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Large-scale Fingerprint Identification on GPU 
Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni 

 
Abstract—This paper proposes a new parallel algorithm to speed up fingerprint identification using GPUs. A careful design of the algorithm and data 

structures, guided by well-defined optimization goals, yields a speed-up of 1946x over a baseline sequential CPU implementation and of 207x over a 

CPU implementation optimized with SIMD instructions. The proposed algorithm enables a medium-scale AFIS (Automated Fingerprint 

Identification System) to run on a simple PC with four Tesla C2075 GPUs. On a benchmark with 250 000 fingerprints and 100 000 queries, the 
proposed system yields state-of-the-art biometric accuracy with a throughput of more than 35 million fingerprint matches per second. The proposed 

approach can be easily scaled-up, thus making possible the implementation of a large-scale AFIS (i.e., with a database of hundred million 

fingerprints) on inexpensive hardware. 
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1. Introduction 

Biometric systems are widely used both in forensic and civil applications to automatically recognize the identity of a 

person on the basis of physiological or behavioral characteristics [24]. Examples of biometric applications span from 

physical access control to forensic identification, from border crossing to voters authentication. Although many biometric 

traits (e.g., fingerprints, face, iris, voice, etc.) have been thoroughly studied, fingerprints, due to their peculiarities (i.e., 

individuality, persistence, cost and maturity of the products), remains the most used one [37]. 

1.1. Fingerprint matching and identification 

A fingerprint is the representation of the epidermis of a finger: it consists of a pattern of interleaved ridges and valleys 

(Fig. 1.a). Discontinuities in the ridges (e.g., terminations or bifurcations) are called minutiae (Fig. 1.a): nowadays, most 

state-of-the-art fingerprint recognition algorithms are based on minutiae matching [BO]. Each minutia can be described by 

some attributes, including its location in the fingerprint, its direction, its type (termination or bifurcation), and a value 

representing the quality of the fingerprint pattern in its neighborhood. Minutia-based matching algorithms usually consider 

each minutia as a triplet 𝑚 = {𝑥, 𝑦, 𝜃} encoding the spatial coordinates and the ridge angle. The set of minutiae attributes 

extracted from a fingerprint is called template; fingerprint matching consists in comparing two templates to determine 

whether the two sets of minutiae come from the same finger. Two minutiae are considered matching if the spatial distance 

between them is smaller than a given spatial threshold and their directional difference is smaller than a given angular 

threshold; such thresholds are necessary to compensate for the unavoidable errors made by minutiae extraction algorithms 

and to account for small elastic distortions due to skin elasticity. In practice, minutiae matching is an “extended” point 

pattern matching problem. Unfortunately, neither the alignment parameters nor the point-correspondence function are 

known a priori, hence solving the matching problem is hard. A brute force approach, that is evaluating all the possible 

solutions, is exponential in the number of minutiae, therefore suboptimal heuristics are typically used in real applications. 

The first automatic algorithms, developed in the early 50s, were inspired by the manual techniques of forensic experts and 

were aimed at determining the global (rigid) alignment leading to an optimal spatial (and directional) minutiae pairing: 

Hough transform was a common solution [47]. In the last decades, with the progress in the field of computational 

intelligence, many other techniques were proposed to improve fingerprint matching [25], including machine-learning 

methods [33], evolutionary algorithms [49] [50], and fuzzy similarity measures [16]. More recently, researchers have 

focused on local matching algorithms, based on fixed-length features that characterize the neighborhood of each minutia 

[4] [10] [53] [40]; these features are usually represented as bit-vectors, allowing efficient similarity measures to be 

implemented on many hardware architectures and simplifying the design of template protection methods [53] [19]. 

Although state-of-the-art approaches are nowadays very accurate and able to tolerate common perturbations (translation, 

rotation, deformation, missing or spurious minutiae, etc.) [37], the computational-demanding nature of minutiae-based 

matching still makes the development of large-scale fingerprint identification systems challenging in terms of efficiency. 

In fact, the time required to search a query fingerprint on a database grows with the size of the database itself: when the 

database contains millions of fingerprints, very expensive hardware platforms are required to operate at high throughput. 

This is the case of the AFIS owned by police agencies such as FBI, or the huge civil identification systems being deployed 
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in emerging countries (e.g., UIDAI project [51]). 

There are basically two possibilities to increase the speed of fingerprint identification: 

• reducing the total number of fingerprint comparisons (through fingerprint classification [12] [13], pre-filtering or multi-

stage matching [5] [6] [9]); 

• reducing the processing time (e.g., by designing matching algorithms with lowcomputational complexity [37], or using 

parallel architectures [47] [26] [30] [22] [2] [46]). 

 
1.2. General-Purpose computing on Graphics Processing Units 

A Graphic Processing Unit (GPU) is a highly-parallel processor for computer graphics. In response to commercial 

demand for real-time graphics rendering, GPUs have evolved into many-core processors designed to perform data-parallel 

computation. The main difference between GPUs and Central Processing Units (CPUs) is that GPUs have proportionally 

more transistors devoted to arithmetic logic units and less to caches and flow control in comparison to CPUs; GPUs also 

have higher memory bandwidth compared to CPUs. Recently, the use of GPUs for general-purpose parallel computing is 

increasingly attracting researchers’ interests: General-Purpose computing on Graphics Processing Units (GPGPU) [32] is 

emerging as a compelling way to deal with computationally demanding tasks, where a large amount of data needs to be 

processed and/or a large number of operations has to be carried out (e.g., [20] [39] [54]). The parallel processing 

capability of the GPU allows complex computing tasks to be divided into thousands of smaller tasks that can run 

concurrently. A typical hardware configuration for GPGPU consists of a CPU (called host) connected to one or more 

GPUs (called devices). Given a computation X to be done with GPGPU, X is split into several parts, some of which can 

be executed in parallel. In order to take effective advantage of the GPU, it is necessary to analyze which parts of X can be 

executed in parallel on the many processing units of the GPU and write a CPU program (called host program) that sends 

input data and GPU instructions (called kernel programs) to the GPU. The GPU executes the given computation in 

parallel and returns the result to the CPU. To this purpose, specific tools are needed to schedule execution of kernels and 

communicate with the GPU. 

1.3. Contribution of this work 

The recent advances in GPU hardware (with a notable growth in computational power and memory capacity) and their 

successful adoption in many different applications, suggest that GPUs may drastically improve the efficiency of 

fingerprint identification; this is particularly true for modern local minutiae-matching algorithms, which are well suited for 

parallel implementations. However, we quickly realized that a simple porting of existing fingerprint recognition 

algorithms to GPU hardware does not offer relevant advantages. This is also confirmed by the first studies published on 

this topic by other researchers [22] [2] that just reported minor speed improvements. In fact, the design of an effective 

GPU fingerprint identification approach requires to address the following issues: (i) limiting data transfer; (ii) using 

compact data representation (possibly bit-based), (iii) optimizing memory allocation and access; (iv) defining a 

computation flow that fully exploits the hardware capabilities. 

This paper introduces a new parallel algorithm specifically-designed for fingerprint identification on GPUs. The 

proposed algorithm is based on Minutia Cylinder-Code (MCC) [10] [11], recently introduced as a convenient way to 

represent fingerprint minutiae. The neighborhood of each minutia is encoded into a fixed-length local structure (called 

cylinder), which can be easily compared to the cylinders obtained from other minutiae neighborhoods. To perform a 

fingerprint identification, the cylinders of the query fingerprint have to be compared against the cylinders of all database 

fingerprints. The solution proposed in this paper, thanks to a careful design of the algorithm, ad-hoc data structures and 

look-up tables, special sorting methods, and many other optimizations, achieves remarkable results. Systematic 

experiments show that the proposed algorithm can scale up to large databases and achieves a substantial speed-up over: (i) 

a baseline sequential CPU implementation; (ii) an optimized CPU implementation with SIMD instructions, (iii) the GPU 

approach in [22] and other state-of-the-art parallel algorithms. A detailed performance analysis of the proposed 

implementation shows that the execution time is close to the lower bound given by the theoretical maximum instruction 

throughput of the GPU. 

The rest of this paper is organized as follows: Section 2 describes the MCC representation and matching approach; 

Section 3 introduces a baseline algorithm on CPU and an optimized implementation, which served both as a starting point 

for designing the GPU algorithm and for measuring the speed-up. Section 4 discusses the optimization goals that guided 

this study and describes the parallel algorithm. Experimental results and comparison with previous developments are 

reported in Section 5. Finally, Section 6 draws some conclusions. 



2. Minutia Cylinder-Code 

This section introduces Minutia Cylinder-Code, briefly describing how minutiae features are encoded into local data 

structures (the cylinders) and which similarity measures can be used to compare them. 

2.1. MCC bit-based representation 

Let 𝑀𝑇 = {𝑚𝑖} be a set of minutiae extracted from a fingerprint: each minutia 𝑚 is a triplet 𝑚𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) where 

(𝑥𝑖 , 𝑦𝑖) is the minutia location and 𝜃𝑖 is the minutia direction (in the range [0,2𝜋[). The Minutia Cylinder-Code 

representation (MCC) [10] associates a local descriptor to each minutia 𝑚: this descriptor encodes spatial and directional 

relationships between the minutia and its neighborhood of radius 𝑅, and can be conveniently represented as a cylinder, 

whose base and height are related to the spatial and directional information, respectively (see Fig. 1.b). The cylinder is 

divided into 𝑁𝐷 sections: each section corresponds to a directional difference in the range [−𝜋, 𝜋[; sections are discretized 

into cells (𝑁𝑆 is the number of cells along the section diameter). During the cylinder creation, a numerical value is 

calculated for each cell, by accumulating contributions from minutiae in a neighborhood of the projection of the cell 

center onto the cylinder base. The contribution of each minutia 𝑚𝑡 to a cell (of the cylinder corresponding to a given 

minutia 𝑚𝑖), depends both on: 

• spatial information (how much 𝑚𝑡 is close to the center of the cell), and 

• directional information (how much the directional difference between 𝑚𝑡 and 𝑚𝑖 is similar to the directional difference 

associated to the section where the cell lies). 

