
of the entire platform and 14.4 GOp/s/W with differential
power measurements can be obtained [27]. Except for this
evaluation the focus is usually on training speed, where
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multiple images are processed together in batches to attain
higher performance (e.g. using the loaded filter values for
multiple images). Batch processing is not suitable for real-
time applications, since it introduces a delay of many frames.

A comparison of the throughput of many optimized soft-
ware implementations for GPUs based on several well-known
ConvNets is provided in [33]. The list is lead by an im-
plementation by Nervana Systems of which details on how
it works are not known publicly. They confirm that it is
based on maxDNN [34], which started from an optimized
matrix-matrix multiplication, adapted for convolutional layers
and with fine-tuned assembly code. Their implementation is
tightly followed by Nvidia’s cuDNN library [31]. The edge of
these two implementations over others originates from using
half-precision floating point representations instead of single-
precision for storage in memory, thus reducing the required
memory bandwidth, which is the currently limiting factor. New
GPU-based platforms such as the Nvidia Tegra X1 are now
supporting half-precision computation [35], which can be used
to save power or provide further speedup, but no thorough
investigations have been published on this. More computer
vision silicon has been presented recently with the Movidius
Myriad 2 device [15] which has been used in Google Tango,
and the Mobileye EyeQ3 platform, but no benchmarking
results regarding ConvNets are available yet.

A different approach to increase throughput is through the
use of the Fourier transform, diagonalizing the convolution
operation. While this has a positive effect for kernels larger
than 9 × 9, the bandwidth problem generally becomes much
worse and the already considerable memory requirements are
boosted further, since the filters have to be padded to the input
image size [27], [36].

However optimized the software running on such platforms,
it will always be constrained by the underlying architecture:
the arithmetic precision cannot be adapted to the needs of
the computation, caches are used instead of optimized on-
chip buffers, instructions have to be loaded and decoded. This
pushes the need for specialized architectures to achieve high
power- and area-efficiency.

B. FPGA Implementations

Embeddability and energy-efficiency is a major concern re-
garding commercialization of ConvNet-based computer vision
systems and has hence prompted many researchers to approach
this issue using FPGA implementations. Arguably the most
popular architecture is the one which started as CNP [37] and
was further improved and renamed to NeuFlow [24], [25] and
later on to nn-X [38].

Published in 2009, CNP was the first ConvNet specific
FPGA implementation and achieved 12 GOp/s at 15 W on
a Spartan 3A DSP 3400 FPGA using 18 bit fixed-point
arithmetic for the multiplications. Its architecture was designed
to be self-contained, allowing it to execute the operations for
all common ConvNet layers, and coming with a soft CPU to
control the overall program flow. It also features a compiler,
converting network implementations with Torch directly to
CNP instructions. The CNP’s architecture does not allow easy

scaling of its performance, prompting the follow-up work
NeuFlow which uses multiple CNP convolution engines, an
interconnect, and a smart DMA controller. The data flow
between the processing tiles can be rerouted at runtime. The
work published in 2011 features a Virtex 6 VLX240T to
achieve 147 GOp/s at 11 W using 16 bit fixed-point arithmetic.

To make use of the newly available platform ICs, NeuFlow
was ported to a Zynq XC7Z045 in 2014, further improved by
making use of the hard-wired ARM cores, and renamed to
nn-X. It further increases the throughput to about 200 GOp/s
at 4 W (FPGA, memory and host) and uses 4×950 MB/s full-
duplex (FD) memory interfaces.

Only few alternatives to CNP/NeuFlow/nn-X exist. The two
most relevant are a ConvNet accelerator based on Microsoft’s
Catapult platform in [39] with very little known details and
a HLS-based implementation [40] with a performance and
energy efficiency inferior to nn-X.

C. ASIC Implementations
The NeuFlow architecture was implemented as an ASIC in

2012 on 12.5 mm2 of silicon for the IBM 45nm SOI process.
The results based on post-layout simulations were published
in [25], featuring a performance of about 300 GOp/s at 0.6 W
operating at 400 MHz with an external memory bandwidth of
4× 1.6 GB/s full-duplex.

To explore the possibilities in terms of energy efficiency, a
convolution accelerator suitable for small ConvNets was im-
plemented in ST 28nm FDSOI technology [41]. They achieve
37 GOp/s with 206 GOp/s/W at 0.8 V and 1.39 GOp/s with
1375 GOp/s/W at 0.4 V during simulation (pre-silicon) with
the same implementation, using aggressive voltage scaling
combined with reverse body biasing available with FDSOI
technology.

Further interesting aspects are highlighted in ShiDianNao,
which evolved from DianNao [26], [42], [43]. The original
DianNao was tailored to fully-connected layers, but was also
able to evaluate convolutional layers. However, its buffering
strategy was not making use of the 2D structure of the compu-
tational problem at hand. This was improved in ShiDianNao.
Nevertheless, its performance strongly depends on the size
of the convolutional layer to be computed, only unfolding its
performance for tiny feature maps and networks. They achieve
a peak performance of 194 GOp/s with 320 mW on a core-only
area of 4.86mm2 (without pad frame) in a TSMC 65 nm post-
layout evaluation.

Another way to approach the problem at hand is to look at
general convolution accelerators, such as the ConvEngine [44]
which particularly targets 1D and 2D convolutions common in
computer vision applications. It comes with an array of 64 10-
bit ALUs and input and output buffers optimized for the task
at hand. Based on synthesis results, they achieve a core-only
power efficiency of 409 GOp/s/W.

In the last few months we have seen a wave of vision
DSP IP cores and SoCs becoming commercially available:
CEVA-XM4, Synopsys DesignWare EV5x, Cadence Tensilica
Vision P5. They are all targeted at general vision applications
and not specifically tailored to ConvNets. They are processor-
based and use vector engines or many small specialized
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processing units. Many of the mentioned IP blocks have
never been implemented in silicon, and their architecture is
kept confidential and has not been peer reviewed, making
a quantitative comparison impossible. However, as they use
instruction-based processing, an energy efficiency gap of 10×
or more with respect to specialized ASICs can be expected.

