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Abstract 

Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone 

engineering has proven to be extremely useful. The present study aimed at investigating the 

effect of 30 mW/cm2 LIPUS stimulation on commercially available human mesenchymal 

stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time 

points (7d, 14d, 21d). The hypothesis was that LIPUS would improve the osteogenic  

differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, 

as demonstrated by cell vitality and proteomic analysis . LIPUS stimulation (a) regulated the 

balance between osteoblast commitment and  differentiation by specific networks (activations 

of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic 

process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) 

allowed the maintenance of a few percentage of osteoblast precursors (21d CD73+/CD90+: 

6%; OCT-3/4+/NANOG+/SOX2+: 10%); (c) induced the activation of osteogenic specific 

pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, 

MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of 

osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS 

might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same 

time, enhance their osteogenic differentiation. This article is protected by copyright. All rights 

reserved 

Key words: mesenchymal stem cells, low-intensity pulsed ultrasound, osteogenic 

commitment, osteoblast differentiation, proteomic analysis 



Introduction 

Mesenchymal Stem Cells (MSCs) are multipotent adult stem cells commonly used for tissue 

engineering applications, which have been demonstrated to differentiate into osteoblasts, 

adipocytes or chondrocytes depending on the culture condition (Alvarez et al., 2015; 

McNamara et al., 2010). MSCs are characterized by self-renewal capability, the process by 

which stem cells proliferate and create further stem cells, maintaining their undifferentiated 

and multipotent state (Kuhn and Tuan, 2010; Pittenger et al., 1999). 

The way stem cells participate in tissue generation, maintenance and repair, saving 

themselves from depletion and protecting the host from over-exuberant stem-cell proliferation, 

is regulated by a specific anatomic entity defined by Schofield in 1978 and described by 

Scadden in 2006 as stem-cell niche (Scadden, 2006; Schofield, 1978). Stem-cells receive 

specific signals from physical and biochemical clues of this niche environment by direct 

contact with basal membrane proteins and by binding with soluble mediators like growth 

factors and cytokines, or insoluble extracellular matrix proteins, acting like paracrine 

regulators of stem-cell function (Griffin et al., 2015).  

Alternatively, adult stem or progenitor cells, such as MSCs, represent a promising resource 

for new bone formation via cell-based tissue engineering. These cells can be isolated from 

various adult tissues and are able to promote tissue repair through trophic effects on other cell 

types and immune-regulatory activities (Griffin et al., 2015). Until now, tissue engineering 

approaches were characterized by the use of hMSCs isolated by different tissues, alone or in 

combination with a biomimetic scaffold and/or a physical approach (such as ultrasound, 

pulsed electromagnetic fields or others), in order to accelerate bone restoration (Baker et al., 

2015). 

Therefore, it is fundamental to understand how to control and guide the fate of stem cells in 

culture by providing external stimuli, i.e. using specific surface topography and chemistry 

with the help of biomimetic biomaterials, or delivering chemical and genetic clues in the form 

of growth factors and cytokines (Griffin et al., 2015; Papadimitropoulos et al., 2014). The loss 

of MSC properties in vitro, probably due to the absence of the niche environment, might limit 

the utility of MSCs in cell-based regenerative medicine (Wang et al., 2014b). To avoid this 

phenomenon, three-dimensional environments (i.e. bioreactors) have been proposed to expand 

MSC, but these approaches require an initial phase of MSC growth on plastic, which is 

inevitably associated with the selection of adherent cellular fractions, already depleted of their 

earlier progenitors properties (Di Maggio et al., 2012).



Recently, it has been showed that low intensity pulsed ultrasound (LIPUS) is able to 

positively influence the maintenance of MSC stemness (Kusuyama et al., 2015). LIPUS 

stimulation at 30 mW/cm2 is an established, widely used and FDA-approved therapeutic 

treatment for accelerating bone healing in fractures and in delayed or established non-unions 

(Angle et al., 2011; Augat et al., 2005; El-Mowafi and Mohsen, 2005). LIPUS is a form of 

mechanical energy that is transmitted through and into living tissues as an acoustic pressure 

wave with compressions. It is able to induce micromotion on the extra cellular matrix (ECM), 

produce stable cell cavitation and increase cell permeability with pathways activation 

(mechanotransduction) (Azuma et al., 2001; Claes and Willie, 2007; Rawool et al., 2003). 

These changes lead to downstream alterations in gene expression, resulting in an acceleration 

of bone repair by up-regulating bone specific genes and signaling pathways such as the 

mitogen-activated protein kinase (MAPK) cascade (Angle et al., 2011; Appleford et al., 2007; 

Claes and Willie, 2007; Fung et al., 2014; Hu et al., 2014; Uddin and Qin, 2013). Additional 

reports suggest that ultrasound alters cellular membrane properties (cellular adhesion, 

membrane permeability, calcium flux, and proliferation), activating signal-transduction 

pathways that lead to proteomes regulation (Fischell et al., 1991; Maxwell et al., 1994). 

Importantly, exposure to ultrasound caused an increase in intracellular calcium in many cells 

types, such as fibroblast, monocyte and mesenchymal stem cells, suggesting that the 

mechanical effects disrupt the normal function of the membrane, permitting leaking of 

calcium into the cell. Cells employ calcium as a cofactor in regulating the activity of enzymes, 

many of which are associated with signal-transduction pathways and relative proteomes 

modulation (Johns, 2002). Regarding these aspects, through mass spectrometry (MS) based 

proteomic methods, it was attempted to define the expression profiling of membrane proteins 

in MSCs undergoing osteoblast differentiation, illustrating the effects of many growth factors 

on this process (Foster et al., 2005; Kratchmarova et al., 2005; Salasznyk et al., 2005). A 

comparison of the protein expression profiles in undifferentiated and fully differentiated 

hMSC might reveal expressional differences that provide important clues into the mechanism 

underlying the process from stem cells to osteoblasts. 