In other words, the value of a cell represents the likelihood of finding minutiae that are close to the cell and whose 

directional difference with respect to 𝑚𝑖 is similar to a given value. Fig. 1.c-d shows the cylinder associated to a minutia 

with six minutiae in its neighborhood. 

 
Fig. 1. (a) A fingerprint with ridges, valleys, and minutiae highlighted; (b) a graphical representation of the local descriptor associated to a minutia in 

the MCC representation, with 𝑁𝑆 = 8 and 𝑁𝐷 = 5; (c) minutiae involved in a cylinder; (d) cell values in the 𝑁𝐷 sections (lighter areas represent 

higher values) of the cylinder built over the minutiae in (c); (e) binarized cell values stored as bits. Note that cylinder sections in (d) and (e) are 

rotated according to the direction of minutia 𝑚𝑖. 

Once a cylinder is built from a minutia 𝑚𝑖, it can be simply treated as a single feature vector, obtained by linearizing the 

cell values. With a negligible loss of accuracy (see [8] and [9]), each element of the feature vector can be stored as a bit 

(Fig. 1.e): in the following, 𝐯𝑖 ∈ {0,1}𝑛 denotes an MCC bit-vector obtained from minutia 𝑚𝑖, and 𝑇 = {𝑐𝑖}, denotes an 
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MCC template obtained from a fingerprint, where each 𝑐𝑖 = (𝐯𝑖, 𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) is a tuple containing a bit-vector and its 

associated minutia information. Note that, although strictly speaking the term “cylinder” corresponds to 𝐯𝑖 [10], in the 

following, for simplicity, it denotes the whole tuple 𝑐𝑖. 

Each bit-vector 𝐯𝑖 is a fixed-length local descriptor: 

• invariant for translation and rotation, since i) it only encodes distances and directional differences between minutiae, 

and ii) its base is rotated according to the corresponding minutia angle; 

• robust against skin distortion (which is small at a local level) and against small feature extraction errors, thanks to the 

smoothed nature of the functions defining the contribution of each minutia.  

2.2. Similarity measures 

As described in [10], a simple but effective similarity measure between two cylinders 𝑐𝑖 = (𝐯𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) and 𝑐𝑗 =

(𝐯𝑗, 𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗) is: 

𝑠𝐿(𝑐𝑖, 𝑐𝑗) = {
1 −

‖𝐯𝑖⊕𝐯𝑗‖

‖𝐯𝑖‖+‖𝐯𝑗‖
if 𝑑𝜙(𝜃𝑖, 𝜃𝑗) ≤ 𝛿𝜃

0 otherwise

  (1) 

where  

• ⊕ denotes the bitwise XOR operator; 

• ‖⋅‖ denotes the Euclidean norm; 

• 𝑑𝜙(𝜃𝑖, 𝜃𝑗) is the difference between the two angles; 

• 𝛿𝜃 is a parameter controlling the maximum rotation allowed between two fingerprints. 

Note that (1) is a local similarity measure between two cylinders: in order to compare two fingerprint templates 𝑇𝐴 and 𝑇𝐵, 

a single value (global score), denoting the overall fingerprint similarity, has to be obtained from the pairwise (local) 

cylinder similarities. Various global similarity measures have been proposed for MCC [10] [11] [8]; the simplest and most 

efficient one is the Local Similarity Sort (LSS), which is calculated as the average of the top 𝑛𝑝 local similarity scores 

between cylinders of the two templates. The value of 𝑛𝑃 is not an overall constant, but it partially depends on the number 

of minutiae in the two templates: 

𝑛𝑃 = 𝑚𝑖𝑛𝑛𝑃
+ ⌊

(𝑚𝑎𝑥𝑛𝑝−𝑚𝑖𝑛𝑛𝑝)

(1+𝑒−𝜏𝑃∙(min{|𝑇𝐴|,|𝑇𝐵|} −𝜇𝑃))
⌉  (2) 

where 𝜇𝑃, 𝜏𝑃, 𝑚𝑖𝑛𝑛𝑃
, and 𝑚𝑎𝑥𝑛𝑝

 are parameters introduced in [10] and ⌊⋅⌉ denotes the rounding operator. A more 

accurate, but less efficient, similarity measure is the Local Similarity Sort with Distortion-Tolerant Relaxation (LSS-DTR) 

[11]. LSS-DTR adds a consolidation step to LSS, in order to obtain a score that reflects to what extent the local 

similarities hold at global level. LSS-DTR is based on similarity measures between candidate pairs of corresponding 

minutiae and uses spatial and directional features that are invariant for rotation/translation and tolerate skin distortion. 

3. Fingerprint Identification on CPU 

Fingerprint identification requires comparing a given fingerprint (query) to all the 𝑁 fingerprints in a database. Given a 

database of 𝑁 MCC templates 𝐷𝐵 = {𝑇1, 𝑇2, … , 𝑇𝑁} and the template 𝑇𝑄 of a query fingerprint, the result of the 1: 𝑁 

comparison is a set of 𝑁 matching scores 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}. Fig. 2 shows a baseline sequential algorithm for fingerprint 

identification using MCC with LSS, where: 

• Each cylinder is simply a pair 𝑐 = (𝐯, 𝜃), since minutiae coordinates 𝑥, 𝑦 are not required by LSS; 

• 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑢𝑚𝑃𝑎𝑖𝑟𝑠(⋅) computes the value 𝑛𝑃 (2); 

• 𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑠(𝐿, 𝑛𝑝) returns the top 𝑛𝑝 values in 𝐿 (or 𝐿 itself if the number of values in 𝐿 is less than 𝑛𝑝); 

• 𝑆𝑢𝑚(𝐿𝑝) computes the sum of the values in 𝐿𝑝. 

The algorithm in Fig. 2 can serve as starting point for an optimized implementation. In particular, targeting an x86-64 

CPU with SSE extensions [23], the following improvements can be applied. 

• Computational complexity: selecting the top 𝑛𝑝 local scores is a time consuming operation, with a complexity of 

𝑂(𝑛𝑐 ⋅ 𝑙𝑜𝑔(𝑛𝑐)), where 𝑛𝑐 ≈ 𝑂(|𝑇𝑘| ⋅ |𝑇𝑄|) is the number of local similarity scores in 𝐿. By quantizing local 



similarity scores into 𝑤 values and adopting a counting-sort strategy [17], the complexity can be reduced to 𝑂(𝑛𝑐 +
𝑤). This approach has the further advantage of reducing the space requirements to a vector 𝐛 ∈ ℕ𝑤, much smaller than 

the list 𝐿 of 𝑛𝑐 scores. Preliminary experiments showed that, with a proper choice of parameter 𝑤 (see Table III), this 

optimization does not compromise recognition accuracy and is much more efficient than other techniques, such as 

using a specialized partial sorting algorithm [28] with complexity 𝑂 (𝑛𝑐 + 𝑛𝑝 ⋅ 𝑙𝑜𝑔(𝑛𝑝)). 

• Optimization of bit vector length: the values chosen for parameters 𝑁𝑠 and 𝑁𝐷  (see Table III) offer a good trade-off 

between accuracy and efficiency and result in a bit-vector length 𝑛 = 260 (five sections of 52 bit-valued cells). 

Preliminary experiments showed that removing one bit from each of the five cylinder sections does not reduce the 

accuracy and allows 𝑛 = 255, hence each bit-vector 𝐯 can be stored in just two 128-bit SSE registers [23]. 

• Pre-computation of cylinder norms: for each cylinder 𝑐 = (𝐯, 𝜃) of each template, the norm 𝜂 = ‖𝐯‖ is calculated once 

and stored for future use. Hence, each cylinder is a triplet 𝑐 = (𝐯, 𝜃, 𝜂). 

• Bit-wise operations: the bit-wise XOR is computed using SSE instructions [23] operating on 128-bit registers (hence 

only two SSE instructions are needed to compute 𝐯𝑖 ⊕ 𝐯𝑗). The norm of a bit-vector corresponds to the square root of 

the population count (number of bits with value one), for which an ad-hoc instruction (popcnt) is available on recent 

CPUs [23]. 

• Look-up table for square roots: since the result of the population-count operation is always an integer number in [0, 𝑛], 
with 𝑛 = 255, it is convenient to use a look-up table (𝐋𝐔𝐓𝐒𝐪𝐫𝐭) instead of actually computing the square roots. 

• Angle quantization: cylinder angles 𝜃 are quantized into 𝑧 = 256 values: this allows to implement 𝑑𝜃(⋅) quite 

efficiently using modulo-256 arithmetic. Note that this does not cause any accuracy degradation since current standards 

for storing minutiae templates require the same quantization [1]. 

• A maximum number of cylinders per template is defined (𝑀𝑎𝑥𝐶 = 256). This allows to precompute any possible 

output of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑢𝑚𝑃𝑎𝑖𝑟𝑠(⋅) in look-up table 𝐋𝐔𝐓𝐩. Again, this does not constitute a limitation since current 

fingerprint minutiae standard templates have the same restriction [1]. 

• Cylinder norms, 𝐋𝐔𝐓𝐒𝐪𝐫𝐭 values, and match scores are stored as integers using fixed-point arithmetic: this allows to 

remove any floating-point operation from the algorithm. 
 