D. General Neural Network Accelerators

Besides the aforementioned efforts, there are many acceler-
ators which are targeted at accelerating non-convolutional neu-
ral networks. One such accelerator is the K-Brain [45], which
was evaluated to achieve an outstanding power efficiency of
1.93 TOp/s/W in 65 nm technology. It comes with 216 KB
of SRAM to store the weights and the dataset. For most
applications this is by far insufficient (ResNet-34 [22]): 21 M,
VGG-Oxfordnet [21]: 133 M parameters) and the presented ar-
chitectures do not scale to larger networks, requiring excessive
amounts of on-chip memory [45]–[47]. Other neural network
accelerators are targeted at more experimental concepts like
spiking neural networks, where thorough performance evalu-
ations are still missing [48].

E. Discussion

Recent work on hardware accelerators for ConvNets shows
that highly energy-efficient implementations are feasible, sig-
nificantly improving over software implementations. However,
existing architectures are not scalable to higher performance
applications as a consequence of their need for a very wide
memory interface. This manifests itself with the 299 I/O pins
required to achieve 320 GOp/s using NeuFlow [25]. For many
interesting applications, much higher throughput is needed,
e.g. scene labeling of full-HD frames requires 5190 GOp/s to
process 20 frame/s, and the trend clearly points towards even
more complex ConvNets. To underline the need for better
options, we want to emphasize that linearly scaling NeuFlow
would require almost 5000 I/O pins or 110 GB/s full-duplex
memory bandwidth. This issue is currently common to all
related work, as long as the target application is not limited
to tiny networks which allow caching of the entire data to be
processed.

This work particularly focuses on this issue, reducing the
memory bandwidth required to achieve a high computational
throughput without using very large on-chip memories to
store the filters and intermediate results. For state-of-the-
art networks storing the learned parameters on-chip is not
feasible with ResNet-34 requiring 21 M and VGG Oxfordnet
135 M parameters. The aforementioned scene labeling Conv-
Net required 872 k parameters, of which 855 k parameters are
filter weights for the convolutional layers. Some experiments
have been done on the required word width [49]–[51] and
compression [52], but validated only on very small datasets
(MNIST, CIFAR-10).

IV. ARCHITECTURE

In this section, we first present the concept of operation of
our architecture in a simple configuration. We then explain

Fig. 2. Data stored in the image bank and the image window SRAM per
input channel.

some changes which make it more suitable for an area-
efficient implementation. We proceed by looking into possible
inefficiencies when processing ConvNet data. We conclude
this section by presenting a system architecture suitable to
embed Origami in a SoC or a FPGA-based system.

A. Concept of Operation

A top-level diagram of the architecture is shown in Figure 3.
It shows two different clock areas which are explained later
on. The concept of operation for this architecture first assumes
a single clock for the entire circuit for simplicity. In Figure 4
we show a timeline with the input and output utilization. Note
that the utilization of internal blocks corresponds to these
utilizations in a very direct way up to a short delay.

The input data (image with many channels) are fed in stripes
of configurable height into the circuit and stored in a SRAM,
which keeps a spatial window of the input image data. The
data is then loaded into the image bank, where a smaller
window of the size of the filter kernel is kept in registers and
moved down on the image stripe before jumping to the next
column. This register-based memory provides the input for the
sum-of-product (SoP) units, where the inner products of the
individual filter kernels are computed. Each SoP unit is fed the
same image channel, but different filters, such that each SoP
computes the partial sum for a different output channel. The
circuit iterates over the channels of the input image while the
partial sums are accumulated in the channel summer (ChSum)
unit to compute the complete result, which is then transmitted
out of the circuit.

For our architecture we tile the convolutional layer into
blocks with a fixed number of input and output channels nch.
We perform 2n2

chhkwk operations every nch clock cycles,
while transmitting and receiving nch values instead of n2

ch.
This is different from all previous work, and improves the
throughput per bandwidth by a factor of nch. The architecture
can also be formulated for non-equal block size for the input
and output channels, but there is no advantage doing so, thus



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. AAA, NO. AAA, ?????? ???? 6

Input Pixel
Stream

12+1 Image Bank
12 nchhkwk = 5.4 kbit registers

Image Window SRAM
12 nchhin, maxwk = 344 kbit SRAM

12 nch

ChSum

1212 12 12

Filter
Bank

12 nchnchhkwk = 
37.6 kbit registers

ffast = 2 f

f = 250 MHz

12 (nch/2)hkwk

ChSumChSumChSum

12 hkwk12 hkwk12 hkwk 12 hkwk

12 12 1212 12121212

12 (nch/2)

12+1

Clock, Con�g &
Test Interface

Output Pixel
Stream

12 hkwk

3

6

SoP
hkwk = 49 multipliers

and adders

SoP
hkwk = 49 multipliers

and adders

SoP
hkwk = 49 multipliers

and adders

SoP
hkwk = 49 multipliers

and adders

Fig. 3. Top-level block diagram of the proposed architecture for the chosen implementation parameters.
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we keep this constraint for simplicity of notation. We proceed
by presenting the individual blocks of the architecture in more
detail.

1) Image Window SRAM and Image Bank: The image
window SRAM and the image bank are in charge of storing
new received image data and providing the SoP units with
the image patch required for every computation cycle. To
minimize size, we want to keep the image bank as small as
possible, while not requiring an excessive data rate from the
SRAM. The size of the image bank was chosen as nchhkwk.
In every cycle a new row of wk of the current input channel
elements is loaded from the image window SRAM and shifted
into the image bank. The situation is illustrated in Figure 2
for an individual channel.

In order for the SRAM to be able to provide this minimum
amount of data, it needs to store a wk element wide window for
all nch channels and have selectable height hin ≤ h(in,max). A
large image has to be fed into the circuit in stripes of maximum
height hin,max with an overlap of hk−1 pixels. The overlap is
because an evaluation of the kernel will need a surrounding of
(hk−1)/2 pixel in height and (wk/1)/2 pixel in width. When
the image bank reaches the bottom of the image window stored

in SRAM, it jumps back to the top, but shifted one pixel to the
right. This introduces a delay of nch(hk − 1) cycles, during
which the rest of the circuit is idling. This delay is not only due
to the loading of the new values for the image bank, but also to
receive the new pixels for the image window SRAM through
the external I/O. Choosing h(in,max) is thus mostly a trade-
off between throughput and area. The performance penalty on
the overall circuit is about a factor of (hk − 1)/h(in,max).
The same behavior can be observed at the beginning of the
horizontal stripe. During the first nchhin(wk − 1) cycles the
processing units are idling.