The overall purpose of this study was to verify whether LIPUS stimulation was able to 

allow the osteoblast lineage commitment of hMSCs and differentiation. To this end, LIPUS 

with spatially averaged and temporally averaged (SATA) intensity of 30 mW/cm2 was applied 

to hMSCs cultured in basal or osteogenic medium at different experimental time points. The 

MSC differentiation response to short- and long-term LIPUS stimulation was analyzed in 

terms of (a) changes in the expression of protein markers, through MS-based quantitative 



proteomic technologies, in order to identify protein networks; and (b) the modulation of 

different stem cell markers (CD73, CD90, CD105, OCT-3/4, NANOG, SOX2) and osteogenic 

pathways; both activated by LIPUS (Kuhn and Tuan, 2010; Liu and Lee, 2014; Pricola et al., 

2009; Scherzed et al., 2016; Yoon et al., 2014).  

Material and Methods 

Cell culture 

Commercially available Human Mesenchymal Stem Cells (hMSC, Lonza, Walkersville, MD 

USA) were cultured in Mesenchymal Stem Cell Growth Medium (MSCGM™ Bullet 

Kit, Lonza, Walkersville, MD USA) to expand them without inducing differentiation. The 

culture medium was changed every 3 days, and cells were split at 80–90% of 

confluence using StemPro Accutase (Gibco by Life Technologies, Grand Islands, NY USA). 

hMSCs were used at an early passage (P5) for all experiments. To obtain osteogenic 

differentiation, hMSCs were treated with hMSC Mesenchymal Stem Cell Osteogenic 

Differentiation Medium (OM) (hMSC Osteogenic Differentiation BulletKit™, Lonza, 

Walkersville, MD USA). 

LIPUS treatment 

The LIPUS exposure device, manufactured by IGEA SpA (Carpi-Modena, Italy), consists of 

an array of 5 transducers (25 mm), which are specifically designed for stimulating cell 

cultures in a 48-well plate (Fig.1). The LIPUS signal consisted of 200 μs burst of 1.5 MHz 

sine waves repeating at 1 kHz and delivering 30 mW/cm2 SATA intensity.  

Twenty-four hours before LIPUS treatment, hMSC cells were seeded in 48-well plates 

(diameter = 11.0 mm, surface area = 95 mm2, and thickness of the well bottom = 1.2 mm) at 

different concentrations according to the different time points: 24 hours: 10000 cells/well; 

7 days: 8000 cells/well; 14 days: 4000 cells/well; and 21 days: 2000 cells/well. For 

each experimental time point, hMSC cultures were divided in 4 groups: (a) Untreated 

MSCGM group (Control): cells were cultured in MSCGM and not exposed to LIPUS 

treatment; (b) LIPUS MSCGM group: cells were cultured in MSCGM and treated 

with LIPUS; (c) Untreated OM group: cells were cultured in OM and not exposed to 

LIPUS treatment; (d) LIPUS OM group: cells were cultured in OM and treated with 

LIPUS. Culture plates were then placed on the ultrasound transducer array with a thin layer 

of standard ultrasound gel and exposed to LIPUS for 20 min/day for 5 consecutive days/

week. The untreated groups were handled in the same way, but the ultrasound generator was 

switched off. At the end of LIPUS 



stimulation time, a culture plate for each group was cultured for further 7 days at the same 

condition in the incubator but without LIPUS exposure (indicated as ‘off’). 

hMSC viability (WST-1 test) 

WST-l colorimetric reagent (Roche Diagnostics GmbH, Manheim, Germany) was used to 

evaluate cell viability. Briefly, WST-1 reagent (10% vol/vol) was added to the cell monolayer 

in each well. After 4 hours of incubation, the formazan dye produced by viable cells was 

quantified spectrophotometrically at 450 nm by Bio-Rad Microplate Reader (Bio-Rad 

Laboratories, Hercules, CA, USA) and results were reported as percentage of viable cells 

compared to Untreated MSCGM group.  

DNA concentration (PicoGreen assay) 

DNA content was quantified by fluorometry using a Quant-iT PicoGreen dsDNA Assay Kit 

(InvitrogenTM, Life Technologies - EuroClone S.p.A, Pero-Milan, Italy). After sample 

washing with PBS, 100 μL of lysis solution was added to each well and cell lysis was then 

completed by 3 freezes–thaw cycles at -80°C. DNA content was calculated from the lysates 

by adding 100 μL of fluorescent nucleic acid stain to each sample. Fluorescence was 

measured using a GloMax multiwell plate reader (GloMax, Promega Corporation Madison, 

WI, USA). 

hMSC characterization 

To demonstrate hMSC phenotype maintenance, CD73, CD90 and CD105 antigen expressions 

were assessed using a Human MSC Analysis Kit (BD Bioscience 562245), whereas to 

analyze the stem cell transcriptional factor expression a Human Pluripotent Stem Cell 

Transcription Factor Analysis Kit (BD Bioscience 560589) was used. Briefly, a suspension of 

1x106 cells was washed in PBS and re-suspended in flow cytometry buffer (FCB: 2% BSA in 

PBS) containing 0.5 µg/ml of conjugated antibody directed against CD73, CD90 and CD105, 

or specific conjugated IgG as isotype control. For the stem cell transcription factors analysis, 

a manufacturing protocol was followed. Cell fluorescence was evaluated by FlowSight 

(Amnis Corporation, Merck Millipore, USA) and data were analyzed using a Quantitative 

Imaging software (Amnis Corporation, Merck Millipore, USA). 

Mineralization of differentiating hMSC cultures was assessed by the OsteoImage™ 

Mineralization Assaykit (Lonza) based on fluorescent staining of hydroxyapatite deposited by 

cells in bone-like nodules, which was then measured by a Glomax multiwall plate reader at 

492/520nm excitation/emission.  



Reverse Transcriptase - quantitative Polymerase Chain Reaction (RT-qPCR) Analysis 

Total RNA was extracted using a PureLinkTM RNA Micro Kit (InvitrogenTM) and reverse-

transcribed with a High Capacity cDNA Reverse Transcription Kit (Applied BiosystemsTM, 

Life Technologies - EuroClone S.p.A, Pero-Milan, Italy) following the manufacturer’s 

instructions. Each cDNA sample was tested in duplicate.  

qRT-PCR analysis was performed by Light Cycler 2.0 Instrument (Roche Diagnostics) using 

the SYBR® Green Real-Time PCR Master Mix (Applied BiosisystemsTM), QuantiTect 

Primers (Qiagen Srl, Milan, Italy) and custom made primers (InvitrogenTM) (see Tables 1 and 

2).  The mean threshold cycle was used for the calculation of relative expression using the 2-

ΔΔCt method, against GAPDH as housekeeping gene (Livak and Schmittgen, 2001). Results 

were expressed as relative fold changes calculated using untreated MSCGM samples as 

calibrators for each experimental time point. 