 

Baseline identification algorithm on CPU 
Input: 

- MCC template 𝑇𝑄 (query) 

- 𝑁 MCC templates 𝐷𝐵 = {𝑇1, 𝑇2, … , 𝑇𝑁} 
Output:  

- 𝑁 match scores 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 
Algorithm:  

1. ForEach template 𝑇𝑘 in 𝐷𝐵 
2.  𝐿 = 𝑛𝑒𝑤 𝐿𝑖𝑠𝑡();   // List of local scores (initially empty)  

3.  ForEach cylinder 𝑐𝑖 = (𝐯𝑖 , 𝜃𝑖) in 𝑇𝑄 

4.   ForEach cylinder 𝑐𝑗 = (𝐯𝑗, 𝜃𝑗)  in 𝑇𝑘 

5.    If 𝑑𝜙(𝜃𝑖 , 𝜃𝑗) ≤ 𝛿𝜃 Then 

6.     𝑠𝐿 = 1 −
‖𝐯𝑖⊕𝐯𝑗‖

‖𝐯𝑖‖+‖𝐯𝑗‖
 // Computes the local similarity score 

7.     𝐿. 𝐴𝑑𝑑(𝑠𝐿) // Adds the local score to 𝐿 

8.    End If 
9.   End ForEach 
10.  End ForEach 

11.  𝑛𝑝 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑢𝑚𝑃𝑎𝑖𝑟𝑠(|𝑇𝑘|, |𝑇𝑄|) // scores to consider 

12.  𝐿𝑝 = 𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑠(𝐿, 𝑛𝑝)  

13.  𝑠𝑘 = 𝑆𝑢𝑚(𝐿𝑝) 𝑛𝑝⁄  // Match score between 𝑇𝑄 and 𝑇𝑘 

14. End ForEach 

15. Return 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 

Fig. 2. A simple sequential algorithm for MCC identification on CPU. 

Fig. 3 shows the resulting optimized algorithm, where 𝑃𝑜𝑝𝐶(⋅) computes the population count of a binary vector using 

the popcnt instruction [23]. The average of the top 𝑛𝑝 local similarity scores is computed from 𝐛 (lines 11-18), by 



accumulating bucket values to reach 𝑛𝑝 (the min operation in line 14 avoids exceeding 𝑛𝑝 with the last bucket value). 

Note that, to save arithmetic operations, 𝑠𝑘 is computed (line 18) as one minus the average of the lowest 𝑛𝑝 distances 

(𝑑𝐿). 

 
Optimized identification algorithm on CPU 
Input: 

- MCC template 𝑇𝑄 (query) 

- 𝑁 MCC templates 𝐷𝐵 = {𝑇1, 𝑇2, … , 𝑇𝑁} 
Output:  

- 𝑁 match scores 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 
Algorithm:  

 1. ForEach template 𝑇𝑘 in 𝐷𝐵  
 2.  Reset buckets 𝐛[𝑖], 0 ≤ 𝑖 < 𝑤  

 3.   ForEach cylinder 𝑐𝑖 = (𝐯𝑖 , 𝜃𝑖 , 𝜂𝑖) in 𝑇𝑄 

 4.    ForEach cylinder 𝑐𝑗 = (𝐯𝑗, 𝜃𝑗 , 𝜂𝑗)  in 𝑇𝑘 

 5.     If 𝑑𝜙(𝜃𝑖 , 𝜃𝑗) ≤ 𝛿𝜃 Then 

 6.      𝑑𝐿 = ⌊𝑤 ⋅
𝐋𝐔𝐓𝐒𝐪𝐫𝐭[𝑃𝑜𝑝𝐶(𝐯𝑖⊕𝐯𝑗)]

𝜂𝑖+𝜂𝑗
⌋ // SSE for bitwise XOR 

 7.     𝐛[𝑑𝐿] = 𝐛[𝑑𝐿] + 1 // Increments the corresp. bucket 

 8.    End If 
 9.   End ForEach 
10.  End ForEach 

11.  𝑛𝑝 = 𝐋𝐔𝐓𝐩[min{|𝑇𝑘|, |𝑇𝑄|}] // number of distances to consider 

12.  𝑠𝑢𝑚 = 0, 𝑡 = 𝑛𝑝, 𝑖 = 0 

13.  While 𝑖 < 𝑤 and 𝑡 > 0                 // the sum of the lowest 𝑛𝑝 

14.   𝑠𝑢𝑚 = 𝑠𝑢𝑚 + min(𝐛[𝑖], 𝑡) ⋅ 𝑖    // 𝑑𝐿 is computed from 𝐛 

15.   𝑡 = 𝑡 − min(𝐛[𝑖], 𝑡), 𝑖 =  𝑖 + 1 
16.  End While 

17.  𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑡 ⋅ 𝑤   // in case there are less than 𝑛𝑝 votes in 𝐛 

18.  𝑠𝑘 = 1 −
𝑠𝑢𝑚

𝑛𝑝⋅𝑤
       // match score between 𝑇𝑄 and 𝑇𝑘 

19. End ForEach 

20. Return 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 

Fig. 3. Optimized sequential algorithm for MCC identification on CPU. 

4. Fingerprint Identification on GPU 

4.1. CUDA programming model 

The Compute Unified Device Architecture (CUDA) [43] is one of the most widely-adopted frameworks for GPGPU; 

CUDA is a hardware and software architecture that enables NVIDIA GPUs to execute parallel kernels written in C/C++. 

The physical architecture of CUDA-enabled GPUs consists of a set of Streaming Multiprocessors (SM), each containing 

32 cores for SIMD execution. 

In the CUDA programming model, a CUDA kernel is executed in parallel across a set of threads, which are organized 

into blocks (Fig. 4). Each thread within a block executes an instance of the kernel and is identified by an index within its 

block. All threads of the same block are executed on the same SM and share the limited memory resources of that 

multiprocessor: for this reason the maximum number of threads in a block cannot be too large (1024 in the GPU used in 

this work, see Table I). However a kernel can be executed by multiple, equally-sized blocks, forming a grid: the total 

number of threads is then equal to the number of blocks times the number of threads per block (Fig. 4) [43]. Each SM 

schedules and executes threads in groups of 32 parallel threads (being 32 the number of cores in a SM) called warps. A 

warp executes one common instruction at a time, so full efficiency is realized when all 32 threads of a warp synchronize 

their execution path. If threads of the same warp take different paths (due to flow control instructions), they have to wait 

for each other: this situation is called divergence. It is important to note that GPU threads are extremely lightweight: 

typically, thousands of threads are queued up to work in warps of 32 threads each. If the GPU must wait on one warp of 

threads (for instance due to memory latency or bank conflicts), it simply begins executing work on another warp. Since 

separate registers are allocated to all active threads, no swapping of registers is needed when switching between two 

warps: resources remain allocated to each thread until it completes its execution. 

CUDA threads have access to various memory types (Fig. 4): 



• each thread has its registers, which are the fastest memory, and its private local memory (which is much slower); 

• each block has a small shared memory, accessible to all threads of the block and with the same lifetime of the block; 

shared memory is optimized for 32-bit access and is divided into 32 memory modules, called banks, which can be 

accessed simultaneously; shared memory is very fast if no bank conflicts occur (a bank conflict happens when two 

threads of a warp access two different 32-bit words in the same bank) [42]; 

• all threads have access to the global memory: the largest memory, which is used for communication between different 

blocks and with the host. The GPU is able to access global memory via 32, 64, or 128-byte memory transactions. When 

a warp executes an instruction that accesses global memory, it coalesces the memory accesses of the threads within the 

warp into one or more of these memory transactions, depending on the size of the word accessed by each thread and the 

distribution of the memory addresses across the threads [43]. Therefore a very important optimization in CUDA is 

ensuring that global memory accesses are as much coalesced as possible. In the GPU used in this work (see Table I), an 

L1 cache for each SM and an L2 cache shared by all SM are present to speed up global memory accesses; 

• there is also the possibility of defining a texture memory space (a region in global memory which is cached for locality 

in the texture cache, i.e., threads of the same warp reading addresses that are close together achieve better 

performance); the texture cache is read-only and, within a kernel execution, it is not kept coherent with the underlying 

global memory. In other words, a kernel can safely read a memory location via texture cache if the location has been 

modified by a previous kernel execution, but not if it has been modified by the same thread or another one within the 

same kernel execution; 

• finally, all threads have read-only access to the constant memory space, a region in global memory that is accessed via 

constant cache, a cache optimized for broadcast, that is access to the same address by all the threads in a warp. 

As an example of a specific GPU, Table I reports the main characteristics of the device used in this study. 

 

 
Fig. 4. CUDA: grid, blocks, threads, and the various memory spaces. 

4.2. Optimization goals 

The design of the parallel algorithm proposed in this work was guided by the following optimization goals: 

• OG1 - Minimize data transfer between the host and the device. Since the bandwidth between global memory and GPU 

is much higher than that between host memory and global memory [42], it is very important to minimize the amount of 

data transferred between the host and the device. 

• OG2 - Choose the most appropriate types of memory and access patterns. A careful design of all data structures is 

fundamental: this includes ensuring coalesced access to global memory whenever possible, minimizing bank conflicts 
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in shared memory, selecting access patterns that maximize cache hits, studying when the use of shared memory, texture 

cache or constant cache is advantageous. 

• OG3 - Maintain a sufficient number of active threads per multiprocessor. Executing other warps when one warp is 

stalled is the only way to hide latencies and keep the GPU hardware busy [42]; the ratio between the number of active 

warps per SM and the maximum number of possible active warps is called occupancy [42]. Low occupancy can 

interfere with the ability to hide memory latency, resulting in performance degradation. 

• OG4 - Minimize differences in the execution paths within the same warp. As explained in Section 4.1, divergence 

causes a performance drop and the kernel code should minimize the number of divergent warps. 

Designing an algorithm that achieves the above goals is challenging, not only for the particular paradigm required by GPU 

programming, but mostly because some of the optimization goals are in contrast with each other and it is necessary to find 

a good trade-off between them. For example, to hide latency and fulfill OG3, the total number of threads should be 

increased as much as possible, but for a given computational task X, increasing the number of threads implies that each 

thread has less operations to do and less data to access in memory: this makes more difficult to fulfill OG2. As another 

example, see the discussion about database cylinder ordering in Section 4.6: a design that fulfils OG4 does not satisfy 

OG2, resulting in a performance drop with respect to a design that fulfils OG2 and only partially OG4. A lot of work was 

necessary to find a good trade-off among these goals: the following section discusses some strategies that were explored. 

 
TABLE I 

CHARACTERISTICS OF THE DEVICE USED IN THIS WORK 

Device name Tesla C2075 

Architecture Fermi [44] 

Number of SM 14 

Total number of cores 448 (14x32) 

Clock frequency 1.15 GHz 

Max active threads per SM 1536 

Max active blocks per SM 8 

Max threads per block 1024 

Max registers per block 32768 

Peak instruction throughput 515 GInstr/s 

Global memory 6 GB 

Theoretical memory bandwidth 144 GB/s 

Max shared memory per SM 16 or 48 KB* 

L1 cache size per SM 48 or 16 KB* 

L2 cache size 768 KB 

Max constant memory space size 64 KB 
*The same on-chip memory is used for both L1 cache and shared memory; there are two possible configurations: 48 KB of shared memory and 16 KB of L1 cache or vice 
versa. 

