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Davnah Payne n, Petra Šímová b, Michele Torresani o,q, 

Martin Wegmann p, Jean-Baptiste Féret f
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A B S T R A C T

In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and 
biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity 
using ecological field data can be difficult for several reasons. For instance, for very large areas, it is 
challenging to collect data that provide reliable information. Some of these restrictions in Earth obser-
vation can be avoided through the use of remote sensing approaches. Various studies have estimated 
biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral 
heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing 
more organisms to coexist. Recently, the spectral species concept has been derived, following the 
consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces 
sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, 
these subspaces can be identified as separate spectral entities, the so called “spectral species”. Our 
approach extends this concept over wide spatial extents and to a higher level of biological organization. 
We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species 
identified by MODIS is not associated to a single plant species in the field but rather to a species 
assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward 
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method to derive α- (local relative abundance and richness of spectral species) and β-diversity (turnover of 
spectral species) maps over wide geographical areas.   

1. Introduction

1.1. A quest for robust and reproducible α- and β-diversity measurements

The variability of life on Earth is heterogeneously distributed across 
the planet. In Fact, ecologists and biogeographers have long questioned 
the potential causes of biodiversity distribution. Recently, the speed of 
change and the uncertainty about possible consequences on 
biodiversity is concerning to the global scientific community. The 
perception of these processes translates into the need to use 
standardized methods for biodiversity assessment and monitoring in 
order to gain a better un-derstanding and identify general trends. 

There is an open debate as to the most reliable metrics for assessing 
biodiversity (see Jurasinski et al. (2009); Tuomisto (2010)). Until now, 
no consistent definition exists. Even the definition according to the 
Convention on Biological Diversity (https://www.cbd.
int/convention/text/) is more confusing than clear: “Biological 
Diversity means the variability among living organisms from all 
sources, including, inter alia, terrestrial, marine and other aquatic 
ecosystems and the ecological complexes of which they are part; this 
includes di-versity within species, between species and of ecosystems.” 
Biodiversity obviously includes quantitative (number of species, 
alpha-diversity, gamma-diversity), qualitative (turnover, 
composition, beta-diversity) and functional (complexity, trophic 
levels, ecosystem services) as-pects. To sum up our understanding on 
the term biodiversity (i.e. bio-logical diversity) and to base our study 
on a more general and consistent concept, “biodiversity characterizes 
qualitative, quantitative and func-tional aspects of biotic units at 
various levels of organization in a con-crete or abstract context, and at 
a given temporal or/and spatial scale” (Beierkuhnlein, 2003). In 
consequence, species richness and metrics that are based on it are 
important, but they represent just one aspect of biodiversity. In fact, 
the total number of species co-occurring in a given community (α-
diversity) is nested within the total number of a species pools 
occurring for instance at the landscape level (γ-diversity). But the 
reduction of biodiversity to the perspective of inventory and 
proportion would not cover spatial gradients in composition and 
species turnover (differentiation, β-diversity) (Baselga, 2012; 
Jurasinski et al., 2009) and also ignores functional diversity (e.g. 
functional traits), which is the main driver of ecosystem functioning. 

In general, β-diversity is a crucial measure, since, given the same 
local richness of different sites (α-diversity), it directly considers the 
turnover among them. As an example, let A and B be two sampling 
sites with 10 different species each. If all 10 species are fully shared, 
the total γ-diversity would equal 10 species, while if all 10 species are 
completely different from one site to the other (high turnover, high β-
diversity) the total diversity of the whole area based on the two 
focal sites would double. 

Therefore, it becomes particularly interesting to understand how 
β-diversity originates, investigating how species composition differs 
among sites. In fact, species composition could be related to environ-
mental conditions, or it could randomly fluctuate. A generally 
accepted hypothesis suggests that β-diversity might change as a 
function of spe-cies types living in a certain community. For instance, 
β-diversity should be small when communities are dominated by a 
limited number of competitive species; this is recognized as the null 
hypothesis and it en-tails a uniform distribution in species 
composition (Legendre et al., 2005). 