2) Filter Bank: The filter bank stores all the weights of the
filters, these are nchnchhkwk values. In configuration mode
the filter values are shifted into these registers which are
clocked with at the lower frequency f . In normal operation,
the entire filter bank is read-only. In each cycle all the filter
values supplied to the SoP have to be changed, this means
that nchhkwk filter values are read per cycle. Because so
many filters have to be read in parallel and they change so
frequently, it is not possible to keep them in a SRAM. Instead,
it is implemented with registers and a multiplexer capable of
multiplexing selecting one of nch sets of nchhkwk weights.

The size of the filter bank depends quadratically on the
number of channels processed, which results in a trade-off
between area and I/O bandwidth efficiency. When doubling
the I/O efficiency (doubling nch, doubling I/O bandwidth,
quadrupling the number of operations per data word), the
storage requirements for the filter bank are quadrupled.

Global memory structures which have to provide lots of data
at a high speed are often problematic during back end design.
It is thus important to highlight that while this filter bank can
be seen as such a global memory structure, but is actually
local: Each SoP unit only needs to access the filters of the
output channel it processes, and no other SoP unit accesses
these filters.

3) Sum-of-Products Units: A SoP unit calculates the inner
product between an image patch and a filter kernel. It is built
from hkwk multipliers and hkwk − 1 adders arranged in a
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tree. Mathematically the output of a SoP unit is described as∑
(∆j,∆i)∈Sk ko,c(∆j,∆i)xc(j −∆j, i−∆i).
While previous steps have only loaded and stored data,

we here perform a lot of arithmetic operations, which raises
the question of numerical precision. A fixed-point analysis to
select the word-width is shown in Section V-B. In terms of
architecture, the word width v is doubled by the multiplier,
and the adder tree further adds log2(hkwk) bit. We truncate
the result to the original word width with the same underlying
fixed-point representation. This truncation also reduces the
accuracy with which the adder tree and the multipliers have
to be implemented. The idea of using the same fixed-point
representation for the input and output is motivated by the fact
that there are multiple convolutional layers and each output
will also serve again as an input.

4) Channel Summer Units: Each ChSum unit sums up the
inner products it receives from the SoP unit it is connected
to, reducing the amount of data to be transmitted out of the
circuit by a factor of 1/nch over the naive way of transmitting
the individual convolution results. The SoP units are built to
be able to perform this accumulation while still storing the
old total results, which are one-by-one transmitted out of the
circuit while the next computations are already running. The
ChSum units also perform their calculations at full precision
and the results are truncated to the original fixed-point format.

B. Optimizing for Area Efficiency
To achieve a high area efficiency, it is essential that large

logic blocks are operated at a high frequency. We can pipeline
the multipliers and the adder tree inside the SoP units to
achieve the desired clock frequency. The streaming nature of
the overall architecture makes it very simple to vary this with-
out drawbacks as encountered with closed-loop architectures.

The limiting factor for the overall clock frequency is the
SRAM keeping the image window, which comes with a fixed
delay and a minimum clock period, and the speed of CMOS
I/O pads. Because the SRAM’s maximum frequency is much
lower than the one of the computation-density- and power-
optimized SoP units, we have chosen to have them running
at twice the frequency. This way each unit calculates two
inner products until the image bank changes the channel of
the input image or takes a step forward. This makes each
SoP unit responsible for two output channels. While there is
little change to the image bank, the values taken from the
filter bank have to be switched at the faster frequency as
well. Additionally, the ChSum units have to be adapted to
alternatingly accumulate the inner products of the two different
output channels.

The changes induced to the filter bank reduce the number
of filter values to be read to nchhkwk/2 per cycle, however at
twice the clock rate. The adapter filter bank has to be able to
read one of 2nch sets of nchhkwk/2 weights each at ffast =
2f .

C. Throughput
The peak throughput θpeak of this architecture is given by

θpeak = 2nSoPhkwkffast = 2nchhkwkf

TABLE III
THROUGHPUT AND EFFICIENCY FOR THE INDIVIDUAL STAGES OF OUR

REFERENCE CONVOLUTIONAL NETWORK FOR 320×240 INPUT IMAGES.

stage Stage 1 Stage 2 Stage 3
# channels (3→16) (16→64) (64→256)

ηblocks 0.38 1.00 1.00
ηfilterLoad 0.99 0.98 0.91
ηborder 0.96 0.91 0.82
η 0.36 0.89 0.75

throughput 71 GOp/s 174 GOp/s 147 GOp/s
# operations 0.35 GOp 1.68 GOp 5.43 GOp
run time 4.93 ms 9.65 ms 36.94 ms

Average throughput: 145 GOp/s → 19.4 frame/s @ 320×240

operations per second. Looking at the SoP units, they can each
calculate hk ×wk multiplications and additions per cycle. As
mentioned before, the clock is running at twice the speed
(ffast = 2f ) to maximize area efficiency by using only
nSoP = nch/2 SoP units. All the other blocks of the circuit
are designed to be able to sustain this maximum throughput.
Nevertheless, several aspects may cause these core operation
units to stall. The resulting throughput efficiency is denoted by
η, which is the product of several factors. These are discussed
in the following paragraphs.

1) Border Effects: At the borders of an image no valid
convolution results can be calculated, so the core has to wait
for the necessary data to be transferred to the device. These
waiting periods occur at the beginning of a new image while
wk − 1 columns are preloaded, and at the beginning of each
new column while hk − 1 pixels are loaded in nch(hk − 1)
cycles. The effective throughput thus depends on the size of
the image:

ηborder = (hin − hk + 1)(win − wk + 1)/(hinwin).