4.3. Parallelization strategies 

Fig. 5 shows a graphical representation of the main computations involved in the optimized sequential algorithm proposed 

for CPU (Fig. 3). The number of local similarity computations (gray circles in the figure) depends on the number of 

cylinders in the query template and database templates, while the number of LSS computations (gray rectangles in the 

figure) depends on the number of database templates 𝑁. Looking at Fig. 5, it can be noted that several different strategies 

may be designed to parallelize the computation. Some possibilities are discussed in the following paragraphs. 

• Strategy A – A kernel is used to parallelize the computation of local similarities and the host takes care of LSS 

computation; this strategy is similar to the approach in [22]: a kernel, where each block has to perform a set of local 

similarity computations, is executed on the device, while LSS is performed on the host. The authors of [22] argue that, 

given the small number of values to sort, GPU sorting methods do not offer any significant speed-up in this setup. 

According to our analysis and experiments, this strategy does not fulfill OG1 and cannot achieve high performance: in 

fact, all local similarities (or at least 𝐛 vectors) have to be copied from the device to the host, while this can be avoided 

if the LSS computation is carried out on the device. 

• Strategy B – A kernel is in charge of both local similarities and LSS computation, with one block assigned to each 

database template. This strategy can fulfill OG1, since only the minimum amount of data needs to be transferred 

between the device and the host. It can also achieve OG2: in particular, since each block takes care of the computations 

related to a given database template, shared memory can be effectively exploited to store the vector 𝐛 for the counting-



sort. However, from our preliminary experiments, we understood that with this strategy it is very difficult to find an 

optimal number of threads per block and to fulfill OG3 and OG4. In fact, since the number of cylinders varies across 

different database templates and considering that each block must have the same number of threads (possibly multiple 

of 32, the warp size), it is very difficult to have a sufficient number of active threads, to assign them a balanced 

workload and, at the same time, to ensure coalesced memory accesses. Moreover, it is likely that during LSS 

computation many threads remain idle due to the much lower computational complexity of this step with respect to the 

previous one: this further hinders OG4. 

• Strategy C – Two different kernels are sequentially executed: the former (named Step-1) is in charge of computing 

local similarities and the latter (named Step-2) calculates match scores using LSS. Since two kernels can only 

communicate via global memory, vectors 𝐛 needs to be stored in global memory by Step-1 and read by Step-2. This is 

less efficient than storing 𝐛 in shared memory, but has important benefits, since (i) it better balances the thread 

workload within each kernel (OG4); (ii) guarantees a sufficient number of active threads (OG3), and (iii) optimizes 

coalesced memory accesses (OG2). In our preliminary studies and experiments, this strategy appeared the most 

promising one. After several iterations of analysis, implementation, optimization, and performance evaluation, we find 

out that an effective allocation of the workload is to assign: (i) all computations related to a given database cylinder to a 

single thread in kernel Step-1 (one “column” of circles in Fig. 5), and (ii) the computation of each match score to a 

single thread in kernel Step-2 (one rectangle in Fig. 5). The resulting algorithm is described in the following sections. 

 

 
Fig. 5. A graphical representation of the algorithm in Fig. 3: each gray circle represents the computation of a local similarity (between a cylinder 𝑐𝑗 of 

a database template 𝑇𝑘 and a cylinder 𝑐𝑖 of the query template 𝑇𝑄) and the increment of the corresponding bucket (lines 5-7 of the algorithm); each 

gray rectangle represents the computation of a match score 𝑠𝑘 between 𝑇𝑄 and 𝑇𝑘 using LSS (lines 11-18 of the algorithm). 

4.4. The parallel algorithm 

Figures 6, 7, 8, and 9 show the parallel algorithm for GPU. With respect to the CPU algorithm in Fig. 3, the following 

elements have been added: 

• A matrix 𝐁 ∈ ℕ𝑁×𝑤, to store buckets of vectors 𝐛 for all database templates: it allows to compute in parallel local 

similarities of different database templates. 

• A look-up table 𝐋𝐔𝐓𝜽, created from the query template 𝑇𝑄: for any quantized angle 𝜃, 𝑀𝑄 = 𝐋𝐔𝐓𝜽[𝜃] is the set of 

cylinder indices in 𝑇𝑄 that are matchable with a cylinder of angle 𝜃: 𝑀𝑄 = {𝑖|𝑐𝑖 = (𝐯𝑖, 𝜃𝑖, 𝜂𝑖) ∈ 𝑇𝑄, 𝑑𝜙(𝜃𝑖, 𝜃) ≤ 𝛿𝜃}. 

This look-up table allows to avoid the conditional statement in line 5 of Fig. 3, easing OG4. 

• Each cylinder of a database template is a 4-tuple 𝑐𝑗 = (𝐯𝑗, 𝜃𝑗, 𝜂𝑗, 𝑘𝑗), where a new value has been added (𝑘𝑗 , the index 

of the database template containing 𝑐𝑗). 

• Total number of cylinders in the database 𝑁𝐶 = ∑ |𝑇𝑘|𝑁
𝑘=1 . 

• A look-up table 𝐋𝐔𝐓𝑪 containing the number of cylinders for each database template index: 𝐋𝐔𝐓𝑪[𝑘] = |𝑇𝑘|. 
• A matrix 𝐁𝒔, stored in the shared memory of each block of kernel Step-2; it contains a copy of the sub-matrix of 𝐁 that 

is required by the threads of the block. 
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The portion of the algorithm executed on the host is reported in Fig. 6: note that it includes only what is executed at each 

query, it does not include tasks performed only once during system initialization (computing 𝐋𝐔𝐓𝐒𝐪𝐫𝐭, 𝐋𝐔𝐓𝐩, and 𝐋𝐔𝐓𝑪, 

copying them and the whole 𝐷𝐵 to the global memory of the device). Line 1 sets all values of 𝐁 to zero: no memory is 

copied from the host to the device, since a CUDA API is used to asynchronously launch a kernel on the GPU that modifies 

𝐁. The only data transfers between host and device occur at lines 2 and 6; note that only the minimum amount of data is 

transferred for each query (𝑇𝑄 to the device and 𝑆 to the host): this means that OG1 is fulfilled. The rest of the host code 

consists in the sequential execution of three kernels: ComputeLMC (𝑧 threads in one block), Step-1 (𝑁𝐶 threads in blocks 

of 𝐵𝐷1 threads), and Step-2 (𝑁 threads in blocks of 𝐵𝐷2 threads). 𝐵𝐷1 and 𝐵𝐷2 should be multiple of 32 (the number of 

cores in each SM); the choice of their values is discussed in Section 5.1. 

 
MCC Identification on GPU: host program executed on CPU 
Input: 
- MCC template 𝑇𝑄 (query) 

- 𝑁𝐶 DB cylinders 𝐷𝐵𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁𝐶}  (already in GPU memory) 
Output:  

- 𝑁 match scores 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 
Algorithm:  

 1. Reset bucket matrix 𝐁 ∈ ℕ𝑁×𝑤 on the GPU 

 2. Copy 𝑇𝑄 to GPU memory 

 3. Launch Kernel ComputeLMC (𝑧 threads per block, 1 block) 

 4. Launch kernel Step-1 (𝐵𝐷1 threads per block, ⌈
𝑁𝐶

𝐵𝐷1
⌉ blocks) 

 5. Launch kernel Step-2 (𝐵𝐷2 threads per block, ⌈
𝑁

𝐵𝐷2
⌉  blocks) 

 6. Copy 𝑆 from GPU memory 

Fig. 6. The portion of the algorithm running on the host. 

ComputeLMC (Fig. 7) is a simple kernel that initializes 𝐋𝐔𝐓𝜽, running one thread for each quantized angle. 𝐋𝐔𝐓𝜽 is 

simply stored as a matrix, with one row for each quantized angle, where the corresponding template indices are 

sequentially placed in the cells of the row, with a special value denoting the end-of-list (the number of columns is |𝑇𝑄| + 1 

for the worst case of all cylinders matchable with a given angle, see Table II). Although the workload of this kernel is very 

small, computing the look-up table on CPU and copying it to the device is slightly less efficient, even with asynchronous 

memory copy. 

 
MCC Identification on GPU: kernel ComputeLMC executed on GPU 
Input: 

- MCC template 𝑇𝑄 (query) 

- Thread index of the current thread 𝑡𝐼𝐷𝑋 
Output:  

- Matchable query cylinder indices for each discretized angle: 𝐋𝐔𝐓𝜽 
Kernel execution configuration: 

- 𝑧 threads per block, 1 block (one thread per quantized angle) 
Algorithm:  

 1. 𝜃 =
2𝜋⋅𝑡𝐼𝐷𝑋

𝑧
    // 𝜃 is the quantized angle associated to the thread 

 2. 𝐋𝐔𝐓𝜽[𝜃] = {𝑖|𝑐𝑖 = (𝐯𝑖 , 𝜃𝑖 , 𝜂𝑖) ∈ 𝑇𝑄 , 𝑑𝜙(𝜃𝑖 , 𝜃) ≤ 𝛿𝜃} 

Fig. 7. The kernel in charge of computing 𝐋𝐔𝐓𝜃. 

Kernel Step-1 (Fig. 8) executes one thread for each cylinder 𝑐𝑗 of the database, in blocks of 𝐵𝐷1 threads: each thread 

has to compute the local similarity between 𝑐𝑗 and all query cylinders whose indices are in 𝑀𝑄 = 𝐋𝐔𝐓𝜽[𝜃𝑗], incrementing 

the corresponding buckets in 𝐁. Note that the angles of query cylinders are not needed by this kernel (thanks to 𝐋𝐔𝐓𝜽), 

hence 𝑐𝑖 = (𝐯𝑖 , 𝜂𝑖) in line 5. The computation of 𝑃𝑜𝑝𝐶(𝐯𝑖 ⊕ 𝐯𝑗), at line 6, is quite efficient on the device, since XOR and 

population count instructions are natively supported by the GPU [43]. The number of iterations of the ForEach loop at line 

4 depends on the number of query cylinders that are matchable with 𝑐𝑗: hence, within a warp, some threads may terminate 

before others. Although this is not as severe as a divergence, it does not allow a full utilization of the device. To overcome 

the above problem, one could sort DB cylinders by angle, but in this case the overall efficiency would get worse (see 



Section 4.6). 