ELISA assays 

Protein release in the culture medium was measured for alkaline phosphatase (ALP kit - 

SEB472Hu), collagen type I alpha 1 (COL1a1 kit - SEA350Hu), osteopontin (OPN kit - 

SEA899Hu) together with the cellular content of osteocalcin (OC kit - SEA471Hu) using a 

Cloud-Clone Corp ELISA KIT assay (Cloud-Clone Corp. Houston, TX, USA), according to 

the manufacturer’s instructions. The values obtained were normalized to medium protein 

content evaluated by Bradford assay.  

Proteomic analyses 

Protein extraction and digestion 

All chemicals used for protein extraction and digestion were of analytical grade, and Milli-Q 

water was employed in all buffers and solutions. At 14 days (Carina V et al. 2017 accepted), 

the cells of all groups were dissolved in 100 μL of 50% tetrafluoroethylene (Sigma-Aldrich) 

in PBS, vigorously vortexed and sonicated for 7 min in an ice bath and finally incubated with 

constant shaking for 2 h at 60 °C. Proteins were reduced with 5 mM dithiothreitol (Sigma 

Aldrich SRL, Milan, Italy) for 30 min at 60 °C and alkylated with 25mM iodoacetamide 

(Sigma-Aldrich) for 30 min in the dark at room temperature. Before adding mass 

spectrometry-grade trypsin (Pierce™ Trypsin Protease, Fisher Scientific Italia, Rodano-Milan, 

Italy), the samples were diluted 5-fold with 100 mM ammonium bicarbonate pH 8.0. Protein 

samples were digested by adding trypsin at a ratio of 1:50 (w/w) for 18 h at 37 °C with 

constant shaking, in presence of 2 mM CaCl2. To stop digestion 50 μL of 2.5% trifluoroacetic 

 



acid (TFA HPLC Grade, Sigma-Aldrich) were added to the samples. Digested samples were 

then centrifuged at 14,000g for 10 min at 4 °C. The resulting supernatant, containing the 

peptide mixture, was extracted using the 100 μL Bond Elute OMIX C18 pipette tips (Agilent 

Technologies Italia SpA, Cernusco sul Naviglio – Milan, Italy). Eluted peptide mixtures were 

vacuum dried and reconstituted in 5% acetonitrile 0.1% formic acid for mass spectrometry 

analyses. Duplicates of each sample were used for the following proteomic analysis. 

Generation of the reference spectral library  

Approximately 2 μg of tryptic peptides of each sample were run for Data-Dependent 

Acquisition (DDA) analysis. The resulting list of protein/peptides was used for construction 

of the Sequential Window Acquisition of all THeoretical (SWATH) reference spectral library. 

The sample was analyzed via reverse-phase high-pressure liquid chromatography electrospray 

ionization tandem mass spectrometry (RP-HPLC-ESI-MS/MS) using a TripleTOF® 5600 

mass spectrometer (AB SCIEX, Milan, Italy). The mass spectrometer was coupled to a 

nanoLC Eksigent 425 system (AB SCIEX). RP-HPLC was performed with a trap and elution 

configuration using an Acclaim™ PepMap™ 100 Nano Trap Column 100 µm x 2 cm, C18, 5 

µm, 100 Å (Fisher Scientific Italia) and an Acclaim™ PepMap™ RSLC Nano Column 75 µm 

x 250 mm, C18, 2 µm, 100 Å (Fisher Scientific Italia). The reverse-phase LC solvents were: 

solvent A (0.1% formic acid in water) and solvent B (2% water and 0.1% formic acid in 

acetonitrile). The sample was loaded in the trap column at a flow rate of 5 μL/min for 10 min 

using a solvent, from loading pump, containing 2% acetonitrile and 0.1% v/v TFA in water 

and eluted at a flow rate of 300 nL/min using a gradient method according to which solvent B 

is linearly increased from 2% to 10% within 10 min, from 10% to 30% within 110 min and 

then to 60% within 15 min; afterwards, phase B is further increased to 95% within 2 min. 

Phase B is maintained at 95% for 10 min to rinse the column. Finally, B is lowered to 2% 

over 2 min and the column re-equilibrated for 21 min (170 min total run time). The eluting 

peptides were on-line sprayed in the Triple TOF 5600 Plus mass spectrometer, that it is 

controlled by Analyst TF 1.7 software (AB SCIEX).  

Each of the four samples used to generate the SWATH-MS spectral library was subjected to 

two DDA runs. For these eight experiments, the mass range for MS scan was set to m/z 400–

1250 and the MS/MS scan mass range was set to m/z 230–1,500. Using the mass 

spectrometer, a 0.25 s survey scan (MS) was performed, and the top 50 ions were selected for 

subsequent MS/MS experiments employing an accumulation time of 0.065 s per MS/MS 

experiment for a total cycle time of 3.5485 s. Precursor ions were selected in high resolution 



mode (>30,000), tandem mass spectra were recorded in high sensitivity mode (resolution 

>15,000). The selection criteria for parent ions included an intensity of greater than 500 cps

and a charge state ranging from + 2 to + 5. A 15 s dynamic exclusion was used. The ions were 

fragmented in the collision cell using rolling collision energy, and a collision energy spread 

(CES) of 5 V. 

Eight DDA MS raw files were combined and subjected to database searches in unison using 

ProteinPilot™ 4.5 software (AB SCIEX) with the Paragon algorithm by using the following 

parameters: iodoacetamide cysteine alkylation, digestion by trypsin and no special factors. 

The search was conducted through identification efforts in a UniProt Swiss-Prot database 

(http://www.uniprot.org/, downloaded in July 2014, with 137216 protein sequence entries) 

containing whole Homo sapiens proteins. A false discovery rate analysis was also performed.  