The maximum hin is limited to some hin,max depending on
the size of the image window SRAM. It is feasible to choose
hin large enough to process reasonably sized image, otherwise
the image has to be tiled into multiple smaller horizontal
stripes with an overlap of hk−1 rows with the corresponding
additional efficiency loss.

Assuming hin,max is large enough and considering our
reference network, this factor is 0.96, 0.91 and 0.82 for
stages 1, . . . , 3, respectively in case of a 240×320 pixel input
image. For larger images this is significantly improved, e.g.
for a 480×640 image the Stage 3 will get an efficiency factor
of 0.91. However, the height of the input image is limited to
512 pixel due to the memory size of the image bank.

The scene labeling network operates on larger images than
classification ConvNets. These border effects become worse
for smaller image sizes, requiring further analysis. When
considering VGG Oxfordnet (16 layer, D) on Imagenet, most
computation is performed on images of size 56 × 56 (layers
5-7), 28 × 28 (layers 8-10) and 14 × 14 (layers 11-13). It
uses zero-padding of the input to obtain output images of the
same resolution. Their respective ηborder are 93.2%, 87.1% and
76.6%, respectively. The architecture can easily be adapted to
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support on-chip zero-padding1, alleviating these inefficiencies.
2) Filter Loading: Before the image transmission can start,

the filters have to be loaded through the same bus used to
transmit the image data. This causes a loss of a few more
cycles. Instead of just the nchhinwin input data values, an
additional n2

chhkwk words with the filter weights have to be
transferred. This results in an additional efficiency loss by a
factor of

ηfilterLoad =
nchhinwin

nchnchhkwk + nchhinwin
.

If we choose nch = 8, this evaluates to 0.99, 0.98 and 0.91
for the three stages.

3) Channel Idling: The number of output and input chan-
nels usually does not correspond to the number of output and
input channels processed in parallel by this core. The output
and input channels are partitionned into blocks of nch × nch
and filling in all-zero filters for the unused cases. The outputs
of these blocks then have to be summed up pixel-wise off-chip.

This processing in blocks can have a strong additional
impact on the efficiency when not fully utilizing the core.
While for the reasonable choice nch = 8 the stages 2
and 3 of our reference ConvNet can be perfectly split into
nch × nch blocks and thus no performance is lost, Stage 1
has only 3 input channels and can load the core only with
ηblocks = 3/8. However, stages with a small number of input
and/or output channels generally perform much less operations
and efficiency in these cases is thus not that important.

The total throughput with the reference ConvNet running on
this device with the configuration used for our implementation
(cf. Section V) is summarized in Table III, alongside details
on the efficiency of the individual stages.

D. System Architecture

When designing the architecture it is important to keep in
mind how it can be used in a larger system. This system
should be able to take a video stream from a camera, analyze
the content of the images using ConvNets (scene labeling,
object detection, recognition, tracking), display the result, and
transmit alerts or data for further analysis over the network.

1) General Architecture: We elaborate one configuration
(cf. Fig. 5), based on which we show the advantages of our
design. Besides the necessary peripherals and four Origami
chips, there is a 32 bit 800 MHz DDR3 or LPDDR3 mem-
ory. The FPGA could be a Xilinx Zynq 7010 device2. The
FPGA has to be configured to include a preprocessing core
for rescaling, color space conversion, and local contrastive
normalization. To store the data in memory after preprocess-
ing, but also to load and store the data when applying the
convolutional layer using the Origami chips and applying the
fully-connected layers, there has to be a DMA controller and
a memory controller.

The remaining steps of the ConvNet like summing over the
partial results returned by the Origami chips, adding the bias,

1injecting zeros into the SoP units when processing pixels close to the
border, wherever the support region on the image protrudes out of it.

2Favorable properties: low-cost, ARM core for control of the circuit and
external interfaces, decent memory interface.

Origami
1

Origami
2

Origami
3

Origami
4

FPGA

DDR3 Memory
32 bit, 800 MHz

RGB 320x240 @ 19fps

data: 6.4 GB/s

data: 375 MB/s FD control

control

Fig. 5. Suggested system architecture using dedicated Origami chips. The
same system could also be integrated into a SoC.

and applying the ReLU non-linearity and max-pooling have to
be done on the FPGA, but requires very little resources since
no multipliers are required. The only multipliers are required
to apply the fully-connected layers following the ConvNet
feature extraction, but these do not have to run very fast, since
the share of operations in this layer is less than 2% for the
scene labeling ConvNet in [27].

For every stage of the ConvNet, we just tile the data into
blocks of height hin,max, nch input channels and nch output
channels. We then sum up these blocks over the input channels
and reassemble the final image in terms of output channels and
horizontal stripes.

2) Bandwidth Considerations: In the most naive setup, this
means that we need to be able to provide memory accesses
for the full I/O bandwidth of every connected Origami chip
together. However, we also need to load the previous value
of each output pixel because the results are only the partial
sums and need to be added for the final result. In any case the
ReLU operation and max-pooling can be done in a scan-line
procedure right after computing the final values of the con-
volutional layers, requiring only a buffer of (`− 1)hin,max/`
values for `× ` max-pooling since the max operation can be
applied in vertical and horizontal direction independently (one
direction can be done locally).

However, this is far from optimal and we can improve using
the same concept as in the Origami chip itself. We can arrange
the Origami chips such that they calculate the result of a larger
tile of input and output channels, making chips 1&2 and 3&4
share the same input data and chips 1&3 and 2&4 generate
output data which can immediately be summed up before
writing it to memory. Analogous to the same principle applied
on-chip, this saves a factor of two for read and write access
to the memory. Of course, the same limitations as explained
in the previous section also apply at the system level.

The pixel-wise fully-connected layers can be computed in a
single pass, requiring the entire image to be only loaded once.
For the scene labeling ConvNet we require 256 · 64 + 64 · 8 ≈
17k parameters, which can readily be stored within the FPGA
alongside 64 intermediate values during the computations.

This system can also be integrated into a SoC for reduced
system size and lower cost as well as improved energy
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efficiency. This makes the low memory bandwidth requirement
the most important aspect of the system, being able to run
with a narrow and moderate-bandwidth memory interface
translates to lower cost in terms of packaging, and significantly
higher energy efficiency (cf. Section VII-C for a more detailed
discussion of this on a per-chip basis).