 

MCC Identification on GPU: kernel Step-1 executed on GPU 
Input: 

- MCC template 𝑇𝑄 (query) 

- Matchable query cylinder indices for each discretized angle: 𝐋𝐔𝐓𝜽 

- 𝑁𝐶 DB cylinders 𝐷𝐵𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁𝐶} 
- Block index and thread index of the current thread 𝑏𝐼𝐷𝑋, 𝑡𝐼𝐷𝑋 
Output:  

- Bucket matrix 𝐁 ∈ ℕ𝑁×𝑤 
Kernel execution configuration: 

- 𝐵𝐷1 threads per block, ⌈
𝑁𝐶

𝐵𝐷1
⌉ blocks (one thread per DB cylinder) 

Algorithm:  

 1. 𝑗 = 𝐵𝐷1  ⋅  𝑏𝐼𝐷𝑋  + 𝑡𝐼𝐷𝑋   // 𝑗 is the DB cylinder index of the thread 

 2. 𝑐𝑗 = (𝐯𝑗, 𝜃𝑗 , 𝜂𝑗, 𝑘𝑗)   // 𝑐𝑗 is the DB cylinder of this thread 

               // 𝑘𝑗 is the DB template index containing 𝑐𝑗 

 3. 𝑀𝑄 = 𝐋𝐔𝐓𝜽[𝜃𝑗]   // the cylinders indices in 𝑇𝑄 matchable with 𝑐𝑗 

 4. ForEach cylinder index 𝑖 in 𝑀𝑄 

 5.  𝑐𝑖 = (𝐯𝑖 , 𝜂𝑖)   // the 𝑖𝑡ℎ cylinder in 𝑇𝑄 

 6.  𝑑𝐿 = ⌊𝑤 ⋅
𝐋𝐔𝐓𝐒𝐪𝐫𝐭[𝑃𝑜𝑝𝐶(𝐯𝑖⊕𝐯𝑗)]

𝜂𝑖+𝜂𝑗
⌋   // Discretized local distance  

 7.  𝐁[𝑘𝑗, 𝑑𝐿] = 𝐁[𝑘𝑗, 𝑑𝐿] + 1  // Atomic incr. of the corresp. bucket in 𝐁 

 8. End ForEach 

Fig. 8. The kernel in charge of computing local similarities and incrementing the corresponding buckets in 𝐁. 

MCC Identification on GPU: kernel Step-2 executed on GPU 
Input: 

- Bucket matrix 𝐁 ∈ ℕ𝑁×𝑤 

- Number of cylinders in the query template|𝑇𝑄| 

- Number of cylinders in each DB template 𝐋𝐔𝐓𝑪 

- Block index and thread index of the current thread 𝑏𝐼𝐷𝑋, 𝑡𝐼𝐷𝑋 
Output:  
- 𝑁 match scores 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 
Kernel execution configuration: 

- 𝐵𝐷2 threads per block, ⌈
𝑁

𝐵𝐷2
⌉ blocks (one thread per DB template) 

Algorithm:  

 1. 𝑘0 = 𝐵𝐷2 ⋅ 𝑏𝐼𝐷𝑋   // Index of the first DB template of the block 

 2. 𝐁𝒔[𝑗, 𝑡𝐼𝐷𝑋] = 𝐁[k0 + 𝑗, 𝑡𝐼𝐷𝑋], 0 ≤ 𝑗 < 𝐵𝐷2   // copy 𝐁 sub-matrix to 𝐁𝒔 
 3. SynchronizeThreads()   // barrier for all threads in the block 

 4. 𝑘 = 𝑘0 + 𝑡𝐼𝐷𝑋    // index of the DB template of the current thread 

 5. 𝑛𝑝 = 𝐋𝐔𝐓𝐩[min{𝐋𝐔𝐓𝑪[𝑘], |𝑇𝑄|}]   // number of distances to consider 

 6. 𝑠𝑢𝑚 = 0, 𝑡 = 𝑛𝑝, 𝑖 = 0 

 7. While 𝑖 < 𝑤 and 𝑡 > 0                        // the sum of the lowest 𝑛𝑝 

 8.  𝑠𝑢𝑚 = 𝑠𝑢𝑚 + min(𝐁𝒔[𝑡𝐼𝐷𝑋, 𝑖], 𝑡) ⋅ 𝑖   // 𝑑𝐿 is computed from 𝐁𝒔 

 9.  𝑡 = 𝑡 − min(𝐁𝒔[𝑡𝐼𝐷𝑋, 𝑖], 𝑡), 𝑖 =  𝑖 + 1 
10. End While 
11. 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑡 ⋅ 𝑤   // in case there are less than 𝑛𝑝 votes 

12. 𝑠𝑘 = 1 −
𝑠𝑢𝑚

𝑛𝑝⋅𝑤
     // match score between 𝑇𝑄 and 𝑇𝑘 

Fig. 9. The kernel in charge of computing LSS match scores from 𝐁 and storing them in 𝑆. 

Kernel Step-2 (Fig. 9) executes one thread for each template 𝑇𝑘 in the database, in blocks of 𝐵𝐷2 threads: each thread 

has to compute the LSS match score 𝑠𝑘 between 𝑇𝑘 and the query template 𝑇𝑄, starting from values in row 𝑘 of 𝐁. All 

threads in the block cooperate to copy 𝐵𝐷2 rows of 𝐁 (from row 𝑘0) to 𝐁𝒔 ∈ ℕ𝐵𝐷2×𝑤; note that the pseudo-code in line 2 

assumes 𝑤 = 𝐵𝐷2 (as it is in our experiments, see Table III); a barrier synchronization (line 3) is necessary to ensure that 

the copy has been completed before any thread can continue execution. Lines 5-12 are the same of the optimized CPU 

algorithm (Fig 3). The number of iterations of the While loop at line 7 depends on 𝑛𝑝 and on the distribution of the values 

in the buckets: hence, each thread has to wait for the thread of the same warp executing the largest number of iterations. 



However, according to our experiments, the variance in the number of iterations is quite small and the drop in SM 

utilization is negligible. 

4.5. The data structures 

Table II summarizes the data structures of the proposed algorithm, each with the corresponding memory size allocated 

during the experiments: the main reasons why the particular memory types and data layouts chosen allow to accomplish 

OG2 are explained in the following. 

• 𝐷𝐵: to ensure coalesced access at line 2 in Fig. 8, where 𝑐𝑗 is read from global memory, cylinders are stored as a 

structure of arrays instead of an array of structures (Fig. 10). 

• 𝐋𝐔𝐓𝐒𝐪𝐫𝐭, 𝐋𝐔𝐓𝐩, 𝐋𝐔𝐓𝜽, and 𝑇𝑄 are accessed via texture cache; these data structures are read by all the threads with an 

access pattern that cannot be coalesced but is characterized by high spatial and temporal locality: according to our 

experiments, using texture cache provides the best performance. This is not obvious for 𝑇𝑄: in fact, as the query 

template is the same for all threads, constant cache may seem the best candidate for accessing it. Actually, for 

implementations not using 𝐋𝐔𝐓𝜽 optimization, we found that constant cache is the best choice, but when using 𝐋𝐔𝐓𝜽, 

the access pattern to cylinders in 𝑇𝑄 becomes more random and texture cache provides better performance than 

constant cache or shared memory. 

• 𝐁 and 𝐁𝒔: incrementing buckets in 𝐁 (line 7 in Fig. 8) and using them in kernel Step-2 is one of the most critical issues 

of the algorithm; it is necessary to avoid race conditions when modifying the buckets in global memory and find the 

most efficient approach to update 𝐁 values. We evaluated different solutions, such as using per-thread or per-warp 

partial copies of 𝐁, stored in local or shared memory, to be fused (i.e., summed and stored into global memory) only in 

a subsequent step (with analogies to the algorithms proposed in [41] [21] [48]). However, according to our findings, 

thanks to the L2 cache and atomic operations available in the device used [44], if 𝐁 is stored in row-major order, and a 

proper ordering of the database cylinders is chosen (see Section 4.6), the most efficient approach is directly 

incrementing 𝐁 values in global memory through the atomic operation atomicAdd [43]. While row-major order is more 

efficient for kernel Step-1, it would not allow coalesced accesses to 𝐁 in kernel Step-2. For this reason, at the beginning 

of the kernel, the rows of 𝐁 that need to be read by threads in the current block are copied (using a coalesced access 

pattern) to matrix 𝐁𝒔 in shared memory (line 2 in Fig. 9). In this way, there are neither bank conflicts when 𝐁𝒔 is 

written (line 2), nor when it is read (lines 8-9). In fact, in the former case, at each instruction, the 32 threads of each 

warp write to 32 consecutive 16-bit words, corresponding to 16 32-bit words of 16 different banks; in the latter, bank 

conflicts are avoided by padding each 𝐁𝒔 row with 𝑝𝑎𝑑𝐁 elements, to reach a total size of 33 32-bit words: in our 

experiments, being each 𝐁𝒔 element a 16-bit word and 𝑤 = 64, we set 𝑝𝑎𝑑𝐁 = 2 (see Table III). 

• 𝐋𝐔𝐓𝑪 and 𝑆 are accessed with a simple coalesced pattern by kernel Step-2, where the 32 threads of each warp read 32 

consecutive 16-bit integers from 𝐋𝐔𝐓𝑪 and write 32 consecutive 16-bit integers (scores in fixed-point arithmetic) to 𝑆. 