The β-diversity concept reflects the environmental heterogeneity 
between sites and thus within a given larger area that contains several 
of the focal study sites. Heterogeneity is in fact highly associated with 
a high degree of biological diversity since heterogeneous sites offer 
a 

diversity of ecological niches (sensu Elton (1958)) that can be occupied if 
the species pool offers the respective ecological diversity to address these 
niches (Gaston, 2000; Rocchini et al., 2010). Furthermore, since β-diversity 
can be described as the spatial turnover among sites within a given region, 
it captures a fundamental feature of the spatial pattern of biodiversity. 

In some cases, spatial turnover can result from local extinction pro-cesses 
that affect certain species more than others and enhance the dissimilarity 
between sites without dispersal (Steinitz et al., 2006). This is the case in 
highly fragmented landscapes where dispersal is limited (Hobbs et al., 
2006). Even stochastic processes (sensu Moran (1950) and Clark (2008)) 
may enhance β-diversity in previously homogeneous ecosystems. For 
instance, sudden fragmentation (Alados et al., 2009) can lead to 
disfunctional source-sink metapopulations with intrinsic influences on the 
degree of spatial (and genetic) connectivity of organ-isms (Waples and 
Gaggiotti, 2006), resulting in the local loss of sink populations. However, 
in most situations, the spatial turnover and therefore the dispersal of 
species between sites (metapopulation and metacommunity dynamics) is 
linked to the distance among sites. Strictly speaking, the similarity between 
two sites decays with increasing dis-tance between them (Rocchini, 2007), a 
process also known as the dis-tance decay in similarity or the Tobler’s first 
law of geography (Tobler, 1970). 

Hence, modelling the distribution of β-diversity in space is based on 
softening the role of individual species, which are not even completely 
described at wide geographical scales, for the sake of estimating a more 
efficient proxy for ecosystem patterns and processes. When these esti-mates 
are available from remote sensing data, this process can lead to rapid, large-
scale monitoring and support management intervention aimed at 
preserving entire ecosystems, as stipulated by the Aichi Biodiversity 
Targets (https://www.cbd.int/sp/). 

Field-based studies require an enormous investment in time in order to 
collect reliable biodiversity data. A pioneering example is the public 
database of the Global Biodiversity Information Facility (GBIF, 
https://www.gbif.org/). GBIF is a network funded by the world’s 
governments which contains almost 41,000 databases of species oc-
currences spread out across the world. The large amount of publically 
accessible data and the available techniques to analyze them will 
certainly facilitate biodiversity assessment for the areas that it covers. 
Unfortunately, however, although it would be possible in principle to use 
these data to make reasonable assumptions about biodiversity over larger 
areas, there are several limitations due to their quality (Maldo-nado et al., 
2015). The errors that usually arise from field data are due to: (i) lack of or 
erroneous geographic coordinates of the sampling sites; 

(ii) incorrect taxonomic identification with poor quality control; and
(iii) difficulties in proving a reliable random sampling with large areas 
being poorly covered. Furthermore, these data often appear as point 
data, while grids are usually used in order to synthesize diversity met-
rics. In addition, these data are mainly collected from presence-only 
data without any link to relative abundance, dominance, biomass or 
cover, which instead, is reflected in remote sensing. Finally, GBIF data 
are inadequate for local estimates of biodiversity as they do not 
consider co- occurrence data. Indeed, and contrary to recent databases 
at the com-munity level such as the European Vegetation Archive 
(EVA) (Chytry et al., 2016) or the sPlot initiative (Bruelheide et al., 
2019), GBIF does not provide information on species co-occurrence 
which is very prob-lematic for biodiversity assessment and monitoring. 
Despite the disad-vantages that come from the use of public databases, 
there is some benefits in the use of such data. First of all, there is a 
huge amount of data collected and provided by citizens and research 
institutions avail-able in the GBIF database when compared to the data 
that could be 



Spectral Variation Hypothesis, relating spectral to environmental het-
erogeneity. The second is based on the plant optical types proposed by 
Ustin and Gamon (2010). This concept is mainly related to the use of 
particular sensors providing high spatial resolution images and able to 
measure different signals about the phenology, the biochemistry and 
the structure of vegetation. Such sensors can obtain information at the 
in-dividual plant scale level. 