V. IMPLEMENTATION

We first present the general implementation of the circuit.
Thereafter, we present the results of a fixed-point analyses
to determine the number format. We finalize this section by
summarizing the implementation figures and by taking a look
at implementation aspects of the entire system.

A. General Implementation

As discussed in Section IV, we operate our design with
two clocks originating from the same source, where one is
running at twice the frequency of the other. The slower clock
f = 250 MHz is driving the I/O and the SRAM, but also other
elements which do not need to run very fast, such as the image
and filter bank. The SoP units and channel summers are doing
most of the computation and run at ffast = 2f = 500 MHz to
achieve a high area efficiency. To achieve this frequency, the
multipliers and the subsequent adder tree are pipelined. We
have added two pipeline stages for each, the multipliers and
the adder tree.

For the taped-out chip we set the filter size hk = wk = 7.
For the maximum height of a horizontal image stripe we chose
hin,max = 512, requiring an image window SRAM size of 29k
words. Due to its size and latency, we have split it into four
blocks of 1024 words each with a word width of 7 ·12, as can
be seen in the floorplan (Figure 10). The alignment shown has
resulted in the best performance of various configurations we
have tried. Two of the RAM macro cells are placed besides
each other on the left and the right boundary of the chip, with
two of the cells flipped such that the ports face towards the
center of the device. For silicon testing, we have included a
built-in self-test for the memory blocks.

The pads of the input data bus were placed at the top of
the chip around the image bank memory, in which it is stored
after one pipeline stage. The output data bus is located at the
bottom-left together with an in-phase clock output and the test
interface at the bottom-right of the die. The control and clock
pads can be found around the center of the right side. Two
Vdd and GND core pads were placed at the center of the left
and right side each, and one Vdd and GND core pad was
placed at the top and bottom of the chip. A pair of Vdd and
GND pads for I/O power was placed close to each corner of
the chip.

The core clock of 500 MHz is above the capabilities of
standard CMOS pads and on-chip clock generation is unsuit-
able for such a small chip, while also complicating testing.
To overcome this, two phase-shifted clocks of 250 MHz are
fed into the circuit. One of the clock directly drives the clock
tree of the slower clock domain inside the chip. This clock is
also XOR-ed with the second input clock signal to generate
the faster 500 MHz clock.
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Fig. 6. Comparison of the total accuracy of three ConvNets on different
datasets with respect to the fixed-point precision.

B. Fixed-Point Analysis

Previous work is not conclusive on the required precision
for ConvNets, 16 and 18 bit are the most common values [24],
[37], [38], [41]. To determine the optimal data width for our
design, we performed a fixed-point analysis for our reference
scene labeling network on the stanford backgrounds dataset, a
simple ConvNet3 on MNIST and VGG Oxfordnet (16 layers,
D4) on CIFAR-10. We replaced all the convolution operations
in our software model with the corresponding fixed-point ver-
sions according to our architecture and evaluated the resulting
precision depending on the input, output and weight data
width. On the stanford backgrounds dataset [53], the quality
was analyzed based on the per-pixel classification accuracy
of 150 test images omitted during training. For MNIST and
CIFAR-10, we used the total accuracy over the test set. Our
results show that a word width of 12 bit is sufficient to keep
the implementation loss very small as shown in Figure 6:
the scene labeling network and MNIST classification network
have no implementation loss, for CIFAR-10 there is a drop
from 89.4% to 87.7%. Since the convolution layers are applied
repeatedly with little processing between them, we chose the
same signal width for the input, although we could have
reduced them further. For the filter weights the same word
width was selected. For the implementation, we fixed the filter
size hk = wk = 7 and chose nch = 8. Smaller filters have to
be zero-padded and larger filters have to be decomposed into
multiple 7 × 7 filters and added up. To keep the cycles lost
during column changes low also for larger image, we chose
h(in,max) = 512. For the SRAM, the technology libraries we
used did not provide a fast enough module to accommodate
8 · 512 words of 7 · 12 bit at 250 MHz. Therefore, the SRAM
was split into 4 modules of 1024 words each.

C. System Implementation

The four Origami chips require 750 MB/s full-duplex for the
given implementation (12 bit word length, nch = 8 input and
output channels, 250 MHz) using the input and output feature
map sharing discussed in Section IV-D to save a factor of

3(conv, 5 × 5, 1 → 16) → tanh → (max-pool, 3 × 3, stride 3 × 3) →
(conv, 5 × 5, 16 → 32) → tanh → (max-pool, 2 × 2, stride 2 × 2) →
(linear, 256→ 200)→ tanh→ (linear, 200→ 10)

4replacing the fully-connected part of the network by (linear, 512 →
512)→ ReLU→ (linear, 512→ 10) and using batch normalization
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Fig. 7. Final core area breakdown.

2. The inputs and outputs are read directly from and again
written directly to memory. Since the chips output partial
sums, these have to be read again from memory and added
up for the final convolution result. This can be combined with
activation and pooling, adding slightly less than 750 MB/s read
and 187.5 MB/s (for 2×2 pooling) write memory bandwidth.
For the third stage in the scene labeling ConvNet there is
no such pooling layer, instead there is the subsequent pixel-
wise classification which can be applied directly and which
reduces the feature maps from 256 to 8, yielding an even lower
memory write throughput requirement. To sum up, we require
2.45 GB/s memory bandwidth during processing. To achieve
the maximum performance, we have to load the filters at full
speed for all four chip independently at the beginning of each
processing burst, requiring a memory bandwidth of 1.5 GB/s –
less than during computation. This leaves enough bandwidth
available for some pre- and post-processing and memory
access overhead. In the given configuration, 320×240 frames
can be processed at over 75 frame/s or at an accordingly higher
resolution.