 

 

 
Fig. 10. The effect of DB cylinders data layout on memory coalescing. This example considers five memory read instructions executed by a warp of 

32 threads to load bit-vectors 𝐯𝑗 (each stored as four 64-bit words) and their angles 𝜃𝑗  (each stored as a 32-bit word). Layout a) results in 32 memory 

transactions for each instruction, while layout b) in two transactions for each of the first four instructions and one for the fifth instruction (each 

transaction reads 128 bytes [43]). 
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TABLE II 
DATA STRUCTURES 

Name Type* [length] Layout Actual size with values in Table III Memory  HD transfer D access 

𝐷𝐵  (𝐵𝑖𝑡𝑉𝑒𝑐𝑡, 𝐼𝑛𝑡, 𝐼𝑛𝑡, 𝐼𝑛𝑡) [𝑁𝐶]  Structure of arrays 𝑁𝐶 ⋅ (⌈
𝑛

8
⌉ + 12) = 338 MB  Global  Startup  (H→D) R 

𝐋𝐔𝐓𝐒𝐪𝐫𝐭  𝐼𝑛𝑡 [𝑛 + 1]  Array (𝑛 + 1) ⋅ 4 = 1 KB  Texture Startup  (H→D) R 

𝐋𝐔𝐓𝐩  𝐼𝑛𝑡 [𝑀𝑎𝑥𝐶]  Array 𝑀𝑎𝑥𝐶 ⋅ 4 = 1 KB  Texture Startup  (H→D) R 

𝐋𝐔𝐓𝑪  𝑆ℎ𝑜𝑟𝑡𝐼𝑛𝑡 [𝑁]  Array 𝑁 ⋅ 2 = 488 KB  Global  Startup  (H→D) R 

𝑇𝑄  (𝐵𝑖𝑡𝑉𝑒𝑐𝑡∗ , 𝐼𝑛𝑡, 𝐼𝑛𝑡) [|𝑇𝑄|]  Structure of arrays |𝑇𝑄| ⋅ (⌈
𝑛

8
⌉ + 8) = 1.26 KB (𝑎𝑣𝑒𝑟𝑎𝑔𝑒)  Texture Query (H→D) R 

𝑆  𝑆ℎ𝑜𝑟𝑡𝐼𝑛𝑡 [𝑁]  Array 𝑁 ⋅ 2 = 488 KB  Global  Query (D→H) W 

𝐋𝐔𝐓𝜽  𝐼𝑛𝑡 [𝑧 ⋅ (|𝑇𝑄| + 1)]  Matrix (row-major) 𝑧 ⋅ (|𝑇𝑄| + 1) ⋅ 4 = 33.3 KB (𝑎𝑣𝑒𝑟𝑎𝑔𝑒)  Texture Never R/W† 

𝐁  𝐼𝑛𝑡 [𝑁 ⋅ 𝑤]  Matrix (row-major) 𝑁 ⋅ 𝑤 ⋅ 4 = 61 MB  Global  Never R/W 

𝐁𝒔  𝑆ℎ𝑜𝑟𝑡𝐼𝑛𝑡 [𝐵𝐷2 ⋅ (𝑤 + 𝑝𝑎𝑑𝐁)]  Matrix (row-major) 𝐵𝐷2 ⋅ (𝑤 + 𝑝𝑎𝑑𝐁) ⋅ 2 = 8.25 KB  Shared  Never R/W 
* “BitVect” is a bit-vector (containing 𝑛=255 bits) and is stored using four 64-bit words; “Int” is a 32-bit word; “ShortInt” is a 16-bit word. 
† 𝑳𝑼𝑻𝜽 is written by a kernel (ComputeLMC) that directly modifies the underlying global memory, then it is read through the texture cache by another kernel (Step-1). 

 

4.6. Effects of database cylinder ordering 

Kernel Step-1 considers each database cylinder separately (one for each thread) and any database cylinder 𝑐𝑗 =

(𝐯𝑗, 𝜃𝑗, 𝜂𝑗, 𝑘𝑗) contains the index 𝑘𝑗  of the template it belongs to. For this reason, cylinders 𝑐𝑗 can be sorted in any order 

and it is therefore worthwhile studying which order provides the best efficiency. It should be noted that: 

• ordering by 𝜃𝑗  minimizes the risk of different number of iterations in the loop of kernel Step-1 (line 4 in Fig. 8), hence 

improving OG4; 

• ordering by 𝑘𝑗  maximizes L2 cache hits in the atomic increment of 𝐁 elements by kernel Step-1 (line 7 in Fig. 8), hence 

improving OG2 (in the device used, the L2 cache helps to accelerate atomic operations, drastically reducing the number 

of write backs [44]). 

According to our experiments, the most efficient trade-off is ordering first by 𝑘𝑗  and then, within the same template, by 𝜃𝑗 . 

Furthermore, while it is desirable that threads of the same warp tend to access the same row of 𝐁, we found that accesses 

to the same row by threads belonging to different warps of the same block reduce the efficiency, probably because warps 

cannot be swapped fast enough due to the dependency on the data values of the collided memory locations. For this 

reason, after sorting the database cylinders as described above, a mapping function ℳ𝑐: ℕ → ℕ is applied, reordering the 

cylinders so that 𝑐𝑗 is moved to position ℳ𝑐(𝑗). 

ℳ𝑐(𝑗) = 32 ⋅ (
𝑁𝐶

𝐵𝐷1
⋅ 𝑊𝑗 + 𝐵𝑗) + 𝑗𝑊 (3) 

where: 

• 𝐵𝑗 = ⌊
𝑗

𝐵𝐷1
⌋ is the index of the block of the 𝑗-th thread; 

• 𝑗𝐵 = 𝑗 mod 𝐵𝐷1 is the index of the 𝑗-th thread in block 𝐵𝑗; 

• 𝑊𝑗 = ⌊
𝑗𝐵

32
⌋ is the index of the warp of the 𝑗-th thread in block 𝐵𝑗; 

• 𝑗𝑊 = 𝑗 mod 32 is the index of the 𝑗-th thread in warp 𝑊𝑗. 

The mapping function (3) separates cylinders accessed by different warps of the same block, while keeping together 

cylinders accessed by threads of the same warp. Fig. 11 shows a graphical example of the effect of the mapping function. 
 

 
Fig. 11. Effect of the mapping function (3) in a simplified case with 𝑁𝐶 = 384, 𝐵𝐷1 = 128; each rectangle represents 32 cylinders. 
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5. Performance 

The proposed parallel algorithm was evaluated on a PC with Intel Xeon CPU running at 2.0 GHz and a NVIDIA Tesla 

C2075 GPU (see Table I). The baseline CPU algorithm was implemented in C#, the optimized CPU algorithm in C++ 

with compiler intrinsics [23] to generate SSE and popcnt instructions. The proposed algorithm was implemented using C# 

and C++ for the host code and CUDA C [43] for the device code. The following sections report and discuss experiments 

carried out to measure the performance of the proposed algorithm, determine the speed-up over the baseline algorithm, 

and compare the results to previous works published in the literature. 

 
TABLE III 

PARAMETER VALUES USED IN THE EXPERIMENTS 

Parameter* Description Value 

𝑁𝐷 Sections in each cylinder 5 

𝑁𝑆 Cells along the diameter of each section 8 

𝑛 Bits in each cylinder (bit-vector length) 255 

𝑚𝑖𝑛𝑛𝑝
 

Parameters for computing LSS (2) 

11 

𝑚𝑎𝑥𝑛𝑝
 13 

𝜇𝑃 30 

𝜏𝑃 2 5⁄  

𝛿𝜃 Max allowed rotation between two fingerprints 𝜋/6 

𝑤 Possible values for quantized local similarities 64 

𝑧 Possible values for quantized angles 256 

𝑀𝑎𝑥𝐶  Maximum number of cylinders per template 256 

𝐵𝐷1 Threads per block in kernel Step-1 192 

𝐵𝐷2 Threads per block in kernel Step-2 64 

𝑝𝑎𝑑𝐁 Padding elements for each row in 𝐁𝑠 2 
* For any MCC parameter not listed in this table, the same value of [11] was used. 

 

 
TABLE IV 

NUMBER OF TEMPLATES AND CYLINDERS IN THE BENCHMARK  

Description Value 

Number of DB templates (𝑁) 250 000 

Total number of DB template cylinders (𝑁𝐶) 8 056 696 

Number of query templates 100 000 

Average number of cylinders in a query template (|𝑇𝑄|) 32.3 

 

 

5.1. Benchmark and parameters 

Although several fingerprint databases are available for evaluating fingerprint verification algorithms (1:1 comparison), 

e.g., [34] [35] [36] [7] [18], they are too small for assessing the performance of large-scale identification systems (1:N 

comparison). For this reason we decided to create a new benchmark combining different sources: (i) FVC2004 DB1 [36], 

(ii) BioSec FO database [52], (iii) FingerPass DB2 [27], (iv) Synthetic fingerprints generated by SFinGe [15]. 

The three above real databases were acquired using optical sensors at 500 dpi, and the synthetic generator was tuned to 

synthetize images with the same resolution. The resulting benchmark consists of (see Table IV): 

• a set of 250 000 fingerprints (to be used as 𝐷𝐵) containing 400 real impressions and 249 600 synthetic ones; 

• a set of 100 000 fingerprints (to be used for simulating queries); the first 50  000 (400 real) with a mate in 𝐷𝐵, the other 

50 000 (400 real) without mate in 𝐷𝐵. 

After minutiae extraction and creation of MCC cylinders, the MCC template of each fingerprint was stored on disk and 

used for the experiments reported in the rest of this section. The parameter values reported in Table III were used for all 

experiments. The choice of the number of threads per block for kernel Step-1 and Step-2 (𝐵𝐷1 and 𝐵𝐷2) was made taking 

into account the following constraints: 

• 𝐵𝐷1 and 𝐵𝐷2 must be multiple of 32 (number of cores per SM), to avoid wasting computational resources; 



• the device limits cannot be exceeded (max active blocks per SM, max active threads per SM, max threads per block, 

max registers per SM, max shared memory per SM), see Table I; 

• the number of registers per thread required by the kernels (24 in kernel Step-1, 30 in kernel Step-2); 

• the amount of shared memory required by kernel Step-2, which depends on 𝐵𝐷2, see Table II. 