SWATH-MS analysis and targeted data extraction 

Two replicates of each sample were subjected to the cyclic data independent acquisition 

(DIA) of mass spectra. Data were acquired by repeatedly cycling through 40 consecutive 15-

Da precursor isolation windows (swaths). For these experiments, the mass spectrometer was 

operated using a 0.1 s survey scan (MS). The subsequent MS/MS experiments were 

performed across the mass range of 100 to 1600 m/z on all precursors in a cyclic manner 

using an accumulation time of 0.03 s per SWATH window for a total cycle time of 1.3490 s. 

Ions were fragmented for each MS/MS experiment in the collision cell using rolling collision 

energy, and CES was set to 15. The spectral alignment and targeted data extraction of DIA 

samples were performed using PeakView v.2.2 (AB SCIEX) with the reference spectral 

library. All eight DIA files were loaded and exported in .txt format in unison using an 

extraction window of 15 min and the following parameters: three hundred peptides/protein, 

seven transitions/peptide, peptide confidence level of 90%, excluded shared and modifies 

peptides, and an extracting ion current (XIC) width of 75 ppm. This export procedure 

generated three distinct files containing the quantitative output for (1) the peak area under the 

intensity curve for individual ions, (2) the summed intensity of individual ions for a given 

peptide, and (3) the summed intensity of peptides for a given protein. For each protein, seven 

individual ion intensities were summed as peptide intensity, until three hundred peptides 

intensities were summed as protein intensity. The protein list with False Discovery Rate 

(FDR) lower than 5% generated by analyzing SWATH data with PeakView 2.2, was exported 

to MarkerView 1.2.1 (AB SCIEX) for statistical analysis. 



Statistical analysis 

Statistical analysis was performed using the IBM SPSS Statistics 23 software. Data are 

reported as mean ± standard deviation (SD) with of p < 0.05 considered significant. The 

Kolmogorov-Smirnov test was performed to test variables normality. The General Linear 

Model (GLM) with adjusted Sidak’s multiple comparison test with ‘group’ (Untreated OM, 

LIPUS MSCGM and LIPUS OM) and ‘experimental time’ (24h, 7d, 14, 14d on +7d off, 21d 

and 21d on +7d off) as fixed effects, was performed to assess the influence of LIPUS 

treatment on hMSCs osteogenic differentiation. Precision of the reported coefficients was 

assessed by creating 1,000 bootstrap samples from the entire data set and repeating the 

estimation process. Standard errors of the means and significances were obtained using this 

bootstrap method of the corresponding sampling distributions. In particular, the following 

comparisons were taken into account: 

 within each ‘experimental time’: LIPUS OM versus Untreated OM and LIPUS MSCGM;

 within each ‘group’: 14d versus 7d; 21d versus 14d; 14d on +7d off versus 14d; 21d on

+7d off versus 21d; 14d on +7d off versus 21d; 21d on +7d off versus 14d on +7d off.

Regarding the analysis of protein list, a pairwise t-test and principal component analysis

(PCA) were done by using MarkerView 1.2.1 software. Heat map clustering of all quantified 

proteins was performed by using Heatmapper free available web server 

(http://www.heatmapper.ca). Mean of replicates was used for performing the following paired 

comparison: (i) Untreated MSCGM versus Untreated OM; (ii) Untreated MSCGM versus 

LIPUS MSCGM; (iii) LIPUS MSCGM versus Untreated OM; (iv) LIPUS OM versus 

Untreated OM; (v) LIPUS MSCGM versus LIPUS OM of all different growth conditions. 

Fold Change (FC) thresholds at 1.5 with an adjusted p-value < 0.05 were used to consider a 

protein up or down-regulated. The molecular interaction networks among the significantly 

modulated proteins was analyzed by STRING v10 (Search Tool for the Retrieval of 

Interacting Genes/Proteins; http://string-db.org/) using the confidence level > 0.7. Of note, the 

reported networks not include all proteins significantly up- or down-modulated since 

disconnected nodes are hidden for visualizing molecular interactions. 



Results 

Proteomics Analysis 

To understand the proteomes patterns of hMSCs maintained in MSCGM and OM or after 

LIPUS treatments, a SWATH quantitation for all samples was performed. A list of 787 

proteins was identified, as reported in Supplementary Table 1 online (sheet “Spectral 

reference library”). In addition, data were validated by using Peakview 2.2 software, 

obtaining a quantitative information for 555 proteins (Supplementary Table 1 online, sheet 

“Protein quantification”). Then, PCA and heat map clustering were carried out to acquire a 

comprehensive structure of the behavior of all quantified proteins under different growth 

conditions. PCA projection demonstrates that the maximum variability in the dataset, 

regardless of exposure to LIPUS, occurs between cells grown in presence of MSCGM or OM 

with the first component covering 68.1% of the data variance (Fig. 2a). This result is also 

reflected in the Heat Map, where two major clusters separating the protein abundance profile 

of hMSCs grown in presence of MSCGM (both Untreated and LIPUS) and OM (both 

Untreated and LIPUS) can be observed (Fig. 2b). The lists of proteins obtained for each 

paired comparison were found differentially expressed (Supplementary Table 1, sheet 

“Protein quantification”).  

The comparison “Untreated MSCGM versus Untreated OM” was considered as the 

“reference comparison” since cells in MSCGM maintained their sternness, while in OM were 

induced to osteogenic differentiation. Thus, the protein profile of LIPUS MSCGM cells was 

compared to which of cells grown in Untreated OM, as well as to Untreated MSCGM cells in 

order to better define the molecular strategies through which LIPUS specifically affects the 

hMSCs behavior. Venn diagrams reported in Figure 3 highlighted that about 38% of proteins 

modulated in the Untreated MSCGM versus LIPUS MSCGM comparison (13 up-regulated 

and 5 down-regulated out of 50 differentially expressed) showed the same trend in the 

reference comparison, indicating that compared to the basal condition (Untreated MSCGM) 

the addition of LIPUS induced effects comparable to osteogenic differentiation, as already 

reported in several published studies (Azuma et al., 2001; Rutten et al., 2009).  In details, 

SWATH-MS analysis showed some significantly LIPUS-modulated proteins specifically 

related to osteogenic differentiation: (a) Cytoskeletal reorganization proteins that 

directly stimulates osteoblastic differentiation (CCT2, CALD1 and CTTN 9) (Higuchi et al., 

2009); (b) Galectin 3, which is involved in osteogenesis and formation of bone nodules 

(LGALS3) (Aubin et al., 1996);  



(c)Profilin 1, which is down-regulated in osteogenic differentiation process (PFN1) (Lin et al., 

2016); and (d) Osteonectin, a marker of osteogenic differentiation (SPARC) (Delany et al., 

2003; Jundt et al., 1987;

Kessler and Delany, 2007) (Supplementary Table 2 and Figure S1). 