VI. RESULTS

We have analyzed and measured multiple metrics in our
architecture: I/O bandwidth, throughput per area and power
efficiency. We can run our chip at two operating points: a high-
speed configuration with Vdd = 1.2 V and a high-efficiency
configuration with Vdd = 0.8 V. We have taped out this chip
and the results below are actual silicon measurement results
(cf. Table V), as opposed to post-layout results which are
known to be quite inaccurate. We now proceed by presenting
implementation results and silicon measurements.

1) Implementation: We show the resulting final area break-
down in Figure 7. The filter bank accounts for more than a
third of the area and consists of registers storing the filter
weights (0.41mm2) and the multiplexers switching between
them (0.03mm2). The SoP units take up almost another third
of the circuit and consist mostly of logic (98188µm2/unit) and
some pipeline registers (26615µm2/unit). The rest of the space
is shared between the image window SRAM, the image bank
(0.05mm2 registers and 7614µm2 logic), and other circuitry
(I/O registers, data output bus mux, control logic; 0.1mm2).
The chip area is clearly dominated by logic and is thus suited
to benefit from voltage and technology scaling.

We have used Synopsys Design Compiler 2013.12 for
synthesis and Cadence SoC Encounter 13.14 for back-end
design. Synthesis and back-end design have been performed
for a clock frequency of f = 350 MHz with typical case
corners for the functional setup view and best case corners for
the functional hold view. Clock trees have been synthesized
for the fast and the slow clock with a maximum delay of
240 ps and a maximum skew of 50 ps. For scan testing, a

TABLE IV
VARIOUS FILTER SIZES IN HARD- AND SOFTWARE, nch , AND THEIR

EFFECT ON POWER AND AREA EFFICIENCY

filter dim. hw filter dim. sw nch rel. power eff. rel. area eff.

7× 7 7× 7 8 100.0% 100.0%
5× 5 5× 5 8 92.6% 111.2%
3× 3 3× 3 8 89.1% 148.0%

3× 3 3× 3 16 131.9% 51.9%
7× 7 3× 3 8 32.8% 18.4%

different view with looser constraints was used. Reset and
scan enable signals have also been inserted as clock trees with
relaxed constraints. Clock gating was not used. We performed
a post-layout power estimation based on switching activity
information from a simulation running parts of the scene
labeling ConvNet. The total core power was estimated to
be 620.8 mW, of which 35.5 mW are used in the ffast and
41.7 mW are used in the lower frequency clock tree. Each
SoP unit uses 66.9 mW, the filter bank 122.5 mW, the image
bank 18.3 mW, and the image window SRAM 43.6 mW. The
remaining power was used to power buffers connecting these
blocks, I/O buffers and control logic. The entire core has only
one power domain with a nominal voltage of 1.2 V and the
pad frame uses 1.8 V. The power used for the pads is 205 mW
with line termination (50Ω towards 0.9 V).

2) Post-Layout Evaluations for Various Parameters: To
evaluate the core power and area efficiency of the Origami
architecture, we have synthesized it for hk = wk ∈ {7, 5, 3}
and performed post-layout power simulation. We have also
analyzed a nch = 16 configuration for the 3 × 3 case and
analyzed the power consumption by using a 7× 7 accelerator
to perform 3 × 3 convolutions with zero-padded filters. The
results are shown in Table IV relative to the hk = wk = 7
configuration with nch = 8 implemented in silicon.

3) Silicon Measurements: The ASIC has been named
Origami and has been taped-out in UMC 65nm CMOS
technology. The key measurement results of the ASIC have
been compiled in Table V. In the high-speed configuration
we can apply a 500 MHz clock to the core, achieving a peak
throughput of 196 GOp/s. Running the scene labeling ConvNet
from [27], we achieve an actual throughput of 145 GOp/s while
the core (logic and on-chip memory) consumes 448 mW. This
amounts to a power efficiency of 437 GOp/s/W, measured with
respect to the peak throughput for comparability to related
work. The I/O data interface consist of one input and one
output 12 bit data bus running at half of the core frequency,
providing a peak bandwidth of 375 MB/s full-duplex. We
achieve a very high throughput density of 63.4 GOp/s/mm2

despite the generously chosen core area of 3.09 mm2 (to
accommodate a large enough pad frame for all 55 pins), while
the logic and on-chip memory occupy a total area of just
1.31 mm2, which would correspond to a throughput density
of 150 GOp/s/mm2. When operating our chip in the high-
efficiency configuration, the maximum clock speed without
inducing any errors is ffast = 189 MHz. The throughput is
scaled accordingly to 74 GOp/s for the peak performance
and 55 GOp/s running our reference ConvNet. The core’s
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TABLE V
MEASURED SILICON KEY FIGURES.

Physical Characteristics

Technology UMC 65 nm, 8 Metal Layers
Core/Pad Voltage 1.2 V / 1.8 V
Package QFN-56
# Pads 55 (i: 14, o: 13, clk/test: 8, pwr: 20)
Core Area 3.09mm2

Circuit Complexitya 912 kGE (1.31mm2)
Logic (std. cells) 697 kGE (1.00mm2)
On-chip SRAM 344 kbit

Performance & Efficiency @1.2 V

Max. Clock Frequency core: 500 MHz, i/o: 250 MHz
Powera @500 MHz 449 mW (core) + 205 mW (pads)
Peak Throughput 196 GOp/s
Effective Throughput 145 GOp/s
Core Power-Efficiency 437 GOp/s/W

Performance & Efficiency @0.8 V

Max. Clock Frequency core: 189 MHz, i/o: 95 MHz
Powerb @189 MHz 93 mW (core) + 144 mW (pads)
Peak Throughput 74 GOp/s
Effective Throughput 55 GOp/s
Core Power-Efficiency 803 GOp/s/W
a Including the SRAM blocks
b The power usage was measured running with real data and at max. load

Fig. 8. Shmoo plot showing number of incorrect results in dependence of
frequency (f = ffast/2, x-axis, in MHz) and core voltage (Vcore, y-axis, in
V) at 125°C. Green means no errors.

power consumption is reduced dramatically to only 93 mW,
yielding a power-efficiency of 803 GOp/s/W. The required I/O
bandwidth shrinks to 142 MB/s full-duplex or 1.92 MB/GOp.
The throughput density amount to 23.9 GOp/s/mm2 for this
configuration. The chip was originally targeted at the 1.2 V op-
erating point and has hold violations operating at 0.8 V at room
temperature. Thus the measurement have been obtained at a
forced ambient temperature of 125°C. The resulting Shmoo
plot is shown in Figure 8. Besides the two mentioned operating
points there are many more, allowing for a continuous trade-
off between throughput and energy efficiency by changing the
core supply voltage as evaluated empirically in Figure 9. As
expected the figures are slightly worse for the measurements
at higher temperature. Static power dissipation takes a share

around 1.25% across the entire voltage range at 25°C and a
share of about 10.5% in the interval [0.95 V, 1.25 V] increasing
to 14.7% for a core voltage of 0.8 V at 125°C.