The method is based on an unsupervised clustering algorithm, first 
relying on dimensionality reduction obtained after running a Principal 
Component Analysis (PCA) and then on the actual clustering of the 
pixels, with the subsequent assignment to spectral species, based on a 
k- means approach. PCA and similar clustering methods have already 
been shown to reliably reduce the multidimensional spectral sets for 
models on species and biodiversity distribution (Rocchini et al. 
(2010). Furthermore, the method provides an interesting visual 
inspection of diversity building α- and β-diversity maps. 

As far as we know, the spectral species concept has been applied so 
far only at the local scale (Féret and Asner, 2014). Hence, the aim of 
this manuscript is to extend this concept over wider spatial extents 
passing to a spectral community concept, by generating a heterogeneity 
map at a wide geographical scale to estimate α- and β-diversity across 
Europe. 
2. The algorithm

The spectral species algorithm was originally developed to map 
tropical forest canopy diversity using imaging spectroscopy with a 
spatial resolution up to 2 m (Féret and Asner (2014), Fig. 1). Following 
the hypothesis that species are spectrally separable (Asner and Martin, 
2009), the approach is based on the segmentation of the spectral space 
defined by the remote sensing data. In fact the spectral space is 
assumed to be a combination of several subspaces, reflecting the 
“signature” of one or several species. Therefore these subspaces would 
be the expres-sion of a more general “spectral species”. From the 
resultant “spectral community”, it would be possible to derive the 
diversity of an area. Therefore, the output of this algorithm is not a list 
of the actual species of an area, but rather a map of the distribution of 
the spectral communities available within the area that may be used to 
calculate several diversity indices. In particular we focused here on α- 
and β-diversity metrics. Both introduced by Whittaker (1972), the first 
reflects the mean species di-versity in sites at a local scale whereas the 
second is an indicator of the spatial (or temporal) heterogeneity at a 
relatively larger scale. In the algorithm, α-diversity is calculated in a 
neighbourhood (plot) of n × n pixels by the Shannon diversity index 
(Shannon, 1948) calculated as follow: 

H ′
∑N

s 1
pslnps (1)  

where ps is the proportion of each spectral species s in each plot. 
The β-diversity indicator is instead computed by the Bray-Curtis 

(hereafter BC) dissimilarity metric (Bray and Curtis, 1957): 

BCij

∑N
s 1

⃒
⃒xis xjs

⃒
⃒

∑N
s 1

(
xis + xjs

) (2)  

where BCij is the dissimilarity between plots i and j and xis and xjs are the 
abundances of spectral species s in plots i and j. 

In the spectral species algorithm, once the BC dissimilarity matrix 
between all pairs of plots is computed, a multidimensional scaling is 
performed in order to translate information about the pairwise dissim-
ilarity among P plots into a configuration of P points mapped in a 3- 
dimensional Cartesian space such as NMDS or PCoA (Mead, 1992). 
This simplified translation of the BC dissimilarity matrix can then be 
displayed as a colored map. More details can be found in Féret and de 
Boissieu (2020). 

While the Shannon index has a theoretical maximum limit 

collected locally, resulting in a huge saving of time and costs. 
Moreover, GBIF data are standardized to the same format and 
therefore ready to use. 

To overcome the issues due to the collection and availability of in 
situ ecological data, remote sensing imagery has become more and 
more important and is now considered a reliable tool to assess and 
monitor biodiversity (Tuanmu and Jetz, 2015). 

1.2. The spectral species concept 

Remote sensing based approaches have proven to be useful model-
ling techniques to detect the variation of biodiversity in space and 
time across scales of biological organization, at different grains 
(spatial res-olutions) and extents (Rocchini et al., 2013). Airborne 
sensors have even been used to detect and map single species 
distributions (Skowronek et al., 2017a), even the most tiny and 
inconspicuous ones such as Campylopus introflexus, a moss species 
which is highly invasive in Europe (Skowronek et al., 2017b). 