 In the LIPUS MSCGM versus Untreated OM comparison it was interesting to note that 

about 58% of modulated proteins (45 up-regulated and 30 down-regulated out of 128 

differentially expressed) showed the same trend in the reference comparison. Moreover, 

STRING analysis of the modulated protein dataset, showing only high confidence functional 

connections (confidence score ≥ 0.7), highlighted two interesting aspects.  

The first one concerned the down regulation in LIPUS MSCMG cells, of proteins associated 

to Ras homolog gene family, member A (RhoA) protein and its activity as a positive regulator 

of hMSCs osteogenic differentiations (Fig. 4a) (Chen et al., 2011). In particular, it was found 

that the triple functional domain protein (Trio), a specific RhoA activator, was down-

regulated in undifferentiated hMCSs (-14 fold/p=0.0106 in Untreated MSCGM cells versus 

Untreated OM cells; Supplementary Table 1, sheet “Protein quantification”), as well as in 

presence of LIPUS (-25.4 fold/p=0.0060 in LIPUS MSCGM cells versus untreated OM cells; 

Supplementary Table 1, sheet “Protein quantification”). It was interesting to find that also in 

hMSCs grown in LIPUS OM there was a consistent down-regulation of TRIO in comparison 

to cells grown in Untreated OM (-42.6 fold/p=0.0058 in LIPUS OM cells versus untreated 

OM cells; Supplementary Table 1, sheet “Protein quantification”).  

The second aspect emerged from STRING analysis was that in comparison to OM 

stimulation, Untreated MSCGM cells (Fig. 4b) and LIPUS MSCGM cells (Fig. 4c) were 

characterized by the up-regulation of proteins forming four overlapping functional networks: 

Ribosome constituent/Protein metabolic process (green area: 36 proteins in Untreated 

MSGCMG cells and 27 in LIPUS MSGCMG cells), Glycolysis/Gluconeogenesis (blue area: 4 

proteins in both cells), RNA metabolic process/Splicing (pink area: 9 proteins in Untreated 

MSGCMG cells and 3 in LIPUS MSGCMG cells), tubulins (yellow area: 3 proteins in 

Untreated MSGCMG cells and 2 in LIPUS MSGCMG cells). 

Cell viability and dsDNA content 

Cell viability was higher in all groups in comparison with Untreated MSCGM at 7, 14 and 21 

days (Fig. 5a), followed by a constant decrease. A progressive increase in dsDNA content 

within 21 days was observed in Untreated OM (Fig. 5b), even though dsDNA content values 

were lower than those in Untreated MSCGM (except at 21days). When LIPUS stimulation 

was applied, an increase in dsDNA content was observed compared to Untreated MSCGM, 



where dsDNA remained constant even after LIPUS stimulus was stopped. The simultaneous 

presence of OM medium and LIPUS stimulation (LIPUS OM) determined significant changes 

in hMSC dsDNA content compared to Untreated OM (21d: -73%, p < 0.0005; 14d ‘on’ + 7d 

‘off’: 139%, p < 0.0005) and LIPUS MSCGM (7d: -32%, p < 0.05; 14d: d= -33%, p < 0.005; 

21d: d= -68%, p < 0.0005).  

hMSC characterization 

Flow cytometry results showed that hMSCs were positive for the MSC markers CD73 (40 - 

54%), CD90 (27 - 48%) and CD105 (31 - 84%), and for the stem cell transcriptional factors 

NANOG (10–34%), SOX2 (10–34%) and OCT-3/4 (28 - 61%) at 21 days. Figure 6 (a-d) 

shows a percentage of hMSC positive gates for CD73, CD90 and CD105 at 21 days. The 

double positive hMSC populations co-expressing stem cell markers showed a similar 

decreasing trend over time and among cultures, whereas those co-expressing stem cell 

transcriptional factors showed an increasing trend with the highest values in LIPUS-treated 

cultures (Fig. 6e). 

OsteoImage™ Mineralization assay showed that hMSCs maintained in OM had more calcium 

nodule formation than those cultured in MSCGM medium (Fig. 7). In all groups, significant 

increases in mineralization were observed over time. The LIPUS OM group presented the 

highest hydroxyapatite content compared to Untreated OM (7d: 39%; 14d: 20%; 21d: 7%) 

and LIPUS MSCGM (7d: 30%; 14d: 64%; 21d: 37%) groups at each experimental time. 

RT-qPCR analysis 

LIPUS stimulation induced an increase in gene expression of RUNX2, ALPL, COL1A1 and 

BGLAP compared to Untreated MSCGM at 7 (COL1A1 and BGLAP) and 21 days (RUNX2, 

ALPL and COL1A1) (Fig. 8). In Untreated OM and LIPUS OM a lower expression of RUNX2 

compared to Untreated MSCGM was found, which increased after the cessation of LIPUS 

stimulation and/or differentiating medium (Fig. 8a). A significantly lower value in the 

expression of RUNX2 at 21days was observed between LIPUS OM and LIPUS MSCGM. The 

combination of LIPUS stimulation with OM (LIPUS OM) led to an increase in ALPL 

expression compared to Untreated OM (40%, p < 0.05) and LIPUS MSCGM (97%, p< 0.05) 

(Fig. 8b). Changes in the expression of ALPL observed over time showed a maximum 

increase in expression at 21 days with a significant decrease 7 days after the cessation of any 

stimuli (p < 0.005). The expression of COL1A1 was greater in LIPUS MSCGM than in 

LIPUS OM (68%, p < 0.05) and it was lower in LIPUS OM and Untreated OM compared to 



the Untreated MSCGM group, except for the expression at 21 days (Fig. 8c). SPP1 presented 

the highest expression at 7 days (46 -fold increase), decreasing after 14 days of culture with 

values lower than the control group (Untreated MSCGM) (Fig. 8d). Similarly, BGLAP 

expression levels (Fig. 8e) decreased significantly from 7 to 14 days, but in LIPUS OM the 

decrease did not occur until the cessation of LIPUS and OM stimuli, but remained constant at 

7, 14 and 21 days. 