VII. DISCUSSION

None of the previous work on ConvNet accelerators has
silicon measurement results. We will thus compare to post-
layout and post-synthesis results of state-of-the-art related
works, although such simulation results are known to be
optimistic. We have listed the key figures of all these works in
Table VI and discuss the various results in the sections below.

A. Area Efficiency

Our chip is the most area-efficient ConvNet accelerator
reported in literature. We measure the area in terms of 2-
input NAND gate equivalents to compensate for technology
differences to some extent. With 90.7 GOp/s/MGE our imple-
mentation is by far the most area-efficient, and even in high
power-efficiency configuration we outperform previous state-
of-the-art results. The next best implementation is a NeuFlow
design at 33.8 GOp/s/MGE, requiring a factor 3 more space
for the same performance. ShiDianNao is of comparable area-
efficiency with 39.9 GOp/s/MGE. Also note that the chip size
was limited by the pad-frame, and that the area occupied by
the standard cells and the on-chip SRAM is only 1.31 mm2

(0.91 MGE). We would thus achieve a throughput density of
an enormous 215 GOp/s/MGE in this very optimistic scenario.
This would require a more complex and expensive pad-frame
architecture, e.g. flip-chip with multiple rows of pads, which
we decided not to implement.

We see the reason for these good results in our approach
to compute multiple input and output channels in parallel.
This way we have to buffer a window of 8 input channels to
compute 64 convolutions, instead of buffering 64 input images,
a significant saving of storage, particularly also because the
window size of the input images that has to be buffered is a
lot larger than the size of a single convolution kernel. Another
25% can be attributed to the use of 12 bit instead of 16 bit
words which expresses itself mostly with the size of the SRAM
and the filter kernel buffer.
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Fig. 9. Measured energy efficiency and throughput in dependence of Vcore
for 25°C and 125°C.
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TABLE VI
SUMMARY OF RELATED WORK FOR A WIDE RANGE OF PLATFORMS (CPU, GPU, FPGA, ASIC).

publication type platform theor.a peaka act.a powerb power eff. prec. Vcore areah area eff.g

GOp/s GOp/s GOp/s W GOp/s/W V MGE GOp/s/MGE

Cavigelli et al. [27] CPU Xeon E5-1620v2 118 35d 230 0.15 float32
Cavigelli et al. [27] GPU GTX780 3977 3030 1908d sd:200 14f float32
cuDNN R3 [33] GPU Titan X 6600 6343 d:250 25.6f float32
Cavigelli et al. [27] SoC Tegra K1 365 95 84d s:11 8.6 float32

CNP [37] FPGA Virtex4 40 40 37 s:10 3.7 fixed16
NeuFlow [24] FPGA Virtex6 VLX240T 160 160 147 s:10 14.7 fixed16
nn-X [38] FPGA Zynq XC7Z045 227 227 200 s:8 d+m:4 25 fixed16
Zhang et al. [40] FPGA/HLS Virtex7 VX485T 62 62 s:18.6 3.3 float32

ConvEngine [44] synth. 45nm 410 c:1.0 409 fixed10 0.9
ShiDianNao [42] layout TSMC 65nm 194 c:0.32 606 fixed16 dg:4.86 39.9
NeuFlow [24] layout IBM 45nm SOI 1280 1280 1164 d:5 230 fixed16 1.0 d:38.46 33.3
NeuFlow [25] layout IBM 45nm SOI 320 320 294 c:0.6 490 fixed16 1.0 d:19.23 16.6
HWCE [41] layout ST 28nm FDSOI 37 37 c:0.18 206 fixed16 0.8
HWCE [41] layout ST 28nm FDSOI 1 1 c:0.73m 1375 fixed16 0.4

this work silicon umc 65nm 196 196 145d c:0.51e 437 fixed12 1.2 c:0.91 d:2.16 90.7
this work silicon umc 65nm 74 74 55d c:0.093e 803 fixed12 0.8 c:0.91 d:2.16 34.3
a We distinguish between theoretical performance, where we consider the maximum throughput of the arithmetic units, the peak throughput, which is

the maximum throughput for convolutional layers of any size, and the actual throughput, which has been benchmarked for a real ConvNet and without
processing in batches.

b We abbreviate the power measurement type: s (entire system), d (device/chip), c (core), m (memory), io (pads), sd (system differential load-vs-idle).
c We use the abbreviations c (core area, incl. SRAM), d (die size)
d These values were obtained for the ConvNet described in [27].
e The static power makes up for around 1.3% of the total power at 25°C for the entire range of feasible Vcore, and about 11% at 125°C.
f The increased energy efficiency of the Titan X over the GTX780 is significant and can neither be attributed solely to technology (both 28 nm) nor the

software implementation or memory interface (both GDDR5). Instead the figures published by Nvidia suggest that architectural changes from Kepler to
Maxwell are the source of this improvement.

g We take the theoretical performance to be able to compare more works and the device/chip size for the area. ShiDianNao does not include a pad ring in
their layout (4.15mm2), so we added it for better comparability (height 90µm) to obtain 5.69mm2.

h We measure area in terms of size of millions of 2-input NAND gates. 1GE: 1.44µm2 (umc 65nm), 1.17µm2 (TSMC 65nm), 0.65µm2 (45nm), 0.49µm2

(ST 28nm FDSOI).