Remote sensing techniques have been used to study the impact of 
landscape and environment on biodiversity, and to explore and 
visualize spatial data and biodiversity change. Therefore, remote 
sensing data have become among the most time and cost effective 
tools, allowing to make relevant conservation actions in a relatively 
short period of time. Furthermore, remote sensing demonstrated the 
impact of biodiversity (including non-native invasive species) on 
ecosystem functioning (Ewald et al., 2018). 

In general, vegetation absorbs the blue and the red light, for photo-
synthesis, while it reflects near infrared (hereafter, NIR) radiation due 
to the physical structure of the cells composing the leaf 
mesophyllum (Wegmann et al., 2016). The bands relative to RED and 
NIR are used as proxies for photosynthetic activity of the vegetation. 
These bands are usually incorporated in a widely used index, the 
normalized difference vegetation index (NDVI), which is calculated 
as NDVI (NIR-RED)/ (NIR + RED). The higher the relative 
abundance of photosynthetic vegetation, the higher would be the 
reflectance in the NIR band and the absorption in the RED band. NDVI 
ranges from 1 to 1, with 0 values usually associated with non 
vegetated areas and negative values asso-ciated with water surfaces or 
snow. 

This index has widely been used to discriminate different 
vegetation types over an area. In fact, in several studies, NDVI is 
positively corre-lated to the net primary productivity (NPP, e.g. 
Gillespie et al. (2008)). Therefore, it can be used as a proxy to 
quantify species richness and diversity, based on the species-
energy theory, proposed by Currie (1991), namely a relation 
between species richness and energy, that would depend mainly on 
annual potential evapotranspiration and actual evapotranspiration. 
Another hypothesis related to the variability in space of the 
spectral signal has been proposed by Palmer et al. (2002). The so 
called Spectral Variation Hypothesis (SVH) states that the higher the 
environmental heterogeneity the higher would be the species di-
versity of an area, due to a higher number of available ecological 
niches. 

Hence, based on the SVH, spectral variability can effectively be 
related to environmental heterogeneity and therefore it could be used 
to assess species biodiversity of an area. In this sense, since the 
spectral variability is derived from the information present in the 
pixels of an acquired image, it is important that the pixels, 
describing the area of study, would have a spatial resolution coherent 
with the ecological as-sumptions taken into account and such that 
predictions on biodiversity can be made. 

Among the most novel methods to estimate diversity by remote 
sensing, described in Rocchini et al. (2018), the spectral species 
concept (Féret and Asner, 2014) is one of the most powerful, since it 
allows to couple k-means approaches to the gridded data obtained 
from remote sensing technologies as a mean to derive α- and β-
diversity 2D-matrices. The spectral species algorithm allows the 
separation of the spectral space in subunits identified as spectral 
species. Its root theory is built upon two major founding principles. 
The first is the aforementioned 



corresponding to the ln(richness), the BC index ranges from 0 to 1, 
where 0 is indicating that the two sites are identical whereas 1 indicates 
that the two sites do not share species. Hence, BC can be considered as 
an estimate of the heterogeneity of a certain area. The final aim of 
the method was to generate an heterogeneity map across the study 
region. Strictly speaking, the method is a clustering approach which (i) 
divides the subspaces in spectral units and (ii) assigns it to spectral 
species from which (iii) different diversity maps can be obtained. Box 1 
focuses in detail on the main steps of the algorithm, while the dedicated 
R package biodivMapR is now available (https://github.com/
jbferet/b iodivMapR) and fully described in Féret and de Boissieu 
(2020). 