LIPUS treatment and OM medium induced an up-regulation overtime of MAPK1 in all groups 

in comparison with Untreated MSCGM, reaching its highest values 7 days after the cessation 

of stimuli administered up to day 21 (Fig. 9a). In particular, the highest MAPK1 expression 

was found in Untreated OM at 21days ‘on’ + 7 days ‘off’ (p < 0.0005) compared to LIPUS 

OM. Conversely, both stimuli determined a down-regulation of MAPK6 in Untreated OM and 

LIPUS MSCGM, which resolved after the cessation of stimuli (Fig. 9b). The MAPK6 

expression in LIPUS OM group showed a different trend with a progressive up-regulation, 

reaching the highest value at 14 days compared to LIPUS MSCGM (p < 0.05), followed by a 

down-regulation overtime.  

ELISA assays 

ELISA results are reported in Figure 10. No significant increases in the production of ALP 

were observed in any of the groups other than Untreated MSCGM. In Untreated OM, 

COL1a1 synthesis was increased by about 2.4%, compared to Untreated MSCGM, whereas 

LIPUS stimulation increased COL1a1 synthesis by 0.5% (LIPUS MSCGM). COL1a1 release 

increased by 2.6% in LIPUS OM compared to Untreated MSCGM; this was very different 

from LIPUS MSCGM (369%, p < 0.005). In all groups, high and modest increases in OC and 

OPN release, respectively, were observed. OC synthesis results indicated that OM medium 

(Untreated OM) or LIPUS treatment (LIPUS MSCGM and LIPUS OM) produced on average 

a similar OC increase by approximately 30% compared to Untreated MSCGM. Conversely, in 

Untreated OM or LIPUS MSCGM, OPN release was 2% compared to Untreated MSCGM, 

whereas the combined OM and LIPUS stimuli (LIPUS OM) determined only a 0.5% increase, 

which was significantly lower by about 70% (p < 0.05) compared to the Untreated OM and 

LIPUS MSCGM groups.  



Discussion 

Different studies have been performed on the effects of LIPUS on cells attempting to describe 

the cellular response to biomechanical stimuli (Frairia and Berta, 2011) or transient 

membrane permeability (Engler et al., 2006; Huang et al., 2013; McBeath et al., 2004). In the 

present study, the role of LIPUS stimulation (SATA intensity at 30 mW/cm2) in hMSC 

osteogenic commitment and differentiation was investigated using an in vitro model, where 

LIPUS stimulation was evaluated in terms of proteome, gene expression, and proteins release 

modulation. 

PCA and heat map clustering analyses of the obtained proteomic data, suggested that 

the most significant differences in protein expression profiles of MSCs are due to the specific 

growth medium (MSCGM or OM) rather than the exposure to LIPUS. Very few studies were 

focused indeed on osteogenic differentiation of hMSC (Gao et al., 2016; Hu et al., 2014; Yue 

et al., 2013) mediated by LIPUS treatment. In this sense, our proteomics analysis revealed the 

existence of differences in osteoblast commitment and differentiation potential between all 

experimental groups. Thus, deeper proteomic data analysis showed the peculiar ability of 

LIPUS to positively regulate several proteins and pathways associated with stemness, such as 

the autophagosomes proteins SQSTM1, SRSF2, TMEM109 or Glycolysis/Gluconeogenesis 

proteins (CKAP4,COX4I, ALDOA) (Folmes et al., 2011; Folmes and Terzic, 2016), and to 

negatively regulate signaling networks associated to the differentiation of MSCs into 

osteoblasts, such the RhoA/ROCK pathway (Chen et al., 2011; Fang et al., 2008; Yun et al., 

2016). In particular, our quantitative proteomic analysis indicated that, regardless the grown 

medium, LIPUS exposure induced a consistent down-regulation of Trio, a specific RhoA 

activator. The Rho family of small GTPases controls a diverse array of cellular processes, 

including cytoskeletal dynamics, cell polarity, membrane transport, and gene expression. The 

RhoA is a molecular switch that respond to cell surface receptors for various cytokines, 

growth factors, adhesion molecules, and G-protein-coupled receptors by cycling between an 

inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-

bound form. Recently Chen et al. demonstrated that during the differentiation process in bone 

marrow stem cell lines, RhoA protein expression increases on the membrane in the activated 

form of GTP-binding protein activating cellular actin remodeling and cytoskeleton 

rearrangement (Chen et al., 2011).  

Regarding hMSC viability and proliferation, LIPUS stimulation or the presence of OM 

determined an increase in cell viability over time. Even though dsDNA content levels did not 



reach those observed in Untreated MSCGM, LIPUS MSGCM cells showed higher dsDNA 

values than those treated with LIPUS stimulation and OM. In fact, the simultaneous presence 

of OM and LIPUS stimulation (LIPUS OM) inhibited cell proliferation, thus resulting in 

significantly lower dsDNA content at each experimental time point, which was likely due to 

the start of the differentiation process (Wang et al., 2014a). 

The analysis of specific markers of hMSC, confirmed the proteomic data of Untreated 

MSGCM and LIPUS MSGCM. The phenotypic characterization permitted to identify a 

functional multipotent hMSC stemness potency maintenance (CD73+/CD90+/CD105+) in the 

tested groups until 14 days, which decreased at 21days concurrently with osteoblast 

differentiation (Kern and Shibata, 2007; Pittenger et al., 1999; Ringdén and Le Blanc, 2006; 

Rutten et al., 2009; Saalbach et al., 2000; Yoshimura et al., 2007; Yoshimura et al., 2006). In 

addition, LIPUS stimulation markedly promoted the expression of stem cell transcriptional 

factors OCT-3/4, SOX2 and NANOG related to stemness maintenance, as recently reported 

by Kusuyama et al. (Alvarez et al., 2015; Kusuyama et al., 2015). As for the tendency of 

MSCs to lose their multipotency over time in culture, flow cytometry data recorded at 

different experimental time points might be consistent with long term culture stress, as 

reported by Stolzing et al. (Stolzing et al., 2006). In particular, according to Hassters et al. the 

loss of CD73 in hMSCs culture might be due to either a down-regulation of CD73 or a 

beginning of differentiation with the formation of a subpopulation of cells not expressing 

CD73 (Haasters et al., 2009).  