The values of 𝐵𝐷1 and 𝐵𝐷2 in Table III maximize the number of active warps per SM (OG3) while satisfying the above 

constraints. 

5.2. Execution time and scalability 

Table V reports the total execution time of the first ten1 queries in the benchmark, using the two sequential CPU 

algorithms (baseline and optimized) and the proposed parallel algorithm. For each algorithm, the average throughput is 

measured as the number of fingerprint comparisons per unit of time (matches per second). From the table it is well evident 

that the optimizations described in Section 3 (from the baseline to the optimized CPU algorithm) are very effective: the 

execution time is reduced by more than nine times. Even more impressive is the result of the parallel algorithm: the 

execution time is further shortened by more than 50 times. 

Table VI provides more insights on the proposed parallel algorithm, showing the execution times of the various steps 

(see Fig. 6): this information was obtained using the NVIDIA Visual Profiler [45]. Note that step a) is executed 

asynchronously with respect to steps b) and c); however, in our experiments, only step b) is actually executed in parallel to 

a). This is because step a) fully utilizes the GPU cores and can be overlapped only to memory-transfer operations like b), 

while c) can only start when a) is completed. Steps d)-f) are executed sequentially, as described in Section 4.4, while g) 

represents various operations that the CPU has to execute, such as configuring kernel parameters and launching kernels. 

As expected, the execution time is dominated by kernel Step-1, which is the most computationally-intensive task. 

However, it is worth noting that the very small execution time of kernel Step-2 is the result of very careful parallelization 

strategies and optimizations. In the first parallelization attempts (for instance using strategies A or B in Section 4.3), the 

time needed for the same task was ten to twenty times higher. Since most of the execution time is due to kernel Step-1, a 

specific analysis was performed on it and reported in Appendix A. 

 
TABLE V 

TIME NEEDED FOR  THE FIRST TEN QUERIES AND CORRESPONDING THROUGHPUT (THOUSAND MATCHES PER SECOND) 

Algorithm 
Execution 
time (ms) 

Throughput 
(KMPS) 

Baseline algorithm on CPU 143 114.83 17.5 

Optimized algorithm on CPU 15 724.81 159.0 

Proposed parallel algorithm on GPU 277.68 9 003.2 

 

 
TABLE VI 

TOTAL EXECUTION TIME OF THE FIRST TEN QUERIES OF THE BENCHMARK, BROKEN DOWN INTO THE MAIN STEPS 

Step Time (ms) Percent 

a) Reset bucket matrix 𝐁 4.63 1.67% 

b) Copy 𝑇𝑄 to the GPU memory * 0.04 - 

c) Kernel ComputeLMC 0.32 0.12% 

d) Kernel Step-1 259.59 93.49% 

e) Kernel Step-2 9.46 3.41% 

f) Copy S from GPU memory 0.78 0.28% 

g) Other CPU activities 2.9 1.04% 

Total execution time 277.68 100.00% 
*This does not contribute to the total time since step b) is executed in parallel with a). 

 

While previous experiments used the maximum 𝐷𝐵 size in the benchmark (𝑁 = 250 000), Fig. 12 reports the results of 

a scalability experiment, where the same queries were performed on databases with size 𝑁 varying from 10 to 250 000. If 

the size of the database is small (𝑁 < 1000), the throughput of the proposed algorithm is much lower, although still 

higher than the baseline and optimized CPU algorithms. At larger 𝐷𝐵 sizes (1000 ≤ 𝑁 < 10 000), the advantage of the 
 

1 The experiments reported in this section and in the following one required several repetitions: for this reason they were carried out on a small number of queries; 
experiments running all queries in the benchmark are described in Appendix A. 



proposed algorithm is evident, and for 𝑁 > 10 000, its throughput remains steady at 9 million matches per second: no 

scalability issues were found. 

 

 

Fig. 12. Average throughput (matches per second) of the first ten queries in the benchmark varying 𝑁 from 10 to 250 000. Logarithmic scales are used 

for both axes to better show the trends. 

5.3. Impact of some optimizations 

Various experiments were carried out to understand the impact of the optimizations introduced in the parallel algorithm. 

Table VII summarizes the results: the first row reports the throughput of the algorithm as it is proposed; rows 2-6 show the 

effects of removing, individually, five optimizations from kernel Step-1; rows 7-9 show the effects of removing, 

individually, three optimizations from kernel Step-2; the last row reports the throughput without all such optimizations.  

 
TABLE VII 

IMPACT OF SOME OPTIMIZATIONS: THROUGHPUT (MILLIONS OF MATCHES PER SECOND) MEASURED ON THE FIRST TEN QUERIES 

Optimizations 
Throughput 

(MMPS) 
Performance 

drop 

All proposed optimizations 9.003 - 

No 𝑐𝑗 ordering as in Section 4.6 8.250 8.4% 

𝑇𝑄 not accessed via texture cache 7.089 21.3% 

𝐋𝐔𝐓𝐒𝐪𝐫𝐭 not accessed via texture cache 8.827 2.0% 

𝐋𝐔𝐓𝜽 not accessed via texture cache 7.495 16.8% 

𝐷𝐵 stored as array of structures 8.685 3.5% 

No padding in 𝐁𝒔 (𝑝𝑎𝑑𝐁 = 0)  8.574 4.8% 

No 𝐁𝒔 (Kernel Step-2 uses 𝐁) 7.603 15.6% 

𝐋𝐔𝐓𝐩 not accessed via texture cache 8.991 0.1% 

None of the optimizations above 5.716 36.5% 

 

From the results in Table VII and the corresponding execution times, the following observations can be drawn: 

• the cylinder ordering scheme discussed in Section 4.6 reduces the execution time of kernel Step-1 of more than 8% and 

allows to gain about 750 KMPS of throughput; 

• the use of texture cache has a noticeable impact on performance, especially for 𝑇𝑄 and 𝐋𝐔𝐓𝜽; 

• storing 𝐷𝐵 as a structure of arrays (to allow coalesced memory read) helps, but less than expected considering that non-

coalesced accesses results in many more memory transactions. This is due to the nature of kernel Step-1, which is 

instruction-bound (see Appendix A), and has enough computation instructions to hide most of the higher memory 

latencies due to non-coalesced accesses. 

• if no padding is used to minimize shared bank conflicts in kernel Step-2, the total time required by the execution of this 

kernel over the ten queries grows from 9.46 ms (Table VI) to 13.89 ms (about 47% more); 

• if 𝐁𝒔 is not used, kernel Step-2 makes non-coalesced accesses to 𝐁 and this results in a 15.6% overall performance 

drop, with a huge growth of the execution time of this kernel (from 9.46 ms to 51.13 ms). In fact, being this kernel 

memory-bound, coalesced memory-access is fundamental. 
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5.4. Testing within a complete identification system 

In order to experiment the proposed algorithm in a realistic scenario, the prototype of a complete identification system 

was implemented. The system consists of three main modules: 

• Identification Query Manager (IQM) – maintains a queue of the queries received from the clients (each with the 

corresponding 𝑇𝑄); submits each request to the Identification Module; provides the results to the clients; 

• Identification Module (IM) – performs 1:N identification of 𝑇𝑄 against the templates in 𝐷𝐵 using MCC with LSS; 

provides match scores 𝑆 to the Refinement Module; 

• Refinement Module (RM) – considers the 𝐷𝐵 templates corresponding to the top 0.1% scores in 𝑆 and compares them 

to 𝑇𝑄 using MCC with LSS-DTR (see Section 2.2); provides the final result to IQM. 

IQM and RM run on the host and are implemented in C# and C++, using the Task Parallel Library (TPL) [29] to easily 

parallelize IQM and RM activities on the CPU. Four implementations of IM have been tested: two running on the host 

(using the baseline and the optimized CPU algorithm, respectively), and two using the proposed GPU algorithm (one on a 

single GPU and one dynamically dividing the workload among four GPUs installed on the same PC). 

The full benchmark described in Section 5.1 was used in the test: 𝑁 = 250 000 templates in 𝐷𝐵 and 100 000 queries 

(50 000 with a mate in 𝐷𝐵 and 50 000 without mate). Testing with both mated and non-mated queries is important to 

evaluate the biometric accuracy of the identification system, which can be assessed with two performance indicators [51]:  

• False Negative Identification Rate (FNIR) – percentage of queries with a mate in 𝐷𝐵 that are not correctly identified; 

• False Positive Identification Rate (FPIR) – percentage of queries without a mate in DB that are mistakenly identified. 

The same accuracy was obtained by all the algorithms experimented in IM: FNIR=1.25% and FPIR=0%. This level of 

accuracy is in line with large-scale identification results using a single finger [51] and with the accuracy of state-of-the-art 

fingerprint verification algorithms [18]. 

Table VIII reports the total time required by the system to complete all the queries and the corresponding throughput 

(thousands of matches per second). In the single GPU case, the throughputs are slightly higher than those measured on the 

first ten queries (Table V) because the average number of query cylinders on the whole benchmark (32.3) is smaller than 

that on the first ten queries (41.5). With the proposed GPU algorithm in IM, the system completes all the queries in about 

12 minutes using four GPUs and in 45 minutes with one GPU; more than one day is necessary with the optimized CPU 

algorithm, and more than 15 days with the baseline one. 