2.1. Application of the algorithm 

Remote sensing data are usually provided as raster objects with a 
geographic coordinate system information, namely regular grids 
(matrices) or stacks of raster layers (e.g. one raster layer per band for 
multispectral or hyperspectral data), in which each cell represents a 
pixel with the corresponding reflectance value associated to a specific 
band. Such data have been manipulated with the Software R Develop-
ment Core Team (2019). R can be used for remote sensing data analysis 
since it includes spatial functionalities throughout a suite of R packages 
like the rgdal and raster packages (see Box 2 for more 
information). Our main purpose was to apply the spectral species 
algorithm to a continental-scale geographical region such as Europe. 
Hence, Moderate Resolution Imaging Spectroradiometer (MODIS) data, 
with a spatial resolution of 500 m covering Europe, were downloaded 
from the United States Geological Survey (USGS) site (https://
lpdaac.usgs. gov/products/mod09a1v006/). After a visual 
check of the images, in order to guarantee (i) the coverage of a 
complete phenological period and to (ii) avoid noise related to clouds, 
we referred to the RED and NIR bands from 2018 from January to 
December (one image per month), to calculate NDVI, by generating a 
sample set of 12 NDVI images (Fig. 2). Due to the rather coarse spatial 
resolution of MODIS images (500 m), 

the reflectance related to a single plant species is averaged and mixed 
with the reflectance of other species within a single pixel. In other 
words, the direct relationship between spectral species detected in the 
spectral space versus the number of plant species does not hold true. 
However, in any case, from a diversity measurement perspective, this 
is just a matter of terms being used, with spectral species being 
actually more related to field plant communities, habitats or other 
ecological entities. 

For the derivation of spectral species, in order to define the 
number of clusters, we relied on the highest number of clusters with 
stable re-sults after a trial and error procedure, reaching 200 clusters, 
i.e. spectral species. Once pixels with similar NDVI values in 12 
dimensions were clumped together, Shannon’s H′ was calculated with 
a window size of 10 × 10 pixels and an output resolution of 5 km. The 
attained α-diversity map quantitatively showed the local spectral 
diversity distribution over Europe (Fig. 3), with a higher 
heterogeneity found in (i) more topo-graphically complex regions, 
mainly due to strong local differences induced by elevation 
gradients (passing from forests to grasslands, to rocks and snow), 
and/or differences in terms of seasonality in relation with elevation, as 
in Rocchini et al. (2019), and in (ii) more contrasted agricultural areas 
in both the spatial and temporal dimensions (Hobbs et al., 2006; 
Vihervaara et al., 2017). Concerning topographical complexity, 
the higher variability in areas with a marked topographical gradient 
might be related to shadows. Local field work in such areas will be 
needed to validate the measurements in such areas. 

The β-diversity map (Fig. 3) showed a clear differentiation among 
different areas over Europe. The attained map was in line with the Eu-
ropean Environmental Agency (EEA) map of ecoregions (Fig. 4, see 
Mucher et al. (2009)). The correspondence of the achieved patterns in 
the two maps was apparent, with a similar contour of the major ecor-
egions such as the mediterranean, the atlantic, the continental, the 
boreal and the alpine regions. This demonstrates an intrinsic ability of 
the spectral species approach to capture differences in the 
physiological and functional properties of vegetation even at wide 
spatial scales, 

Fig. 1. Diagrammatic representation of the steps of the algorithm used to achieve α- and β-diversities, redrawn from Féret and Asner (2014). Pixels are clumped in 
a spectral species and spectral community diversity is calculated. We refer to the main text and to Box 1 for additional information. 



starting from spectral reflectance or spectral indices. Minor differences 
were mainly related to the biogeographical (i.e., purely spatial) differ-
entiation of ecoregions in the EEA map. As an example, north and 
south alpine ecoregions could not be distinguished by the spectral 
species approach, since they both have very similar conifer species 
composition, with the same physiological, phenological and thus 
spectral pattern. 
3. Discussion

In this paper, for the first time, the spectral species concept has been 
extended from the consideration of a single species to an entire 

community. We demonstrated that the combined use of the novel un-
supervised clustering method proposed by Féret and Asner (2014), 
with NDVI time series at European scale, allows the derivation of local 
(α) diversity and turnover (β) relying on free to use and 
operationally available satellite data. 

With regards to a potential validation with in-situ data, the uncer-
tainty of wide-scale datasets hampers a spatial overlap. In this case, in- 
situ datasets meet all five major concerns recently raised by Hobohm 
et al. (2019), i.e.: (i) there is insufficient data coverage across Europe 
to make an unbiased comparison between predicted and actual 
distribu-tions, (ii) taxonomic standards differ across sampled regions, 
(iii) there 

Box 1 
Steps composing the spectral species algorithm.  
1. A Principal Component Analysis (PCA) is applied to the spectral data. PCA is not performed on the whole image, but only on a large subset of 

pixels randomly selected from the image. Due to the high dimensionality of the data, the reduction of the dataset is not altering the result. 
Those principal components explaining most of the variance of the original set are then retained for further steps.