These data suggested that hMSCs treated with LIPUS might maintain the expression of 

mesenchymal markers and increase the hMSC osteoblast lineage commitment (Kulterer et al., 

2007) and differentiation especially after LIPUS and OM stimulation. 

Finally, an increase in mineralization in Untreated OM and, interestingly, in LIPUS OM 

occurred after only 7 days, thus confirming a prompt transition from a proliferative state 

(hMSCs) towards a differentiating state, mostly after LIPUS treatment (LIPUS OM showed 

the highest calcium nodule formation capability).  

The current results suggested that in vitro LIPUS stimulation induced the activation of 

the osteogenic specific pathways and relative protein release (Claes and Willie, 2007), 

favoring bone formation, in particular in the presence of osteogenic soluble factors that mimic 

bone microenvironment. RUNX2 expression was analyzed because it is (a) a fundamental 

transcription factor for osteogenic differentiation (Ducy et al., 1997; Otto et al., 2003); and (b) 

the target of mechanical signals by which physical stimuli act on the metabolic activities of 

osteoblasts (Ziros et al., 2002). RUNX2 mRNA expression level was increased in comparison 



to Untreated MSCGM at experimental times next to 21 days. The analysis of gene targets of 

RUNX2 and their protein release showed that higher values of COL1A1 mRNA expression 

were found in LIPUS MSCGM compared to LIPUS OM, whereas COL1a1 protein release 

increased in LIPUS OM compared to LIPUS MSCGM. This is suggestive of an additive 

effect of LIPUS in osteoblast-specific protein release. SPP1 mRNA analysis showed that 

hMSCs in LIPUS groups presented an instable expression over time, whereas OPN protein 

release slightly increased in LIPUS OM. Furthermore, BGLAP mRNA expression levels in 

LIPUS OM did not occur until the cessation of stimuli; whereas OC synthesis indicated that 

OM (Untreated OM) or LIPUS treatment (LIPUS MSCGM and LIPUS OM) produced a 

similar OC increase of Untreated MSCGM.  

The combination of LIPUS stimulation with OM led to a statistically significant increase in 

ALPL mRNA expression at 21 days of treatment both in comparison to Untreated OM group 

and LIPUS MSGCM, indicating an additive effect of LIPUS on ALPL gene regulation. The 

release of ALP did not increase with the OM and/or LIPUS stimulation and the highest ALP 

release was observed in Untreated MSGCM. Most likely, Untreated MSGCM showed an 

increase in ALP release because there were more osteoblasts committed cells compared to 

other groups, as demonstrated by phenotypic characterization and gene expression analysis. In 

addition, ALP data suggested the presence of intracellular control to maintain the balance 

between mRNA transcription and transduction, in order to allow the synthesis of a correct 

quantity of specific osteoblast protein throughout the differentiation pathway. 

As the effect of LIPUS on MAPK signaling is concerned, LIPUS stimulation and OM 

induced an up-regulation of MAPK1 mRNA expression in all groups over time, but both 

stimuli determined a down-regulation of MAPK6. MAPK6 expression in the LIPUS OM 

group showed a different trend with a progressive up-regulation, reaching its highest value at 

14 days of culture compared to LIPUS MSCGM, followed by down-regulation over time. 

Therefore, an effect of LIPUS on MAPK1/6 up-regulation was detected at gene expression 

level only after the ultrasound stimulus was stopped. This is probably due to the fact that at 7 

and 14 days MAPK1/6 synthesis could have been already stimulated by the previous 

exposition to LIPUS (Sato et al., 2015). At later time points, after the end of stimulation 

(7days off), gene up-regulation could be a direct consequence of ultrasounds-induced 

mechanotransduction, confirming the role of LIPUS as an activator of multiple mechano-

sensitive pathways. 

To sum up, the current study suggests that LIPUS might be able to maintain, in vitro for 

a long time, the niche of osteoblast committed hMSCs. Indeed, all data indicated that 



compared to Untreated OM, LIPUS exposure down regulates some pathways associated to 

osteogenic differentiation and allowed cells to maintain a protein expression profile 

characterizing the MSCs, providing new indication on the specific role that LIPUS could have 

in supporting the osteoblast commitment and differentiation of hMSCs.  
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Figure Legends 

Fig. 1. LIPUS set-up experiment: (a) Top and lateral view of plexiglas transducers support; (b) 

Characteristic of the ultrasound signal: 200-μs burst of 1.5 MHz sine waves repeated at 1 

kHz. 

Fig. 2.  (a) PCA analysis of MSCs cells grown in different condition. Regardless of exposure to 

LIPUS, PC1 clearly separates MSCs grown in OM from MSCs grown in MSCGM, while 

PC2 separates LIPUS treated cells from LIPUS untreated cells. Same color points 

represent single biological replicate of each growth condition. (b) Heat map presentation of 

a hierarchical cluster of all 557 quantified proteins in four analyzed cell grown conditions 

(each in duplicate).  

Fig. 3.    Venn diagram showing the proteins up- and down- regulated in the indicated comparisons. 

The numbers in brackets represent the total number of up- or down regulated proteins in 

the respective comparison. 

Fig. 4.  Protein–protein interaction network analysis of proteins down-regulated in LIPUS 

MSCGM vs untreated OM comparison (a), and up-regulated in Untreated MSCGM vs 

Untreated OM comparison (b) and in LIPUS MSCGM vs Untreated OM comparison (c). 

The protein–protein interaction network of the proteins listed in Supporting Information 

Table 1 was constructed using the STRING v10 database, and shows only high confidence 

functional connections (confidence score > 0.7). Among proteins up-regulated in Untreated 

MSCGM vs Untreated OM and in LIPUS MSCGM vs Untreated OM four functional 

overlapping networks are identified: Ribosome constituent/Protein metabolic process 

(green area), Glycolysis/Gluconeogenesis (blue area), RNA metabolic process/Splicing 

(pink area), tubulins (yellow area). 