 
TABLE VIII 

COMPLETE IDENTIFICATION SYSTEM PROTOTYPE: TOTAL EXECUTION TIME AND THROUGHPUT FOR THE WHOLE BENCHMARK 

Algorithm used in IM Execution time (dd:hh:mm) Throughput (KMPS) 

Baseline algorithm on CPU 15:23:40 18.1 

Optimized algorithm on CPU 01:16:50 170.1 

Proposed algorithm on one GPU 00:00:45 9 304.6 

Proposed algorithm on four GPUs 00:00:12 35 221.4 

 

5.5. Comparison with previous works 

The efficiency of the proposed algorithm was compared to results published in the literature for other parallel fingerprint-

identification systems based on the main hardware architectures (FPGA, CPU, GPU). In particular, the following studies 

were considered: 

• Lindoso et al. (2007) [30], a FPGA-based fingerprint identification system, whose speed-up is measured with respect to 

a sequential algorithm running on a 3 GHz Intel Pentium IV processor; 

• Jiang and Crookes (2008) [26], a FPGA-based fingerprint identification system; to the best of our knowledge this is the 

fastest FPGA-based algorithm reported in the scientific literature; its speed-up is measured with respect to a sequential 

algorithm running on a 2.8 GHz Intel Celeron processor; 

• Peralta et al. (2014) [46], a CPU-based fingerprint identification system running on a cluster of 12 nodes, each 

equipped with two Intel Xeon E5-2620 processors (each node can run up to 24 parallel threads); three different 

algorithms were experimented in this study, but for simplicity in the following comparison only the fastest one is 

reported; the speed-up is measured with respect to a sequential execution of the same algorithm on a single CPU core; 

• Gutierrez et al. (2014) [22], a GPU-based fingerprint identification system; to the best of our knowledge, this is the 

only study published on scientific journals that reports fingerprint identification results on GPUs; results from all the 



three different GPU hardware configurations experimented in this study are reported in the following comparison; the 

speed-up is measured with respect to a sequential algorithm running on an Intel Xeon E5-2630 processor. 

Table IX compares the performance of the above systems to the proposed algorithm; each row of the table reports: 

• The size of the fingerprint database on which identification experiments were carried out; 

• The throughput (in thousands of fingerprints matched per second) of the sequential algorithm on CPU used to 

calculated the speed-up of the respective parallel algorithm, as reported in the corresponding paper; 

• A short description of the specific hardware used for the parallel algorithm; 

• The maximum number of threads that the hardware can execute in parallel (where applicable); 

• The throughput (in thousands of fingerprints matched per second) of the parallel algorithm, as reported in the 

corresponding paper; 

• The speed-up, simply measured as the ratio between the two throughputs. 

It is well evident that the proposed GPU algorithm overcomes all previous approaches, both in terms of absolute 

performance and in terms of relative speed-up. In particular, the following observations can be drawn. 

• Using just one GPU, the proposed algorithm is able to compare more than nine millions of fingerprints per second: it is 

two orders of magnitude faster than the GPU algorithm described in [22] and one order of magnitude faster than a 

cluster of 12 PCs running the algorithm described in [46]. On a PC with four GPUs the throughput is more than 35 

millions of fingerprints per second: with such a throughput, less than 0.3 seconds would be required to perform ten 

queries on a database with one million fingerprints.  

• The speed-up of the proposed algorithm is remarkable, especially if compared to the results in [22], which were 

obtained on GPUs with more computational power than those used in this work; for instance, on a GPU with 512 cores, 

[22] obtained a 50x speed-up, while the proposed algorithm shows a 514x speed-up on a GPU with 448 cores. 

• On a single GPU, the speed-up of the proposed algorithm over the optimized CPU implementation is 54.7x: even if the 

optimized CPU algorithm were considered as the reference, the speed-up would be higher than those of both single-

GPU results in [22]. 

 
TABLE IX 

COMPARISON WITH PREVIOUSLY PUBLISHED PARALLEL ALGORITHMS ON FPGAS, CPUS, AND GPUS. 

Method 
DB 
size 

Throughput of the 
baseline algorithm 

on CPU (KMPS) 
Hardware 

Parallel 
threads 

Throughput of the 
parallel algorithm 

(KMPS) 
Speed-up 

Lindoso et al. (2007) [30] 56 0.3 FPGA Xilinx Virtex-4 LX - 7.1 23.7 

Jiang and Crookes (2008) [26] 10 000 26.2 FPGA Xilinx Virtex-E - 1 219.5 46.5 

Peralta et al. (2014) [46] 400 000 4.5 
Cluster of 12 nodes based on 
Intel Xeon CPU E5-2620, 12 
cores (24 threads) per node 

288 812.7 180.6 

Gutierrez et al. (2014) [22] 100 000 1.6 

One GeForce GTX 680 GPU 1536 55.7 34.8 

One Tesla M2090 GPU 512 50.0 31.3 

Two Tesla M2090 GPUs 1024 97.7 61.1 

Proposed algorithm 250 000 18.1 
One Tesla C2075 GPU 448 9 304.6 514.1 

Four Tesla C2075 GPUs 1792 35 221.4 1 945.9 

 

 
6 Conclusions 

In this paper we introduced a new parallel algorithm for fingerprint identification optimized for GPUs. A careful design of 

the algorithm, data structures and memory usage allows the raw computational power of the GPU used to be fully 

exploited(the performance measured is close to the theoretical maximum).  

In our experiments on a PC with four GPUs, the prototype of a complete identification system achieved a throughput of 

more than 35 million fingerprint matches per second, more than two orders of magnitude higher than the best results 

reported for previously published GPU algorithms [22] [2]. With such a throughput, less than 0.3 seconds are required to 

perform ten queries on a database with one million fingerprints, thus enabling real-time fingerprint identification on large 

databases with low-cost hardware.  

Even if the optimizations described in this work are specific to the MCC fingerprint recognition algorithm, we believe 

that the optimization goals defined and the overall parallelization strategy adopted can be successfully applied for porting 



to GPU a wider class of pattern recognition algorithms, in particular those based on local feature matching, such as SIFT 

[31] and SURF [3]. 

In the future we plan to study multi-core CPU and multi-GPU solutions for multimodal biometric recognition (e.g., 

combining fingerprint and iris biometric traits). 
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Appendix A: Analysis of the execution time of kernel Step-1 

Let Ω be the total number of local similarities computed during an execution of kernel Step-1. The total amount of 

global memory bytes accessed by the kernel is: 

𝑀𝑅𝑊 = 𝑁𝐶 ⋅ 44 + (Ω + 𝑁𝐶) ⋅ 4 + Ω ⋅ 36 + Ω ⋅ 4 + Ω ⋅ 8  (4) 

The five terms of the sum in (4) correspond to (see also Table II): (i) reading all 𝐷𝐵 cylinders, (ii) reading values from 

𝐋𝐔𝐓𝜽 (including the special value denoting the end-of-list, which each of the 𝑁𝐶 threads has to read before exiting its 

ForEach loop), (iii) reading a query cylinder each time a local similarity has to be computed, (iv) reading 𝐋𝐔𝐓𝐒𝐪𝐫𝐭 values, 

and (v) incrementing values in 𝐁. 

An analysis of the assembly code of the kernel shows that the number of arithmetic and control flow instructions 

executed by a thread is 𝑁𝐼𝑇 ≅ 31 + 𝜔 ⋅ 61, where 𝜔 is the number of iterations in the ForEach loop (line 4 in Fig. 8). The 

total number of arithmetic and control flow instructions executed by the kernel is 𝑁𝐼𝐾 ≅ 𝑁𝐶 ⋅ (31 + �̅� ⋅ 61), where �̅� is 

the average number of iterations, among all warps, in the ForEach loop. 

In the following, the above equations are used to analyze the execution time of the first query of the benchmark. In 

such query, Ω = 70 965 592; then 𝑀𝑅𝑊 ≅ 3.8 GB, considering that 𝑁𝐶 = 8 056 696 (Table IV). Note that 𝑀𝑅𝑊 is the 

total number of global memory bytes requested to be read or written by the kernel: the actual amount of global memory 

accessed can be very different, due to non-coalesced memory accesses (which increase it), and caching (which decreases 

it). According to the profiler [45], the actual amount of global memory accessed during the query is 𝑀𝑅𝑊
′ = 1.22 GB, 

about one third of 𝑀𝑅𝑊, confirming that the proposed algorithm and data structures fulfill OG2. For the same query, �̅� =
16.14, then 𝑁𝐼𝐾 ≅ 8.2 ⋅ 109. The ratio 𝑅𝐾 = 𝑁𝐼𝐾: 𝑀𝑅𝑊

′  is about 6.7; this ratio is useful to understand if the kernel is 

memory-bound or instruction-bound, that is if its performance is limited by memory throughput or by instruction 

throughput, respectively [38]. To this purpose, 𝑅𝐾 is compared to the ratio 𝑅𝑃 between peak instruction throughput and 

peak memory throughput of the device: kernels with 𝑅𝐾 < 𝑅𝑃 are usually memory-bound, kernels with 𝑅𝐾 > 𝑅𝑃 are 

usually instruction-bound [38]. For the GPU used in this study, 𝑅𝑃 = 515: 144 ≅ 3.6 (see Table I), hence kernel Step-1 is 

definitely instruction-bound2. The execution time of an instruction-bound kernel is limited by the maximum instruction 

throughput of the device, which varies according to the instruction type (e.g., an integer add requires one clock cycle, 

while an integer multiply requires two cycles [43]). An analysis of the assembly code showed that the mix of instructions 

in kernel Step-1 requires, on the average, 𝐶𝑃𝐼 =
1.58+�̅�⋅1.48

�̅�+1
 clock cycles per instruction, which is about 1.5 for any 

reasonable value of �̅�, including that of the query we are considering. The theoretical lower bound to the execution time 

of the kernel, assuming that all memory latencies are hidden by computation, and disregarding any warp- or block-

scheduling latencies, is 𝑇𝐿𝐵 ≅
𝑁𝐼𝐾⋅𝐶𝑃𝐼

32⋅𝑁𝑆𝑀⋅𝐹𝐶
, where 𝑁𝑆𝑀  is the number of SM and 𝐹𝐶 the GPU clock frequency. Since 𝑁𝑆𝑀 =

14 and 𝐹𝐶 = 1.15 GHz (see Table I), 𝑇𝐿𝐵 ≅ 23.9 ms. 𝑇𝐿𝐵 represents the minimum possible execution time on the given 

GPU hardware. The actual execution time of the kernel, for the query considered, is 27.1 ms. In conclusion, our execution 

time is just 13% higher than the theoretical hardware limit 𝑇𝐿𝐵, thus confirming that we are effectively exploiting the 

computational power of the device.  

  

 

2 An example of memory-bound kernel is kernel Step-2, which has a ratio 𝑅𝐾 ≅ 2.2. 
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