2. A subset of pixels is then randomly selected across the entire map and the spectral space containing such a subset is partitioned into 
spectral species using k-means clustering with the number of k clusters being decided a priori. Then the centroids defining the spectral 
species are located.

3. The spectral dataset is divided into final mapping units. Each pixel is assigned to a given spectral species based on the minimal Euclidean 
distance between pixels (Peuquet, 1992) and the previously defined centroids.

4. A spectral species distribution is obtained for each mapping unit from which the α- and β-diversity indices are computed as previously 
stated.

5. Since the spectral species distribution is obtained by a subset of pixels, in order to avoid under-representation of some small-scaled 
ecological classes (e.g. small scale vegetation patterns), steps 3 and 4 are repeated 100 times, and the indicators obtained for each 
repetition are averaged. In particular the Bray-Curtis dissimilarity matrix is computed for each pair of spatial units, based on their spectral 
species dis-tribution at each iteration; then the final matrix corresponds to the BC dissimilarity averaged over all the iterations.

6. Non metric Multidimensional Scaling (NMDS) (e.g. Borg and Groenen (2005)) is applied to the matrices in order to obtain a visual repre-
sentation of the results. NMDS is an ordination technique usually applied in ecology that differs from other ordination techniques as PCA, 
since in NMDS a small number of axes are chosen prior to the analysis and then the data are fitted into the chosen dimensions. 
Furthermore, NMDS is not an analytical but numerical technique, seeking for the right solution (convergence) iteratively. Finally, NMDS is 
not an eigenvector-eigenvalue technique, hence a NMDS ordination can be rotated among the axes. NMDS is mostly used in ecology for its 
versatility since it accepts any distance measure of the samples. In this case the Bray-Curtis matrix was used. In the applied NMDS 
approach, the first step is generally to decide the number of reduced dimensions; in this case 3 dimensions were chosen. The algorithm 
starts with the construction of initial random arrangements of the pixels. Then the Euclidean distances among the samples is calculated in 
this first configuration; those distances are regressed against the original distance matrix, and the predicted ordination distances are 
calculated. Finally, the regression is fitted by the least-squares method. The goodness of fit is measured by the sum of squared differences 
between ordination-based distances and the predicted distances. The goodness of fit is calculated through the Kruskal’s Stress index: 

Stress
[r]
∑

h,i

(

dhi d̂hi

)2

[r]
∑

h,id2
hi

√
√
√
√
√
√ (3)  

where dhi is the ordinated distance between pixels h and i, and d̂hi is the distance predicted from the regression. Then, a new 
configuration is computed moving in the direction in which stress changes most rapidly. The entire procedure is repeated until 
convergence. A Stress value that provides an excellent representation in the reduced dimensions is considered to be lower than 0.05; 
nevertheless a value of Stress < 0.2 is still considered a good representation Borg and Groenen (2005). 

Basically, the algorithm provides both single spectral species maps and the α- and β-diversity maps. The algorithm input file needs to 
be in ENVI binary format with the corresponding header file. The file should be in Band Interleave by Line (BIL) format and 2-byte 
signed integer, and should not have extension. A further masking file in the same format is necessary in order to mask clouds and water 
surfaces.  

Box 2 
Packages used in this manuscript to handle and analyze spatial data in R  

• raster: It provides classes and functions to manipulate geographic data in raster format. Raster data divides space into cells (as pixels) of 
equal size (in units of the coordinate reference system). Along with the raster package, the sp package is also loaded, which provides spatial 
object classes and methods to retrieve coordinates.