Fig. 5. Results of cell viability (a) and dsDNA content (b) of Untreated OM ( ), LIPUS MSCGM 

( ) and LIPUS OM ( ) cells, expressed as percentage of Untreated MSCGM values 

(100%) (Mean ± SD, n=3 duplicates). GLM analysis with ‘group’ and ‘experimental time 

point’ as fixed effects showed for: Cell viability –a main effect of ‘experimental time’, 

F=12.32, p < 0.0005; dsDNA content – an interaction between ‘group’ and ‘experimental 

time’, F=12.42, p < 0.0005. Adjusted Sidak multiple comparison test (*, p < 0.05; **, p < 

0.005; ***, p < 0.0005).  

Fig. 6. Human MSCs characterization through CD73, CD90, and CD105 markers (% positive 

expression) in Untreated MSCGM (a) Untreated OM (b), LIPUS MSCGM (c) and LIPUS 

OM (d) at 21 days. The table (e) reports the percentage of hMSC positive gate for CD73, 



CD90, and CD105 markers, as well as NANOG, SOX2 and OCT-3/4 stem cell 

transcriptional factors.  

Fig. 7. Mineralization progress measured by the concentration of hydroxyapatite expressed as 

relative fluorescence unit (RFU) in Untreated MSCGM ( ) Untreated OM ( ), LIPUS 

MSCGM ( ) and LIPUS OM ( ) cells (Mean ± SD, n=3 duplicates). GLM analysis with 

‘group’ and ‘experimental time’ as fixed effects revealed for mineralization – an 

interaction between ‘group’ and ‘experimental time’, F=24.11, p < 0.0005. Adjusted Sidak 

multiple comparison test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005).  

Fig. 8. Results of RUNX2 (a), ALPL (b), COL1A1 (c), SPP1 (d) and BGLAP (e) gene expression 

of Untreated OM ( ), LIPUS MSCGM ( ) and LIPUS OM ( ) cells expressed as relative 

fold changes (RF) of Untreated MSCGM values (1) (Mean ± SD, n=3 duplicates). GLM 

analysis with ‘group’ and ‘experimental time’ as fixed effects revealed for: RUNX2 –an 

interaction between ‘group’ and ‘experimental time’, F=3.07, p < 0.05; ALPL – main 

effects of ‘group’, F=5.09, p < 0.05 and ‘experimental time’ F=11.94, p < 0.0005; COL1A1 

– main effects of ‘group’, F=9.18, p < 0.005 and ‘experimental time’ F=4.92, p < 0.05;

SPP1 – main effects of ‘experimental time’ F=19.78, p < 0.0005; BGLAP – an interaction 

between ‘group’ and ‘experimental time’, F=3.22, p < 0.05. Adjusted Sidak multiple 

comparison test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005). 

Fig. 9. Results of MAPK1 (a), MAPK6 (b) gene expression of Untreated OM ( ), LIPUS 

MSCGM ( ) and LIPUS OM ( ) cells expressed as relative fold changes (RF) of 

Untreated MSCGM values (1) (Mean ± SD, n=3 duplicates). GLM analysis with ‘group’ 

and ‘experimental time’ as fixed effects showed for: MAPK1 – an interaction between 

‘group’ and ‘experimental time’, F=5.92, p < 0.005; MAPK6 – an interaction between 

‘group’ and ‘experimental time’, F=4.37, p < 0.005. 

Fig.10. ELISA results of alkaline phosphatase (ALP), alpha-1 type I collagen (COL1a1), 

osteopontin (OPN) and osteocalcin (OC) release of Untreated OM ( ), LIPUS MSCGM 

( ) and LIPUS OM ( ) cells expressed as fold increase of Untreated MSCGM values 

(Mean ± SD, n=3 replicates). No significant interactions of 'group' and 'experimental time' 

effects were found on the release of ALP, COL1a1, OPN and OC. The ‘group’ effect for 

OPN (F=4.68, p < 0.05) and COL1a1 (F=8.22, p < 0.005) was significant. Adjusted 

Sidak’s multiple comparison test independent of experimental time point: LIPUS OM 

versus Untreated OM (OPN: *, p <0.05); LIPUS OM versus LIPUS MSCGM (OPN: *, p 

<0.05; COL1: **, p < 0.005). 



Fig.S1. LIPUS-modulated proteins specifically related to osteogenic differentiation of LIPUS 

MSCGM and Untreated OM cultures in comparison to Untreated MSCGM one. Each area 

represents the fold of change (green: increase; red: decrease) in: CCT2, CALD1, and 

CTTN (cytoskeletal reorganization proteins that directly 

stimulates osteoblastic differentiation); LGALS3 (involved in osteogenesis and formation 

of bone nodules); PFN1, (down-regulated in osteogenic differentiation process); and 

SPARC (marker of osteogenic differentiation). 



Table 1. Quiagen gene primers specific for osteogenic differentiation or involved in the 

differentiating process. Their expression was normalized to the GAPDH housekeeping 

gene (tab.1B). 

Gene Quiagen primers Catalog number 

Annealing 

temperature 

(°C) 

PCR products 

size 

RUNX2 
Hs_RUNX2_1_SG 

QuantiTect Primer Assay 
QT00020517 

60 101 bp 

ALPL 
Hs_ALPL_1_SG 

QuantiTect Primer Assay 
QT00012957 60 110 bp 

COL1A1 
Hs_COL1A1_1_SG 

QuantiTect Primer Assay 
QT00037793 

60 118 bp 

BGLAP 
Hs_BGLAP_1_SG  

QuantiTect Primer Assay 
QT00232771 60 90 bp 

SPP1 
Hs_SPP1_1_SG 

 QuantiTect Primer Assay 
QT01008798 60 115bp 



Table 2.  Gene primers specific for osteogenic differentiation or involved in the differentiating 

process. Their expression was normalized to the GAPDH housekeeping gene. 

Gene 
Forward primer 

Sequence (5'->3') 

Reverse primer 

Sequence (5'->3') 

Annealing 

temperatu

re (°C) 

PCR 

produc

ts size 

MAPK

1 

GCGCTACACTAATCTCTC

GT 
CTGAGGTGCTGTGTCTTCAA 60 297bp 

MAPK

6 

GAATGGCAAATCTGCTC

AATT 
ACAGTCCTCCCCACCACTCA 60 80bp 

GAPD

H 

ATGGGGAAGGTGAAGGT

CG 

GGGTCATTGATGGCAACAA

TATC 
65 107bp 
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