B. Bandwidth Efficiency
The number of I/O pins is often one of the most con-

gested resources when designing a chip, and the fight for
bandwidth is even more present when the valuable memory
bandwidth of an SoC has to be shared with accelerators. We
achieve a bandwidth efficiency of 521 GOp/GB, providing an
improvement by a factor of more than 10× over the best
previous work – NeuFlow comes with a memory bandwidth of
6.4 GB/s to provide 320 GOp/s, i.e. it can perform 50 GOp/GB.
ShiDianNao does not provide any information on the exter-
nal bandwidth and the HWCE can do 6.1 GOp/GB. These
large differences, particularly between this work and previous
results, can be attributed to us having focused on reducing
the required bandwidth while maximizing throughput on a
small piece of silicon. The architecture has been designed
to maximize reuse of the input data by calculating pixels
of multiple output channels in parallel, bringing a significant
improvement over caching as in [42] or accelerating individual
2D convolutions [41], [44].

C. Power Efficiency
Our chip performs second-best in terms of energy effi-

ciency of the core with 803 GOp/s/W (high-efficiency con-

figuration) and 437 GOp/s (high-performance configuration),
being outperformed only by the HWCE. The HWCE can
reach up to 1375 GOp/s/W in its high-efficiency setup when
running at 0.4 V and making use of reverse body biasing,
available only with FDSOI technology to this extent. Our chip
is then followed by ShiDianNao (606 GOp/s/W), NeuFlow
(490 GOp/s/W) and the Convolution Engine (409 GOp/s/W).

However, technology has a strong impact on the energy
efficiency. Our design was done in UMC 65 nm, while Neu-
Flow was using IBM 45 nm SOI and HWCE even resorted
to ST 28 nm FDSOI. In order to analyze our architecture
independently of the particular implementation technology
used, we project5 all results to 28 nm in Table VII. Clearly,
the only competitive results in terms of core power efficiency
are ShiDianNao and this work.

Previous work has always excluded I/O power, although it
is a major contributor to the overall power usage. We estimate
this power based on an energy usage of 21 pJ/bit, which has
been reported for a LPDDR3 memory model and the PHY

5using the simple model P̃ = P `new
`old

(
Vdd,new

Vdd,old

)2

and scaling the

operating voltage linearly with respect to the common operating voltage of
the used technology.
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TABLE VII
PROJECTED POWER AND POWER-EFFICIENCY WHEN SCALED TO 28 NM

publication Vcore [V] power [mW] power eff. [GOp/s/W]

ConvEngine [44] 0.72 398 1030
ShiDianNao [42] 0.8 61.3 3167
NeuFlow [24] 0.8 239 1339
HWCE [41] 0.8 180 260
HWCE [41] 0.4 0.73 1375
this work 0.8 86.1 2276
this work 0.53 7.81 9475
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Fig. 10. Floorplan and die shot of the final chip. In the floorplan view, the
cells are colored by functional unit, making the low density in the sum-of-
products computation units clearly visible.

on the chip in 28 nm [54], assuming a reasonable output load
and a very high page hit rate. For our chip, this amounts to
an additional 63 mW or 24 mW for the high-performance and
high-throughput configuration, respectively. For NeuFlow, due
to the much higher I/O bandwidth, it looks worse with an
additional 1.08 W for their 320 GOp/s implementation. If we
assume the power efficiency of these devices in their original
technology, this reduces the power efficiency including I/O
to 342 GOp/s/W, 632 GOp/s/W and 191 GOp/s/W for our
chip in high-throughput and high-efficiency configuration as
well as NeuFlow. If we look at their projected 28 nm effi-
ciency, they are decreased to 1315 GOp/s/W, 2326 GOp/s/W
and 243 GOp/s/W. This clearly shows the importance of the
reduced I/O bandwidth in our design, and the relevance of I/O
power in general with it making up a share of 42% to 82% of
the total power consumption for these three devices.

D. Effects of Architecture Parameters

The power simulation results in Table IV clearly show that
reducing the filter size only has a slight negative effect on
power efficiency and a positive impact on area efficiency. This
is in line with expectations considering that the power used
in the SoP units, the filter bank and the image bank should
scale accordingly. The image window SRAM is the only non-
negligible contributor to the total power that scales with wk

only, instead of hkwk.

Not surprisingly, the power efficiency suffers massively
when computing 3 × 3 kernels with a 7 × 7 accelerator.
The throughput drops to 18.4% while the power shrinks to
55.9%. We attribute the power reduction to the lower switching
activity. This clearly marks the importance of choosing the
parameters of the architecture to fit the ConvNet at hand. To
improve this, the architecture could be changed to support
configurable filter sizes. A very energy-efficient option would
be to integrate the proposed accelerator for different filter sizes
on the same device and switch between them. This should
achieve very similar energy-efficiency figures with proper
clock and power gating. Further optimizations using resource
sharing to trade energy-efficiency for area-efficiency could
then be taken. However, configurable filter sizes are not always
a requirement. ResNet-34 performs 98% of operations doing
3× 3 convolutions, such that a single 3× 3 core is sufficient
for this application. This network outperforms the well-known
GoogLeNet and VGG-16 networks in terms of top-1 as well
as top-5 error and at 7.2 GOp/image requires even a relatively
low operation count (e.g. VGG-16: 30.9 GOp/image).

Reducing the filter size has a tremendous impact on area
for almost all blocks. This allows to increase the number
of input and output channels processed together nch to be
increased to 16, while still maintaining an accelerator-sized
core (0.875 mm2). This comes with a significant drop in
area efficiency, because many more filter weights have to
be stored on-chip, which by itself does not contribute to
throughput. The power efficiency increases beyond the 7 × 7
filter configuration with nch = 8, also because the image bank
and the image window SRAM can be shared by more SoP
units working in parallel. Note that increasing nch is also
particularly interesting in terms of I/O bandwidth.

VIII. CONCLUSIONS

We have presented the first silicon measurement results of a
convolutional network accelerator. The developed architecture
is also first to scale to multi-TOp/s performance by signifi-
cantly improving on the external memory bottleneck of previ-
ous architectures. It is more area efficient than any previously
reported results and comes with the lowest-ever reported power
consumption when compensating for technology scaling.
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