• rgdal: It provides functions to import ad export spatial data in different formats.
• RStoolbox: A toolbox for remote sensing image processing and analysis.
• rasterdiv: It provides algorithms for measuring diversity from spatial matrices. 



are generally different shapes of areas being sampled, (iv) political 
borders often define sampling areas and aggregated sampling areas, 
and (v) data are not aggregated in the same way in all areas. 
Furthermore, spatial information has an intrinsic varying degree of 
relevance mainly due to the fact that, rather than species lists, it is 
composed of geomet-rical precision, attributes robustness and temporal 
consistency (Hobona et al., 2006). Finally, different models and 
approaches to measuring diversity inevitably provide different 
outputs, as pointed out in the generalised entropy theory put 
forward by Rényi (1961). Given the above validation difficulties, we 
decided to qualitatively compare our generated output, in particular 
the β-diversity map, with existing ecor-egion maps, which are expected 
to discriminate different spatial areas based on natural borders 
defined by biological diversity (https://eco 
regions2017.appspot.com/) and thus are intrinsically related to differ-
ences in the species and spectral turnover of communities.

Since the output of the algorithm represents the variation of the 
pixel values in space and time, the most diverse pixels were those with 
the highest turnover among the neighbourhood areas and most affected 
by seasonality. The importance of accounting for turnover instead of 
simple richness has widely been discussed in the ecological literature 
(Tuo-misto, 2010), since environmental variability over spatial 
gradients is one of the major drivers of the structure and composition 
of diversity (Legendre et al., 2005). In this view, the use of the 
“spectral species concept”, defined as the variation of clustered pixel 
values, represents a powerful approach for the investigation of 
gradient variation of di-versity in space and, potentially, in time. 

In general, the measure of variability in space has been 
demonstrated to follow scale-based differentiation. In other words, 
results are expected to change with spatial scale in terms of both grain 
(spatial resolution) and extent (extent of geographical area of interest, 
Palmer et al. (2002)). Regarding extent, one of the major weaknesses 
of the proposed algo-rithm in β-diversity quantification (although this 
applies in general to all 

measurements of turnover) is that by increasing the extent of an 
observation area, the estimated values for an individual comparison 
between sites are modified by the increasing spectral species pool. 

Additional drawbacks at the current stage of the algorithm include: 
(i) the use of remotely sensed data which are not necessarily related to 
the main drivers of species distributions and of diversity, (ii) the 
general multicollinearity found in most of the remotely sensed sets, 
(iii) the unsupervised clustering process being adopted.

Concerning climate, a solution might be found in the use of 
remotely sensed derived climate data adding climate change as an 
additional layer of complexity as in Rocchini et al. (2015a) and in 
Zellweger et al. (2019). Also in this case multicollinearity of climate 
variables should be seriously taken into account, as we did for the 
original remote sensing data, by applying a PCA to reduce the noise in 
the data and detect po-tential artifacts; consequently, PCA components 
might also be visualized to find potential congruence between spectral 
species and real species patterns. Finally, the process for grouping 
pixels in spectral species is based on an unsupervised clustering, where 
the definition of the number of clusters should be done a-priori. In this 
case, we hypothesized that the diversity of types of landscapes and 
gradient of climates across Europe may require a large number of 
clusters to correctly differentiate among them, relying on a fuzzy 
view of ecosystems (Rocchini and Ricotta, 2007). Hence, we decided 
to adopt a trial and error procedure until a threshold was reached in 
which no significant changes were found. Such a threshold resulted in 
200 clusters. In the near future, it would be interesting to make a 
sensitivity analysis to demonstrate the impact of the number of clusters 
on the final analysis. 

Considering the use of remote sensing for species diversity 
estimates, correlation and determination coefficients are generally 
statistically significant but low, hampering the direct use of remotely 
sensed di-versity in simple univariate models (Rocchini et al., 2018). 
In fact, the relationship between α- or β-diversity and habitat 
heterogeneity, which 

Fig. 2. An input set of n images can be handled to create a time series and use the stack to further calculate the spectral community diversity. In our paper, a stack 
of 12 NDVI images of 2018 from the MODIS sensor was processed by the spectral species algorithm, to produce α- and β-diversity maps. 



is the founding principle for the use of remote sensing data for these 
analyses, is rarely linear (Ferrier et al., 2007), mainly because of vari-
ation in the rate of species turnover along an environmental gradient. 
However, remotely sensed variables are generally well suited in more 
complex multivariate models accounting for part of the diversity 
explained for species communities (Rocchini et al., 2018). This is 
especially true considering that environmental turnover generally ex-
plains more variation in species diversity rather than mere spatial 
structure (Hernandez-Stefanoni et al., 2012). Moreover, based on their 
high temporal resolution, remote sensing data might be useful to 
detect drastic changes of diversity in space and time, e.g. related 
to cata-strophic events, overall considering the intrinsic difficulties in 
relying on in-situ data for wide geographical scales (Cord and 
Rodder, 2011; Hobohm et al., 2019). 

From an ecological perspective, remote sensing imagery bands (di-
mensions) show a high affinity with the hypervolume axes proposed 
by Hutchinson (1957) for modelling species niches. In the 
Hutchinson’s theory, an hypervolume is represented by a space 
defined by a set of n independent axes which could be related to the 
final variables driving the realised niche of a species (see also Blonder 
(2017) and Ricotta et al. (2010) on the niche differentiation 
concept). In our case, such axes would be the original satellite sensor 
bands being strictly related to the identification of a spectral species 
and the resulting spectral community in a site, instead of a niche. 
From this point of view, spectral species and communities are in line 
with joint species distribution models (JSDMs), which explicitly take 
into account biotic interactions among species in a community, while 
in our model the “interaction” among pixel values is ruled out in 
general by their proximity both from a spatial and from a 

Fig. 3. The α- (a) and β-diversity (b) maps obtained by 
the spectral species algorithm. (a) The α-diversity map, 
based on Shannon’s H′ index (ranging from blue [low 
values] to light green [high values]) calculated in a 10 ×
10 pixels local neighbourhood, corresponds to the local 
entropy of clusters, so that each location is independent 
from the others; (b) The β-diversity map - Bray-Curtis 
dissimilarity reduced to 3 dimensions with NMDS - pro-
vides information about the dissimilarity among any 
location in the image. Here, the distance between pairs of 
spatial units is expressed as a 3 colour code. (For inter-
pretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   



spectral point of view. In this paper, the final aim was not to model 
single spectral species or spectral communities but rather to estimate 
diversity and its change over space and time, following the mathemat-
ical principles described in Liu et al. (2014) and Rocchini et al. 
(2015b), for which the distribution of diversity over space is actually a 
particular case of the so-called switched systems, i.e. hybrid systems 
resulting from both continuous and discrete dynamics with a high 
number of different potential variables acting as main drivers of 
diversity response. In our view we succeeded here to fill a previous 
gap in spatio-ecological analysis, i.e. the translation of what in 
remote sensing science is known as “spectral mixture 
modeling” (Jensen, 2015) into an ecological diversity theory approach. 
In spectral mixture modelling the measured spectral reflectance is 
decomposed as a mixture of endmembers. In our case, such a mixture 
was used to directly compute α-diversity and ß- diversity over wide 
spatial areas in a very short time. 
4. Conclusion

Predicting and mapping α- and β-diversity using remotely sensed 
images acquired over large areas is currently a key topic in ecology, 
and could provide landscape managers with rapid and effective tools to 
es-timate and monitor global change. In this paper, we proposed a 
novel method based on preliminary unsupervised clustering of spectral 
data (NDVI time series derived from MODIS data), assigning each pixel 
to a “spectral species” and then calculating diversity based on a 
dissimilarity metric. At the scale of this study, the one-to-one 
relationship between spectral species and in-situ plant species is not 
achieved, but the spectral species concept still holds true once 
considering that the detected spectral species in the spectral space are 
related to higher-order plant hierarchies (assemblages, entire habitats, 
etc.). That is, from an algo-rithmic point of view, the bulk of the 
calculations are unaltered. 

Based on the results presented here, the use of the spectral species 
and communities concept would appear to promote more effective 
planning and policies related to the conservation of wild species, by 
improving our understanding of the dynamics of local and global 
biodiversity at various spatial and temporal scales. 
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